intel/nir: Lower load_num_work_groups to 32-bit if needed
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45 last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
46
47 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_shader_out_variable(var, nir) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type, true);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) {
104 /* Add uniforms for builtins after regular NIR uniforms. */
105 assert(uniforms == prog_data->nr_params);
106
107 uint32_t *param;
108 if (nir->info.cs.local_size_variable &&
109 compiler->lower_variable_group_size) {
110 param = brw_stage_prog_data_add_params(prog_data, 3);
111 for (unsigned i = 0; i < 3; i++) {
112 param[i] = (BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i);
113 group_size[i] = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
114 }
115 }
116
117 /* Subgroup ID must be the last uniform on the list. This will make
118 * easier later to split between cross thread and per thread
119 * uniforms.
120 */
121 param = brw_stage_prog_data_add_params(prog_data, 1);
122 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
123 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
124 }
125 }
126
127 static bool
128 emit_system_values_block(nir_block *block, fs_visitor *v)
129 {
130 fs_reg *reg;
131
132 nir_foreach_instr(instr, block) {
133 if (instr->type != nir_instr_type_intrinsic)
134 continue;
135
136 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
137 switch (intrin->intrinsic) {
138 case nir_intrinsic_load_vertex_id:
139 case nir_intrinsic_load_base_vertex:
140 unreachable("should be lowered by nir_lower_system_values().");
141
142 case nir_intrinsic_load_vertex_id_zero_base:
143 case nir_intrinsic_load_is_indexed_draw:
144 case nir_intrinsic_load_first_vertex:
145 case nir_intrinsic_load_instance_id:
146 case nir_intrinsic_load_base_instance:
147 case nir_intrinsic_load_draw_id:
148 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
149
150 case nir_intrinsic_load_invocation_id:
151 if (v->stage == MESA_SHADER_TESS_CTRL)
152 break;
153 assert(v->stage == MESA_SHADER_GEOMETRY);
154 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
155 if (reg->file == BAD_FILE) {
156 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
157 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
158 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
159 abld.SHR(iid, g1, brw_imm_ud(27u));
160 *reg = iid;
161 }
162 break;
163
164 case nir_intrinsic_load_sample_pos:
165 assert(v->stage == MESA_SHADER_FRAGMENT);
166 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
167 if (reg->file == BAD_FILE)
168 *reg = *v->emit_samplepos_setup();
169 break;
170
171 case nir_intrinsic_load_sample_id:
172 assert(v->stage == MESA_SHADER_FRAGMENT);
173 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
174 if (reg->file == BAD_FILE)
175 *reg = *v->emit_sampleid_setup();
176 break;
177
178 case nir_intrinsic_load_sample_mask_in:
179 assert(v->stage == MESA_SHADER_FRAGMENT);
180 assert(v->devinfo->gen >= 7);
181 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
182 if (reg->file == BAD_FILE)
183 *reg = *v->emit_samplemaskin_setup();
184 break;
185
186 case nir_intrinsic_load_work_group_id:
187 assert(v->stage == MESA_SHADER_COMPUTE ||
188 v->stage == MESA_SHADER_KERNEL);
189 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
190 if (reg->file == BAD_FILE)
191 *reg = *v->emit_cs_work_group_id_setup();
192 break;
193
194 case nir_intrinsic_load_helper_invocation:
195 assert(v->stage == MESA_SHADER_FRAGMENT);
196 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
197 if (reg->file == BAD_FILE) {
198 const fs_builder abld =
199 v->bld.annotate("gl_HelperInvocation", NULL);
200
201 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
202 * pixel mask is in g1.7 of the thread payload.
203 *
204 * We move the per-channel pixel enable bit to the low bit of each
205 * channel by shifting the byte containing the pixel mask by the
206 * vector immediate 0x76543210UV.
207 *
208 * The region of <1,8,0> reads only 1 byte (the pixel masks for
209 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
210 * masks for 2 and 3) in SIMD16.
211 */
212 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
213
214 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
215 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
216 hbld.SHR(offset(shifted, hbld, i),
217 stride(retype(brw_vec1_grf(1 + i, 7),
218 BRW_REGISTER_TYPE_UB),
219 1, 8, 0),
220 brw_imm_v(0x76543210));
221 }
222
223 /* A set bit in the pixel mask means the channel is enabled, but
224 * that is the opposite of gl_HelperInvocation so we need to invert
225 * the mask.
226 *
227 * The negate source-modifier bit of logical instructions on Gen8+
228 * performs 1's complement negation, so we can use that instead of
229 * a NOT instruction.
230 */
231 fs_reg inverted = negate(shifted);
232 if (v->devinfo->gen < 8) {
233 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
234 abld.NOT(inverted, shifted);
235 }
236
237 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
238 * with 1 and negating.
239 */
240 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
241 abld.AND(anded, inverted, brw_imm_uw(1));
242
243 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
244 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
245 *reg = dst;
246 }
247 break;
248
249 default:
250 break;
251 }
252 }
253
254 return true;
255 }
256
257 void
258 fs_visitor::nir_emit_system_values()
259 {
260 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
261 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
262 nir_system_values[i] = fs_reg();
263 }
264
265 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
266 * never end up using it.
267 */
268 {
269 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
270 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
271 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
272
273 const fs_builder allbld8 = abld.group(8, 0).exec_all();
274 allbld8.MOV(reg, brw_imm_v(0x76543210));
275 if (dispatch_width > 8)
276 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
277 if (dispatch_width > 16) {
278 const fs_builder allbld16 = abld.group(16, 0).exec_all();
279 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
280 }
281 }
282
283 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
284 nir_foreach_block(block, impl)
285 emit_system_values_block(block, this);
286 }
287
288 /*
289 * Returns a type based on a reference_type (word, float, half-float) and a
290 * given bit_size.
291 *
292 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
293 *
294 * @FIXME: 64-bit return types are always DF on integer types to maintain
295 * compability with uses of DF previously to the introduction of int64
296 * support.
