intel/fs: Add an UNDEF instruction to avoid excess live ranges
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "nir_search_helpers.h"
28 #include "util/u_math.h"
29 #include "util/bitscan.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_outputs();
40 nir_setup_uniforms();
41 nir_emit_system_values();
42
43 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
44 }
45
46 void
47 fs_visitor::nir_setup_outputs()
48 {
49 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
50 return;
51
52 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
53
54 /* Calculate the size of output registers in a separate pass, before
55 * allocating them. With ARB_enhanced_layouts, multiple output variables
56 * may occupy the same slot, but have different type sizes.
57 */
58 nir_foreach_variable(var, &nir->outputs) {
59 const int loc = var->data.driver_location;
60 const unsigned var_vec4s =
61 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
62 : type_size_vec4(var->type, true);
63 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
64 }
65
66 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
67 if (vec4s[loc] == 0) {
68 loc++;
69 continue;
70 }
71
72 unsigned reg_size = vec4s[loc];
73
74 /* Check if there are any ranges that start within this range and extend
75 * past it. If so, include them in this allocation.
76 */
77 for (unsigned i = 1; i < reg_size; i++)
78 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
79
80 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
81 for (unsigned i = 0; i < reg_size; i++)
82 outputs[loc + i] = offset(reg, bld, 4 * i);
83
84 loc += reg_size;
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_uniforms()
90 {
91 /* Only the first compile gets to set up uniforms. */
92 if (push_constant_loc) {
93 assert(pull_constant_loc);
94 return;
95 }
96
97 uniforms = nir->num_uniforms / 4;
98
99 if (stage == MESA_SHADER_COMPUTE) {
100 /* Add a uniform for the thread local id. It must be the last uniform
101 * on the list.
102 */
103 assert(uniforms == prog_data->nr_params);
104 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
105 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
106 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
107 }
108 }
109
110 static bool
111 emit_system_values_block(nir_block *block, fs_visitor *v)
112 {
113 fs_reg *reg;
114
115 nir_foreach_instr(instr, block) {
116 if (instr->type != nir_instr_type_intrinsic)
117 continue;
118
119 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
120 switch (intrin->intrinsic) {
121 case nir_intrinsic_load_vertex_id:
122 case nir_intrinsic_load_base_vertex:
123 unreachable("should be lowered by nir_lower_system_values().");
124
125 case nir_intrinsic_load_vertex_id_zero_base:
126 case nir_intrinsic_load_is_indexed_draw:
127 case nir_intrinsic_load_first_vertex:
128 case nir_intrinsic_load_instance_id:
129 case nir_intrinsic_load_base_instance:
130 case nir_intrinsic_load_draw_id:
131 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
132
133 case nir_intrinsic_load_invocation_id:
134 if (v->stage == MESA_SHADER_TESS_CTRL)
135 break;
136 assert(v->stage == MESA_SHADER_GEOMETRY);
137 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
138 if (reg->file == BAD_FILE) {
139 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
140 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
141 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
142 abld.SHR(iid, g1, brw_imm_ud(27u));
143 *reg = iid;
144 }
145 break;
146
147 case nir_intrinsic_load_sample_pos:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_samplepos_setup();
152 break;
153
154 case nir_intrinsic_load_sample_id:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
157 if (reg->file == BAD_FILE)
158 *reg = *v->emit_sampleid_setup();
159 break;
160
161 case nir_intrinsic_load_sample_mask_in:
162 assert(v->stage == MESA_SHADER_FRAGMENT);
163 assert(v->devinfo->gen >= 7);
164 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_samplemaskin_setup();
167 break;
168
169 case nir_intrinsic_load_work_group_id:
170 assert(v->stage == MESA_SHADER_COMPUTE);
171 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
172 if (reg->file == BAD_FILE)
173 *reg = *v->emit_cs_work_group_id_setup();
174 break;
175
176 case nir_intrinsic_load_helper_invocation:
177 assert(v->stage == MESA_SHADER_FRAGMENT);
178 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
179 if (reg->file == BAD_FILE) {
180 const fs_builder abld =
181 v->bld.annotate("gl_HelperInvocation", NULL);
182
183 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
184 * pixel mask is in g1.7 of the thread payload.
185 *
186 * We move the per-channel pixel enable bit to the low bit of each
187 * channel by shifting the byte containing the pixel mask by the
188 * vector immediate 0x76543210UV.
189 *
190 * The region of <1,8,0> reads only 1 byte (the pixel masks for
191 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
192 * masks for 2 and 3) in SIMD16.
193 */
194 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
195
196 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
197 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
198 hbld.SHR(offset(shifted, hbld, i),
199 stride(retype(brw_vec1_grf(1 + i, 7),
200 BRW_REGISTER_TYPE_UB),
201 1, 8, 0),
202 brw_imm_v(0x76543210));
203 }
204
205 /* A set bit in the pixel mask means the channel is enabled, but
206 * that is the opposite of gl_HelperInvocation so we need to invert
207 * the mask.
208 *
209 * The negate source-modifier bit of logical instructions on Gen8+
210 * performs 1's complement negation, so we can use that instead of
211 * a NOT instruction.
212 */
213 fs_reg inverted = negate(shifted);
214 if (v->devinfo->gen < 8) {
215 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
216 abld.NOT(inverted, shifted);
217 }
218
219 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
220 * with 1 and negating.
221 */
222 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
223 abld.AND(anded, inverted, brw_imm_uw(1));
224
225 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
226 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
227 *reg = dst;
228 }
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 return true;
237 }
238
239 void
240 fs_visitor::nir_emit_system_values()
241 {
242 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
243 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
244 nir_system_values[i] = fs_reg();
245 }
246
247 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
248 * never end up using it.
249 */
250 {
251 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
252 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
253 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
254
255 const fs_builder allbld8 = abld.group(8, 0).exec_all();
256 allbld8.MOV(reg, brw_imm_v(0x76543210));
257 if (dispatch_width > 8)
258 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
259 if (dispatch_width > 16) {
260 const fs_builder allbld16 = abld.group(16, 0).exec_all();
261 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
262 }
263 }
264
265 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
266 nir_foreach_block(block, impl)
267 emit_system_values_block(block, this);
268 }
269
270 /*
271 * Returns a type based on a reference_type (word, float, half-float) and a
272 * given bit_size.
273 *
274 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
275 *
276 * @FIXME: 64-bit return types are always DF on integer types to maintain
277 * compability with uses of DF previously to the introduction of int64
278 * support.
279 */
280 static brw_reg_type
281 brw_reg_type_from_bit_size(const unsigned bit_size,
282 const brw_reg_type reference_type)
283 {
284 switch(reference_type) {
285 case BRW_REGISTER_TYPE_HF:
286 case BRW_REGISTER_TYPE_F:
287 case BRW_REGISTER_TYPE_DF:
288 switch(bit_size) {
289 case 16:
290 return BRW_REGISTER_TYPE_HF;
291 case 32:
292 return BRW_REGISTER_TYPE_F;
293 case 64:
294 return BRW_REGISTER_TYPE_DF;
295 default:
296 unreachable("Invalid bit size");
297 }
298 case BRW_REGISTER_TYPE_B:
299 case BRW_REGISTER_TYPE_W:
300 case BRW_REGISTER_TYPE_D:
301 case BRW_REGISTER_TYPE_Q:
302 switch(bit_size) {
303 case 8:
304 return BRW_REGISTER_TYPE_B;
305 case 16:
306 return BRW_REGISTER_TYPE_W;
307 case 32:
308 return BRW_REGISTER_TYPE_D;
309 case 64:
310 return BRW_REGISTER_TYPE_Q;
311 default:
312 unreachable("Invalid bit size");
313 }
314 case BRW_REGISTER_TYPE_UB:
315 case BRW_REGISTER_TYPE_UW:
316 case BRW_REGISTER_TYPE_UD:
317 case BRW_REGISTER_TYPE_UQ:
318 switch(bit_size) {
319 case 8:
320 return BRW_REGISTER_TYPE_UB;
321 case 16:
322 return BRW_REGISTER_TYPE_UW;
323 case 32:
324 return BRW_REGISTER_TYPE_UD;
325 case 64:
326 return BRW_REGISTER_TYPE_UQ;
327 default:
328 unreachable("Invalid bit size");
329 }
330 default:
331 unreachable("Unknown type");
332 }
333 }
334
335 void
336 fs_visitor::nir_emit_impl(nir_function_impl *impl)
337 {
338 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
339 for (unsigned i = 0; i < impl->reg_alloc; i++) {
340 nir_locals[i] = fs_reg();
341 }
342
343 foreach_list_typed(nir_register, reg, node, &impl->registers) {
344 unsigned array_elems =
345 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
346 unsigned size = array_elems * reg->num_components;
347 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
348 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
349 nir_locals[reg->index] = bld.vgrf(reg_type, size);
350 }
351
352 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
353 impl->ssa_alloc);
354
355 nir_emit_cf_list(&impl->body);
356 }
357
358 void
359 fs_visitor::nir_emit_cf_list(exec_list *list)
360 {
361 exec_list_validate(list);
362 foreach_list_typed(nir_cf_node, node, node, list) {
363 switch (node->type) {
364 case nir_cf_node_if:
365 nir_emit_if(nir_cf_node_as_if(node));
366 break;
367
368 case nir_cf_node_loop:
369 nir_emit_loop(nir_cf_node_as_loop(node));
370 break;
371
372 case nir_cf_node_block:
373 nir_emit_block(nir_cf_node_as_block(node));
374 break;
375
376 default:
377 unreachable("Invalid CFG node block");
378 }
379 }
380 }
381
382 void
383 fs_visitor::nir_emit_if(nir_if *if_stmt)
384 {
385 bool invert;
386 fs_reg cond_reg;
387
388 /* If the condition has the form !other_condition, use other_condition as
389 * the source, but invert the predicate on the if instruction.
390 */
391 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
392 if (cond != NULL && cond->op == nir_op_inot) {
393 assert(!cond->src[0].negate);
394 assert(!cond->src[0].abs);
395
396 invert = true;
397 cond_reg = get_nir_src(cond->src[0].src);
398 } else {
399 invert = false;
400 cond_reg = get_nir_src(if_stmt->condition);
401 }
402
403 /* first, put the condition into f0 */
404 fs_inst *inst = bld.MOV(bld.null_reg_d(),
405 retype(cond_reg, BRW_REGISTER_TYPE_D));
406 inst->conditional_mod = BRW_CONDITIONAL_NZ;
407
408 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
409
410 nir_emit_cf_list(&if_stmt->then_list);
411
412 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
413 bld.emit(BRW_OPCODE_ELSE);
414 nir_emit_cf_list(&if_stmt->else_list);
415 }
416
417 bld.emit(BRW_OPCODE_ENDIF);
418
419 if (devinfo->gen < 7)
420 limit_dispatch_width(16, "Non-uniform control flow unsupported "
421 "in SIMD32 mode.");
422 }
423
424 void
425 fs_visitor::nir_emit_loop(nir_loop *loop)
426 {
427 bld.emit(BRW_OPCODE_DO);
428
429 nir_emit_cf_list(&loop->body);
430
431 bld.emit(BRW_OPCODE_WHILE);
432
433 if (devinfo->gen < 7)
434 limit_dispatch_width(16, "Non-uniform control flow unsupported "
435 "in SIMD32 mode.");
436 }
437
438 void
439 fs_visitor::nir_emit_block(nir_block *block)
440 {
441 nir_foreach_instr(instr, block) {
442 nir_emit_instr(instr);
443 }
444 }
445
446 void
447 fs_visitor::nir_emit_instr(nir_instr *instr)
448 {
449 const fs_builder abld = bld.annotate(NULL, instr);
450
451 switch (instr->type) {
452 case nir_instr_type_alu:
453 nir_emit_alu(abld, nir_instr_as_alu(instr));
454 break;
455
456 case nir_instr_type_deref:
457 unreachable("All derefs should've been lowered");
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_CTRL:
466 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_TESS_EVAL:
469 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_GEOMETRY:
472 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_FRAGMENT:
475 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 case MESA_SHADER_COMPUTE:
478 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 default:
481 unreachable("unsupported shader stage");
482 }
483 break;
484
485 case nir_instr_type_tex:
486 nir_emit_texture(abld, nir_instr_as_tex(instr));
487 break;
488
489 case nir_instr_type_load_const:
490 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
491 break;
492
493 case nir_instr_type_ssa_undef:
494 /* We create a new VGRF for undefs on every use (by handling
495 * them in get_nir_src()), rather than for each definition.
496 * This helps register coalescing eliminate MOVs from undef.
497 */
498 break;
499
500 case nir_instr_type_jump:
501 nir_emit_jump(abld, nir_instr_as_jump(instr));
502 break;
503
504 default:
505 unreachable("unknown instruction type");
506 }
507 }
508
509 /**
510 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
511 * match instr.
512 */
513 bool
514 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
515 const fs_reg &result)
516 {
517 if (!instr->src[0].src.is_ssa ||
518 !instr->src[0].src.ssa->parent_instr)
519 return false;
520
521 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
522 return false;
523
524 nir_alu_instr *src0 =
525 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
526
527 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
528 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
529 return false;
530
531 /* If either opcode has source modifiers, bail.
532 *
533 * TODO: We can potentially handle source modifiers if both of the opcodes
534 * we're combining are signed integers.
535 */
536 if (instr->src[0].abs || instr->src[0].negate ||
537 src0->src[0].abs || src0->src[0].negate)
538 return false;
539
540 unsigned element = nir_src_as_uint(src0->src[1].src);
541
542 /* Element type to extract.*/
543 const brw_reg_type type = brw_int_type(
544 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
545 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
546
547 fs_reg op0 = get_nir_src(src0->src[0].src);
548 op0.type = brw_type_for_nir_type(devinfo,
549 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
550 nir_src_bit_size(src0->src[0].src)));
551 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
552
553 set_saturate(instr->dest.saturate,
554 bld.MOV(result, subscript(op0, type, element)));
555 return true;
556 }
557
558 bool
559 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
560 const fs_reg &result)
561 {
562 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
563 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
564 return false;
565
566 if (!nir_src_is_const(instr->src[1].src) ||
567 !nir_src_is_const(instr->src[2].src))
568 return false;
569
570 const float value1 = nir_src_as_float(instr->src[1].src);
571 const float value2 = nir_src_as_float(instr->src[2].src);
572 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
573 return false;
574
575 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
576 assert(value1 == -value2);
577
578 fs_reg tmp = vgrf(glsl_type::int_type);
579
580 if (devinfo->gen >= 6) {
581 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
582 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
583
584 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
585 *
586 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
587 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
588 *
589 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
590 *
591 * This negation looks like it's safe in practice, because bits 0:4 will
592 * surely be TRIANGLES
593 */
594
595 if (value1 == -1.0f) {
596 g0.negate = true;
597 }
598
599 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
600 g0, brw_imm_uw(0x3f80));
601 } else {
602 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
603 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
604
605 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
606 *
607 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
608 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
609 *
610 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
611 *
612 * This negation looks like it's safe in practice, because bits 0:4 will
613 * surely be TRIANGLES
614 */
615
616 if (value1 == -1.0f) {
617 g1_6.negate = true;
618 }
619
620 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
621 }
622 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
623
624 return true;
625 }
626
627 static void
628 emit_find_msb_using_lzd(const fs_builder &bld,
629 const fs_reg &result,
630 const fs_reg &src,
631 bool is_signed)
632 {
633 fs_inst *inst;
634 fs_reg temp = src;
635
636 if (is_signed) {
637 /* LZD of an absolute value source almost always does the right
638 * thing. There are two problem values:
639 *
640 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
641 * 0. However, findMSB(int(0x80000000)) == 30.
642 *
643 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
644 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
645 *
646 * For a value of zero or negative one, -1 will be returned.
647 *
648 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
649 * findMSB(-(1<<x)) should return x-1.
650 *
651 * For all negative number cases, including 0x80000000 and
652 * 0xffffffff, the correct value is obtained from LZD if instead of
653 * negating the (already negative) value the logical-not is used. A
654 * conditonal logical-not can be achieved in two instructions.
655 */
656 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
657
658 bld.ASR(temp, src, brw_imm_d(31));
659 bld.XOR(temp, temp, src);
660 }
661
662 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
663 retype(temp, BRW_REGISTER_TYPE_UD));
664
665 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
666 * from the LSB side. Subtract the result from 31 to convert the MSB
667 * count into an LSB count. If no bits are set, LZD will return 32.
668 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
669 */
670 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
671 inst->src[0].negate = true;
672 }
673
674 static brw_rnd_mode
675 brw_rnd_mode_from_nir_op (const nir_op op) {
676 switch (op) {
677 case nir_op_f2f16_rtz:
678 return BRW_RND_MODE_RTZ;
679 case nir_op_f2f16_rtne:
680 return BRW_RND_MODE_RTNE;
681 default:
682 unreachable("Operation doesn't support rounding mode");
683 }
684 }
685
686 fs_reg
687 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
688 nir_alu_instr *instr,
689 fs_reg *op,
690 bool need_dest)
691 {
692 fs_reg result =
693 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
694
695 result.type = brw_type_for_nir_type(devinfo,
696 (nir_alu_type)(nir_op_infos[instr->op].output_type |
697 nir_dest_bit_size(instr->dest.dest)));
698
699 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
700 op[i] = get_nir_src(instr->src[i].src);
701 op[i].type = brw_type_for_nir_type(devinfo,
702 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
703 nir_src_bit_size(instr->src[i].src)));
704 op[i].abs = instr->src[i].abs;
705 op[i].negate = instr->src[i].negate;
706 }
707
708 /* Move and vecN instrutions may still be vectored. Return the raw,
709 * vectored source and destination so that fs_visitor::nir_emit_alu can
710 * handle it. Other callers should not have to handle these kinds of
711 * instructions.
712 */
713 switch (instr->op) {
714 case nir_op_mov:
715 case nir_op_vec2:
716 case nir_op_vec3:
717 case nir_op_vec4:
718 return result;
719 default:
720 break;
721 }
722
723 /* At this point, we have dealt with any instruction that operates on
724 * more than a single channel. Therefore, we can just adjust the source
725 * and destination registers for that channel and emit the instruction.
726 */
727 unsigned channel = 0;
728 if (nir_op_infos[instr->op].output_size == 0) {
729 /* Since NIR is doing the scalarizing for us, we should only ever see
730 * vectorized operations with a single channel.
731 */
732 assert(util_bitcount(instr->dest.write_mask) == 1);
733 channel = ffs(instr->dest.write_mask) - 1;
734
735 result = offset(result, bld, channel);
736 }
737
738 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
739 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
740 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
741 }
742
743 return result;
744 }
745
746 void
747 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
748 fs_reg *op)
749 {
750 for (unsigned i = 0; i < 2; i++) {
751 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
752
753 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
754 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
755 /* The source of the inot is now the source of instr. */
756 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
757
758 assert(!op[i].negate);
759 op[i].negate = true;
760 } else {
761 op[i] = resolve_source_modifiers(op[i]);
762 }
763 }
764 }
765
766 bool
767 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
768 fs_reg result,
769 nir_alu_instr *instr)
770 {
771 if (devinfo->gen < 6 || devinfo->gen >= 12)
772 return false;
773
774 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
775
776 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
777 return false;
778
779 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
780 * of valid size-changing combinations is a bit more complex.
781 *
782 * The source restriction is just because I was lazy about generating the
783 * constant below.
784 */
785 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
786 nir_src_bit_size(inot_instr->src[0].src) != 32)
787 return false;
788
789 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
790 * this is float(1 + a).
791 */
792 fs_reg op;
793
794 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
795
796 /* Ignore the saturate modifier, if there is one. The result of the
797 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
798 */
799 bld.ADD(result, op, brw_imm_d(1));
800
801 return true;
802 }
803
804 /**
805 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
806 *
807 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
808 * the source of \c instr that is a \c nir_op_fsign.
809 */
810 void
811 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
812 fs_reg result, fs_reg *op, unsigned fsign_src)
813 {
814 fs_inst *inst;
815
816 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
817 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
818
819 if (instr->op != nir_op_fsign) {
820 const nir_alu_instr *const fsign_instr =
821 nir_src_as_alu_instr(instr->src[fsign_src].src);
822
823 assert(!fsign_instr->dest.saturate);
824
825 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
826 * fsign_src] has the other multiply source. This must be rearranged so
827 * that op[0] is the source of the fsign op[1] is the other multiply
828 * source.
829 */
830 if (fsign_src != 0)
831 op[1] = op[0];
832
833 op[0] = get_nir_src(fsign_instr->src[0].src);
834
835 const nir_alu_type t =
836 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
837 nir_src_bit_size(fsign_instr->src[0].src));
838
839 op[0].type = brw_type_for_nir_type(devinfo, t);
840 op[0].abs = fsign_instr->src[0].abs;
841 op[0].negate = fsign_instr->src[0].negate;
842
843 unsigned channel = 0;
844 if (nir_op_infos[instr->op].output_size == 0) {
845 /* Since NIR is doing the scalarizing for us, we should only ever see
846 * vectorized operations with a single channel.