297 */
298 static brw_reg_type
299 brw_reg_type_from_bit_size(const unsigned bit_size,
300 const brw_reg_type reference_type)
301 {
302 switch(reference_type) {
303 case BRW_REGISTER_TYPE_HF:
304 case BRW_REGISTER_TYPE_F:
305 case BRW_REGISTER_TYPE_DF:
306 switch(bit_size) {
307 case 16:
308 return BRW_REGISTER_TYPE_HF;
309 case 32:
310 return BRW_REGISTER_TYPE_F;
311 case 64:
312 return BRW_REGISTER_TYPE_DF;
313 default:
314 unreachable("Invalid bit size");
315 }
316 case BRW_REGISTER_TYPE_B:
317 case BRW_REGISTER_TYPE_W:
318 case BRW_REGISTER_TYPE_D:
319 case BRW_REGISTER_TYPE_Q:
320 switch(bit_size) {
321 case 8:
322 return BRW_REGISTER_TYPE_B;
323 case 16:
324 return BRW_REGISTER_TYPE_W;
325 case 32:
326 return BRW_REGISTER_TYPE_D;
327 case 64:
328 return BRW_REGISTER_TYPE_Q;
329 default:
330 unreachable("Invalid bit size");
331 }
332 case BRW_REGISTER_TYPE_UB:
333 case BRW_REGISTER_TYPE_UW:
334 case BRW_REGISTER_TYPE_UD:
335 case BRW_REGISTER_TYPE_UQ:
336 switch(bit_size) {
337 case 8:
338 return BRW_REGISTER_TYPE_UB;
339 case 16:
340 return BRW_REGISTER_TYPE_UW;
341 case 32:
342 return BRW_REGISTER_TYPE_UD;
343 case 64:
344 return BRW_REGISTER_TYPE_UQ;
345 default:
346 unreachable("Invalid bit size");
347 }
348 default:
349 unreachable("Unknown type");
350 }
351 }
352
353 void
354 fs_visitor::nir_emit_impl(nir_function_impl *impl)
355 {
356 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
357 for (unsigned i = 0; i < impl->reg_alloc; i++) {
358 nir_locals[i] = fs_reg();
359 }
360
361 foreach_list_typed(nir_register, reg, node, &impl->registers) {
362 unsigned array_elems =
363 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
364 unsigned size = array_elems * reg->num_components;
365 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
366 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
367 nir_locals[reg->index] = bld.vgrf(reg_type, size);
368 }
369
370 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
371 impl->ssa_alloc);
372
373 nir_emit_cf_list(&impl->body);
374 }
375
376 void
377 fs_visitor::nir_emit_cf_list(exec_list *list)
378 {
379 exec_list_validate(list);
380 foreach_list_typed(nir_cf_node, node, node, list) {
381 switch (node->type) {
382 case nir_cf_node_if:
383 nir_emit_if(nir_cf_node_as_if(node));
384 break;
385
386 case nir_cf_node_loop:
387 nir_emit_loop(nir_cf_node_as_loop(node));
388 break;
389
390 case nir_cf_node_block:
391 nir_emit_block(nir_cf_node_as_block(node));
392 break;
393
394 default:
395 unreachable("Invalid CFG node block");
396 }
397 }
398 }
399
400 void
401 fs_visitor::nir_emit_if(nir_if *if_stmt)
402 {
403 bool invert;
404 fs_reg cond_reg;
405
406 /* If the condition has the form !other_condition, use other_condition as
407 * the source, but invert the predicate on the if instruction.
408 */
409 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
410 if (cond != NULL && cond->op == nir_op_inot) {
411 invert = true;
412 cond_reg = get_nir_src(cond->src[0].src);
413 } else {
414 invert = false;
415 cond_reg = get_nir_src(if_stmt->condition);
416 }
417
418 /* first, put the condition into f0 */
419 fs_inst *inst = bld.MOV(bld.null_reg_d(),
420 retype(cond_reg, BRW_REGISTER_TYPE_D));
421 inst->conditional_mod = BRW_CONDITIONAL_NZ;
422
423 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
424
425 nir_emit_cf_list(&if_stmt->then_list);
426
427 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
428 bld.emit(BRW_OPCODE_ELSE);
429 nir_emit_cf_list(&if_stmt->else_list);
430 }
431
432 bld.emit(BRW_OPCODE_ENDIF);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_loop(nir_loop *loop)
441 {
442 bld.emit(BRW_OPCODE_DO);
443
444 nir_emit_cf_list(&loop->body);
445
446 bld.emit(BRW_OPCODE_WHILE);
447
448 if (devinfo->gen < 7)
449 limit_dispatch_width(16, "Non-uniform control flow unsupported "
450 "in SIMD32 mode.");
451 }
452
453 void
454 fs_visitor::nir_emit_block(nir_block *block)
455 {
456 nir_foreach_instr(instr, block) {
457 nir_emit_instr(instr);
458 }
459 }
460
461 void
462 fs_visitor::nir_emit_instr(nir_instr *instr)
463 {
464 const fs_builder abld = bld.annotate(NULL, instr);
465
466 switch (instr->type) {
467 case nir_instr_type_alu:
468 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
469 break;
470
471 case nir_instr_type_deref:
472 unreachable("All derefs should've been lowered");
473 break;
474
475 case nir_instr_type_intrinsic:
476 switch (stage) {
477 case MESA_SHADER_VERTEX:
478 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 case MESA_SHADER_TESS_CTRL:
481 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
482 break;
483 case MESA_SHADER_TESS_EVAL:
484 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
485 break;
486 case MESA_SHADER_GEOMETRY:
487 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
488 break;
489 case MESA_SHADER_FRAGMENT:
490 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
491 break;
492 case MESA_SHADER_COMPUTE:
493 case MESA_SHADER_KERNEL:
494 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
495 break;
496 default:
497 unreachable("unsupported shader stage");
498 }
499 break;
500
501 case nir_instr_type_tex:
502 nir_emit_texture(abld, nir_instr_as_tex(instr));
503 break;
504
505 case nir_instr_type_load_const:
506 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
507 break;
508
509 case nir_instr_type_ssa_undef:
510 /* We create a new VGRF for undefs on every use (by handling
511 * them in get_nir_src()), rather than for each definition.
512 * This helps register coalescing eliminate MOVs from undef.
513 */
514 break;
515
516 case nir_instr_type_jump:
517 nir_emit_jump(abld, nir_instr_as_jump(instr));
518 break;
519
520 default:
521 unreachable("unknown instruction type");
522 }
523 }
524
525 /**
526 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
527 * match instr.