847 */
848 assert(util_bitcount(instr->dest.write_mask) == 1);
849 channel = ffs(instr->dest.write_mask) - 1;
850 }
851
852 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
853 } else {
854 assert(!instr->dest.saturate);
855 }
856
857 if (op[0].abs) {
858 /* Straightforward since the source can be assumed to be either strictly
859 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
860 */
861 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
862
863 if (instr->op == nir_op_fsign) {
864 inst = (op[0].negate)
865 ? bld.MOV(result, brw_imm_f(-1.0f))
866 : bld.MOV(result, brw_imm_f(1.0f));
867 } else {
868 op[1].negate = (op[0].negate != op[1].negate);
869 inst = bld.MOV(result, op[1]);
870 }
871
872 set_predicate(BRW_PREDICATE_NORMAL, inst);
873 } else if (type_sz(op[0].type) == 2) {
874 /* AND(val, 0x8000) gives the sign bit.
875 *
876 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
877 */
878 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
879 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
880
881 op[0].type = BRW_REGISTER_TYPE_UW;
882 result.type = BRW_REGISTER_TYPE_UW;
883 bld.AND(result, op[0], brw_imm_uw(0x8000u));
884
885 if (instr->op == nir_op_fsign)
886 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
887 else {
888 /* Use XOR here to get the result sign correct. */
889 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
890 }
891
892 inst->predicate = BRW_PREDICATE_NORMAL;
893 } else if (type_sz(op[0].type) == 4) {
894 /* AND(val, 0x80000000) gives the sign bit.
895 *
896 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
897 * zero.
898 */
899 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
900
901 op[0].type = BRW_REGISTER_TYPE_UD;
902 result.type = BRW_REGISTER_TYPE_UD;
903 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
904
905 if (instr->op == nir_op_fsign)
906 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
907 else {
908 /* Use XOR here to get the result sign correct. */
909 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
910 }
911
912 inst->predicate = BRW_PREDICATE_NORMAL;
913 } else {
914 /* For doubles we do the same but we need to consider:
915 *
916 * - 2-src instructions can't operate with 64-bit immediates
917 * - The sign is encoded in the high 32-bit of each DF
918 * - We need to produce a DF result.
919 */
920
921 fs_reg zero = vgrf(glsl_type::double_type);
922 bld.MOV(zero, setup_imm_df(bld, 0.0));
923 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
924
925 bld.MOV(result, zero);
926
927 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
928 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
929 brw_imm_ud(0x80000000u));
930
931 if (instr->op == nir_op_fsign) {
932 set_predicate(BRW_PREDICATE_NORMAL,
933 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
934 } else {
935 /* This could be done better in some cases. If the scale is an
936 * immediate with the low 32-bits all 0, emitting a separate XOR and
937 * OR would allow an algebraic optimization to remove the OR. There
938 * are currently zero instances of fsign(double(x))*IMM in shader-db
939 * or any test suite, so it is hard to care at this time.
940 */
941 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
942 inst = bld.XOR(result_int64, result_int64,
943 retype(op[1], BRW_REGISTER_TYPE_UQ));
944 }
945 }
946 }
947
948 /**
949 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
950 *
951 * Checks the operands of a \c nir_op_fmul to determine whether or not
952 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
953 *
954 * \param instr The multiplication instruction
955 *
956 * \param fsign_src The source of \c instr that may or may not be a
957 * \c nir_op_fsign
958 */
959 static bool
960 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
961 {
962 assert(instr->op == nir_op_fmul);
963
964 nir_alu_instr *const fsign_instr =
965 nir_src_as_alu_instr(instr->src[fsign_src].src);
966
967 /* Rules:
968 *
969 * 1. instr->src[fsign_src] must be a nir_op_fsign.
970 * 2. The nir_op_fsign can only be used by this multiplication.
971 * 3. The source that is the nir_op_fsign does not have source modifiers.
972 * \c emit_fsign only examines the source modifiers of the source of the
973 * \c nir_op_fsign.
974 *
975 * The nir_op_fsign must also not have the saturate modifier, but steps
976 * have already been taken (in nir_opt_algebraic) to ensure that.
977 */
978 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
979 is_used_once(fsign_instr) &&
980 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
981 }
982
983 void
984 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
985 {
986 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
987 fs_inst *inst;
988
989 fs_reg op[4];
990 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
991
992 switch (instr->op) {
993 case nir_op_mov:
994 case nir_op_vec2:
995 case nir_op_vec3:
996 case nir_op_vec4: {
997 fs_reg temp = result;
998 bool need_extra_copy = false;
999 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1000 if (!instr->src[i].src.is_ssa &&
1001 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1002 need_extra_copy = true;
1003 temp = bld.vgrf(result.type, 4);
1004 break;
1005 }
1006 }
1007
1008 for (unsigned i = 0; i < 4; i++) {
1009 if (!(instr->dest.write_mask & (1 << i)))
1010 continue;
1011
1012 if (instr->op == nir_op_mov) {
1013 inst = bld.MOV(offset(temp, bld, i),
1014 offset(op[0], bld, instr->src[0].swizzle[i]));
1015 } else {
1016 inst = bld.MOV(offset(temp, bld, i),
1017 offset(op[i], bld, instr->src[i].swizzle[0]));
1018 }
1019 inst->saturate = instr->dest.saturate;
1020 }
1021
1022 /* In this case the source and destination registers were the same,
1023 * so we need to insert an extra set of moves in order to deal with
1024 * any swizzling.
1025 */
1026 if (need_extra_copy) {
1027 for (unsigned i = 0; i < 4; i++) {
1028 if (!(instr->dest.write_mask & (1 << i)))
1029 continue;
1030
1031 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1032 }
1033 }
1034 return;
1035 }
1036
1037 case nir_op_i2f32:
1038 case nir_op_u2f32:
1039 if (optimize_extract_to_float(instr, result))
1040 return;
1041 inst = bld.MOV(result, op[0]);
1042 inst->saturate = instr->dest.saturate;
1043 break;
1044
1045 case nir_op_f2f16_rtne:
1046 case nir_op_f2f16_rtz:
1047 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1048 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1049 /* fallthrough */
1050 case nir_op_f2f16:
1051 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1052 * on the HW gen, it is a special hw opcode or just a MOV, and
1053 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1054 *
1055 * But if we want to use that opcode, we need to provide support on
1056 * different optimizations and lowerings. As right now HF support is
1057 * only for gen8+, it will be better to use directly the MOV, and use
1058 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1059 */
1060 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1061 inst = bld.MOV(result, op[0]);
1062 inst->saturate = instr->dest.saturate;
1063 break;
1064
1065 case nir_op_b2i8:
1066 case nir_op_b2i16:
1067 case nir_op_b2i32:
1068 case nir_op_b2i64:
1069 case nir_op_b2f16:
1070 case nir_op_b2f32:
1071 case nir_op_b2f64:
1072 if (try_emit_b2fi_of_inot(bld, result, instr))
1073 break;
1074 op[0].type = BRW_REGISTER_TYPE_D;
1075 op[0].negate = !op[0].negate;
1076 /* fallthrough */
1077 case nir_op_i2f64:
1078 case nir_op_i2i64:
1079 case nir_op_u2f64:
1080 case nir_op_u2u64:
1081 case nir_op_f2f64:
1082 case nir_op_f2i64:
1083 case nir_op_f2u64:
1084 case nir_op_i2i32:
1085 case nir_op_u2u32:
1086 case nir_op_f2f32:
1087 case nir_op_f2i32:
1088 case nir_op_f2u32:
1089 case nir_op_i2f16:
1090 case nir_op_i2i16:
1091 case nir_op_u2f16:
1092 case nir_op_u2u16:
1093 case nir_op_f2i16:
1094 case nir_op_f2u16:
1095 case nir_op_i2i8:
1096 case nir_op_u2u8:
1097 case nir_op_f2i8:
1098 case nir_op_f2u8:
1099 if (result.type == BRW_REGISTER_TYPE_B ||
1100 result.type == BRW_REGISTER_TYPE_UB ||
1101 result.type == BRW_REGISTER_TYPE_HF)
1102 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1103
1104 if (op[0].type == BRW_REGISTER_TYPE_B ||
1105 op[0].type == BRW_REGISTER_TYPE_UB ||
1106 op[0].type == BRW_REGISTER_TYPE_HF)
1107 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1108
1109 inst = bld.MOV(result, op[0]);
1110 inst->saturate = instr->dest.saturate;
1111 break;
1112
1113 case nir_op_fsat:
1114 inst = bld.MOV(result, op[0]);
1115 inst->saturate = true;
1116 break;
1117
1118 case nir_op_fneg:
1119 case nir_op_ineg:
1120 op[0].negate = true;
1121 inst = bld.MOV(result, op[0]);
1122 if (instr->op == nir_op_fneg)
1123 inst->saturate = instr->dest.saturate;
1124 break;
1125
1126 case nir_op_fabs:
1127 case nir_op_iabs:
1128 op[0].negate = false;
1129 op[0].abs = true;
1130 inst = bld.MOV(result, op[0]);
1131 if (instr->op == nir_op_fabs)
1132 inst->saturate = instr->dest.saturate;
1133 break;
1134
1135 case nir_op_fsign:
1136 emit_fsign(bld, instr, result, op, 0);
1137 break;
1138
1139 case nir_op_frcp:
1140 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1141 inst->saturate = instr->dest.saturate;
1142 break;
1143
1144 case nir_op_fexp2:
1145 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1146 inst->saturate = instr->dest.saturate;
1147 break;
1148
1149 case nir_op_flog2:
1150 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1151 inst->saturate = instr->dest.saturate;
1152 break;
1153
1154 case nir_op_fsin:
1155 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1156 inst->saturate = instr->dest.saturate;
1157 break;
1158
1159 case nir_op_fcos:
1160 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1161 inst->saturate = instr->dest.saturate;
1162 break;
1163
1164 case nir_op_fddx:
1165 if (fs_key->high_quality_derivatives) {
1166 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1167 } else {
1168 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1169 }
1170 inst->saturate = instr->dest.saturate;
1171 break;
1172 case nir_op_fddx_fine:
1173 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1174 inst->saturate = instr->dest.saturate;
1175 break;
1176 case nir_op_fddx_coarse:
1177 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1178 inst->saturate = instr->dest.saturate;
1179 break;
1180 case nir_op_fddy:
1181 if (fs_key->high_quality_derivatives) {
1182 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1183 } else {
1184 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1185 }
1186 inst->saturate = instr->dest.saturate;
1187 break;
1188 case nir_op_fddy_fine:
1189 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1190 inst->saturate = instr->dest.saturate;
1191 break;
1192 case nir_op_fddy_coarse:
1193 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1194 inst->saturate = instr->dest.saturate;
1195 break;
1196
1197 case nir_op_iadd:
1198 case nir_op_fadd:
1199 inst = bld.ADD(result, op[0], op[1]);
1200 inst->saturate = instr->dest.saturate;
1201 break;
1202
1203 case nir_op_uadd_sat:
1204 inst = bld.ADD(result, op[0], op[1]);
1205 inst->saturate = true;
1206 break;
1207
1208 case nir_op_fmul:
1209 for (unsigned i = 0; i < 2; i++) {
1210 if (can_fuse_fmul_fsign(instr, i)) {
1211 emit_fsign(bld, instr, result, op, i);
1212 return;
1213 }
1214 }
1215
1216 inst = bld.MUL(result, op[0], op[1]);
1217 inst->saturate = instr->dest.saturate;
1218 break;
1219
1220 case nir_op_imul_2x32_64:
1221 case nir_op_umul_2x32_64:
1222 bld.MUL(result, op[0], op[1]);
1223 break;
1224
1225 case nir_op_imul:
1226 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1227 bld.MUL(result, op[0], op[1]);
1228 break;
1229
1230 case nir_op_imul_high:
1231 case nir_op_umul_high:
1232 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1233 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1234 break;
1235
1236 case nir_op_idiv:
1237 case nir_op_udiv:
1238 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1239 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1240 break;
1241
1242 case nir_op_uadd_carry:
1243 unreachable("Should have been lowered by carry_to_arith().");
1244
1245 case nir_op_usub_borrow:
1246 unreachable("Should have been lowered by borrow_to_arith().");
1247
1248 case nir_op_umod:
1249 case nir_op_irem:
1250 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1251 * appears that our hardware just does the right thing for signed
1252 * remainder.
1253 */
1254 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1255 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1256 break;
1257
1258 case nir_op_imod: {
1259 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1260 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1261
1262 /* Math instructions don't support conditional mod */
1263 inst = bld.MOV(bld.null_reg_d(), result);
1264 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1265
1266 /* Now, we need to determine if signs of the sources are different.
1267 * When we XOR the sources, the top bit is 0 if they are the same and 1
1268 * if they are different. We can then use a conditional modifier to
1269 * turn that into a predicate. This leads us to an XOR.l instruction.
1270 *
1271 * Technically, according to the PRM, you're not allowed to use .l on a
1272 * XOR instruction. However, emperical experiments and Curro's reading
1273 * of the simulator source both indicate that it's safe.
1274 */
1275 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1276 inst = bld.XOR(tmp, op[0], op[1]);
1277 inst->predicate = BRW_PREDICATE_NORMAL;
1278 inst->conditional_mod = BRW_CONDITIONAL_L;
1279
1280 /* If the result of the initial remainder operation is non-zero and the
1281 * two sources have different signs, add in a copy of op[1] to get the
1282 * final integer modulus value.
1283 */
1284 inst = bld.ADD(result, result, op[1]);
1285 inst->predicate = BRW_PREDICATE_NORMAL;
1286 break;
1287 }
1288
1289 case nir_op_flt32:
1290 case nir_op_fge32:
1291 case nir_op_feq32:
1292 case nir_op_fne32: {
1293 fs_reg dest = result;
1294
1295 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1296 if (bit_size != 32)
1297 dest = bld.vgrf(op[0].type, 1);
1298
1299 brw_conditional_mod cond;
1300 switch (instr->op) {
1301 case nir_op_flt32:
1302 cond = BRW_CONDITIONAL_L;
1303 break;
1304 case nir_op_fge32:
1305 cond = BRW_CONDITIONAL_GE;
1306 break;
1307 case nir_op_feq32:
1308 cond = BRW_CONDITIONAL_Z;
1309 break;
1310 case nir_op_fne32:
1311 cond = BRW_CONDITIONAL_NZ;
1312 break;
1313 default:
1314 unreachable("bad opcode");
1315 }
1316
1317 bld.CMP(dest, op[0], op[1], cond);
1318
1319 if (bit_size > 32) {
1320 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1321 } else if(bit_size < 32) {
1322 /* When we convert the result to 32-bit we need to be careful and do
1323 * it as a signed conversion to get sign extension (for 32-bit true)
1324 */
1325 const brw_reg_type src_type =
1326 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1327
1328 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1329 }
1330 break;
1331 }
1332
1333 case nir_op_ilt32:
1334 case nir_op_ult32:
1335 case nir_op_ige32:
1336 case nir_op_uge32:
1337 case nir_op_ieq32:
1338 case nir_op_ine32: {
1339 fs_reg dest = result;
1340
1341 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1342 if (bit_size != 32)
1343 dest = bld.vgrf(op[0].type, 1);
1344
1345 brw_conditional_mod cond;
1346 switch (instr->op) {
1347 case nir_op_ilt32:
1348 case nir_op_ult32:
1349 cond = BRW_CONDITIONAL_L;
1350 break;
1351 case nir_op_ige32:
1352 case nir_op_uge32:
1353 cond = BRW_CONDITIONAL_GE;
1354 break;
1355 case nir_op_ieq32:
1356 cond = BRW_CONDITIONAL_Z;
1357 break;
1358 case nir_op_ine32:
1359 cond = BRW_CONDITIONAL_NZ;
1360 break;
1361 default:
1362 unreachable("bad opcode");
1363 }
1364 bld.CMP(dest, op[0], op[1], cond);
1365
1366 if (bit_size > 32) {
1367 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1368 } else if (bit_size < 32) {
1369 /* When we convert the result to 32-bit we need to be careful and do
1370 * it as a signed conversion to get sign extension (for 32-bit true)
1371 */
1372 const brw_reg_type src_type =
1373 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1374
1375 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1376 }
1377 break;
1378 }
1379
1380 case nir_op_inot:
1381 if (devinfo->gen >= 8) {
1382 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1383
1384 if (inot_src_instr != NULL &&
1385 (inot_src_instr->op == nir_op_ior ||
1386 inot_src_instr->op == nir_op_ixor ||
1387 inot_src_instr->op == nir_op_iand) &&
1388 !inot_src_instr->src[0].abs &&
1389 !inot_src_instr->src[0].negate &&
1390 !inot_src_instr->src[1].abs &&
1391 !inot_src_instr->src[1].negate) {
1392 /* The sources of the source logical instruction are now the
1393 * sources of the instruction that will be generated.
1394 */
1395 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1396 resolve_inot_sources(bld, inot_src_instr, op);
1397
1398 /* Smash all of the sources and destination to be signed. This
1399 * doesn't matter for the operation of the instruction, but cmod
1400 * propagation fails on unsigned sources with negation (due to
1401 * fs_inst::can_do_cmod returning false).
1402 */
1403 result.type =
1404 brw_type_for_nir_type(devinfo,
1405 (nir_alu_type)(nir_type_int |
1406 nir_dest_bit_size(instr->dest.dest)));
1407 op[0].type =
1408 brw_type_for_nir_type(devinfo,
1409 (nir_alu_type)(nir_type_int |
1410 nir_src_bit_size(inot_src_instr->src[0].src)));
1411 op[1].type =
1412 brw_type_for_nir_type(devinfo,
1413 (nir_alu_type)(nir_type_int |
1414 nir_src_bit_size(inot_src_instr->src[1].src)));
1415
1416 /* For XOR, only invert one of the sources. Arbitrarily choose
1417 * the first source.
1418 */
1419 op[0].negate = !op[0].negate;
1420 if (inot_src_instr->op != nir_op_ixor)
1421 op[1].negate = !op[1].negate;
1422
1423 switch (inot_src_instr->op) {
1424 case nir_op_ior:
1425 bld.AND(result, op[0], op[1]);
1426 return;
1427
1428 case nir_op_iand:
1429 bld.OR(result, op[0], op[1]);
1430 return;
1431
1432 case nir_op_ixor:
1433 bld.XOR(result, op[0], op[1]);
1434 return;
1435
1436 default:
1437 unreachable("impossible opcode");
1438 }
1439 }
1440 op[0] = resolve_source_modifiers(op[0]);
1441 }
1442 bld.NOT(result, op[0]);
1443 break;
1444 case nir_op_ixor:
1445 if (devinfo->gen >= 8) {
1446 resolve_inot_sources(bld, instr, op);
1447 }
1448 bld.XOR(result, op[0], op[1]);
1449 break;
1450 case nir_op_ior:
1451 if (devinfo->gen >= 8) {
1452 resolve_inot_sources(bld, instr, op);
1453 }
1454 bld.OR(result, op[0], op[1]);
1455 break;
1456 case nir_op_iand:
1457 if (devinfo->gen >= 8) {
1458 resolve_inot_sources(bld, instr, op);
1459 }
1460 bld.AND(result, op[0], op[1]);
1461 break;
1462
1463 case nir_op_fdot2:
1464 case nir_op_fdot3:
1465 case nir_op_fdot4:
1466 case nir_op_b32all_fequal2:
1467 case nir_op_b32all_iequal2:
1468 case nir_op_b32all_fequal3:
1469 case nir_op_b32all_iequal3:
1470 case nir_op_b32all_fequal4:
1471 case nir_op_b32all_iequal4:
1472 case nir_op_b32any_fnequal2:
1473 case nir_op_b32any_inequal2:
1474 case nir_op_b32any_fnequal3:
1475 case nir_op_b32any_inequal3:
1476 case nir_op_b32any_fnequal4:
1477 case nir_op_b32any_inequal4:
1478 unreachable("Lowered by nir_lower_alu_reductions");
1479
1480 case nir_op_fnoise1_1:
1481 case nir_op_fnoise1_2:
1482 case nir_op_fnoise1_3:
1483 case nir_op_fnoise1_4:
1484 case nir_op_fnoise2_1:
1485 case nir_op_fnoise2_2:
1486 case nir_op_fnoise2_3:
1487 case nir_op_fnoise2_4:
1488 case nir_op_fnoise3_1:
1489 case nir_op_fnoise3_2:
1490 case nir_op_fnoise3_3:
1491 case nir_op_fnoise3_4:
1492 case nir_op_fnoise4_1:
1493 case nir_op_fnoise4_2:
1494 case nir_op_fnoise4_3:
1495 case nir_op_fnoise4_4:
1496 unreachable("not reached: should be handled by lower_noise");
1497
1498 case nir_op_ldexp:
1499 unreachable("not reached: should be handled by ldexp_to_arith()");
1500
1501 case nir_op_fsqrt:
1502 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1503 inst->saturate = instr->dest.saturate;
1504 break;
1505
1506 case nir_op_frsq:
1507 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1508 inst->saturate = instr->dest.saturate;
1509 break;
1510
1511 case nir_op_i2b32:
1512 case nir_op_f2b32: {
1513 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1514 if (bit_size == 64) {
1515 /* two-argument instructions can't take 64-bit immediates */
1516 fs_reg zero;
1517 fs_reg tmp;
1518
1519 if (instr->op == nir_op_f2b32) {
1520 zero = vgrf(glsl_type::double_type);
1521 tmp = vgrf(glsl_type::double_type);
1522 bld.MOV(zero, setup_imm_df(bld, 0.0));
1523 } else {
1524 zero = vgrf(glsl_type::int64_t_type);
1525 tmp = vgrf(glsl_type::int64_t_type);
1526 bld.MOV(zero, brw_imm_q(0));
1527 }
1528
1529 /* A SIMD16 execution needs to be split in two instructions, so use
1530 * a vgrf instead of the flag register as dst so instruction splitting
1531 * works
1532 */
1533 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1534 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1535 } else {
1536 fs_reg zero;
1537 if (bit_size == 32) {
1538 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1539 } else {
1540 assert(bit_size == 16);
1541 zero = instr->op == nir_op_f2b32 ?
1542 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1543 }
1544 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1545 }
1546 break;
1547 }
1548
1549 case nir_op_ftrunc:
1550 inst = bld.RNDZ(result, op[0]);
1551 inst->saturate = instr->dest.saturate;
1552 break;
1553
1554 case nir_op_fceil: {
1555 op[0].negate = !op[0].negate;
1556 fs_reg temp = vgrf(glsl_type::float_type);
1557 bld.RNDD(temp, op[0]);
1558 temp.negate = true;
1559 inst = bld.MOV(result, temp);
1560 inst->saturate = instr->dest.saturate;
1561 break;
1562 }
1563 case nir_op_ffloor:
1564 inst = bld.RNDD(result, op[0]);
1565 inst->saturate = instr->dest.saturate;
1566 break;
1567 case nir_op_ffract:
1568 inst = bld.FRC(result, op[0]);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571 case nir_op_fround_even:
1572 inst = bld.RNDE(result, op[0]);
1573 inst->saturate = instr->dest.saturate;
1574 break;
1575
1576 case nir_op_fquantize2f16: {
1577 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1578 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1579 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1580
1581 /* The destination stride must be at least as big as the source stride. */
1582 tmp16.type = BRW_REGISTER_TYPE_W;
1583 tmp16.stride = 2;
1584
1585 /* Check for denormal */
1586 fs_reg abs_src0 = op[0];
1587 abs_src0.abs = true;
1588 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1589 BRW_CONDITIONAL_L);
1590 /* Get the appropriately signed zero */
1591 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1592 retype(op[0], BRW_REGISTER_TYPE_UD),
1593 brw_imm_ud(0x80000000));
1594 /* Do the actual F32 -> F16 -> F32 conversion */
1595 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1596 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1597 /* Select that or zero based on normal status */
1598 inst = bld.SEL(result, zero, tmp32);
1599 inst->predicate = BRW_PREDICATE_NORMAL;
1600 inst->saturate = instr->dest.saturate;
1601 break;
1602 }
1603
1604 case nir_op_imin:
1605 case nir_op_umin:
1606 case nir_op_fmin:
1607 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1608 inst->saturate = instr->dest.saturate;
1609 break;
1610
1611 case nir_op_imax:
1612 case nir_op_umax:
1613 case nir_op_fmax:
1614 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1615 inst->saturate = instr->dest.saturate;
1616 break;
1617
1618 case nir_op_pack_snorm_2x16:
1619 case nir_op_pack_snorm_4x8:
1620 case nir_op_pack_unorm_2x16:
1621 case nir_op_pack_unorm_4x8:
1622 case nir_op_unpack_snorm_2x16:
1623 case nir_op_unpack_snorm_4x8:
1624 case nir_op_unpack_unorm_2x16:
1625 case nir_op_unpack_unorm_4x8:
1626 case nir_op_unpack_half_2x16:
1627 case nir_op_pack_half_2x16:
1628 unreachable("not reached: should be handled by lower_packing_builtins");
1629
1630 case nir_op_unpack_half_2x16_split_x:
1631 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1632 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1633 inst->saturate = instr->dest.saturate;
1634 break;
1635 case nir_op_unpack_half_2x16_split_y:
1636 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1637 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1638 inst->saturate = instr->dest.saturate;
1639 break;
1640
1641 case nir_op_pack_64_2x32_split:
1642 case nir_op_pack_32_2x16_split:
1643 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1644 break;
1645
1646 case nir_op_unpack_64_2x32_split_x:
1647 case nir_op_unpack_64_2x32_split_y: {
1648 if (instr->op == nir_op_unpack_64_2x32_split_x)
1649 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1650 else
1651 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1652 break;
1653 }
1654
1655 case nir_op_unpack_32_2x16_split_x:
1656 case nir_op_unpack_32_2x16_split_y: {
1657 if (instr->op == nir_op_unpack_32_2x16_split_x)
1658 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1659 else
1660 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1661 break;
1662 }
1663
1664 case nir_op_fpow:
1665 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1666 inst->saturate = instr->dest.saturate;
1667 break;
1668
1669 case nir_op_bitfield_reverse:
1670 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1671 bld.BFREV(result, op[0]);
1672 break;
1673
1674 case nir_op_bit_count:
1675 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1676 bld.CBIT(result, op[0]);
1677 break;
1678
1679 case nir_op_ufind_msb: {
1680 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1681 emit_find_msb_using_lzd(bld, result, op[0], false);
1682 break;
1683 }
1684
1685 case nir_op_ifind_msb: {
1686 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1687
1688 if (devinfo->gen < 7) {
1689 emit_find_msb_using_lzd(bld, result, op[0], true);
1690 } else {
1691 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1692
1693 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1694 * count from the LSB side. If FBH didn't return an error
1695 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1696 * count into an LSB count.
1697 */
1698 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1699
1700 inst = bld.ADD(result, result, brw_imm_d(31));
1701 inst->predicate = BRW_PREDICATE_NORMAL;
1702 inst->src[0].negate = true;
1703 }
1704 break;
1705 }
1706
1707 case nir_op_find_lsb:
1708 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1709
1710 if (devinfo->gen < 7) {
1711 fs_reg temp = vgrf(glsl_type::int_type);
1712
1713 /* (x & -x) generates a value that consists of only the LSB of x.
1714 * For all powers of 2, findMSB(y) == findLSB(y).
1715 */
1716 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1717 fs_reg negated_src = src;
1718
1719 /* One must be negated, and the other must be non-negated. It
1720 * doesn't matter which is which.
1721 */
1722 negated_src.negate = true;
1723 src.negate = false;
1724
1725 bld.AND(temp, src, negated_src);
1726 emit_find_msb_using_lzd(bld, result, temp, false);
1727 } else {
1728 bld.FBL(result, op[0]);
1729 }
1730 break;
1731
1732 case nir_op_ubitfield_extract:
1733 case nir_op_ibitfield_extract:
1734 unreachable("should have been lowered");
1735 case nir_op_ubfe:
1736 case nir_op_ibfe:
1737 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1738 bld.BFE(result, op[2], op[1], op[0]);
1739 break;
1740 case nir_op_bfm:
1741 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1742 bld.BFI1(result, op[0], op[1]);
1743 break;
1744 case nir_op_bfi:
1745 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1746 bld.BFI2(result, op[0], op[1], op[2]);
1747 break;
1748
1749 case nir_op_bitfield_insert:
1750 unreachable("not reached: should have been lowered");
1751
1752 case nir_op_ishl:
1753 bld.SHL(result, op[0], op[1]);
1754 break;
1755 case nir_op_ishr:
1756 bld.ASR(result, op[0], op[1]);
1757 break;
1758 case nir_op_ushr:
1759 bld.SHR(result, op[0], op[1]);
1760 break;
1761
1762 case nir_op_pack_half_2x16_split:
1763 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1764 break;
1765
1766 case nir_op_ffma:
1767 inst = bld.MAD(result, op[2], op[1], op[0]);
1768 inst->saturate = instr->dest.saturate;
1769 break;
1770
1771 case nir_op_flrp:
1772 inst = bld.LRP(result, op[0], op[1], op[2]);
1773 inst->saturate = instr->dest.saturate;
1774 break;
1775
1776 case nir_op_b32csel:
1777 if (optimize_frontfacing_ternary(instr, result))
1778 return;
1779
1780 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1781 inst = bld.SEL(result, op[1], op[2]);
1782 inst->predicate = BRW_PREDICATE_NORMAL;
1783 break;
1784
1785 case nir_op_extract_u8:
1786 case nir_op_extract_i8: {
1787 unsigned byte = nir_src_as_uint(instr->src[1].src);
1788
1789 /* The PRMs say:
1790 *
1791 * BDW+
1792 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1793 * Use two instructions and a word or DWord intermediate integer type.
1794 */
1795 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1796 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1797
1798 if (instr->op == nir_op_extract_i8) {
1799 /* If we need to sign extend, extract to a word first */
1800 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1801 bld.MOV(w_temp, subscript(op[0], type, byte));
1802 bld.MOV(result, w_temp);
1803 } else if (byte & 1) {
1804 /* Extract the high byte from the word containing the desired byte
1805 * offset.
1806 */
1807 bld.SHR(result,
1808 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1809 brw_imm_uw(8));
1810 } else {
1811 /* Otherwise use an AND with 0xff and a word type */
1812 bld.AND(result,
1813 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1814 brw_imm_uw(0xff));
1815 }
1816 } else {
1817 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1818 bld.MOV(result, subscript(op[0], type, byte));
1819 }
1820 break;
1821 }
1822
1823 case nir_op_extract_u16:
1824 case nir_op_extract_i16: {
1825 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1826 unsigned word = nir_src_as_uint(instr->src[1].src);
1827 bld.MOV(result, subscript(op[0], type, word));
1828 break;
1829 }
1830
1831 default:
1832 unreachable("unhandled instruction");
1833 }
1834
1835 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1836 * to sign extend the low bit to 0/~0
1837 */
1838 if (devinfo->gen <= 5 &&
1839 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1840 fs_reg masked = vgrf(glsl_type::int_type);
1841 bld.AND(masked, result, brw_imm_d(1));
1842 masked.negate = true;
1843 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1844 }
1845 }
1846
1847 void
1848 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1849 nir_load_const_instr *instr)
1850 {
1851 const brw_reg_type reg_type =
1852 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1853 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1854
1855 switch (instr->def.bit_size) {
1856 case 8:
1857 for (unsigned i = 0; i < instr->def.num_components; i++)
1858 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1859 break;
1860
1861 case 16:
1862 for (unsigned i = 0; i < instr->def.num_components; i++)
1863 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1864 break;
1865
1866 case 32:
1867 for (unsigned i = 0; i < instr->def.num_components; i++)
1868 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1869 break;
1870
1871 case 64:
1872 assert(devinfo->gen >= 7);
1873 if (devinfo->gen == 7) {
1874 /* We don't get 64-bit integer types until gen8 */
1875 for (unsigned i = 0; i < instr->def.num_components; i++) {
1876 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1877 setup_imm_df(bld, instr->value[i].f64));
1878 }
1879 } else {
1880 for (unsigned i = 0; i < instr->def.num_components; i++)
1881 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1882 }
1883 break;
1884
1885 default:
1886 unreachable("Invalid bit size");
1887 }
1888
1889 nir_ssa_values[instr->def.index] = reg;
1890 }
1891
1892 fs_reg
1893 fs_visitor::get_nir_src(const nir_src &src)
1894 {
1895 fs_reg reg;
1896 if (src.is_ssa) {
1897 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1898 const brw_reg_type reg_type =
1899 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1900 reg = bld.vgrf(reg_type, src.ssa->num_components);
1901 } else {
1902 reg = nir_ssa_values[src.ssa->index];
1903 }
1904 } else {
1905 /* We don't handle indirects on locals */
1906 assert(src.reg.indirect == NULL);
1907 reg = offset(nir_locals[src.reg.reg->index], bld,
1908 src.reg.base_offset * src.reg.reg->num_components);
1909 }
1910
1911 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1912 /* The only 64-bit type available on gen7 is DF, so use that. */
1913 reg.type = BRW_REGISTER_TYPE_DF;
1914 } else {
1915 /* To avoid floating-point denorm flushing problems, set the type by
1916 * default to an integer type - instructions that need floating point
1917 * semantics will set this to F if they need to
1918 */
1919 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1920 BRW_REGISTER_TYPE_D);
1921 }
1922
1923 return reg;
1924 }
1925
1926 /**
1927 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1928 *
1929 * This function should not be called on any value which may be 64 bits.
1930 * We could theoretically support 64-bit on gen8+ but we choose not to
1931 * because it wouldn't work in general (no gen7 support) and there are
1932 * enough restrictions in 64-bit immediates that you can't take the return
1933 * value and treat it the same as the result of get_nir_src().
1934 */
1935 fs_reg
1936 fs_visitor::get_nir_src_imm(const nir_src &src)
1937 {
1938 assert(nir_src_bit_size(src) == 32);
1939 return nir_src_is_const(src) ?
1940 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1941 }
1942
1943 fs_reg
1944 fs_visitor::get_nir_dest(const nir_dest &dest)
1945 {
1946 if (dest.is_ssa) {
1947 const brw_reg_type reg_type =
1948 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1949 dest.ssa.bit_size == 8 ?
1950 BRW_REGISTER_TYPE_D :
1951 BRW_REGISTER_TYPE_F);
1952 nir_ssa_values[dest.ssa.index] =
1953 bld.vgrf(reg_type, dest.ssa.num_components);
1954 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1955 return nir_ssa_values[dest.ssa.index];
1956 } else {
1957 /* We don't handle indirects on locals */
1958 assert(dest.reg.indirect == NULL);
1959 return offset(nir_locals[dest.reg.reg->index], bld,
1960 dest.reg.base_offset * dest.reg.reg->num_components);
1961 }
1962 }
1963
1964 void
1965 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1966 unsigned wr_mask)
1967 {
1968 for (unsigned i = 0; i < 4; i++) {
1969 if (!((wr_mask >> i) & 1))
1970 continue;
1971
1972 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1973 new_inst->dst = offset(new_inst->dst, bld, i);
1974 for (unsigned j = 0; j < new_inst->sources; j++)
1975 if (new_inst->src[j].file == VGRF)
1976 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1977
1978 bld.emit(new_inst);
1979 }
1980 }
1981
1982 static fs_inst *
1983 emit_pixel_interpolater_send(const fs_builder &bld,
1984 enum opcode opcode,
1985 const fs_reg &dst,
1986 const fs_reg &src,
1987 const fs_reg &desc,
1988 glsl_interp_mode interpolation)
1989 {
1990 struct brw_wm_prog_data *wm_prog_data =
1991 brw_wm_prog_data(bld.shader->stage_prog_data);
1992
1993 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1994 /* 2 floats per slot returned */
1995 inst->size_written = 2 * dst.component_size(inst->exec_size);
1996 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1997
1998 wm_prog_data->pulls_bary = true;
1999
2000 return inst;
2001 }
2002
2003 /**
2004 * Computes 1 << x, given a D/UD register containing some value x.
2005 */
2006 static fs_reg
2007 intexp2(const fs_builder &bld, const fs_reg &x)
2008 {
2009 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2010
2011 fs_reg result = bld.vgrf(x.type, 1);
2012 fs_reg one = bld.vgrf(x.type, 1);
2013
2014 bld.MOV(one, retype(brw_imm_d(1), one.type));
2015 bld.SHL(result, one, x);
2016 return result;
2017 }
2018
2019 void
2020 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2021 {
2022 assert(stage == MESA_SHADER_GEOMETRY);
2023
2024 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2025
2026 if (gs_compile->control_data_header_size_bits == 0)
2027 return;
2028
2029 /* We can only do EndPrimitive() functionality when the control data
2030 * consists of cut bits. Fortunately, the only time it isn't is when the
2031 * output type is points, in which case EndPrimitive() is a no-op.
2032 */
2033 if (gs_prog_data->control_data_format !=
2034 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2035 return;
2036 }
2037
2038 /* Cut bits use one bit per vertex. */
2039 assert(gs_compile->control_data_bits_per_vertex == 1);
2040
2041 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2042 vertex_count.type = BRW_REGISTER_TYPE_UD;
2043
2044 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2045 * vertex n, 0 otherwise. So all we need to do here is mark bit
2046 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2047 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2048 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2049 *
2050 * Note that if EndPrimitive() is called before emitting any vertices, this
2051 * will cause us to set bit 31 of the control_data_bits register to 1.
2052 * That's fine because:
2053 *
2054 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2055 * output, so the hardware will ignore cut bit 31.
2056 *
2057 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2058 * last vertex, so setting cut bit 31 has no effect (since the primitive
2059 * is automatically ended when the GS terminates).
2060 *
2061 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2062 * control_data_bits register to 0 when the first vertex is emitted.
2063 */
2064
2065 const fs_builder abld = bld.annotate("end primitive");
2066
2067 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2068 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2069 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2070 fs_reg mask = intexp2(abld, prev_count);
2071 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2072 * attention to the lower 5 bits of its second source argument, so on this
2073 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2074 * ((vertex_count - 1) % 32).
2075 */
2076 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2077 }
2078
2079 void
2080 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2081 {
2082 assert(stage == MESA_SHADER_GEOMETRY);
2083 assert(gs_compile->control_data_bits_per_vertex != 0);
2084
2085 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2086
2087 const fs_builder abld = bld.annotate("emit control data bits");
2088 const fs_builder fwa_bld = bld.exec_all();
2089
2090 /* We use a single UD register to accumulate control data bits (32 bits
2091 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2092 * at a time.
2093 *
2094 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2095 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2096 * use the Channel Mask phase to enable/disable which DWord within that
2097 * group to write. (Remember, different SIMD8 channels may have emitted
2098 * different numbers of vertices, so we may need per-slot offsets.)
2099 *
2100 * Channel masking presents an annoying problem: we may have to replicate
2101 * the data up to 4 times:
2102 *
2103 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2104 *
2105 * To avoid penalizing shaders that emit a small number of vertices, we
2106 * can avoid these sometimes: if the size of the control data header is
2107 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2108 * land in the same 128-bit group, so we can skip per-slot offsets.
2109 *
2110 * Similarly, if the control data header is <= 32 bits, there is only one
2111 * DWord, so we can skip channel masks.
2112 */
2113 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2114
2115 fs_reg channel_mask, per_slot_offset;
2116
2117 if (gs_compile->control_data_header_size_bits > 32) {
2118 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2119 channel_mask = vgrf(glsl_type::uint_type);
2120 }
2121
2122 if (gs_compile->control_data_header_size_bits > 128) {
2123 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2124 per_slot_offset = vgrf(glsl_type::uint_type);
2125 }
2126
2127 /* Figure out which DWord we're trying to write to using the formula:
2128 *
2129 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2130 *
2131 * Since bits_per_vertex is a power of two, and is known at compile
2132 * time, this can be optimized to:
2133 *
2134 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2135 */
2136 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2137 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2138 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2139 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2140 unsigned log2_bits_per_vertex =
2141 util_last_bit(gs_compile->control_data_bits_per_vertex);
2142 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2143
2144 if (per_slot_offset.file != BAD_FILE) {
2145 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2146 * the appropriate OWord within the control data header.
2147 */
2148 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2149 }
2150
2151 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2152 * write to the appropriate DWORD within the OWORD.
2153 */
2154 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2155 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2156 channel_mask = intexp2(fwa_bld, channel);
2157 /* Then the channel masks need to be in bits 23:16. */
2158 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2159 }
2160
2161 /* Store the control data bits in the message payload and send it. */
2162 unsigned mlen = 2;
2163 if (channel_mask.file != BAD_FILE)
2164 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2165 if (per_slot_offset.file != BAD_FILE)
2166 mlen++;
2167
2168 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2169 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2170 unsigned i = 0;
2171 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2172 if (per_slot_offset.file != BAD_FILE)
2173 sources[i++] = per_slot_offset;
2174 if (channel_mask.file != BAD_FILE)
2175 sources[i++] = channel_mask;
2176 while (i < mlen) {
2177 sources[i++] = this->control_data_bits;
2178 }
2179
2180 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2181 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2182 inst->mlen = mlen;
2183 /* We need to increment Global Offset by 256-bits to make room for
2184 * Broadwell's extra "Vertex Count" payload at the beginning of the
2185 * URB entry. Since this is an OWord message, Global Offset is counted
2186 * in 128-bit units, so we must set it to 2.
2187 */
2188 if (gs_prog_data->static_vertex_count == -1)
2189 inst->offset = 2;
2190 }
2191
2192 void
2193 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2194 unsigned stream_id)
2195 {
2196 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2197
2198 /* Note: we are calling this *before* increasing vertex_count, so
2199 * this->vertex_count == vertex_count - 1 in the formula above.
2200 */
2201
2202 /* Stream mode uses 2 bits per vertex */
2203 assert(gs_compile->control_data_bits_per_vertex == 2);
2204
2205 /* Must be a valid stream */
2206 assert(stream_id < MAX_VERTEX_STREAMS);
2207
2208 /* Control data bits are initialized to 0 so we don't have to set any
2209 * bits when sending vertices to stream 0.
2210 */
2211 if (stream_id == 0)
2212 return;
2213
2214 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2215
2216 /* reg::sid = stream_id */
2217 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2218 abld.MOV(sid, brw_imm_ud(stream_id));
2219
2220 /* reg:shift_count = 2 * (vertex_count - 1) */
2221 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2222 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2223
2224 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2225 * attention to the lower 5 bits of its second source argument, so on this
2226 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2227 * stream_id << ((2 * (vertex_count - 1)) % 32).
2228 */
2229 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2230 abld.SHL(mask, sid, shift_count);
2231 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2232 }
2233
2234 void
2235 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2236 unsigned stream_id)
2237 {
2238 assert(stage == MESA_SHADER_GEOMETRY);
2239
2240 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2241
2242 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2243 vertex_count.type = BRW_REGISTER_TYPE_UD;
2244
2245 /* Haswell and later hardware ignores the "Render Stream Select" bits
2246 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2247 * and instead sends all primitives down the pipeline for rasterization.
2248 * If the SOL stage is enabled, "Render Stream Select" is honored and
2249 * primitives bound to non-zero streams are discarded after stream output.