528 */
529 bool
530 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
531 const fs_reg &result)
532 {
533 if (!instr->src[0].src.is_ssa ||
534 !instr->src[0].src.ssa->parent_instr)
535 return false;
536
537 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
538 return false;
539
540 nir_alu_instr *src0 =
541 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
542
543 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
544 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
545 return false;
546
547 unsigned element = nir_src_as_uint(src0->src[1].src);
548
549 /* Element type to extract.*/
550 const brw_reg_type type = brw_int_type(
551 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
552 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
553
554 fs_reg op0 = get_nir_src(src0->src[0].src);
555 op0.type = brw_type_for_nir_type(devinfo,
556 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
557 nir_src_bit_size(src0->src[0].src)));
558 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
559
560 bld.MOV(result, subscript(op0, type, element));
561 return true;
562 }
563
564 bool
565 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
566 const fs_reg &result)
567 {
568 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
569 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
570 return false;
571
572 if (!nir_src_is_const(instr->src[1].src) ||
573 !nir_src_is_const(instr->src[2].src))
574 return false;
575
576 const float value1 = nir_src_as_float(instr->src[1].src);
577 const float value2 = nir_src_as_float(instr->src[2].src);
578 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
579 return false;
580
581 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
582 assert(value1 == -value2);
583
584 fs_reg tmp = vgrf(glsl_type::int_type);
585
586 if (devinfo->gen >= 12) {
587 /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
588 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
589
590 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
591 *
592 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
593 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
594 *
595 * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
596 */
597 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
598 g1, brw_imm_uw(0x3f80));
599
600 if (value1 == -1.0f)
601 bld.MOV(tmp, negate(tmp));
602
603 } else if (devinfo->gen >= 6) {
604 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
605 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
606
607 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
608 *
609 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
610 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
611 *
612 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
613 *
614 * This negation looks like it's safe in practice, because bits 0:4 will
615 * surely be TRIANGLES
616 */
617
618 if (value1 == -1.0f) {
619 g0.negate = true;
620 }
621
622 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
623 g0, brw_imm_uw(0x3f80));
624 } else {
625 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
626 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
627
628 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
629 *
630 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
631 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
632 *
633 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
634 *
635 * This negation looks like it's safe in practice, because bits 0:4 will
636 * surely be TRIANGLES
637 */
638
639 if (value1 == -1.0f) {
640 g1_6.negate = true;
641 }
642
643 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
644 }
645 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
646
647 return true;
648 }
649
650 static void
651 emit_find_msb_using_lzd(const fs_builder &bld,
652 const fs_reg &result,
653 const fs_reg &src,
654 bool is_signed)
655 {
656 fs_inst *inst;
657 fs_reg temp = src;
658
659 if (is_signed) {
660 /* LZD of an absolute value source almost always does the right
661 * thing. There are two problem values:
662 *
663 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
664 * 0. However, findMSB(int(0x80000000)) == 30.
665 *
666 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
667 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
668 *
669 * For a value of zero or negative one, -1 will be returned.
670 *
671 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
672 * findMSB(-(1<<x)) should return x-1.
673 *
674 * For all negative number cases, including 0x80000000 and
675 * 0xffffffff, the correct value is obtained from LZD if instead of
676 * negating the (already negative) value the logical-not is used. A
677 * conditonal logical-not can be achieved in two instructions.
678 */
679 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
680
681 bld.ASR(temp, src, brw_imm_d(31));
682 bld.XOR(temp, temp, src);
683 }
684
685 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
686 retype(temp, BRW_REGISTER_TYPE_UD));
687
688 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
689 * from the LSB side. Subtract the result from 31 to convert the MSB
690 * count into an LSB count. If no bits are set, LZD will return 32.
691 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
692 */
693 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
694 inst->src[0].negate = true;
695 }
696
697 static brw_rnd_mode
698 brw_rnd_mode_from_nir_op (const nir_op op) {
699 switch (op) {
700 case nir_op_f2f16_rtz:
701 return BRW_RND_MODE_RTZ;
702 case nir_op_f2f16_rtne:
703 return BRW_RND_MODE_RTNE;
704 default:
705 unreachable("Operation doesn't support rounding mode");
706 }
707 }
708
709 static brw_rnd_mode
710 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
711 {
712 if (nir_has_any_rounding_mode_rtne(execution_mode))
713 return BRW_RND_MODE_RTNE;
714 if (nir_has_any_rounding_mode_rtz(execution_mode))
715 return BRW_RND_MODE_RTZ;
716 return BRW_RND_MODE_UNSPECIFIED;
717 }
718
719 fs_reg
720 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
721 nir_alu_instr *instr,
722 fs_reg *op,
723 bool need_dest)
724 {
725 fs_reg result =
726 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
727
728 result.type = brw_type_for_nir_type(devinfo,
729 (nir_alu_type)(nir_op_infos[instr->op].output_type |
730 nir_dest_bit_size(instr->dest.dest)));
731
732 assert(!instr->dest.saturate);
733
734 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
735 /* We don't lower to source modifiers so they should not exist. */
736 assert(!instr->src[i].abs);
737 assert(!instr->src[i].negate);
738
739 op[i] = get_nir_src(instr->src[i].src);
740 op[i].type = brw_type_for_nir_type(devinfo,
741 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
742 nir_src_bit_size(instr->src[i].src)));
743 }
744
745 /* Move and vecN instrutions may still be vectored. Return the raw,
746 * vectored source and destination so that fs_visitor::nir_emit_alu can
747 * handle it. Other callers should not have to handle these kinds of
748 * instructions.
749 */
750 switch (instr->op) {
751 case nir_op_mov:
752 case nir_op_vec2:
753 case nir_op_vec3:
754 case nir_op_vec4:
755 case nir_op_vec8:
756 case nir_op_vec16:
757 return result;
758 default:
759 break;
760 }
761
762 /* At this point, we have dealt with any instruction that operates on
763 * more than a single channel. Therefore, we can just adjust the source
764 * and destination registers for that channel and emit the instruction.
765 */
766 unsigned channel = 0;
767 if (nir_op_infos[instr->op].output_size == 0) {
768 /* Since NIR is doing the scalarizing for us, we should only ever see
769 * vectorized operations with a single channel.
770 */
771 assert(util_bitcount(instr->dest.write_mask) == 1);
772 channel = ffs(instr->dest.write_mask) - 1;
773
774 result = offset(result, bld, channel);
775 }
776
777 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
778 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
779 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
780 }
781
782 return result;
783 }
784
785 void
786 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
787 fs_reg *op)
788 {
789 for (unsigned i = 0; i < 2; i++) {
790 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
791
792 if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
793 /* The source of the inot is now the source of instr. */
794 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
795
796 assert(!op[i].negate);
797 op[i].negate = true;
798 } else {
799 op[i] = resolve_source_modifiers(op[i]);
800 }
801 }
802 }
803
804 bool
805 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
806 fs_reg result,
807 nir_alu_instr *instr)
808 {
809 if (devinfo->gen < 6 || devinfo->gen >= 12)
810 return false;
811
812 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
813
814 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
815 return false;
816
817 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
818 * of valid size-changing combinations is a bit more complex.