2250 *
2251 * Since the only purpose of primives sent to non-zero streams is to
2252 * be recorded by transform feedback, we can simply discard all geometry
2253 * bound to these streams when transform feedback is disabled.
2254 */
2255 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2256 return;
2257
2258 /* If we're outputting 32 control data bits or less, then we can wait
2259 * until the shader is over to output them all. Otherwise we need to
2260 * output them as we go. Now is the time to do it, since we're about to
2261 * output the vertex_count'th vertex, so it's guaranteed that the
2262 * control data bits associated with the (vertex_count - 1)th vertex are
2263 * correct.
2264 */
2265 if (gs_compile->control_data_header_size_bits > 32) {
2266 const fs_builder abld =
2267 bld.annotate("emit vertex: emit control data bits");
2268
2269 /* Only emit control data bits if we've finished accumulating a batch
2270 * of 32 bits. This is the case when:
2271 *
2272 * (vertex_count * bits_per_vertex) % 32 == 0
2273 *
2274 * (in other words, when the last 5 bits of vertex_count *
2275 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2276 * integer n (which is always the case, since bits_per_vertex is
2277 * always 1 or 2), this is equivalent to requiring that the last 5-n
2278 * bits of vertex_count are 0:
2279 *
2280 * vertex_count & (2^(5-n) - 1) == 0
2281 *
2282 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2283 * equivalent to:
2284 *
2285 * vertex_count & (32 / bits_per_vertex - 1) == 0
2286 *
2287 * TODO: If vertex_count is an immediate, we could do some of this math
2288 * at compile time...
2289 */
2290 fs_inst *inst =
2291 abld.AND(bld.null_reg_d(), vertex_count,
2292 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2293 inst->conditional_mod = BRW_CONDITIONAL_Z;
2294
2295 abld.IF(BRW_PREDICATE_NORMAL);
2296 /* If vertex_count is 0, then no control data bits have been
2297 * accumulated yet, so we can skip emitting them.
2298 */
2299 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2300 BRW_CONDITIONAL_NEQ);
2301 abld.IF(BRW_PREDICATE_NORMAL);
2302 emit_gs_control_data_bits(vertex_count);
2303 abld.emit(BRW_OPCODE_ENDIF);
2304
2305 /* Reset control_data_bits to 0 so we can start accumulating a new
2306 * batch.
2307 *
2308 * Note: in the case where vertex_count == 0, this neutralizes the
2309 * effect of any call to EndPrimitive() that the shader may have
2310 * made before outputting its first vertex.
2311 */
2312 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2313 inst->force_writemask_all = true;
2314 abld.emit(BRW_OPCODE_ENDIF);
2315 }
2316
2317 emit_urb_writes(vertex_count);
2318
2319 /* In stream mode we have to set control data bits for all vertices
2320 * unless we have disabled control data bits completely (which we do
2321 * do for GL_POINTS outputs that don't use streams).
2322 */
2323 if (gs_compile->control_data_header_size_bits > 0 &&
2324 gs_prog_data->control_data_format ==
2325 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2326 set_gs_stream_control_data_bits(vertex_count, stream_id);
2327 }
2328 }
2329
2330 void
2331 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2332 const nir_src &vertex_src,
2333 unsigned base_offset,
2334 const nir_src &offset_src,
2335 unsigned num_components,
2336 unsigned first_component)
2337 {
2338 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2339 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2340
2341 /* TODO: figure out push input layout for invocations == 1 */
2342 /* TODO: make this work with 64-bit inputs */
2343 if (gs_prog_data->invocations == 1 &&
2344 type_sz(dst.type) <= 4 &&
2345 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2346 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2347 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2348 nir_src_as_uint(vertex_src) * push_reg_count;
2349 for (unsigned i = 0; i < num_components; i++) {
2350 bld.MOV(offset(dst, bld, i),
2351 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2352 }
2353 return;
2354 }
2355
2356 /* Resort to the pull model. Ensure the VUE handles are provided. */
2357 assert(gs_prog_data->base.include_vue_handles);
2358
2359 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2360 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2361
2362 if (gs_prog_data->invocations == 1) {
2363 if (nir_src_is_const(vertex_src)) {
2364 /* The vertex index is constant; just select the proper URB handle. */
2365 icp_handle =
2366 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2367 BRW_REGISTER_TYPE_UD);
2368 } else {
2369 /* The vertex index is non-constant. We need to use indirect
2370 * addressing to fetch the proper URB handle.
2371 *
2372 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2373 * indicating that channel <n> should read the handle from
2374 * DWord <n>. We convert that to bytes by multiplying by 4.
2375 *
2376 * Next, we convert the vertex index to bytes by multiplying
2377 * by 32 (shifting by 5), and add the two together. This is
2378 * the final indirect byte offset.
2379 */
2380 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2381 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2382 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2383 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2384
2385 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2386 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2387 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2388 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2389 /* Convert vertex_index to bytes (multiply by 32) */
2390 bld.SHL(vertex_offset_bytes,
2391 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2392 brw_imm_ud(5u));
2393 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2394
2395 /* Use first_icp_handle as the base offset. There is one register
2396 * of URB handles per vertex, so inform the register allocator that
2397 * we might read up to nir->info.gs.vertices_in registers.
2398 */
2399 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2400 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2401 fs_reg(icp_offset_bytes),
2402 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2403 }
2404 } else {
2405 assert(gs_prog_data->invocations > 1);
2406
2407 if (nir_src_is_const(vertex_src)) {
2408 unsigned vertex = nir_src_as_uint(vertex_src);
2409 assert(devinfo->gen >= 9 || vertex <= 5);
2410 bld.MOV(icp_handle,
2411 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2412 BRW_REGISTER_TYPE_UD));
2413 } else {
2414 /* The vertex index is non-constant. We need to use indirect
2415 * addressing to fetch the proper URB handle.
2416 *
2417 */
2418 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2419
2420 /* Convert vertex_index to bytes (multiply by 4) */
2421 bld.SHL(icp_offset_bytes,
2422 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2423 brw_imm_ud(2u));
2424
2425 /* Use first_icp_handle as the base offset. There is one DWord
2426 * of URB handles per vertex, so inform the register allocator that
2427 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2428 */
2429 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2430 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2431 fs_reg(icp_offset_bytes),
2432 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2433 REG_SIZE));
2434 }
2435 }
2436
2437 fs_inst *inst;
2438
2439 fs_reg tmp_dst = dst;
2440 fs_reg indirect_offset = get_nir_src(offset_src);
2441 unsigned num_iterations = 1;
2442 unsigned orig_num_components = num_components;
2443
2444 if (type_sz(dst.type) == 8) {
2445 if (num_components > 2) {
2446 num_iterations = 2;
2447 num_components = 2;
2448 }
2449 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2450 tmp_dst = tmp;
2451 first_component = first_component / 2;
2452 }
2453
2454 for (unsigned iter = 0; iter < num_iterations; iter++) {
2455 if (nir_src_is_const(offset_src)) {
2456 /* Constant indexing - use global offset. */
2457 if (first_component != 0) {
2458 unsigned read_components = num_components + first_component;
2459 fs_reg tmp = bld.vgrf(dst.type, read_components);
2460 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2461 inst->size_written = read_components *
2462 tmp.component_size(inst->exec_size);
2463 for (unsigned i = 0; i < num_components; i++) {
2464 bld.MOV(offset(tmp_dst, bld, i),
2465 offset(tmp, bld, i + first_component));
2466 }
2467 } else {
2468 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2469 icp_handle);
2470 inst->size_written = num_components *
2471 tmp_dst.component_size(inst->exec_size);
2472 }
2473 inst->offset = base_offset + nir_src_as_uint(offset_src);
2474 inst->mlen = 1;
2475 } else {
2476 /* Indirect indexing - use per-slot offsets as well. */
2477 const fs_reg srcs[] = { icp_handle, indirect_offset };
2478 unsigned read_components = num_components + first_component;
2479 fs_reg tmp = bld.vgrf(dst.type, read_components);
2480 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2481 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2482 if (first_component != 0) {
2483 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2484 payload);
2485 inst->size_written = read_components *
2486 tmp.component_size(inst->exec_size);
2487 for (unsigned i = 0; i < num_components; i++) {
2488 bld.MOV(offset(tmp_dst, bld, i),
2489 offset(tmp, bld, i + first_component));
2490 }
2491 } else {
2492 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2493 payload);
2494 inst->size_written = num_components *
2495 tmp_dst.component_size(inst->exec_size);
2496 }
2497 inst->offset = base_offset;
2498 inst->mlen = 2;
2499 }
2500
2501 if (type_sz(dst.type) == 8) {
2502 shuffle_from_32bit_read(bld,
2503 offset(dst, bld, iter * 2),
2504 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2505 0,
2506 num_components);
2507 }
2508
2509 if (num_iterations > 1) {
2510 num_components = orig_num_components - 2;
2511 if(nir_src_is_const(offset_src)) {
2512 base_offset++;
2513 } else {
2514 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2515 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2516 indirect_offset = new_indirect;
2517 }
2518 }
2519 }
2520 }
2521
2522 fs_reg
2523 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2524 {
2525 nir_src *offset_src = nir_get_io_offset_src(instr);
2526
2527 if (nir_src_is_const(*offset_src)) {
2528 /* The only constant offset we should find is 0. brw_nir.c's
2529 * add_const_offset_to_base() will fold other constant offsets
2530 * into instr->const_index[0].
2531 */
2532 assert(nir_src_as_uint(*offset_src) == 0);
2533 return fs_reg();
2534 }
2535
2536 return get_nir_src(*offset_src);
2537 }
2538
2539 void
2540 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2541 nir_intrinsic_instr *instr)
2542 {
2543 assert(stage == MESA_SHADER_VERTEX);
2544
2545 fs_reg dest;
2546 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2547 dest = get_nir_dest(instr->dest);
2548
2549 switch (instr->intrinsic) {
2550 case nir_intrinsic_load_vertex_id:
2551 case nir_intrinsic_load_base_vertex:
2552 unreachable("should be lowered by nir_lower_system_values()");
2553
2554 case nir_intrinsic_load_input: {
2555 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2556 unsigned first_component = nir_intrinsic_component(instr);
2557 unsigned num_components = instr->num_components;
2558
2559 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2560
2561 if (type_sz(dest.type) == 8)
2562 first_component /= 2;
2563
2564 /* For 16-bit support maybe a temporary will be needed to copy from
2565 * the ATTR file.
2566 */
2567 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2568 first_component, num_components);
2569 break;
2570 }
2571
2572 case nir_intrinsic_load_vertex_id_zero_base:
2573 case nir_intrinsic_load_instance_id:
2574 case nir_intrinsic_load_base_instance:
2575 case nir_intrinsic_load_draw_id:
2576 case nir_intrinsic_load_first_vertex:
2577 case nir_intrinsic_load_is_indexed_draw:
2578 unreachable("lowered by brw_nir_lower_vs_inputs");
2579
2580 default:
2581 nir_emit_intrinsic(bld, instr);
2582 break;
2583 }
2584 }
2585
2586 fs_reg
2587 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2588 nir_intrinsic_instr *instr)
2589 {
2590 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2591 const nir_src &vertex_src = instr->src[0];
2592 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2593 fs_reg icp_handle;
2594
2595 if (nir_src_is_const(vertex_src)) {
2596 /* Emit a MOV to resolve <0,1,0> regioning. */
2597 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2598 unsigned vertex = nir_src_as_uint(vertex_src);
2599 bld.MOV(icp_handle,
2600 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2601 BRW_REGISTER_TYPE_UD));
2602 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2603 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2604 /* For the common case of only 1 instance, an array index of
2605 * gl_InvocationID means reading g1. Skip all the indirect work.
2606 */
2607 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2608 } else {
2609 /* The vertex index is non-constant. We need to use indirect
2610 * addressing to fetch the proper URB handle.
2611 */
2612 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2613
2614 /* Each ICP handle is a single DWord (4 bytes) */
2615 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2616 bld.SHL(vertex_offset_bytes,
2617 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2618 brw_imm_ud(2u));
2619
2620 /* Start at g1. We might read up to 4 registers. */
2621 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2622 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2623 brw_imm_ud(4 * REG_SIZE));
2624 }
2625
2626 return icp_handle;
2627 }
2628
2629 fs_reg
2630 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2631 nir_intrinsic_instr *instr)
2632 {
2633 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2634 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2635 const nir_src &vertex_src = instr->src[0];
2636
2637 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2638
2639 if (nir_src_is_const(vertex_src)) {
2640 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2641 nir_src_as_uint(vertex_src), 0),
2642 BRW_REGISTER_TYPE_UD));
2643 }
2644
2645 /* The vertex index is non-constant. We need to use indirect
2646 * addressing to fetch the proper URB handle.
2647 *
2648 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2649 * indicating that channel <n> should read the handle from
2650 * DWord <n>. We convert that to bytes by multiplying by 4.
2651 *
2652 * Next, we convert the vertex index to bytes by multiplying
2653 * by 32 (shifting by 5), and add the two together. This is
2654 * the final indirect byte offset.
2655 */
2656 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2657 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2658 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2659 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2660 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2661
2662 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2663 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2664 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2665 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2666 /* Convert vertex_index to bytes (multiply by 32) */
2667 bld.SHL(vertex_offset_bytes,
2668 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2669 brw_imm_ud(5u));
2670 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2671
2672 /* Use first_icp_handle as the base offset. There is one register
2673 * of URB handles per vertex, so inform the register allocator that
2674 * we might read up to nir->info.gs.vertices_in registers.
2675 */
2676 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2677 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2678 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2679
2680 return icp_handle;
2681 }
2682
2683 struct brw_reg
2684 fs_visitor::get_tcs_output_urb_handle()
2685 {
2686 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2687
2688 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2689 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2690 } else {
2691 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2692 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2693 }
2694 }
2695
2696 void
2697 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2698 nir_intrinsic_instr *instr)
2699 {
2700 assert(stage == MESA_SHADER_TESS_CTRL);
2701 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2702 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2703 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2704
2705 bool eight_patch =
2706 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2707
2708 fs_reg dst;
2709 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2710 dst = get_nir_dest(instr->dest);
2711
2712 switch (instr->intrinsic) {
2713 case nir_intrinsic_load_primitive_id:
2714 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2715 : brw_vec1_grf(0, 1)));
2716 break;
2717 case nir_intrinsic_load_invocation_id:
2718 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2719 break;
2720 case nir_intrinsic_load_patch_vertices_in:
2721 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2722 brw_imm_d(tcs_key->input_vertices));
2723 break;
2724
2725 case nir_intrinsic_barrier: {
2726 if (tcs_prog_data->instances == 1)
2727 break;
2728
2729 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2730 fs_reg m0_2 = component(m0, 2);
2731
2732 const fs_builder chanbld = bld.exec_all().group(1, 0);
2733
2734 /* Zero the message header */
2735 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2736
2737 if (devinfo->gen < 11) {
2738 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2739 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2740 brw_imm_ud(INTEL_MASK(16, 13)));
2741
2742 /* Shift it up to bits 27:24. */
2743 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2744 } else {
2745 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2746 brw_imm_ud(INTEL_MASK(30, 24)));
2747 }
2748
2749 /* Set the Barrier Count and the enable bit */
2750 if (devinfo->gen < 11) {
2751 chanbld.OR(m0_2, m0_2,
2752 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2753 } else {
2754 chanbld.OR(m0_2, m0_2,
2755 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2756 }
2757
2758 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2759 break;
2760 }
2761
2762 case nir_intrinsic_load_input:
2763 unreachable("nir_lower_io should never give us these.");
2764 break;
2765
2766 case nir_intrinsic_load_per_vertex_input: {
2767 fs_reg indirect_offset = get_indirect_offset(instr);
2768 unsigned imm_offset = instr->const_index[0];
2769 fs_inst *inst;
2770
2771 fs_reg icp_handle =
2772 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2773 : get_tcs_single_patch_icp_handle(bld, instr);
2774
2775 /* We can only read two double components with each URB read, so
2776 * we send two read messages in that case, each one loading up to
2777 * two double components.
2778 */
2779 unsigned num_iterations = 1;
2780 unsigned num_components = instr->num_components;
2781 unsigned first_component = nir_intrinsic_component(instr);
2782 fs_reg orig_dst = dst;
2783 if (type_sz(dst.type) == 8) {
2784 first_component = first_component / 2;
2785 if (instr->num_components > 2) {
2786 num_iterations = 2;
2787 num_components = 2;
2788 }
2789
2790 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2791 dst = tmp;
2792 }
2793
2794 for (unsigned iter = 0; iter < num_iterations; iter++) {
2795 if (indirect_offset.file == BAD_FILE) {
2796 /* Constant indexing - use global offset. */
2797 if (first_component != 0) {
2798 unsigned read_components = num_components + first_component;
2799 fs_reg tmp = bld.vgrf(dst.type, read_components);
2800 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2801 for (unsigned i = 0; i < num_components; i++) {
2802 bld.MOV(offset(dst, bld, i),
2803 offset(tmp, bld, i + first_component));
2804 }
2805 } else {
2806 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2807 }
2808 inst->offset = imm_offset;
2809 inst->mlen = 1;
2810 } else {
2811 /* Indirect indexing - use per-slot offsets as well. */
2812 const fs_reg srcs[] = { icp_handle, indirect_offset };
2813 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2814 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2815 if (first_component != 0) {
2816 unsigned read_components = num_components + first_component;
2817 fs_reg tmp = bld.vgrf(dst.type, read_components);
2818 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2819 payload);
2820 for (unsigned i = 0; i < num_components; i++) {
2821 bld.MOV(offset(dst, bld, i),
2822 offset(tmp, bld, i + first_component));
2823 }
2824 } else {
2825 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2826 payload);
2827 }
2828 inst->offset = imm_offset;
2829 inst->mlen = 2;
2830 }
2831 inst->size_written = (num_components + first_component) *
2832 inst->dst.component_size(inst->exec_size);
2833
2834 /* If we are reading 64-bit data using 32-bit read messages we need
2835 * build proper 64-bit data elements by shuffling the low and high
2836 * 32-bit components around like we do for other things like UBOs
2837 * or SSBOs.
2838 */
2839 if (type_sz(dst.type) == 8) {
2840 shuffle_from_32bit_read(bld,
2841 offset(orig_dst, bld, iter * 2),
2842 retype(dst, BRW_REGISTER_TYPE_D),
2843 0, num_components);
2844 }
2845
2846 /* Copy the temporary to the destination to deal with writemasking.
2847 *
2848 * Also attempt to deal with gl_PointSize being in the .w component.
2849 */
2850 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2851 assert(type_sz(dst.type) < 8);
2852 inst->dst = bld.vgrf(dst.type, 4);
2853 inst->size_written = 4 * REG_SIZE;
2854 bld.MOV(dst, offset(inst->dst, bld, 3));
2855 }
2856
2857 /* If we are loading double data and we need a second read message
2858 * adjust the write offset
2859 */
2860 if (num_iterations > 1) {
2861 num_components = instr->num_components - 2;
2862 imm_offset++;
2863 }
2864 }
2865 break;
2866 }
2867
2868 case nir_intrinsic_load_output:
2869 case nir_intrinsic_load_per_vertex_output: {
2870 fs_reg indirect_offset = get_indirect_offset(instr);
2871 unsigned imm_offset = instr->const_index[0];
2872 unsigned first_component = nir_intrinsic_component(instr);
2873
2874 struct brw_reg output_handles = get_tcs_output_urb_handle();
2875
2876 fs_inst *inst;
2877 if (indirect_offset.file == BAD_FILE) {
2878 /* This MOV replicates the output handle to all enabled channels
2879 * is SINGLE_PATCH mode.
2880 */
2881 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2882 bld.MOV(patch_handle, output_handles);
2883
2884 {
2885 if (first_component != 0) {
2886 unsigned read_components =
2887 instr->num_components + first_component;
2888 fs_reg tmp = bld.vgrf(dst.type, read_components);
2889 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2890 patch_handle);
2891 inst->size_written = read_components * REG_SIZE;
2892 for (unsigned i = 0; i < instr->num_components; i++) {
2893 bld.MOV(offset(dst, bld, i),
2894 offset(tmp, bld, i + first_component));
2895 }
2896 } else {
2897 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2898 patch_handle);
2899 inst->size_written = instr->num_components * REG_SIZE;
2900 }
2901 inst->offset = imm_offset;
2902 inst->mlen = 1;
2903 }
2904 } else {
2905 /* Indirect indexing - use per-slot offsets as well. */
2906 const fs_reg srcs[] = { output_handles, indirect_offset };
2907 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2908 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2909 if (first_component != 0) {
2910 unsigned read_components =
2911 instr->num_components + first_component;
2912 fs_reg tmp = bld.vgrf(dst.type, read_components);
2913 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2914 payload);
2915 inst->size_written = read_components * REG_SIZE;
2916 for (unsigned i = 0; i < instr->num_components; i++) {
2917 bld.MOV(offset(dst, bld, i),
2918 offset(tmp, bld, i + first_component));
2919 }
2920 } else {
2921 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2922 payload);
2923 inst->size_written = instr->num_components * REG_SIZE;
2924 }
2925 inst->offset = imm_offset;
2926 inst->mlen = 2;
2927 }
2928 break;
2929 }
2930
2931 case nir_intrinsic_store_output:
2932 case nir_intrinsic_store_per_vertex_output: {
2933 fs_reg value = get_nir_src(instr->src[0]);
2934 bool is_64bit = (instr->src[0].is_ssa ?
2935 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2936 fs_reg indirect_offset = get_indirect_offset(instr);
2937 unsigned imm_offset = instr->const_index[0];
2938 unsigned mask = instr->const_index[1];
2939 unsigned header_regs = 0;
2940 struct brw_reg output_handles = get_tcs_output_urb_handle();
2941
2942 fs_reg srcs[7];
2943 srcs[header_regs++] = output_handles;
2944
2945 if (indirect_offset.file != BAD_FILE) {
2946 srcs[header_regs++] = indirect_offset;
2947 }
2948
2949 if (mask == 0)
2950 break;
2951
2952 unsigned num_components = util_last_bit(mask);
2953 enum opcode opcode;
2954
2955 /* We can only pack two 64-bit components in a single message, so send
2956 * 2 messages if we have more components
2957 */
2958 unsigned num_iterations = 1;
2959 unsigned iter_components = num_components;
2960 unsigned first_component = nir_intrinsic_component(instr);
2961 if (is_64bit) {
2962 first_component = first_component / 2;
2963 if (instr->num_components > 2) {
2964 num_iterations = 2;
2965 iter_components = 2;
2966 }
2967 }
2968
2969 mask = mask << first_component;
2970
2971 for (unsigned iter = 0; iter < num_iterations; iter++) {
2972 if (!is_64bit && mask != WRITEMASK_XYZW) {
2973 srcs[header_regs++] = brw_imm_ud(mask << 16);
2974 opcode = indirect_offset.file != BAD_FILE ?
2975 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2976 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2977 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2978 /* Expand the 64-bit mask to 32-bit channels. We only handle
2979 * two channels in each iteration, so we only care about X/Y.
2980 */
2981 unsigned mask32 = 0;
2982 if (mask & WRITEMASK_X)
2983 mask32 |= WRITEMASK_XY;
2984 if (mask & WRITEMASK_Y)
2985 mask32 |= WRITEMASK_ZW;
2986
2987 /* If the mask does not include any of the channels X or Y there
2988 * is nothing to do in this iteration. Move on to the next couple
2989 * of 64-bit channels.
2990 */
2991 if (!mask32) {
2992 mask >>= 2;
2993 imm_offset++;
2994 continue;
2995 }
2996
2997 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2998 opcode = indirect_offset.file != BAD_FILE ?
2999 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3000 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3001 } else {
3002 opcode = indirect_offset.file != BAD_FILE ?
3003 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3004 SHADER_OPCODE_URB_WRITE_SIMD8;
3005 }
3006
3007 for (unsigned i = 0; i < iter_components; i++) {
3008 if (!(mask & (1 << (i + first_component))))
3009 continue;
3010
3011 if (!is_64bit) {
3012 srcs[header_regs + i + first_component] = offset(value, bld, i);
3013 } else {
3014 /* We need to shuffle the 64-bit data to match the layout
3015 * expected by our 32-bit URB write messages. We use a temporary
3016 * for that.
3017 */
3018 unsigned channel = iter * 2 + i;
3019 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
3020
3021 srcs[header_regs + (i + first_component) * 2] = dest;
3022 srcs[header_regs + (i + first_component) * 2 + 1] =
3023 offset(dest, bld, 1);
3024 }
3025 }
3026
3027 unsigned mlen =
3028 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
3029 (is_64bit ? 2 * first_component : first_component);
3030 fs_reg payload =
3031 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3032 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3033
3034 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3035 inst->offset = imm_offset;
3036 inst->mlen = mlen;
3037
3038 /* If this is a 64-bit attribute, select the next two 64-bit channels
3039 * to be handled in the next iteration.
3040 */
3041 if (is_64bit) {
3042 mask >>= 2;
3043 imm_offset++;
3044 }
3045 }
3046 break;
3047 }
3048
3049 default:
3050 nir_emit_intrinsic(bld, instr);
3051 break;
3052 }
3053 }
3054
3055 void
3056 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3057 nir_intrinsic_instr *instr)
3058 {
3059 assert(stage == MESA_SHADER_TESS_EVAL);
3060 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3061
3062 fs_reg dest;
3063 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3064 dest = get_nir_dest(instr->dest);
3065
3066 switch (instr->intrinsic) {
3067 case nir_intrinsic_load_primitive_id:
3068 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3069 break;
3070 case nir_intrinsic_load_tess_coord:
3071 /* gl_TessCoord is part of the payload in g1-3 */
3072 for (unsigned i = 0; i < 3; i++) {
3073 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3074 }
3075 break;
3076
3077 case nir_intrinsic_load_input:
3078 case nir_intrinsic_load_per_vertex_input: {
3079 fs_reg indirect_offset = get_indirect_offset(instr);
3080 unsigned imm_offset = instr->const_index[0];
3081 unsigned first_component = nir_intrinsic_component(instr);
3082
3083 if (type_sz(dest.type) == 8) {
3084 first_component = first_component / 2;
3085 }
3086
3087 fs_inst *inst;
3088 if (indirect_offset.file == BAD_FILE) {
3089 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3090 * which is 16 registers (since each holds 2 vec4 slots).
3091 */
3092 unsigned slot_count = 1;
3093 if (type_sz(dest.type) == 8 && instr->num_components > 2)
3094 slot_count++;
3095
3096 const unsigned max_push_slots = 32;
3097 if (imm_offset + slot_count <= max_push_slots) {
3098 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3099 for (int i = 0; i < instr->num_components; i++) {
3100 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
3101 i + first_component;
3102 bld.MOV(offset(dest, bld, i), component(src, comp));
3103 }
3104
3105 tes_prog_data->base.urb_read_length =
3106 MAX2(tes_prog_data->base.urb_read_length,
3107 DIV_ROUND_UP(imm_offset + slot_count, 2));
3108 } else {
3109 /* Replicate the patch handle to all enabled channels */
3110 const fs_reg srcs[] = {
3111 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3112 };
3113 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3114 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3115
3116 if (first_component != 0) {
3117 unsigned read_components =
3118 instr->num_components + first_component;
3119 fs_reg tmp = bld.vgrf(dest.type, read_components);
3120 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3121 patch_handle);
3122 inst->size_written = read_components * REG_SIZE;
3123 for (unsigned i = 0; i < instr->num_components; i++) {
3124 bld.MOV(offset(dest, bld, i),
3125 offset(tmp, bld, i + first_component));
3126 }
3127 } else {
3128 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3129 patch_handle);
3130 inst->size_written = instr->num_components * REG_SIZE;
3131 }
3132 inst->mlen = 1;
3133 inst->offset = imm_offset;
3134 }
3135 } else {
3136 /* Indirect indexing - use per-slot offsets as well. */
3137
3138 /* We can only read two double components with each URB read, so
3139 * we send two read messages in that case, each one loading up to
3140 * two double components.
3141 */
3142 unsigned num_iterations = 1;
3143 unsigned num_components = instr->num_components;
3144 fs_reg orig_dest = dest;
3145 if (type_sz(dest.type) == 8) {
3146 if (instr->num_components > 2) {
3147 num_iterations = 2;
3148 num_components = 2;
3149 }
3150 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3151 dest = tmp;
3152 }
3153
3154 for (unsigned iter = 0; iter < num_iterations; iter++) {
3155 const fs_reg srcs[] = {
3156 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3157 indirect_offset
3158 };
3159 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3160 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3161
3162 if (first_component != 0) {
3163 unsigned read_components =
3164 num_components + first_component;
3165 fs_reg tmp = bld.vgrf(dest.type, read_components);
3166 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3167 payload);
3168 for (unsigned i = 0; i < num_components; i++) {
3169 bld.MOV(offset(dest, bld, i),
3170 offset(tmp, bld, i + first_component));
3171 }
3172 } else {
3173 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3174 payload);
3175 }
3176 inst->mlen = 2;
3177 inst->offset = imm_offset;
3178 inst->size_written = (num_components + first_component) *
3179 inst->dst.component_size(inst->exec_size);
3180
3181 /* If we are reading 64-bit data using 32-bit read messages we need
3182 * build proper 64-bit data elements by shuffling the low and high
3183 * 32-bit components around like we do for other things like UBOs
3184 * or SSBOs.
3185 */
3186 if (type_sz(dest.type) == 8) {
3187 shuffle_from_32bit_read(bld,
3188 offset(orig_dest, bld, iter * 2),
3189 retype(dest, BRW_REGISTER_TYPE_D),
3190 0, num_components);
3191 }
3192
3193 /* If we are loading double data and we need a second read message
3194 * adjust the offset
3195 */
3196 if (num_iterations > 1) {
3197 num_components = instr->num_components - 2;
3198 imm_offset++;
3199 }
3200 }
3201 }
3202 break;
3203 }
3204 default:
3205 nir_emit_intrinsic(bld, instr);
3206 break;
3207 }
3208 }
3209
3210 void
3211 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3212 nir_intrinsic_instr *instr)
3213 {
3214 assert(stage == MESA_SHADER_GEOMETRY);
3215 fs_reg indirect_offset;
3216
3217 fs_reg dest;
3218 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3219 dest = get_nir_dest(instr->dest);
3220
3221 switch (instr->intrinsic) {
3222 case nir_intrinsic_load_primitive_id:
3223 assert(stage == MESA_SHADER_GEOMETRY);
3224 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3225 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3226 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3227 break;
3228
3229 case nir_intrinsic_load_input:
3230 unreachable("load_input intrinsics are invalid for the GS stage");
3231
3232 case nir_intrinsic_load_per_vertex_input:
3233 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3234 instr->src[1], instr->num_components,
3235 nir_intrinsic_component(instr));
3236 break;
3237
3238 case nir_intrinsic_emit_vertex_with_counter:
3239 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3240 break;
3241
3242 case nir_intrinsic_end_primitive_with_counter:
3243 emit_gs_end_primitive(instr->src[0]);
3244 break;
3245
3246 case nir_intrinsic_set_vertex_count:
3247 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3248 break;
3249
3250 case nir_intrinsic_load_invocation_id: {
3251 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3252 assert(val.file != BAD_FILE);
3253 dest.type = val.type;
3254 bld.MOV(dest, val);
3255 break;
3256 }
3257
3258 default:
3259 nir_emit_intrinsic(bld, instr);
3260 break;
3261 }
3262 }
3263
3264 /**
3265 * Fetch the current render target layer index.
3266 */
3267 static fs_reg
3268 fetch_render_target_array_index(const fs_builder &bld)
3269 {
3270 if (bld.shader->devinfo->gen >= 6) {
3271 /* The render target array index is provided in the thread payload as
3272 * bits 26:16 of r0.0.
3273 */
3274 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3275 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3276 brw_imm_uw(0x7ff));
3277 return idx;
3278 } else {
3279 /* Pre-SNB we only ever render into the first layer of the framebuffer
3280 * since layered rendering is not implemented.
3281 */
3282 return brw_imm_ud(0);
3283 }
3284 }
3285
3286 /**
3287 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3288 * framebuffer at the current fragment coordinates and sample index.
3289 */
3290 fs_inst *
3291 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3292 unsigned target)
3293 {
3294 const struct gen_device_info *devinfo = bld.shader->devinfo;
3295
3296 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3297 const brw_wm_prog_key *wm_key =
3298 reinterpret_cast<const brw_wm_prog_key *>(key);
3299 assert(!wm_key->coherent_fb_fetch);
3300 const struct brw_wm_prog_data *wm_prog_data =
3301 brw_wm_prog_data(stage_prog_data);
3302
3303 /* Calculate the surface index relative to the start of the texture binding
3304 * table block, since that's what the texturing messages expect.
3305 */
3306 const unsigned surface = target +
3307 wm_prog_data->binding_table.render_target_read_start -
3308 wm_prog_data->base.binding_table.texture_start;
3309
3310 /* Calculate the fragment coordinates. */
3311 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3312 bld.MOV(offset(coords, bld, 0), pixel_x);
3313 bld.MOV(offset(coords, bld, 1), pixel_y);
3314 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3315
3316 /* Calculate the sample index and MCS payload when multisampling. Luckily
3317 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3318 * shouldn't be necessary to recompile based on whether the framebuffer is
3319 * CMS or UMS.
3320 */
3321 if (wm_key->multisample_fbo &&
3322 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3323 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3324
3325 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3326 const fs_reg mcs = wm_key->multisample_fbo ?
3327 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3328
3329 /* Use either a normal or a CMS texel fetch message depending on whether
3330 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3331 * message just in case the framebuffer uses 16x multisampling, it should
3332 * be equivalent to the normal CMS fetch for lower multisampling modes.
3333 */
3334 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3335 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3336 SHADER_OPCODE_TXF_CMS_LOGICAL;
3337
3338 /* Emit the instruction. */
3339 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3340 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3341 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3342 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3343 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3344 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3345 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3346 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3347 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3348
3349 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3350 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3351
3352 return inst;
3353 }
3354
3355 /**
3356 * Actual coherent framebuffer read implemented using the native render target
3357 * read message. Requires SKL+.
3358 */
3359 static fs_inst *
3360 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3361 {
3362 assert(bld.shader->devinfo->gen >= 9);
3363 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3364 inst->target = target;
3365 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3366
3367 return inst;
3368 }
3369
3370 static fs_reg
3371 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3372 {
3373 if (n && regs[0].file != BAD_FILE) {
3374 return regs[0];
3375
3376 } else {
3377 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3378
3379 for (unsigned i = 0; i < n; i++)
3380 regs[i] = tmp;
3381
3382 return tmp;
3383 }
3384 }
3385
3386 static fs_reg
3387 alloc_frag_output(fs_visitor *v, unsigned location)
3388 {
3389 assert(v->stage == MESA_SHADER_FRAGMENT);
3390 const brw_wm_prog_key *const key =
3391 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3392 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3393 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3394
3395 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3396 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3397
3398 else if (l == FRAG_RESULT_COLOR)
3399 return alloc_temporary(v->bld, 4, v->outputs,
3400 MAX2(key->nr_color_regions, 1));
3401
3402 else if (l == FRAG_RESULT_DEPTH)
3403 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3404
3405 else if (l == FRAG_RESULT_STENCIL)
3406 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3407
3408 else if (l == FRAG_RESULT_SAMPLE_MASK)
3409 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3410
3411 else if (l >= FRAG_RESULT_DATA0 &&
3412 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3413 return alloc_temporary(v->bld, 4,
3414 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3415
3416 else
3417 unreachable("Invalid location");
3418 }
3419
3420 void
3421 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3422 nir_intrinsic_instr *instr)
3423 {
3424 assert(stage == MESA_SHADER_FRAGMENT);
3425
3426 fs_reg dest;
3427 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3428 dest = get_nir_dest(instr->dest);
3429
3430 switch (instr->intrinsic) {
3431 case nir_intrinsic_load_front_face:
3432 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3433 *emit_frontfacing_interpolation());
3434 break;
3435
3436 case nir_intrinsic_load_sample_pos: {
3437 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3438 assert(sample_pos.file != BAD_FILE);
3439 dest.type = sample_pos.type;
3440 bld.MOV(dest, sample_pos);
3441 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3442 break;
3443 }
3444
3445 case nir_intrinsic_load_layer_id:
3446 dest.type = BRW_REGISTER_TYPE_UD;
3447 bld.MOV(dest, fetch_render_target_array_index(bld));
3448 break;
3449
3450 case nir_intrinsic_load_helper_invocation:
3451 case nir_intrinsic_load_sample_mask_in:
3452 case nir_intrinsic_load_sample_id: {
3453 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3454 fs_reg val = nir_system_values[sv];
3455 assert(val.file != BAD_FILE);
3456 dest.type = val.type;
3457 bld.MOV(dest, val);
3458 break;
3459 }
3460
3461 case nir_intrinsic_store_output: {
3462 const fs_reg src = get_nir_src(instr->src[0]);
3463 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3464 const unsigned location = nir_intrinsic_base(instr) +
3465 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3466 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3467 src.type);
3468
3469 for (unsigned j = 0; j < instr->num_components; j++)
3470 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3471 offset(src, bld, j));
3472
3473 break;
3474 }
3475
3476 case nir_intrinsic_load_output: {
3477 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3478 BRW_NIR_FRAG_OUTPUT_LOCATION);
3479 assert(l >= FRAG_RESULT_DATA0);
3480 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3481 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3482 const fs_reg tmp = bld.vgrf(dest.type, 4);
3483
3484 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3485 emit_coherent_fb_read(bld, tmp, target);
3486 else
3487 emit_non_coherent_fb_read(bld, tmp, target);
3488
3489 for (unsigned j = 0; j < instr->num_components; j++) {
3490 bld.MOV(offset(dest, bld, j),
3491 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3492 }
3493
3494 break;
3495 }
3496
3497 case nir_intrinsic_discard:
3498 case nir_intrinsic_discard_if: {
3499 /* We track our discarded pixels in f0.1. By predicating on it, we can
3500 * update just the flag bits that aren't yet discarded. If there's no
3501 * condition, we emit a CMP of g0 != g0, so all currently executing
3502 * channels will get turned off.
3503 */
3504 fs_inst *cmp;
3505 if (instr->intrinsic == nir_intrinsic_discard_if) {
3506 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3507 brw_imm_d(0), BRW_CONDITIONAL_Z);
3508 } else {
3509 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3510 BRW_REGISTER_TYPE_UW));
3511 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3512 }
3513 cmp->predicate = BRW_PREDICATE_NORMAL;
3514 cmp->flag_subreg = 1;
3515
3516 if (devinfo->gen >= 6) {
3517 emit_discard_jump();
3518 }
3519
3520 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3521 break;
3522 }
3523
3524 case nir_intrinsic_load_input: {
3525 /* load_input is only used for flat inputs */
3526 unsigned base = nir_intrinsic_base(instr);
3527 unsigned comp = nir_intrinsic_component(instr);
3528 unsigned num_components = instr->num_components;
3529 fs_reg orig_dest = dest;
3530 enum brw_reg_type type = dest.type;
3531
3532 /* Special case fields in the VUE header */
3533 if (base == VARYING_SLOT_LAYER)
3534 comp = 1;
3535 else if (base == VARYING_SLOT_VIEWPORT)
3536 comp = 2;
3537
3538 if (nir_dest_bit_size(instr->dest) == 64) {
3539 /* const_index is in 32-bit type size units that could not be aligned
3540 * with DF. We need to read the double vector as if it was a float
3541 * vector of twice the number of components to fetch the right data.
3542 */
3543 type = BRW_REGISTER_TYPE_F;
3544 num_components *= 2;
3545 dest = bld.vgrf(type, num_components);
3546 }
3547
3548 for (unsigned int i = 0; i < num_components; i++) {
3549 bld.MOV(offset(retype(dest, type), bld, i),
3550 retype(component(interp_reg(base, comp + i), 3), type));
3551 }
3552
3553 if (nir_dest_bit_size(instr->dest) == 64) {
3554 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3555 instr->num_components);
3556 }
3557 break;
3558 }
3559
3560 case nir_intrinsic_load_barycentric_pixel:
3561 case nir_intrinsic_load_barycentric_centroid:
3562 case nir_intrinsic_load_barycentric_sample:
3563 /* Do nothing - load_interpolated_input handling will handle it later. */
3564 break;
3565
3566 case nir_intrinsic_load_barycentric_at_sample: {
3567 const glsl_interp_mode interpolation =
3568 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3569
3570 if (nir_src_is_const(instr->src[0])) {
3571 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3572
3573 emit_pixel_interpolater_send(bld,
3574 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3575 dest,
3576 fs_reg(), /* src */
3577 brw_imm_ud(msg_data),
3578 interpolation);
3579 } else {
3580 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3581 BRW_REGISTER_TYPE_UD);
3582
3583 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3584 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3585 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3586 bld.exec_all().group(1, 0)
3587 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3588 emit_pixel_interpolater_send(bld,
3589 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3590 dest,
3591 fs_reg(), /* src */
3592 msg_data,
3593 interpolation);
3594 } else {
3595 /* Make a loop that sends a message to the pixel interpolater
3596 * for the sample number in each live channel. If there are
3597 * multiple channels with the same sample number then these
3598 * will be handled simultaneously with a single interation of
3599 * the loop.
3600 */
3601 bld.emit(BRW_OPCODE_DO);
3602
3603 /* Get the next live sample number into sample_id_reg */
3604 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3605
3606 /* Set the flag register so that we can perform the send
3607 * message on all channels that have the same sample number
3608 */
3609 bld.CMP(bld.null_reg_ud(),
3610 sample_src, sample_id,
3611 BRW_CONDITIONAL_EQ);
3612 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3613 bld.exec_all().group(1, 0)
3614 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3615 fs_inst *inst =
3616 emit_pixel_interpolater_send(bld,
3617 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3618 dest,
3619 fs_reg(), /* src */
3620 component(msg_data, 0),
3621 interpolation);
3622 set_predicate(BRW_PREDICATE_NORMAL, inst);
3623
3624 /* Continue the loop if there are any live channels left */
3625 set_predicate_inv(BRW_PREDICATE_NORMAL,
3626 true, /* inverse */
3627 bld.emit(BRW_OPCODE_WHILE));
3628 }
3629 }
3630 break;
3631 }
3632
3633 case nir_intrinsic_load_barycentric_at_offset: {
3634 const glsl_interp_mode interpolation =
3635 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3636
3637 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3638
3639 if (const_offset) {
3640 assert(nir_src_bit_size(instr->src[0]) == 32);
3641 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3642 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3643
3644 emit_pixel_interpolater_send(bld,
3645 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3646 dest,
3647 fs_reg(), /* src */
3648 brw_imm_ud(off_x | (off_y << 4)),
3649 interpolation);
3650 } else {
3651 fs_reg src = vgrf(glsl_type::ivec2_type);
3652 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3653 BRW_REGISTER_TYPE_F);
3654 for (int i = 0; i < 2; i++) {
3655 fs_reg temp = vgrf(glsl_type::float_type);
3656 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3657 fs_reg itemp = vgrf(glsl_type::int_type);
3658 /* float to int */
3659 bld.MOV(itemp, temp);
3660
3661 /* Clamp the upper end of the range to +7/16.