819 *
820 * The source restriction is just because I was lazy about generating the
821 * constant below.
822 */
823 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
824 nir_src_bit_size(inot_instr->src[0].src) != 32)
825 return false;
826
827 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
828 * this is float(1 + a).
829 */
830 fs_reg op;
831
832 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
833
834 /* Ignore the saturate modifier, if there is one. The result of the
835 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
836 */
837 bld.ADD(result, op, brw_imm_d(1));
838
839 return true;
840 }
841
842 /**
843 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
844 *
845 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
846 * the source of \c instr that is a \c nir_op_fsign.
847 */
848 void
849 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
850 fs_reg result, fs_reg *op, unsigned fsign_src)
851 {
852 fs_inst *inst;
853
854 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
855 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
856
857 if (instr->op != nir_op_fsign) {
858 const nir_alu_instr *const fsign_instr =
859 nir_src_as_alu_instr(instr->src[fsign_src].src);
860
861 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
862 * fsign_src] has the other multiply source. This must be rearranged so
863 * that op[0] is the source of the fsign op[1] is the other multiply
864 * source.
865 */
866 if (fsign_src != 0)
867 op[1] = op[0];
868
869 op[0] = get_nir_src(fsign_instr->src[0].src);
870
871 const nir_alu_type t =
872 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
873 nir_src_bit_size(fsign_instr->src[0].src));
874
875 op[0].type = brw_type_for_nir_type(devinfo, t);
876
877 unsigned channel = 0;
878 if (nir_op_infos[instr->op].output_size == 0) {
879 /* Since NIR is doing the scalarizing for us, we should only ever see
880 * vectorized operations with a single channel.
881 */
882 assert(util_bitcount(instr->dest.write_mask) == 1);
883 channel = ffs(instr->dest.write_mask) - 1;
884 }
885
886 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
887 }
888
889 if (type_sz(op[0].type) == 2) {
890 /* AND(val, 0x8000) gives the sign bit.
891 *
892 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
893 */
894 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
895 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
896
897 op[0].type = BRW_REGISTER_TYPE_UW;
898 result.type = BRW_REGISTER_TYPE_UW;
899 bld.AND(result, op[0], brw_imm_uw(0x8000u));
900
901 if (instr->op == nir_op_fsign)
902 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
903 else {
904 /* Use XOR here to get the result sign correct. */
905 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
906 }
907
908 inst->predicate = BRW_PREDICATE_NORMAL;
909 } else if (type_sz(op[0].type) == 4) {
910 /* AND(val, 0x80000000) gives the sign bit.
911 *
912 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
913 * zero.
914 */
915 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
916
917 op[0].type = BRW_REGISTER_TYPE_UD;
918 result.type = BRW_REGISTER_TYPE_UD;
919 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
920
921 if (instr->op == nir_op_fsign)
922 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
923 else {
924 /* Use XOR here to get the result sign correct. */
925 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
926 }
927
928 inst->predicate = BRW_PREDICATE_NORMAL;
929 } else {
930 /* For doubles we do the same but we need to consider:
931 *
932 * - 2-src instructions can't operate with 64-bit immediates
933 * - The sign is encoded in the high 32-bit of each DF
934 * - We need to produce a DF result.
935 */
936
937 fs_reg zero = vgrf(glsl_type::double_type);
938 bld.MOV(zero, setup_imm_df(bld, 0.0));
939 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
940
941 bld.MOV(result, zero);
942
943 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
944 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
945 brw_imm_ud(0x80000000u));
946
947 if (instr->op == nir_op_fsign) {
948 set_predicate(BRW_PREDICATE_NORMAL,
949 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
950 } else {
951 /* This could be done better in some cases. If the scale is an
952 * immediate with the low 32-bits all 0, emitting a separate XOR and
953 * OR would allow an algebraic optimization to remove the OR. There
954 * are currently zero instances of fsign(double(x))*IMM in shader-db
955 * or any test suite, so it is hard to care at this time.
956 */
957 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
958 inst = bld.XOR(result_int64, result_int64,
959 retype(op[1], BRW_REGISTER_TYPE_UQ));
960 }
961 }
962 }
963
964 /**
965 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
966 *
967 * Checks the operands of a \c nir_op_fmul to determine whether or not
968 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
969 *
970 * \param instr The multiplication instruction
971 *
972 * \param fsign_src The source of \c instr that may or may not be a
973 * \c nir_op_fsign
974 */
975 static bool
976 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
977 {
978 assert(instr->op == nir_op_fmul);
979
980 nir_alu_instr *const fsign_instr =
981 nir_src_as_alu_instr(instr->src[fsign_src].src);
982
983 /* Rules:
984 *
985 * 1. instr->src[fsign_src] must be a nir_op_fsign.
986 * 2. The nir_op_fsign can only be used by this multiplication.
987 * 3. The source that is the nir_op_fsign does not have source modifiers.
988 * \c emit_fsign only examines the source modifiers of the source of the
989 * \c nir_op_fsign.
990 *
991 * The nir_op_fsign must also not have the saturate modifier, but steps
992 * have already been taken (in nir_opt_algebraic) to ensure that.
993 */
994 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
995 is_used_once(fsign_instr);
996 }
997
998 void
999 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
1000 bool need_dest)
1001 {
1002 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1003 fs_inst *inst;
1004 unsigned execution_mode =
1005 bld.shader->nir->info.float_controls_execution_mode;
1006
1007 fs_reg op[NIR_MAX_VEC_COMPONENTS];
1008 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1009
1010 switch (instr->op) {
1011 case nir_op_mov:
1012 case nir_op_vec2:
1013 case nir_op_vec3:
1014 case nir_op_vec4:
1015 case nir_op_vec8:
1016 case nir_op_vec16: {
1017 fs_reg temp = result;
1018 bool need_extra_copy = false;
1019 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1020 if (!instr->src[i].src.is_ssa &&
1021 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1022 need_extra_copy = true;
1023 temp = bld.vgrf(result.type, 4);
1024 break;
1025 }
1026 }
1027
1028 for (unsigned i = 0; i < 4; i++) {
1029 if (!(instr->dest.write_mask & (1 << i)))
1030 continue;
1031
1032 if (instr->op == nir_op_mov) {
1033 bld.MOV(offset(temp, bld, i),
1034 offset(op[0], bld, instr->src[0].swizzle[i]));
1035 } else {
1036 bld.MOV(offset(temp, bld, i),
1037 offset(op[i], bld, instr->src[i].swizzle[0]));
1038 }
1039 }
1040
1041 /* In this case the source and destination registers were the same,
1042 * so we need to insert an extra set of moves in order to deal with
1043 * any swizzling.