3662 * ARB_gpu_shader5 requires that we support a maximum offset
3663 * of +0.5, which isn't representable in a S0.4 value -- if
3664 * we didn't clamp it, we'd end up with -8/16, which is the
3665 * opposite of what the shader author wanted.
3666 *
3667 * This is legal due to ARB_gpu_shader5's quantization
3668 * rules:
3669 *
3670 * "Not all values of <offset> may be supported; x and y
3671 * offsets may be rounded to fixed-point values with the
3672 * number of fraction bits given by the
3673 * implementation-dependent constant
3674 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3675 */
3676 set_condmod(BRW_CONDITIONAL_L,
3677 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3678 }
3679
3680 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3681 emit_pixel_interpolater_send(bld,
3682 opcode,
3683 dest,
3684 src,
3685 brw_imm_ud(0u),
3686 interpolation);
3687 }
3688 break;
3689 }
3690
3691 case nir_intrinsic_load_interpolated_input: {
3692 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3693 emit_fragcoord_interpolation(dest);
3694 break;
3695 }
3696
3697 assert(instr->src[0].ssa &&
3698 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3699 nir_intrinsic_instr *bary_intrinsic =
3700 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3701 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3702 enum glsl_interp_mode interp_mode =
3703 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3704 fs_reg dst_xy;
3705
3706 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3707 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3708 /* Use the result of the PI message */
3709 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3710 } else {
3711 /* Use the delta_xy values computed from the payload */
3712 enum brw_barycentric_mode bary =
3713 brw_barycentric_mode(interp_mode, bary_intrin);
3714
3715 dst_xy = this->delta_xy[bary];
3716 }
3717
3718 for (unsigned int i = 0; i < instr->num_components; i++) {
3719 fs_reg interp =
3720 interp_reg(nir_intrinsic_base(instr),
3721 nir_intrinsic_component(instr) + i);
3722 interp.type = BRW_REGISTER_TYPE_F;
3723 dest.type = BRW_REGISTER_TYPE_F;
3724
3725 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3726 fs_reg tmp = vgrf(glsl_type::float_type);
3727 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3728 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3729 } else {
3730 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3731 }
3732 }
3733 break;
3734 }
3735
3736 default:
3737 nir_emit_intrinsic(bld, instr);
3738 break;
3739 }
3740 }
3741
3742 static int
3743 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3744 {
3745 if (nir_src_is_const(instr->src[src])) {
3746 int64_t add_val = nir_src_as_int(instr->src[src]);
3747 if (add_val == 1)
3748 return BRW_AOP_INC;
3749 else if (add_val == -1)
3750 return BRW_AOP_DEC;
3751 }
3752
3753 return BRW_AOP_ADD;
3754 }
3755
3756 void
3757 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3758 nir_intrinsic_instr *instr)
3759 {
3760 assert(stage == MESA_SHADER_COMPUTE);
3761 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3762
3763 fs_reg dest;
3764 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3765 dest = get_nir_dest(instr->dest);
3766
3767 switch (instr->intrinsic) {
3768 case nir_intrinsic_barrier:
3769 emit_barrier();
3770 cs_prog_data->uses_barrier = true;
3771 break;
3772
3773 case nir_intrinsic_load_subgroup_id:
3774 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3775 break;
3776
3777 case nir_intrinsic_load_local_invocation_id:
3778 case nir_intrinsic_load_work_group_id: {
3779 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3780 fs_reg val = nir_system_values[sv];
3781 assert(val.file != BAD_FILE);
3782 dest.type = val.type;
3783 for (unsigned i = 0; i < 3; i++)
3784 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3785 break;
3786 }
3787
3788 case nir_intrinsic_load_num_work_groups: {
3789 const unsigned surface =
3790 cs_prog_data->binding_table.work_groups_start;
3791
3792 cs_prog_data->uses_num_work_groups = true;
3793
3794 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3795 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3796 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3797 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3798
3799 /* Read the 3 GLuint components of gl_NumWorkGroups */
3800 for (unsigned i = 0; i < 3; i++) {
3801 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3802 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3803 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3804 }
3805 break;
3806 }
3807
3808 case nir_intrinsic_shared_atomic_add:
3809 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3810 break;
3811 case nir_intrinsic_shared_atomic_imin:
3812 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3813 break;
3814 case nir_intrinsic_shared_atomic_umin:
3815 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3816 break;
3817 case nir_intrinsic_shared_atomic_imax:
3818 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3819 break;
3820 case nir_intrinsic_shared_atomic_umax:
3821 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3822 break;
3823 case nir_intrinsic_shared_atomic_and:
3824 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3825 break;
3826 case nir_intrinsic_shared_atomic_or:
3827 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3828 break;
3829 case nir_intrinsic_shared_atomic_xor:
3830 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3831 break;
3832 case nir_intrinsic_shared_atomic_exchange:
3833 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3834 break;
3835 case nir_intrinsic_shared_atomic_comp_swap:
3836 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3837 break;
3838 case nir_intrinsic_shared_atomic_fmin:
3839 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3840 break;
3841 case nir_intrinsic_shared_atomic_fmax:
3842 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3843 break;
3844 case nir_intrinsic_shared_atomic_fcomp_swap:
3845 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3846 break;
3847
3848 case nir_intrinsic_load_shared: {
3849 assert(devinfo->gen >= 7);
3850 assert(stage == MESA_SHADER_COMPUTE);
3851
3852 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3853 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3854 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3855 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3856 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3857
3858 /* Make dest unsigned because that's what the temporary will be */
3859 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3860
3861 /* Read the vector */
3862 if (nir_intrinsic_align(instr) >= 4) {
3863 assert(nir_dest_bit_size(instr->dest) == 32);
3864 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3865 fs_inst *inst =
3866 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3867 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3868 inst->size_written = instr->num_components * dispatch_width * 4;
3869 } else {
3870 assert(nir_dest_bit_size(instr->dest) <= 32);
3871 assert(nir_dest_num_components(instr->dest) == 1);
3872 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3873
3874 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3875 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3876 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3877 bld.MOV(dest, read_result);
3878 }
3879 break;
3880 }
3881
3882 case nir_intrinsic_store_shared: {
3883 assert(devinfo->gen >= 7);
3884 assert(stage == MESA_SHADER_COMPUTE);
3885
3886 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3887 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3888 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3889 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3890 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3891
3892 fs_reg data = get_nir_src(instr->src[0]);
3893 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3894
3895 assert(nir_intrinsic_write_mask(instr) ==
3896 (1u << instr->num_components) - 1);
3897 if (nir_intrinsic_align(instr) >= 4) {
3898 assert(nir_src_bit_size(instr->src[0]) == 32);
3899 assert(nir_src_num_components(instr->src[0]) <= 4);
3900 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3901 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3902 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3903 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3904 } else {
3905 assert(nir_src_bit_size(instr->src[0]) <= 32);
3906 assert(nir_src_num_components(instr->src[0]) == 1);
3907 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3908
3909 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3910 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3911
3912 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3913 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3914 }
3915 break;
3916 }
3917
3918 default:
3919 nir_emit_intrinsic(bld, instr);
3920 break;
3921 }
3922 }
3923
3924 static fs_reg
3925 brw_nir_reduction_op_identity(const fs_builder &bld,
3926 nir_op op, brw_reg_type type)
3927 {
3928 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3929 switch (type_sz(type)) {
3930 case 2:
3931 assert(type != BRW_REGISTER_TYPE_HF);
3932 return retype(brw_imm_uw(value.u16), type);
3933 case 4:
3934 return retype(brw_imm_ud(value.u32), type);
3935 case 8:
3936 if (type == BRW_REGISTER_TYPE_DF)
3937 return setup_imm_df(bld, value.f64);
3938 else
3939 return retype(brw_imm_u64(value.u64), type);
3940 default:
3941 unreachable("Invalid type size");
3942 }
3943 }
3944
3945 static opcode
3946 brw_op_for_nir_reduction_op(nir_op op)
3947 {
3948 switch (op) {
3949 case nir_op_iadd: return BRW_OPCODE_ADD;
3950 case nir_op_fadd: return BRW_OPCODE_ADD;
3951 case nir_op_imul: return BRW_OPCODE_MUL;
3952 case nir_op_fmul: return BRW_OPCODE_MUL;
3953 case nir_op_imin: return BRW_OPCODE_SEL;
3954 case nir_op_umin: return BRW_OPCODE_SEL;
3955 case nir_op_fmin: return BRW_OPCODE_SEL;
3956 case nir_op_imax: return BRW_OPCODE_SEL;
3957 case nir_op_umax: return BRW_OPCODE_SEL;
3958 case nir_op_fmax: return BRW_OPCODE_SEL;
3959 case nir_op_iand: return BRW_OPCODE_AND;
3960 case nir_op_ior: return BRW_OPCODE_OR;
3961 case nir_op_ixor: return BRW_OPCODE_XOR;
3962 default:
3963 unreachable("Invalid reduction operation");
3964 }
3965 }
3966
3967 static brw_conditional_mod
3968 brw_cond_mod_for_nir_reduction_op(nir_op op)
3969 {
3970 switch (op) {
3971 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3972 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3973 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3974 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3975 case nir_op_imin: return BRW_CONDITIONAL_L;
3976 case nir_op_umin: return BRW_CONDITIONAL_L;
3977 case nir_op_fmin: return BRW_CONDITIONAL_L;
3978 case nir_op_imax: return BRW_CONDITIONAL_GE;
3979 case nir_op_umax: return BRW_CONDITIONAL_GE;
3980 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3981 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3982 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3983 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3984 default:
3985 unreachable("Invalid reduction operation");
3986 }
3987 }
3988
3989 fs_reg
3990 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3991 nir_intrinsic_instr *instr)
3992 {
3993 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3994
3995 if (stage_prog_data->binding_table.image_start > 0) {
3996 if (image.file == BRW_IMMEDIATE_VALUE) {
3997 image.d += stage_prog_data->binding_table.image_start;
3998 } else {
3999 bld.ADD(image, image,
4000 brw_imm_d(stage_prog_data->binding_table.image_start));
4001 }
4002 }
4003
4004 return bld.emit_uniformize(image);
4005 }
4006
4007 fs_reg
4008 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4009 nir_intrinsic_instr *instr)
4010 {
4011 /* SSBO stores are weird in that their index is in src[1] */
4012 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
4013
4014 fs_reg surf_index;
4015 if (nir_src_is_const(instr->src[src])) {
4016 unsigned index = stage_prog_data->binding_table.ssbo_start +
4017 nir_src_as_uint(instr->src[src]);
4018 surf_index = brw_imm_ud(index);
4019 } else {
4020 surf_index = vgrf(glsl_type::uint_type);
4021 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4022 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4023 }
4024
4025 return bld.emit_uniformize(surf_index);
4026 }
4027
4028 static unsigned
4029 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4030 {
4031 switch (nir_intrinsic_image_dim(instr)) {
4032 case GLSL_SAMPLER_DIM_1D:
4033 return 1 + nir_intrinsic_image_array(instr);
4034 case GLSL_SAMPLER_DIM_2D:
4035 case GLSL_SAMPLER_DIM_RECT:
4036 return 2 + nir_intrinsic_image_array(instr);
4037 case GLSL_SAMPLER_DIM_3D:
4038 case GLSL_SAMPLER_DIM_CUBE:
4039 return 3;
4040 case GLSL_SAMPLER_DIM_BUF:
4041 return 1;
4042 case GLSL_SAMPLER_DIM_MS:
4043 return 2 + nir_intrinsic_image_array(instr);
4044 default:
4045 unreachable("Invalid image dimension");
4046 }
4047 }
4048
4049 void
4050 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4051 {
4052 fs_reg dest;
4053 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4054 dest = get_nir_dest(instr->dest);
4055
4056 switch (instr->intrinsic) {
4057 case nir_intrinsic_image_load:
4058 case nir_intrinsic_image_store:
4059 case nir_intrinsic_image_atomic_add:
4060 case nir_intrinsic_image_atomic_min:
4061 case nir_intrinsic_image_atomic_max:
4062 case nir_intrinsic_image_atomic_and:
4063 case nir_intrinsic_image_atomic_or:
4064 case nir_intrinsic_image_atomic_xor:
4065 case nir_intrinsic_image_atomic_exchange:
4066 case nir_intrinsic_image_atomic_comp_swap:
4067 case nir_intrinsic_bindless_image_load:
4068 case nir_intrinsic_bindless_image_store:
4069 case nir_intrinsic_bindless_image_atomic_add:
4070 case nir_intrinsic_bindless_image_atomic_min:
4071 case nir_intrinsic_bindless_image_atomic_max:
4072 case nir_intrinsic_bindless_image_atomic_and:
4073 case nir_intrinsic_bindless_image_atomic_or:
4074 case nir_intrinsic_bindless_image_atomic_xor:
4075 case nir_intrinsic_bindless_image_atomic_exchange:
4076 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4077 if (stage == MESA_SHADER_FRAGMENT &&
4078 instr->intrinsic != nir_intrinsic_image_load)
4079 brw_wm_prog_data(prog_data)->has_side_effects = true;
4080
4081 /* Get some metadata from the image intrinsic. */
4082 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4083 const GLenum format = nir_intrinsic_format(instr);
4084
4085 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4086
4087 switch (instr->intrinsic) {
4088 case nir_intrinsic_image_load:
4089 case nir_intrinsic_image_store:
4090 case nir_intrinsic_image_atomic_add:
4091 case nir_intrinsic_image_atomic_min:
4092 case nir_intrinsic_image_atomic_max:
4093 case nir_intrinsic_image_atomic_and:
4094 case nir_intrinsic_image_atomic_or:
4095 case nir_intrinsic_image_atomic_xor:
4096 case nir_intrinsic_image_atomic_exchange:
4097 case nir_intrinsic_image_atomic_comp_swap:
4098 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4099 get_nir_image_intrinsic_image(bld, instr);
4100 break;
4101
4102 default:
4103 /* Bindless */
4104 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4105 bld.emit_uniformize(get_nir_src(instr->src[0]));
4106 break;
4107 }
4108
4109 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4110 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4111 brw_imm_ud(image_intrinsic_coord_components(instr));
4112
4113 /* Emit an image load, store or atomic op. */
4114 if (instr->intrinsic == nir_intrinsic_image_load ||
4115 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4116 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4117 fs_inst *inst =
4118 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4119 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4120 inst->size_written = instr->num_components * dispatch_width * 4;
4121 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4122 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4123 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4124 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4125 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4126 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4127 } else {
4128 int op;
4129 unsigned num_srcs = info->num_srcs;
4130
4131 switch (instr->intrinsic) {
4132 case nir_intrinsic_image_atomic_add:
4133 case nir_intrinsic_bindless_image_atomic_add:
4134 assert(num_srcs == 4);
4135
4136 op = get_op_for_atomic_add(instr, 3);
4137
4138 if (op != BRW_AOP_ADD)
4139 num_srcs = 3;
4140 break;
4141 case nir_intrinsic_image_atomic_min:
4142 case nir_intrinsic_bindless_image_atomic_min:
4143 assert(format == GL_R32UI || format == GL_R32I);
4144 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4145 break;
4146 case nir_intrinsic_image_atomic_max:
4147 case nir_intrinsic_bindless_image_atomic_max:
4148 assert(format == GL_R32UI || format == GL_R32I);
4149 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4150 break;
4151 case nir_intrinsic_image_atomic_and:
4152 case nir_intrinsic_bindless_image_atomic_and:
4153 op = BRW_AOP_AND;
4154 break;
4155 case nir_intrinsic_image_atomic_or:
4156 case nir_intrinsic_bindless_image_atomic_or:
4157 op = BRW_AOP_OR;
4158 break;
4159 case nir_intrinsic_image_atomic_xor:
4160 case nir_intrinsic_bindless_image_atomic_xor:
4161 op = BRW_AOP_XOR;
4162 break;
4163 case nir_intrinsic_image_atomic_exchange:
4164 case nir_intrinsic_bindless_image_atomic_exchange:
4165 op = BRW_AOP_MOV;
4166 break;
4167 case nir_intrinsic_image_atomic_comp_swap:
4168 case nir_intrinsic_bindless_image_atomic_comp_swap:
4169 op = BRW_AOP_CMPWR;
4170 break;
4171 default:
4172 unreachable("Not reachable.");
4173 }
4174
4175 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4176
4177 fs_reg data;
4178 if (num_srcs >= 4)
4179 data = get_nir_src(instr->src[3]);
4180 if (num_srcs >= 5) {
4181 fs_reg tmp = bld.vgrf(data.type, 2);
4182 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4183 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4184 data = tmp;
4185 }
4186 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4187
4188 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4189 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4190 }
4191 break;
4192 }
4193
4194 case nir_intrinsic_image_size:
4195 case nir_intrinsic_bindless_image_size: {
4196 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4197 * into will handle the binding table index for us in the geneerator.
4198 * Incidentally, this means that we can handle bindless with exactly the
4199 * same code.
4200 */
4201 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4202 BRW_REGISTER_TYPE_UD);
4203 image = bld.emit_uniformize(image);
4204
4205 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4206 if (instr->intrinsic == nir_intrinsic_image_size)
4207 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4208 else
4209 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4210 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4211 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4212 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4213
4214 /* Since the image size is always uniform, we can just emit a SIMD8
4215 * query instruction and splat the result out.
4216 */
4217 const fs_builder ubld = bld.exec_all().group(8, 0);
4218
4219 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4220 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4221 tmp, srcs, ARRAY_SIZE(srcs));
4222 inst->size_written = 4 * REG_SIZE;
4223
4224 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4225 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4226 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4227 offset(retype(dest, tmp.type), bld, c),
4228 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4229 } else {
4230 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4231 component(offset(tmp, ubld, c), 0));
4232 }
4233 }
4234 break;
4235 }
4236
4237 case nir_intrinsic_image_load_raw_intel: {
4238 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4239 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4240 get_nir_image_intrinsic_image(bld, instr);
4241 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4242 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4243 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4244
4245 fs_inst *inst =
4246 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4247 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4248 inst->size_written = instr->num_components * dispatch_width * 4;
4249 break;
4250 }
4251
4252 case nir_intrinsic_image_store_raw_intel: {
4253 if (stage == MESA_SHADER_FRAGMENT)
4254 brw_wm_prog_data(prog_data)->has_side_effects = true;
4255
4256 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4257 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4258 get_nir_image_intrinsic_image(bld, instr);
4259 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4260 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4261 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4262 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4263
4264 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4265 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4266 break;
4267 }
4268
4269 case nir_intrinsic_group_memory_barrier:
4270 case nir_intrinsic_memory_barrier_shared:
4271 case nir_intrinsic_memory_barrier_atomic_counter:
4272 case nir_intrinsic_memory_barrier_buffer:
4273 case nir_intrinsic_memory_barrier_image:
4274 case nir_intrinsic_memory_barrier: {
4275 const fs_builder ubld = bld.group(8, 0);
4276 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4277 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4278 brw_vec8_grf(0, 0), brw_imm_ud(0))
4279 ->size_written = 2 * REG_SIZE;
4280 break;
4281 }
4282
4283 case nir_intrinsic_shader_clock: {
4284 /* We cannot do anything if there is an event, so ignore it for now */
4285 const fs_reg shader_clock = get_timestamp(bld);
4286 const fs_reg srcs[] = { component(shader_clock, 0),
4287 component(shader_clock, 1) };
4288 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4289 break;
4290 }
4291
4292 case nir_intrinsic_image_samples:
4293 /* The driver does not support multi-sampled images. */
4294 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4295 break;
4296
4297 case nir_intrinsic_load_uniform: {
4298 /* Offsets are in bytes but they should always aligned to
4299 * the type size
4300 */
4301 assert(instr->const_index[0] % 4 == 0 ||
4302 instr->const_index[0] % type_sz(dest.type) == 0);
4303
4304 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4305
4306 if (nir_src_is_const(instr->src[0])) {
4307 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4308 assert(load_offset % type_sz(dest.type) == 0);
4309 /* For 16-bit types we add the module of the const_index[0]
4310 * offset to access to not 32-bit aligned element
4311 */
4312 src.offset = load_offset + instr->const_index[0] % 4;
4313
4314 for (unsigned j = 0; j < instr->num_components; j++) {
4315 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4316 }
4317 } else {
4318 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4319 BRW_REGISTER_TYPE_UD);
4320
4321 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4322 * go past the end of the uniform. In order to keep the n'th
4323 * component from running past, we subtract off the size of all but
4324 * one component of the vector.
4325 */
4326 assert(instr->const_index[1] >=
4327 instr->num_components * (int) type_sz(dest.type));
4328 unsigned read_size = instr->const_index[1] -
4329 (instr->num_components - 1) * type_sz(dest.type);
4330
4331 bool supports_64bit_indirects =
4332 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4333
4334 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4335 for (unsigned j = 0; j < instr->num_components; j++) {
4336 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4337 offset(dest, bld, j), offset(src, bld, j),
4338 indirect, brw_imm_ud(read_size));
4339 }
4340 } else {
4341 const unsigned num_mov_indirects =
4342 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4343 /* We read a little bit less per MOV INDIRECT, as they are now
4344 * 32-bits ones instead of 64-bit. Fix read_size then.
4345 */
4346 const unsigned read_size_32bit = read_size -
4347 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4348 for (unsigned j = 0; j < instr->num_components; j++) {
4349 for (unsigned i = 0; i < num_mov_indirects; i++) {
4350 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4351 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4352 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4353 indirect, brw_imm_ud(read_size_32bit));
4354 }
4355 }
4356 }
4357 }
4358 break;
4359 }
4360
4361 case nir_intrinsic_load_ubo: {
4362 fs_reg surf_index;
4363 if (nir_src_is_const(instr->src[0])) {
4364 const unsigned index = stage_prog_data->binding_table.ubo_start +
4365 nir_src_as_uint(instr->src[0]);
4366 surf_index = brw_imm_ud(index);
4367 } else {
4368 /* The block index is not a constant. Evaluate the index expression
4369 * per-channel and add the base UBO index; we have to select a value
4370 * from any live channel.
4371 */
4372 surf_index = vgrf(glsl_type::uint_type);
4373 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4374 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4375 surf_index = bld.emit_uniformize(surf_index);
4376 }
4377
4378 if (!nir_src_is_const(instr->src[1])) {
4379 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4380 BRW_REGISTER_TYPE_UD);
4381
4382 for (int i = 0; i < instr->num_components; i++)
4383 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4384 base_offset, i * type_sz(dest.type));
4385 } else {
4386 /* Even if we are loading doubles, a pull constant load will load
4387 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4388 * need to load a full dvec4 we will have to emit 2 loads. This is
4389 * similar to demote_pull_constants(), except that in that case we
4390 * see individual accesses to each component of the vector and then
4391 * we let CSE deal with duplicate loads. Here we see a vector access
4392 * and we have to split it if necessary.
4393 */
4394 const unsigned type_size = type_sz(dest.type);
4395 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4396
4397 /* See if we've selected this as a push constant candidate */
4398 if (nir_src_is_const(instr->src[0])) {
4399 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4400 const unsigned offset_256b = load_offset / 32;
4401
4402 fs_reg push_reg;
4403 for (int i = 0; i < 4; i++) {
4404 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4405 if (range->block == ubo_block &&
4406 offset_256b >= range->start &&
4407 offset_256b < range->start + range->length) {
4408
4409 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4410 push_reg.offset = load_offset - 32 * range->start;
4411 break;
4412 }
4413 }
4414
4415 if (push_reg.file != BAD_FILE) {
4416 for (unsigned i = 0; i < instr->num_components; i++) {
4417 bld.MOV(offset(dest, bld, i),
4418 byte_offset(push_reg, i * type_size));
4419 }
4420 break;
4421 }
4422 }
4423
4424 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4425 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4426 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4427
4428 for (unsigned c = 0; c < instr->num_components;) {
4429 const unsigned base = load_offset + c * type_size;
4430 /* Number of usable components in the next block-aligned load. */
4431 const unsigned count = MIN2(instr->num_components - c,
4432 (block_sz - base % block_sz) / type_size);
4433
4434 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4435 packed_consts, surf_index,
4436 brw_imm_ud(base & ~(block_sz - 1)));
4437
4438 const fs_reg consts =
4439 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4440 dest.type);
4441
4442 for (unsigned d = 0; d < count; d++)
4443 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4444
4445 c += count;
4446 }
4447 }
4448 break;
4449 }
4450
4451 case nir_intrinsic_load_global: {
4452 assert(devinfo->gen >= 8);
4453
4454 if (nir_intrinsic_align(instr) >= 4) {
4455 assert(nir_dest_bit_size(instr->dest) == 32);
4456 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4457 dest,
4458 get_nir_src(instr->src[0]), /* Address */
4459 fs_reg(), /* No source data */
4460 brw_imm_ud(instr->num_components));
4461 inst->size_written = instr->num_components *
4462 inst->dst.component_size(inst->exec_size);
4463 } else {
4464 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4465 assert(bit_size <= 32);
4466 assert(nir_dest_num_components(instr->dest) == 1);
4467 brw_reg_type data_type =
4468 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4469 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4470 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4471 tmp,
4472 get_nir_src(instr->src[0]), /* Address */
4473 fs_reg(), /* No source data */
4474 brw_imm_ud(bit_size));
4475 bld.MOV(retype(dest, data_type), tmp);
4476 }
4477 break;
4478 }
4479
4480 case nir_intrinsic_store_global:
4481 assert(devinfo->gen >= 8);
4482
4483 if (stage == MESA_SHADER_FRAGMENT)
4484 brw_wm_prog_data(prog_data)->has_side_effects = true;
4485
4486 if (nir_intrinsic_align(instr) >= 4) {
4487 assert(nir_src_bit_size(instr->src[0]) == 32);
4488 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4489 fs_reg(),
4490 get_nir_src(instr->src[1]), /* Address */
4491 get_nir_src(instr->src[0]), /* Data */
4492 brw_imm_ud(instr->num_components));
4493 } else {
4494 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4495 assert(bit_size <= 32);
4496 assert(nir_src_num_components(instr->src[0]) == 1);
4497 brw_reg_type data_type =
4498 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4499 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4500 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4501 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4502 fs_reg(),
4503 get_nir_src(instr->src[1]), /* Address */
4504 tmp, /* Data */
4505 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4506 }
4507 break;
4508
4509 case nir_intrinsic_global_atomic_add:
4510 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4511 break;
4512 case nir_intrinsic_global_atomic_imin:
4513 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4514 break;
4515 case nir_intrinsic_global_atomic_umin:
4516 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4517 break;
4518 case nir_intrinsic_global_atomic_imax:
4519 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4520 break;
4521 case nir_intrinsic_global_atomic_umax:
4522 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4523 break;
4524 case nir_intrinsic_global_atomic_and:
4525 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4526 break;
4527 case nir_intrinsic_global_atomic_or:
4528 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4529 break;
4530 case nir_intrinsic_global_atomic_xor:
4531 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4532 break;
4533 case nir_intrinsic_global_atomic_exchange:
4534 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4535 break;
4536 case nir_intrinsic_global_atomic_comp_swap:
4537 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4538 break;
4539 case nir_intrinsic_global_atomic_fmin:
4540 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4541 break;
4542 case nir_intrinsic_global_atomic_fmax:
4543 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4544 break;
4545 case nir_intrinsic_global_atomic_fcomp_swap:
4546 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4547 break;
4548
4549 case nir_intrinsic_load_ssbo: {
4550 assert(devinfo->gen >= 7);
4551
4552 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4553 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4554 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4555 get_nir_ssbo_intrinsic_index(bld, instr);
4556 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4557 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4558
4559 /* Make dest unsigned because that's what the temporary will be */
4560 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4561
4562 /* Read the vector */
4563 if (nir_intrinsic_align(instr) >= 4) {
4564 assert(nir_dest_bit_size(instr->dest) == 32);
4565 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4566 fs_inst *inst =
4567 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4568 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4569 inst->size_written = instr->num_components * dispatch_width * 4;
4570 } else {
4571 assert(nir_dest_bit_size(instr->dest) <= 32);
4572 assert(nir_dest_num_components(instr->dest) == 1);
4573 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4574
4575 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4576 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4577 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4578 bld.MOV(dest, read_result);
4579 }
4580 break;
4581 }
4582
4583 case nir_intrinsic_store_ssbo: {
4584 assert(devinfo->gen >= 7);
4585
4586 if (stage == MESA_SHADER_FRAGMENT)
4587 brw_wm_prog_data(prog_data)->has_side_effects = true;
4588
4589 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4590 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4591 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4592 get_nir_ssbo_intrinsic_index(bld, instr);
4593 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4594 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4595
4596 fs_reg data = get_nir_src(instr->src[0]);
4597 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4598
4599 assert(nir_intrinsic_write_mask(instr) ==
4600 (1u << instr->num_components) - 1);
4601 if (nir_intrinsic_align(instr) >= 4) {
4602 assert(nir_src_bit_size(instr->src[0]) == 32);
4603 assert(nir_src_num_components(instr->src[0]) <= 4);
4604 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4605 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4606 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4607 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4608 } else {
4609 assert(nir_src_bit_size(instr->src[0]) <= 32);
4610 assert(nir_src_num_components(instr->src[0]) == 1);
4611 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4612
4613 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4614 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4615
4616 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4617 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4618 }
4619 break;
4620 }
4621
4622 case nir_intrinsic_store_output: {
4623 fs_reg src = get_nir_src(instr->src[0]);
4624
4625 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4626 unsigned num_components = instr->num_components;
4627 unsigned first_component = nir_intrinsic_component(instr);
4628 if (nir_src_bit_size(instr->src[0]) == 64) {
4629 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4630 num_components *= 2;
4631 }
4632
4633 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4634 4 * store_offset), src.type);
4635 for (unsigned j = 0; j < num_components; j++) {
4636 bld.MOV(offset(new_dest, bld, j + first_component),
4637 offset(src, bld, j));
4638 }
4639 break;
4640 }
4641
4642 case nir_intrinsic_ssbo_atomic_add:
4643 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4644 break;
4645 case nir_intrinsic_ssbo_atomic_imin:
4646 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4647 break;
4648 case nir_intrinsic_ssbo_atomic_umin:
4649 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4650 break;
4651 case nir_intrinsic_ssbo_atomic_imax:
4652 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4653 break;
4654 case nir_intrinsic_ssbo_atomic_umax:
4655 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4656 break;
4657 case nir_intrinsic_ssbo_atomic_and:
4658 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4659 break;
4660 case nir_intrinsic_ssbo_atomic_or:
4661 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4662 break;
4663 case nir_intrinsic_ssbo_atomic_xor:
4664 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4665 break;
4666 case nir_intrinsic_ssbo_atomic_exchange:
4667 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4668 break;
4669 case nir_intrinsic_ssbo_atomic_comp_swap:
4670 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4671 break;
4672 case nir_intrinsic_ssbo_atomic_fmin:
4673 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4674 break;
4675 case nir_intrinsic_ssbo_atomic_fmax:
4676 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4677 break;
4678 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4679 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4680 break;
4681
4682 case nir_intrinsic_get_buffer_size: {
4683 assert(nir_src_num_components(instr->src[0]) == 1);
4684 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4685 nir_src_as_uint(instr->src[0]) : 0;
4686
4687 /* A resinfo's sampler message is used to get the buffer size. The
4688 * SIMD8's writeback message consists of four registers and SIMD16's
4689 * writeback message consists of 8 destination registers (two per each
4690 * component). Because we are only interested on the first channel of
4691 * the first returned component, where resinfo returns the buffer size
4692 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4693 * the dispatch width.
4694 */
4695 const fs_builder ubld = bld.exec_all().group(8, 0);
4696 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4697 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4698
4699 /* Set LOD = 0 */
4700 ubld.MOV(src_payload, brw_imm_d(0));
4701
4702 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4703 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4704 src_payload, brw_imm_ud(index));
4705 inst->header_size = 0;
4706 inst->mlen = 1;
4707 inst->size_written = 4 * REG_SIZE;
4708
4709 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4710 *
4711 * "Out-of-bounds checking is always performed at a DWord granularity. If
4712 * any part of the DWord is out-of-bounds then the whole DWord is
4713 * considered out-of-bounds."
4714 *
4715 * This implies that types with size smaller than 4-bytes need to be
4716 * padded if they don't complete the last dword of the buffer. But as we
4717 * need to maintain the original size we need to reverse the padding
4718 * calculation to return the correct size to know the number of elements
4719 * of an unsized array. As we stored in the last two bits of the surface
4720 * size the needed padding for the buffer, we calculate here the
4721 * original buffer_size reversing the surface_size calculation:
4722 *
4723 * surface_size = isl_align(buffer_size, 4) +
4724 * (isl_align(buffer_size) - buffer_size)
4725 *
4726 * buffer_size = surface_size & ~3 - surface_size & 3
4727 */
4728
4729 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4730 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4731 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4732
4733 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4734 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4735 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4736
4737 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4738 break;
4739 }
4740
4741 case nir_intrinsic_load_subgroup_invocation:
4742 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4743 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4744 break;
4745
4746 case nir_intrinsic_load_subgroup_eq_mask:
4747 case nir_intrinsic_load_subgroup_ge_mask:
4748 case nir_intrinsic_load_subgroup_gt_mask:
4749 case nir_intrinsic_load_subgroup_le_mask:
4750 case nir_intrinsic_load_subgroup_lt_mask:
4751 unreachable("not reached");
4752
4753 case nir_intrinsic_vote_any: {
4754 const fs_builder ubld = bld.exec_all().group(1, 0);
4755
4756 /* The any/all predicates do not consider channel enables. To prevent
4757 * dead channels from affecting the result, we initialize the flag with
4758 * with the identity value for the logical operation.
4759 */
4760 if (dispatch_width == 32) {
4761 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4762 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4763 brw_imm_ud(0));
4764 } else {
4765 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4766 }
4767 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4768
4769 /* For some reason, the any/all predicates don't work properly with
4770 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4771 * doesn't read the correct subset of the flag register and you end up
4772 * getting garbage in the second half. Work around this by using a pair
4773 * of 1-wide MOVs and scattering the result.
4774 */
4775 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4776 ubld.MOV(res1, brw_imm_d(0));
4777 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4778 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4779 BRW_PREDICATE_ALIGN1_ANY32H,
4780 ubld.MOV(res1, brw_imm_d(-1)));
4781
4782 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4783 break;
4784 }
4785 case nir_intrinsic_vote_all: {
4786 const fs_builder ubld = bld.exec_all().group(1, 0);
4787
4788 /* The any/all predicates do not consider channel enables. To prevent
4789 * dead channels from affecting the result, we initialize the flag with
4790 * with the identity value for the logical operation.
4791 */
4792 if (dispatch_width == 32) {
4793 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4794 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4795 brw_imm_ud(0xffffffff));
4796 } else {
4797 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4798 }
4799 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4800
4801 /* For some reason, the any/all predicates don't work properly with
4802 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4803 * doesn't read the correct subset of the flag register and you end up
4804 * getting garbage in the second half. Work around this by using a pair
4805 * of 1-wide MOVs and scattering the result.
4806 */
4807 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4808 ubld.MOV(res1, brw_imm_d(0));
4809 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4810 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4811 BRW_PREDICATE_ALIGN1_ALL32H,
4812 ubld.MOV(res1, brw_imm_d(-1)));
4813
4814 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4815 break;
4816 }
4817 case nir_intrinsic_vote_feq:
4818 case nir_intrinsic_vote_ieq: {
4819 fs_reg value = get_nir_src(instr->src[0]);
4820 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4821 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4822 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4823 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4824 }
4825
4826 fs_reg uniformized = bld.emit_uniformize(value);
4827 const fs_builder ubld = bld.exec_all().group(1, 0);
4828
4829 /* The any/all predicates do not consider channel enables. To prevent
4830 * dead channels from affecting the result, we initialize the flag with
4831 * with the identity value for the logical operation.
4832 */
4833 if (dispatch_width == 32) {
4834 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4835 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4836 brw_imm_ud(0xffffffff));
4837 } else {
4838 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4839 }
4840 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4841
4842 /* For some reason, the any/all predicates don't work properly with
4843 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4844 * doesn't read the correct subset of the flag register and you end up
4845 * getting garbage in the second half. Work around this by using a pair
4846 * of 1-wide MOVs and scattering the result.
4847 */
4848 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4849 ubld.MOV(res1, brw_imm_d(0));
4850 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4851 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4852 BRW_PREDICATE_ALIGN1_ALL32H,
4853 ubld.MOV(res1, brw_imm_d(-1)));
4854
4855 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4856 break;
4857 }
4858
4859 case nir_intrinsic_ballot: {
4860 const fs_reg value = retype(get_nir_src(instr->src[0]),
4861 BRW_REGISTER_TYPE_UD);
4862 struct brw_reg flag = brw_flag_reg(0, 0);
4863 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4864 * as f0.0. This is a problem for fragment programs as we currently use
4865 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4866 * programs yet so this isn't a problem. When we do, something will
4867 * have to change.
4868 */
4869 if (dispatch_width == 32)
4870 flag.type = BRW_REGISTER_TYPE_UD;
4871
4872 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4873 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4874
4875 if (instr->dest.ssa.bit_size > 32) {
4876 dest.type = BRW_REGISTER_TYPE_UQ;
4877 } else {
4878 dest.type = BRW_REGISTER_TYPE_UD;
4879 }
4880 bld.MOV(dest, flag);
4881 break;
4882 }
4883
4884 case nir_intrinsic_read_invocation: {
4885 const fs_reg value = get_nir_src(instr->src[0]);
4886 const fs_reg invocation = get_nir_src(instr->src[1]);
4887 fs_reg tmp = bld.vgrf(value.type);
4888
4889 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4890 bld.emit_uniformize(invocation));
4891
4892 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4893 break;
4894 }
4895
4896 case nir_intrinsic_read_first_invocation: {
4897 const fs_reg value = get_nir_src(instr->src[0]);
4898 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4899 break;
4900 }
4901
4902 case nir_intrinsic_shuffle: {
4903 const fs_reg value = get_nir_src(instr->src[0]);
4904 const fs_reg index = get_nir_src(instr->src[1]);
4905
4906 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4907 break;
4908 }
4909
4910 case nir_intrinsic_first_invocation: {
4911 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4912 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4913 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4914 fs_reg(component(tmp, 0)));
4915 break;
4916 }
4917
4918 case nir_intrinsic_quad_broadcast: {
4919 const fs_reg value = get_nir_src(instr->src[0]);
4920 const unsigned index = nir_src_as_uint(instr->src[1]);
4921
4922 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4923 value, brw_imm_ud(index), brw_imm_ud(4));
4924 break;
4925 }
4926
4927 case nir_intrinsic_quad_swap_horizontal: {
4928 const fs_reg value = get_nir_src(instr->src[0]);
4929 const fs_reg tmp = bld.vgrf(value.type);
4930 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4931
4932 const fs_reg src_left = horiz_stride(value, 2);
4933 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4934 const fs_reg tmp_left = horiz_stride(tmp, 2);
4935 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4936
4937 ubld.MOV(tmp_left, src_right);
4938 ubld.MOV(tmp_right, src_left);
4939
4940 bld.MOV(retype(dest, value.type), tmp);
4941 break;
4942 }
4943
4944 case nir_intrinsic_quad_swap_vertical: {
4945 const fs_reg value = get_nir_src(instr->src[0]);
4946 if (nir_src_bit_size(instr->src[0]) == 32) {
4947 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4948 const fs_reg tmp = bld.vgrf(value.type);
4949 const fs_builder ubld = bld.exec_all();
4950 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4951 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4952 bld.MOV(retype(dest, value.type), tmp);
4953 } else {
4954 /* For larger data types, we have to either emit dispatch_width many
4955 * MOVs or else fall back to doing indirects.
4956 */
4957 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4958 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4959 brw_imm_w(0x2));
4960 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4961 }
4962 break;
4963 }
4964
4965 case nir_intrinsic_quad_swap_diagonal: {
4966 const fs_reg value = get_nir_src(instr->src[0]);
4967 if (nir_src_bit_size(instr->src[0]) == 32) {
4968 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4969 const fs_reg tmp = bld.vgrf(value.type);
4970 const fs_builder ubld = bld.exec_all();
4971 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4972 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4973 bld.MOV(retype(dest, value.type), tmp);
4974 } else {
4975 /* For larger data types, we have to either emit dispatch_width many
4976 * MOVs or else fall back to doing indirects.
4977 */
4978 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4979 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4980 brw_imm_w(0x3));
4981 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4982 }
4983 break;
4984 }
4985
4986 case nir_intrinsic_reduce: {
4987 fs_reg src = get_nir_src(instr->src[0]);
4988 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4989 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4990 if (cluster_size == 0 || cluster_size > dispatch_width)
4991 cluster_size = dispatch_width;
4992
4993 /* Figure out the source type */
4994 src.type = brw_type_for_nir_type(devinfo,
4995 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4996 nir_src_bit_size(instr->src[0])));
4997
4998 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4999 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5000 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5001
5002 /* Set up a register for all of our scratching around and initialize it
5003 * to reduction operation's identity value.
5004 */
5005 fs_reg scan = bld.vgrf(src.type);
5006 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5007
5008 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5009
5010 dest.type = src.type;
5011 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5012 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5013 * the distance between clusters is at least 2 GRFs. In this case,
5014 * we don't need the weird striding of the CLUSTER_BROADCAST
5015 * instruction and can just do regular MOVs.
5016 */
5017 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5018 const unsigned groups =
5019 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5020 const unsigned group_size = dispatch_width / groups;
5021 for (unsigned i = 0; i < groups; i++) {
5022 const unsigned cluster = (i * group_size) / cluster_size;
5023 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5024 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5025 component(scan, comp));
5026 }
5027 } else {
5028 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5029 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5030 }
5031 break;
5032 }
5033
5034 case nir_intrinsic_inclusive_scan:
5035 case nir_intrinsic_exclusive_scan: {
5036 fs_reg src = get_nir_src(instr->src[0]);
5037 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5038
5039 /* Figure out the source type */
5040 src.type = brw_type_for_nir_type(devinfo,
5041 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5042 nir_src_bit_size(instr->src[0])));
5043
5044 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5045 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5046 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5047
5048 /* Set up a register for all of our scratching around and initialize it
5049 * to reduction operation's identity value.