1044 */
1045 if (need_extra_copy) {
1046 for (unsigned i = 0; i < 4; i++) {
1047 if (!(instr->dest.write_mask & (1 << i)))
1048 continue;
1049
1050 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1051 }
1052 }
1053 return;
1054 }
1055
1056 case nir_op_i2f32:
1057 case nir_op_u2f32:
1058 if (optimize_extract_to_float(instr, result))
1059 return;
1060 inst = bld.MOV(result, op[0]);
1061 break;
1062
1063 case nir_op_f2f16_rtne:
1064 case nir_op_f2f16_rtz:
1065 case nir_op_f2f16: {
1066 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1067
1068 if (nir_op_f2f16 == instr->op)
1069 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1070 else
1071 rnd = brw_rnd_mode_from_nir_op(instr->op);
1072
1073 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1074 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1075
1076 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1077 * on the HW gen, it is a special hw opcode or just a MOV, and
1078 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1079 *
1080 * But if we want to use that opcode, we need to provide support on
1081 * different optimizations and lowerings. As right now HF support is
1082 * only for gen8+, it will be better to use directly the MOV, and use
1083 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1084 */
1085 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1086 inst = bld.MOV(result, op[0]);
1087 break;
1088 }
1089
1090 case nir_op_b2i8:
1091 case nir_op_b2i16:
1092 case nir_op_b2i32:
1093 case nir_op_b2i64:
1094 case nir_op_b2f16:
1095 case nir_op_b2f32:
1096 case nir_op_b2f64:
1097 if (try_emit_b2fi_of_inot(bld, result, instr))
1098 break;
1099 op[0].type = BRW_REGISTER_TYPE_D;
1100 op[0].negate = !op[0].negate;
1101 /* fallthrough */
1102 case nir_op_i2f64:
1103 case nir_op_i2i64:
1104 case nir_op_u2f64:
1105 case nir_op_u2u64:
1106 case nir_op_f2f64:
1107 case nir_op_f2i64:
1108 case nir_op_f2u64:
1109 case nir_op_i2i32:
1110 case nir_op_u2u32:
1111 case nir_op_f2i32:
1112 case nir_op_f2u32:
1113 case nir_op_i2f16:
1114 case nir_op_i2i16:
1115 case nir_op_u2f16:
1116 case nir_op_u2u16:
1117 case nir_op_f2i16:
1118 case nir_op_f2u16:
1119 case nir_op_i2i8:
1120 case nir_op_u2u8:
1121 case nir_op_f2i8:
1122 case nir_op_f2u8:
1123 if (result.type == BRW_REGISTER_TYPE_B ||
1124 result.type == BRW_REGISTER_TYPE_UB ||
1125 result.type == BRW_REGISTER_TYPE_HF)
1126 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1127
1128 if (op[0].type == BRW_REGISTER_TYPE_B ||
1129 op[0].type == BRW_REGISTER_TYPE_UB ||
1130 op[0].type == BRW_REGISTER_TYPE_HF)
1131 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1132
1133 inst = bld.MOV(result, op[0]);
1134 break;
1135
1136 case nir_op_fsat:
1137 inst = bld.MOV(result, op[0]);
1138 inst->saturate = true;
1139 break;
1140
1141 case nir_op_fneg:
1142 case nir_op_ineg:
1143 op[0].negate = true;
1144 inst = bld.MOV(result, op[0]);
1145 break;
1146
1147 case nir_op_fabs:
1148 case nir_op_iabs:
1149 op[0].negate = false;
1150 op[0].abs = true;
1151 inst = bld.MOV(result, op[0]);
1152 break;
1153
1154 case nir_op_f2f32:
1155 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1156 brw_rnd_mode rnd =
1157 brw_rnd_mode_from_execution_mode(execution_mode);
1158 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1159 brw_imm_d(rnd));
1160 }
1161
1162 if (op[0].type == BRW_REGISTER_TYPE_HF)
1163 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1164
1165 inst = bld.MOV(result, op[0]);
1166 break;
1167
1168 case nir_op_fsign:
1169 emit_fsign(bld, instr, result, op, 0);
1170 break;
1171
1172 case nir_op_frcp:
1173 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1174 break;
1175
1176 case nir_op_fexp2:
1177 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1178 break;
1179
1180 case nir_op_flog2:
1181 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1182 break;
1183
1184 case nir_op_fsin:
1185 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1186 break;
1187
1188 case nir_op_fcos:
1189 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1190 break;
1191
1192 case nir_op_fddx:
1193 if (fs_key->high_quality_derivatives) {
1194 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1195 } else {
1196 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1197 }
1198 break;
1199 case nir_op_fddx_fine:
1200 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1201 break;
1202 case nir_op_fddx_coarse:
1203 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1204 break;
1205 case nir_op_fddy:
1206 if (fs_key->high_quality_derivatives) {
1207 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1208 } else {
1209 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1210 }
1211 break;
1212 case nir_op_fddy_fine:
1213 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1214 break;
1215 case nir_op_fddy_coarse:
1216 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1217 break;
1218
1219 case nir_op_fadd:
1220 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1221 brw_rnd_mode rnd =
1222 brw_rnd_mode_from_execution_mode(execution_mode);
1223 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1224 brw_imm_d(rnd));
1225 }
1226 /* fallthrough */
1227 case nir_op_iadd:
1228 inst = bld.ADD(result, op[0], op[1]);
1229 break;
1230
1231 case nir_op_iadd_sat:
1232 case nir_op_uadd_sat:
1233 inst = bld.ADD(result, op[0], op[1]);
1234 inst->saturate = true;
1235 break;
1236
1237 case nir_op_isub_sat:
1238 bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]);
1239 break;
1240
1241 case nir_op_usub_sat:
1242 bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]);
1243 break;
1244
1245 case nir_op_irhadd:
1246 case nir_op_urhadd:
1247 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1248 inst = bld.AVG(result, op[0], op[1]);
1249 break;
1250
1251 case nir_op_ihadd:
1252 case nir_op_uhadd: {
1253 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1254 fs_reg tmp = bld.vgrf(result.type);
1255
1256 if (devinfo->gen >= 8) {
1257 op[0] = resolve_source_modifiers(op[0]);
1258 op[1] = resolve_source_modifiers(op[1]);
1259 }
1260
1261 /* AVG(x, y) - ((x ^ y) & 1) */
1262 bld.XOR(tmp, op[0], op[1]);
1263 bld.AND(tmp, tmp, retype(brw_imm_ud(1), result.type));
1264 bld.AVG(result, op[0], op[1]);
1265 inst = bld.ADD(result, result, tmp);
1266 inst->src[1].negate = true;
1267 break;
1268 }
1269
1270 case nir_op_fmul:
1271 for (unsigned i = 0; i < 2; i++) {
1272 if (can_fuse_fmul_fsign(instr, i)) {
1273 emit_fsign(bld, instr, result, op, i);
1274 return;
1275 }
1276 }
1277
1278 /* We emit the rounding mode after the previous fsign optimization since
1279 * it won't result in a MUL, but will try to negate the value by other
1280 * means.
1281 */
1282 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1283 brw_rnd_mode rnd =
1284 brw_rnd_mode_from_execution_mode(execution_mode);
1285 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1286 brw_imm_d(rnd));
1287 }
1288
1289 inst = bld.MUL(result, op[0], op[1]);
1290 break;
1291
1292 case nir_op_imul_2x32_64:
1293 case nir_op_umul_2x32_64:
1294 bld.MUL(result, op[0], op[1]);
1295 break;
1296
1297 case nir_op_imul_32x16:
1298 case nir_op_umul_32x16: {
1299 const bool ud = instr->op == nir_op_umul_32x16;
1300
1301 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1302
1303 /* Before Gen7, the order of the 32-bit source and the 16-bit source was
1304 * swapped. The extension isn't enabled on those platforms, so don't
1305 * pretend to support the differences.
1306 */
1307 assert(devinfo->gen >= 7);
1308
1309 if (op[1].file == IMM)
1310 op[1] = ud ? brw_imm_uw(op[1].ud) : brw_imm_w(op[1].d);
1311 else {
1312 const enum brw_reg_type word_type =
1313 ud ? BRW_REGISTER_TYPE_UW : BRW_REGISTER_TYPE_W;
1314
1315 op[1] = subscript(op[1], word_type, 0);
1316 }
1317
1318 const enum brw_reg_type dword_type =
1319 ud ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_D;
1320
1321 bld.MUL(result, retype(op[0], dword_type), op[1]);
1322 break;
1323 }
1324
1325 case nir_op_imul:
1326 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1327 bld.MUL(result, op[0], op[1]);
1328 break;
1329
1330 case nir_op_imul_high:
1331 case nir_op_umul_high:
1332 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1333 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1334 break;
1335
1336 case nir_op_idiv:
1337 case nir_op_udiv:
1338 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1339 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1340 break;
1341
1342 case nir_op_uadd_carry:
1343 unreachable("Should have been lowered by carry_to_arith().");
1344
1345 case nir_op_usub_borrow:
1346 unreachable("Should have been lowered by borrow_to_arith().");
1347
1348 case nir_op_umod:
1349 case nir_op_irem:
1350 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1351 * appears that our hardware just does the right thing for signed
1352 * remainder.
1353 */
1354 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1355 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1356 break;
1357
1358 case nir_op_imod: {
1359 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1360 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1361
1362 /* Math instructions don't support conditional mod */
1363 inst = bld.MOV(bld.null_reg_d(), result);
1364 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1365
1366 /* Now, we need to determine if signs of the sources are different.
1367 * When we XOR the sources, the top bit is 0 if they are the same and 1
1368 * if they are different. We can then use a conditional modifier to
1369 * turn that into a predicate. This leads us to an XOR.l instruction.
1370 *
1371 * Technically, according to the PRM, you're not allowed to use .l on a
1372 * XOR instruction. However, emperical experiments and Curro's reading
1373 * of the simulator source both indicate that it's safe.
1374 */
1375 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1376 inst = bld.XOR(tmp, op[0], op[1]);
1377 inst->predicate = BRW_PREDICATE_NORMAL;
1378 inst->conditional_mod = BRW_CONDITIONAL_L;
1379
1380 /* If the result of the initial remainder operation is non-zero and the
1381 * two sources have different signs, add in a copy of op[1] to get the
1382 * final integer modulus value.
1383 */
1384 inst = bld.ADD(result, result, op[1]);
1385 inst->predicate = BRW_PREDICATE_NORMAL;
1386 break;
1387 }
1388
1389 case nir_op_flt32:
1390 case nir_op_fge32:
1391 case nir_op_feq32:
1392 case nir_op_fneu32: {
1393 fs_reg dest = result;
1394
1395 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1396 if (bit_size != 32)
1397 dest = bld.vgrf(op[0].type, 1);
1398
1399 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1400
1401 if (bit_size > 32) {
1402 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1403 } else if(bit_size < 32) {
1404 /* When we convert the result to 32-bit we need to be careful and do
1405 * it as a signed conversion to get sign extension (for 32-bit true)
1406 */
1407 const brw_reg_type src_type =
1408 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1409
1410 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1411 }
1412 break;
1413 }
1414
1415 case nir_op_ilt32:
1416 case nir_op_ult32:
1417 case nir_op_ige32:
1418 case nir_op_uge32:
1419 case nir_op_ieq32:
1420 case nir_op_ine32: {
1421 fs_reg dest = result;
1422
1423 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1424 * type. So we convert both operands for the comparison.