5050 */
5051 fs_reg scan = bld.vgrf(src.type);
5052 const fs_builder allbld = bld.exec_all();
5053 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5054
5055 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5056 /* Exclusive scan is a bit harder because we have to do an annoying
5057 * shift of the contents before we can begin. To make things worse,
5058 * we can't do this with a normal stride; we have to use indirects.
5059 */
5060 fs_reg shifted = bld.vgrf(src.type);
5061 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5062 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5063 brw_imm_w(-1));
5064 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5065 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5066 scan = shifted;
5067 }
5068
5069 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5070
5071 bld.MOV(retype(dest, src.type), scan);
5072 break;
5073 }
5074
5075 case nir_intrinsic_begin_invocation_interlock: {
5076 const fs_builder ubld = bld.group(8, 0);
5077 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5078
5079 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5080 ->size_written = 2 * REG_SIZE;
5081 break;
5082 }
5083
5084 case nir_intrinsic_end_invocation_interlock: {
5085 /* For endInvocationInterlock(), we need to insert a memory fence which
5086 * stalls in the shader until the memory transactions prior to that
5087 * fence are complete. This ensures that the shader does not end before
5088 * any writes from its critical section have landed. Otherwise, you can
5089 * end up with a case where the next invocation on that pixel properly
5090 * stalls for previous FS invocation on its pixel to complete but
5091 * doesn't actually wait for the dataport memory transactions from that
5092 * thread to land before submitting its own.
5093 */
5094 const fs_builder ubld = bld.group(8, 0);
5095 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5096 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5097 brw_vec8_grf(0, 0), brw_imm_ud(1))
5098 ->size_written = 2 * REG_SIZE;
5099 break;
5100 }
5101
5102 default:
5103 unreachable("unknown intrinsic");
5104 }
5105 }
5106
5107 void
5108 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5109 int op, nir_intrinsic_instr *instr)
5110 {
5111 if (stage == MESA_SHADER_FRAGMENT)
5112 brw_wm_prog_data(prog_data)->has_side_effects = true;
5113
5114 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5115 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5116 * appear to exist. However, if you look at Vol 2a, there are no message
5117 * descriptors provided for Qword atomic ops except for A64 messages.
5118 */
5119 assert(nir_dest_bit_size(instr->dest) == 32);
5120
5121 fs_reg dest;
5122 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5123 dest = get_nir_dest(instr->dest);
5124
5125 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5126 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5127 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5128 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5129 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5130
5131 fs_reg data;
5132 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5133 data = get_nir_src(instr->src[2]);
5134
5135 if (op == BRW_AOP_CMPWR) {
5136 fs_reg tmp = bld.vgrf(data.type, 2);
5137 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5138 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5139 data = tmp;
5140 }
5141 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5142
5143 /* Emit the actual atomic operation */
5144
5145 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5146 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5147 }
5148
5149 void
5150 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5151 int op, nir_intrinsic_instr *instr)
5152 {
5153 if (stage == MESA_SHADER_FRAGMENT)
5154 brw_wm_prog_data(prog_data)->has_side_effects = true;
5155
5156 fs_reg dest;
5157 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5158 dest = get_nir_dest(instr->dest);
5159
5160 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5161 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5162 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5163 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5164 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5165
5166 fs_reg data = get_nir_src(instr->src[2]);
5167 if (op == BRW_AOP_FCMPWR) {
5168 fs_reg tmp = bld.vgrf(data.type, 2);
5169 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5170 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5171 data = tmp;
5172 }
5173 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5174
5175 /* Emit the actual atomic operation */
5176
5177 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5178 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5179 }
5180
5181 void
5182 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5183 int op, nir_intrinsic_instr *instr)
5184 {
5185 fs_reg dest;
5186 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5187 dest = get_nir_dest(instr->dest);
5188
5189 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5190 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5191 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5192 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5193
5194 fs_reg data;
5195 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5196 data = get_nir_src(instr->src[1]);
5197 if (op == BRW_AOP_CMPWR) {
5198 fs_reg tmp = bld.vgrf(data.type, 2);
5199 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5200 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5201 data = tmp;
5202 }
5203 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5204
5205 /* Get the offset */
5206 if (nir_src_is_const(instr->src[0])) {
5207 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5208 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5209 } else {
5210 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5211 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5212 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5213 brw_imm_ud(instr->const_index[0]));
5214 }
5215
5216 /* Emit the actual atomic operation operation */
5217
5218 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5219 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5220 }
5221
5222 void
5223 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5224 int op, nir_intrinsic_instr *instr)
5225 {
5226 fs_reg dest;
5227 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5228 dest = get_nir_dest(instr->dest);
5229
5230 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5231 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5232 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5233 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5234
5235 fs_reg data = get_nir_src(instr->src[1]);
5236 if (op == BRW_AOP_FCMPWR) {
5237 fs_reg tmp = bld.vgrf(data.type, 2);
5238 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5239 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5240 data = tmp;
5241 }
5242 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5243
5244 /* Get the offset */
5245 if (nir_src_is_const(instr->src[0])) {
5246 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5247 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5248 } else {
5249 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5250 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5251 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5252 brw_imm_ud(instr->const_index[0]));
5253 }
5254
5255 /* Emit the actual atomic operation operation */
5256
5257 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5258 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5259 }
5260
5261 void
5262 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5263 int op, nir_intrinsic_instr *instr)
5264 {
5265 if (stage == MESA_SHADER_FRAGMENT)
5266 brw_wm_prog_data(prog_data)->has_side_effects = true;
5267
5268 fs_reg dest;
5269 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5270 dest = get_nir_dest(instr->dest);
5271
5272 fs_reg addr = get_nir_src(instr->src[0]);
5273
5274 fs_reg data;
5275 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5276 data = get_nir_src(instr->src[1]);
5277
5278 if (op == BRW_AOP_CMPWR) {
5279 fs_reg tmp = bld.vgrf(data.type, 2);
5280 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5281 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5282 data = tmp;
5283 }
5284
5285 if (nir_dest_bit_size(instr->dest) == 64) {
5286 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5287 dest, addr, data, brw_imm_ud(op));
5288 } else {
5289 assert(nir_dest_bit_size(instr->dest) == 32);
5290 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5291 dest, addr, data, brw_imm_ud(op));
5292 }
5293 }
5294
5295 void
5296 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5297 int op, nir_intrinsic_instr *instr)
5298 {
5299 if (stage == MESA_SHADER_FRAGMENT)
5300 brw_wm_prog_data(prog_data)->has_side_effects = true;
5301
5302 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5303 fs_reg dest = get_nir_dest(instr->dest);
5304
5305 fs_reg addr = get_nir_src(instr->src[0]);
5306
5307 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5308 fs_reg data = get_nir_src(instr->src[1]);
5309
5310 if (op == BRW_AOP_FCMPWR) {
5311 fs_reg tmp = bld.vgrf(data.type, 2);
5312 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5313 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5314 data = tmp;
5315 }
5316
5317 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5318 dest, addr, data, brw_imm_ud(op));
5319 }
5320
5321 void
5322 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5323 {
5324 unsigned texture = instr->texture_index;
5325 unsigned sampler = instr->sampler_index;
5326
5327 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5328
5329 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5330 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5331
5332 int lod_components = 0;
5333
5334 /* The hardware requires a LOD for buffer textures */
5335 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5336 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5337
5338 uint32_t header_bits = 0;
5339 for (unsigned i = 0; i < instr->num_srcs; i++) {
5340 fs_reg src = get_nir_src(instr->src[i].src);
5341 switch (instr->src[i].src_type) {
5342 case nir_tex_src_bias:
5343 srcs[TEX_LOGICAL_SRC_LOD] =
5344 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5345 break;
5346 case nir_tex_src_comparator:
5347 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5348 break;
5349 case nir_tex_src_coord:
5350 switch (instr->op) {
5351 case nir_texop_txf:
5352 case nir_texop_txf_ms:
5353 case nir_texop_txf_ms_mcs:
5354 case nir_texop_samples_identical:
5355 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5356 break;
5357 default:
5358 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5359 break;
5360 }
5361 break;
5362 case nir_tex_src_ddx:
5363 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5364 lod_components = nir_tex_instr_src_size(instr, i);
5365 break;
5366 case nir_tex_src_ddy:
5367 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5368 break;
5369 case nir_tex_src_lod:
5370 switch (instr->op) {
5371 case nir_texop_txs:
5372 srcs[TEX_LOGICAL_SRC_LOD] =
5373 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5374 break;
5375 case nir_texop_txf:
5376 srcs[TEX_LOGICAL_SRC_LOD] =
5377 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5378 break;
5379 default:
5380 srcs[TEX_LOGICAL_SRC_LOD] =
5381 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5382 break;
5383 }
5384 break;
5385 case nir_tex_src_min_lod:
5386 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5387 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5388 break;
5389 case nir_tex_src_ms_index:
5390 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5391 break;
5392
5393 case nir_tex_src_offset: {
5394 uint32_t offset_bits = 0;
5395 if (brw_texture_offset(instr, i, &offset_bits)) {
5396 header_bits |= offset_bits;
5397 } else {
5398 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5399 retype(src, BRW_REGISTER_TYPE_D);
5400 }
5401 break;
5402 }
5403
5404 case nir_tex_src_projector:
5405 unreachable("should be lowered");
5406
5407 case nir_tex_src_texture_offset: {
5408 /* Emit code to evaluate the actual indexing expression */
5409 fs_reg tmp = vgrf(glsl_type::uint_type);
5410 bld.ADD(tmp, src, brw_imm_ud(texture));
5411 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5412 break;
5413 }
5414
5415 case nir_tex_src_sampler_offset: {
5416 /* Emit code to evaluate the actual indexing expression */
5417 fs_reg tmp = vgrf(glsl_type::uint_type);
5418 bld.ADD(tmp, src, brw_imm_ud(sampler));
5419 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5420 break;
5421 }
5422
5423 case nir_tex_src_texture_handle:
5424 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5425 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5426 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5427 break;
5428
5429 case nir_tex_src_sampler_handle:
5430 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5431 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5432 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5433 break;
5434
5435 case nir_tex_src_ms_mcs:
5436 assert(instr->op == nir_texop_txf_ms);
5437 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5438 break;
5439
5440 case nir_tex_src_plane: {
5441 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5442 const uint32_t texture_index =
5443 instr->texture_index +
5444 stage_prog_data->binding_table.plane_start[plane] -
5445 stage_prog_data->binding_table.texture_start;
5446
5447 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5448 break;
5449 }
5450
5451 default:
5452 unreachable("unknown texture source");
5453 }
5454 }
5455
5456 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5457 (instr->op == nir_texop_txf_ms ||
5458 instr->op == nir_texop_samples_identical)) {
5459 if (devinfo->gen >= 7 &&
5460 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5461 srcs[TEX_LOGICAL_SRC_MCS] =
5462 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5463 instr->coord_components,
5464 srcs[TEX_LOGICAL_SRC_SURFACE],
5465 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5466 } else {
5467 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5468 }
5469 }
5470
5471 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5472 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5473
5474 enum opcode opcode;
5475 switch (instr->op) {
5476 case nir_texop_tex:
5477 opcode = SHADER_OPCODE_TEX_LOGICAL;
5478 break;
5479 case nir_texop_txb:
5480 opcode = FS_OPCODE_TXB_LOGICAL;
5481 break;
5482 case nir_texop_txl:
5483 opcode = SHADER_OPCODE_TXL_LOGICAL;
5484 break;
5485 case nir_texop_txd:
5486 opcode = SHADER_OPCODE_TXD_LOGICAL;
5487 break;
5488 case nir_texop_txf:
5489 opcode = SHADER_OPCODE_TXF_LOGICAL;
5490 break;
5491 case nir_texop_txf_ms:
5492 if ((key_tex->msaa_16 & (1 << sampler)))
5493 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5494 else
5495 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5496 break;
5497 case nir_texop_txf_ms_mcs:
5498 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5499 break;
5500 case nir_texop_query_levels:
5501 case nir_texop_txs:
5502 opcode = SHADER_OPCODE_TXS_LOGICAL;
5503 break;
5504 case nir_texop_lod:
5505 opcode = SHADER_OPCODE_LOD_LOGICAL;
5506 break;
5507 case nir_texop_tg4:
5508 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5509 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5510 else
5511 opcode = SHADER_OPCODE_TG4_LOGICAL;
5512 break;
5513 case nir_texop_texture_samples:
5514 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5515 break;
5516 case nir_texop_samples_identical: {
5517 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5518
5519 /* If mcs is an immediate value, it means there is no MCS. In that case
5520 * just return false.
5521 */
5522 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5523 bld.MOV(dst, brw_imm_ud(0u));
5524 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5525 fs_reg tmp = vgrf(glsl_type::uint_type);
5526 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5527 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5528 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5529 } else {
5530 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5531 BRW_CONDITIONAL_EQ);
5532 }
5533 return;
5534 }
5535 default:
5536 unreachable("unknown texture opcode");
5537 }
5538
5539 if (instr->op == nir_texop_tg4) {
5540 if (instr->component == 1 &&
5541 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5542 /* gather4 sampler is broken for green channel on RG32F --
5543 * we must ask for blue instead.
5544 */
5545 header_bits |= 2 << 16;
5546 } else {
5547 header_bits |= instr->component << 16;
5548 }
5549 }
5550
5551 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5552 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5553 inst->offset = header_bits;
5554
5555 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5556 if (devinfo->gen >= 9 &&
5557 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5558 unsigned write_mask = instr->dest.is_ssa ?
5559 nir_ssa_def_components_read(&instr->dest.ssa):
5560 (1 << dest_size) - 1;
5561 assert(write_mask != 0); /* dead code should have been eliminated */
5562 inst->size_written = util_last_bit(write_mask) *
5563 inst->dst.component_size(inst->exec_size);
5564 } else {
5565 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5566 }
5567
5568 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5569 inst->shadow_compare = true;
5570
5571 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5572 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5573
5574 fs_reg nir_dest[4];
5575 for (unsigned i = 0; i < dest_size; i++)
5576 nir_dest[i] = offset(dst, bld, i);
5577
5578 if (instr->op == nir_texop_query_levels) {
5579 /* # levels is in .w */
5580 nir_dest[0] = offset(dst, bld, 3);
5581 } else if (instr->op == nir_texop_txs &&
5582 dest_size >= 3 && devinfo->gen < 7) {
5583 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5584 fs_reg depth = offset(dst, bld, 2);
5585 nir_dest[2] = vgrf(glsl_type::int_type);
5586 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5587 }
5588
5589 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5590 }
5591
5592 void
5593 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5594 {
5595 switch (instr->type) {
5596 case nir_jump_break:
5597 bld.emit(BRW_OPCODE_BREAK);
5598 break;
5599 case nir_jump_continue:
5600 bld.emit(BRW_OPCODE_CONTINUE);
5601 break;
5602 case nir_jump_return:
5603 default:
5604 unreachable("unknown jump");
5605 }
5606 }
5607
5608 /*
5609 * This helper takes a source register and un/shuffles it into the destination
5610 * register.
5611 *
5612 * If source type size is smaller than destination type size the operation
5613 * needed is a component shuffle. The opposite case would be an unshuffle. If
5614 * source/destination type size is equal a shuffle is done that would be
5615 * equivalent to a simple MOV.
5616 *
5617 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5618 * components .xyz 16-bit vector on SIMD8 would be.
5619 *
5620 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5621 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5622 *
5623 * This helper will return the following 2 32-bit components with the 16-bit
5624 * values shuffled:
5625 *
5626 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5627 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5628 *
5629 * For unshuffle, the example would be the opposite, a 64-bit type source
5630 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5631 * would be:
5632 *
5633 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5634 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5635 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5636 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5637 *
5638 * The returned result would be the following 4 32-bit components unshuffled:
5639 *
5640 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5641 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5642 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5643 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5644 *
5645 * - Source and destination register must not be overlapped.
5646 * - components units are measured in terms of the smaller type between
5647 * source and destination because we are un/shuffling the smaller
5648 * components from/into the bigger ones.
5649 * - first_component parameter allows skipping source components.
5650 */
5651 void
5652 shuffle_src_to_dst(const fs_builder &bld,
5653 const fs_reg &dst,
5654 const fs_reg &src,
5655 uint32_t first_component,
5656 uint32_t components)
5657 {
5658 if (type_sz(src.type) == type_sz(dst.type)) {
5659 assert(!regions_overlap(dst,
5660 type_sz(dst.type) * bld.dispatch_width() * components,
5661 offset(src, bld, first_component),
5662 type_sz(src.type) * bld.dispatch_width() * components));
5663 for (unsigned i = 0; i < components; i++) {
5664 bld.MOV(retype(offset(dst, bld, i), src.type),
5665 offset(src, bld, i + first_component));
5666 }
5667 } else if (type_sz(src.type) < type_sz(dst.type)) {
5668 /* Source is shuffled into destination */
5669 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5670 assert(!regions_overlap(dst,
5671 type_sz(dst.type) * bld.dispatch_width() *
5672 DIV_ROUND_UP(components, size_ratio),
5673 offset(src, bld, first_component),
5674 type_sz(src.type) * bld.dispatch_width() * components));
5675
5676 brw_reg_type shuffle_type =
5677 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5678 BRW_REGISTER_TYPE_D);
5679 for (unsigned i = 0; i < components; i++) {
5680 fs_reg shuffle_component_i =
5681 subscript(offset(dst, bld, i / size_ratio),
5682 shuffle_type, i % size_ratio);
5683 bld.MOV(shuffle_component_i,
5684 retype(offset(src, bld, i + first_component), shuffle_type));
5685 }
5686 } else {
5687 /* Source is unshuffled into destination */
5688 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5689 assert(!regions_overlap(dst,
5690 type_sz(dst.type) * bld.dispatch_width() * components,
5691 offset(src, bld, first_component / size_ratio),
5692 type_sz(src.type) * bld.dispatch_width() *
5693 DIV_ROUND_UP(components + (first_component % size_ratio),
5694 size_ratio)));
5695
5696 brw_reg_type shuffle_type =
5697 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5698 BRW_REGISTER_TYPE_D);
5699 for (unsigned i = 0; i < components; i++) {
5700 fs_reg shuffle_component_i =
5701 subscript(offset(src, bld, (first_component + i) / size_ratio),
5702 shuffle_type, (first_component + i) % size_ratio);
5703 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5704 shuffle_component_i);
5705 }
5706 }
5707 }
5708
5709 void
5710 shuffle_from_32bit_read(const fs_builder &bld,
5711 const fs_reg &dst,
5712 const fs_reg &src,
5713 uint32_t first_component,
5714 uint32_t components)
5715 {
5716 assert(type_sz(src.type) == 4);
5717
5718 /* This function takes components in units of the destination type while
5719 * shuffle_src_to_dst takes components in units of the smallest type
5720 */
5721 if (type_sz(dst.type) > 4) {
5722 assert(type_sz(dst.type) == 8);
5723 first_component *= 2;
5724 components *= 2;
5725 }
5726
5727 shuffle_src_to_dst(bld, dst, src, first_component, components);
5728 }
5729
5730 fs_reg
5731 shuffle_for_32bit_write(const fs_builder &bld,
5732 const fs_reg &src,
5733 uint32_t first_component,
5734 uint32_t components)
5735 {
5736 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5737 DIV_ROUND_UP (components * type_sz(src.type), 4));
5738 /* This function takes components in units of the source type while
5739 * shuffle_src_to_dst takes components in units of the smallest type
5740 */
5741 if (type_sz(src.type) > 4) {
5742 assert(type_sz(src.type) == 8);
5743 first_component *= 2;
5744 components *= 2;
5745 }
5746
5747 shuffle_src_to_dst(bld, dst, src, first_component, components);
5748
5749 return dst;
5750 }
5751
5752 fs_reg
5753 setup_imm_df(const fs_builder &bld, double v)
5754 {
5755 const struct gen_device_info *devinfo = bld.shader->devinfo;
5756 assert(devinfo->gen >= 7);
5757
5758 if (devinfo->gen >= 8)
5759 return brw_imm_df(v);
5760
5761 /* gen7.5 does not support DF immediates straighforward but the DIM
5762 * instruction allows to set the 64-bit immediate value.
5763 */
5764 if (devinfo->is_haswell) {
5765 const fs_builder ubld = bld.exec_all().group(1, 0);
5766 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5767 ubld.DIM(dst, brw_imm_df(v));
5768 return component(dst, 0);
5769 }
5770
5771 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5772 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5773 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5774 *
5775 * Alternatively, we could also produce a normal VGRF (without stride 0)
5776 * by writing to all the channels in the VGRF, however, that would hit the
5777 * gen7 bug where we have to split writes that span more than 1 register
5778 * into instructions with a width of 4 (otherwise the write to the second
5779 * register written runs into an execmask hardware bug) which isn't very
5780 * nice.
5781 */
5782 union {
5783 double d;
5784 struct {
5785 uint32_t i1;
5786 uint32_t i2;
5787 };
5788 } di;
5789
5790 di.d = v;
5791
5792 const fs_builder ubld = bld.exec_all().group(1, 0);
5793 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5794 ubld.MOV(tmp, brw_imm_ud(di.i1));
5795 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5796
5797 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5798 }
5799
5800 fs_reg
5801 setup_imm_b(const fs_builder &bld, int8_t v)
5802 {
5803 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5804 bld.MOV(tmp, brw_imm_w(v));
5805 return tmp;
5806 }
5807
5808 fs_reg
5809 setup_imm_ub(const fs_builder &bld, uint8_t v)
5810 {
5811 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5812 bld.MOV(tmp, brw_imm_uw(v));
5813 return tmp;
5814 }