1425 */
1426 fs_reg temp_op[2];
1427 temp_op[0] = bld.fix_byte_src(op[0]);
1428 temp_op[1] = bld.fix_byte_src(op[1]);
1429
1430 const uint32_t bit_size = type_sz(temp_op[0].type) * 8;
1431 if (bit_size != 32)
1432 dest = bld.vgrf(temp_op[0].type, 1);
1433
1434 bld.CMP(dest, temp_op[0], temp_op[1],
1435 brw_cmod_for_nir_comparison(instr->op));
1436
1437 if (bit_size > 32) {
1438 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1439 } else if (bit_size < 32) {
1440 /* When we convert the result to 32-bit we need to be careful and do
1441 * it as a signed conversion to get sign extension (for 32-bit true)
1442 */
1443 const brw_reg_type src_type =
1444 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1445
1446 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1447 }
1448 break;
1449 }
1450
1451 case nir_op_inot:
1452 if (devinfo->gen >= 8) {
1453 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1454
1455 if (inot_src_instr != NULL &&
1456 (inot_src_instr->op == nir_op_ior ||
1457 inot_src_instr->op == nir_op_ixor ||
1458 inot_src_instr->op == nir_op_iand)) {
1459 /* The sources of the source logical instruction are now the
1460 * sources of the instruction that will be generated.
1461 */
1462 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1463 resolve_inot_sources(bld, inot_src_instr, op);
1464
1465 /* Smash all of the sources and destination to be signed. This
1466 * doesn't matter for the operation of the instruction, but cmod
1467 * propagation fails on unsigned sources with negation (due to
1468 * fs_inst::can_do_cmod returning false).
1469 */
1470 result.type =
1471 brw_type_for_nir_type(devinfo,
1472 (nir_alu_type)(nir_type_int |
1473 nir_dest_bit_size(instr->dest.dest)));
1474 op[0].type =
1475 brw_type_for_nir_type(devinfo,
1476 (nir_alu_type)(nir_type_int |
1477 nir_src_bit_size(inot_src_instr->src[0].src)));
1478 op[1].type =
1479 brw_type_for_nir_type(devinfo,
1480 (nir_alu_type)(nir_type_int |
1481 nir_src_bit_size(inot_src_instr->src[1].src)));
1482
1483 /* For XOR, only invert one of the sources. Arbitrarily choose
1484 * the first source.
1485 */
1486 op[0].negate = !op[0].negate;
1487 if (inot_src_instr->op != nir_op_ixor)
1488 op[1].negate = !op[1].negate;
1489
1490 switch (inot_src_instr->op) {
1491 case nir_op_ior:
1492 bld.AND(result, op[0], op[1]);
1493 return;
1494
1495 case nir_op_iand:
1496 bld.OR(result, op[0], op[1]);
1497 return;
1498
1499 case nir_op_ixor:
1500 bld.XOR(result, op[0], op[1]);
1501 return;
1502
1503 default:
1504 unreachable("impossible opcode");
1505 }
1506 }
1507 op[0] = resolve_source_modifiers(op[0]);
1508 }
1509 bld.NOT(result, op[0]);
1510 break;
1511 case nir_op_ixor:
1512 if (devinfo->gen >= 8) {
1513 resolve_inot_sources(bld, instr, op);
1514 }
1515 bld.XOR(result, op[0], op[1]);
1516 break;
1517 case nir_op_ior:
1518 if (devinfo->gen >= 8) {
1519 resolve_inot_sources(bld, instr, op);
1520 }
1521 bld.OR(result, op[0], op[1]);
1522 break;
1523 case nir_op_iand:
1524 if (devinfo->gen >= 8) {
1525 resolve_inot_sources(bld, instr, op);
1526 }
1527 bld.AND(result, op[0], op[1]);
1528 break;
1529
1530 case nir_op_fdot2:
1531 case nir_op_fdot3:
1532 case nir_op_fdot4:
1533 case nir_op_b32all_fequal2:
1534 case nir_op_b32all_iequal2:
1535 case nir_op_b32all_fequal3:
1536 case nir_op_b32all_iequal3:
1537 case nir_op_b32all_fequal4:
1538 case nir_op_b32all_iequal4:
1539 case nir_op_b32any_fnequal2:
1540 case nir_op_b32any_inequal2:
1541 case nir_op_b32any_fnequal3:
1542 case nir_op_b32any_inequal3:
1543 case nir_op_b32any_fnequal4:
1544 case nir_op_b32any_inequal4:
1545 unreachable("Lowered by nir_lower_alu_reductions");
1546
1547 case nir_op_ldexp:
1548 unreachable("not reached: should be handled by ldexp_to_arith()");
1549
1550 case nir_op_fsqrt:
1551 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1552 break;
1553
1554 case nir_op_frsq:
1555 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1556 break;
1557
1558 case nir_op_i2b32:
1559 case nir_op_f2b32: {
1560 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1561 if (bit_size == 64) {
1562 /* two-argument instructions can't take 64-bit immediates */
1563 fs_reg zero;
1564 fs_reg tmp;
1565
1566 if (instr->op == nir_op_f2b32) {
1567 zero = vgrf(glsl_type::double_type);
1568 tmp = vgrf(glsl_type::double_type);
1569 bld.MOV(zero, setup_imm_df(bld, 0.0));
1570 } else {
1571 zero = vgrf(glsl_type::int64_t_type);
1572 tmp = vgrf(glsl_type::int64_t_type);
1573 bld.MOV(zero, brw_imm_q(0));
1574 }
1575
1576 /* A SIMD16 execution needs to be split in two instructions, so use
1577 * a vgrf instead of the flag register as dst so instruction splitting
1578 * works
1579 */
1580 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1581 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1582 } else {
1583 fs_reg zero;
1584 if (bit_size == 32) {
1585 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1586 } else {
1587 assert(bit_size == 16);
1588 zero = instr->op == nir_op_f2b32 ?
1589 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1590 }
1591 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1592 }
1593 break;
1594 }
1595
1596 case nir_op_ftrunc:
1597 inst = bld.RNDZ(result, op[0]);
1598 if (devinfo->gen < 6) {
1599 set_condmod(BRW_CONDITIONAL_R, inst);
1600 set_predicate(BRW_PREDICATE_NORMAL,
1601 bld.ADD(result, result, brw_imm_f(1.0f)));
1602 inst = bld.MOV(result, result); /* for potential saturation */
1603 }
1604 break;
1605
1606 case nir_op_fceil: {
1607 op[0].negate = !op[0].negate;
1608 fs_reg temp = vgrf(glsl_type::float_type);
1609 bld.RNDD(temp, op[0]);
1610 temp.negate = true;
1611 inst = bld.MOV(result, temp);
1612 break;
1613 }
1614 case nir_op_ffloor:
1615 inst = bld.RNDD(result, op[0]);
1616 break;
1617 case nir_op_ffract:
1618 inst = bld.FRC(result, op[0]);
1619 break;
1620 case nir_op_fround_even:
1621 inst = bld.RNDE(result, op[0]);
1622 if (devinfo->gen < 6) {
1623 set_condmod(BRW_CONDITIONAL_R, inst);
1624 set_predicate(BRW_PREDICATE_NORMAL,
1625 bld.ADD(result, result, brw_imm_f(1.0f)));
1626 inst = bld.MOV(result, result); /* for potential saturation */
1627 }
1628 break;
1629
1630 case nir_op_fquantize2f16: {
1631 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1632 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1633 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1634
1635 /* The destination stride must be at least as big as the source stride. */
1636 tmp16.type = BRW_REGISTER_TYPE_W;
1637 tmp16.stride = 2;
1638
1639 /* Check for denormal */
1640 fs_reg abs_src0 = op[0];
1641 abs_src0.abs = true;
1642 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1643 BRW_CONDITIONAL_L);
1644 /* Get the appropriately signed zero */
1645 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1646 retype(op[0], BRW_REGISTER_TYPE_UD),
1647 brw_imm_ud(0x80000000));
1648 /* Do the actual F32 -> F16 -> F32 conversion */
1649 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1650 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1651 /* Select that or zero based on normal status */
1652 inst = bld.SEL(result, zero, tmp32);
1653 inst->predicate = BRW_PREDICATE_NORMAL;
1654 break;
1655 }
1656
1657 case nir_op_imin:
1658 case nir_op_umin:
1659 case nir_op_fmin:
1660 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1661 break;
1662
1663 case nir_op_imax:
1664 case nir_op_umax:
1665 case nir_op_fmax:
1666 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1667 break;
1668
1669 case nir_op_pack_snorm_2x16:
1670 case nir_op_pack_snorm_4x8:
1671 case nir_op_pack_unorm_2x16:
1672 case nir_op_pack_unorm_4x8:
1673 case nir_op_unpack_snorm_2x16:
1674 case nir_op_unpack_snorm_4x8:
1675 case nir_op_unpack_unorm_2x16:
1676 case nir_op_unpack_unorm_4x8:
1677 case nir_op_unpack_half_2x16:
1678 case nir_op_pack_half_2x16:
1679 unreachable("not reached: should be handled by lower_packing_builtins");
1680
1681 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1682 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1683 /* Fall-through */
1684 case nir_op_unpack_half_2x16_split_x:
1685 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1686 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1687 break;
1688
1689 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1690 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1691 /* Fall-through */
1692 case nir_op_unpack_half_2x16_split_y:
1693 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1694 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1695 break;
1696
1697 case nir_op_pack_64_2x32_split:
1698 case nir_op_pack_32_2x16_split:
1699 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1700 break;
1701
1702 case nir_op_unpack_64_2x32_split_x:
1703 case nir_op_unpack_64_2x32_split_y: {
1704 if (instr->op == nir_op_unpack_64_2x32_split_x)
1705 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1706 else
1707 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1708 break;
1709 }
1710
1711 case nir_op_unpack_32_2x16_split_x:
1712 case nir_op_unpack_32_2x16_split_y: {
1713 if (instr->op == nir_op_unpack_32_2x16_split_x)
1714 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1715 else
1716 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1717 break;
1718 }
1719
1720 case nir_op_fpow:
1721 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1722 break;
1723
1724 case nir_op_bitfield_reverse:
1725 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1726 bld.BFREV(result, op[0]);
1727 break;
1728
1729 case nir_op_bit_count:
1730 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1731 bld.CBIT(result, op[0]);
1732 break;
1733
1734 case nir_op_ufind_msb: {
1735 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1736 emit_find_msb_using_lzd(bld, result, op[0], false);
1737 break;
1738 }
1739
1740 case nir_op_uclz:
1741 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1742 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1743 break;
1744
1745 case nir_op_ifind_msb: {
1746 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1747
1748 if (devinfo->gen < 7) {
1749 emit_find_msb_using_lzd(bld, result, op[0], true);
1750 } else {
1751 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1752
1753 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1754 * count from the LSB side. If FBH didn't return an error
1755 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1756 * count into an LSB count.
1757 */
1758 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1759
1760 inst = bld.ADD(result, result, brw_imm_d(31));
1761 inst->predicate = BRW_PREDICATE_NORMAL;
1762 inst->src[0].negate = true;
1763 }
1764 break;
1765 }
1766
1767 case nir_op_find_lsb:
1768 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1769
1770 if (devinfo->gen < 7) {
1771 fs_reg temp = vgrf(glsl_type::int_type);
1772
1773 /* (x & -x) generates a value that consists of only the LSB of x.
1774 * For all powers of 2, findMSB(y) == findLSB(y).
1775 */
1776 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1777 fs_reg negated_src = src;
1778
1779 /* One must be negated, and the other must be non-negated. It
1780 * doesn't matter which is which.
1781 */
1782 negated_src.negate = true;
1783 src.negate = false;
1784
1785 bld.AND(temp, src, negated_src);
1786 emit_find_msb_using_lzd(bld, result, temp, false);
1787 } else {
1788 bld.FBL(result, op[0]);
1789 }
1790 break;
1791
1792 case nir_op_ubitfield_extract:
1793 case nir_op_ibitfield_extract:
1794 unreachable("should have been lowered");
1795 case nir_op_ubfe:
1796 case nir_op_ibfe:
1797 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1798 bld.BFE(result, op[2], op[1], op[0]);
1799 break;
1800 case nir_op_bfm:
1801 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1802 bld.BFI1(result, op[0], op[1]);
1803 break;
1804 case nir_op_bfi:
1805 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1806 bld.BFI2(result, op[0], op[1], op[2]);
1807 break;
1808
1809 case nir_op_bitfield_insert:
1810 unreachable("not reached: should have been lowered");
1811
1812 case nir_op_ishl:
1813 bld.SHL(result, op[0], op[1]);
1814 break;
1815 case nir_op_ishr:
1816 bld.ASR(result, op[0], op[1]);
1817 break;
1818 case nir_op_ushr:
1819 bld.SHR(result, op[0], op[1]);
1820 break;
1821
1822 case nir_op_urol:
1823 bld.ROL(result, op[0], op[1]);
1824 break;
1825 case nir_op_uror:
1826 bld.ROR(result, op[0], op[1]);
1827 break;
1828
1829 case nir_op_pack_half_2x16_split:
1830 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1831 break;
1832
1833 case nir_op_ffma:
1834 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1835 brw_rnd_mode rnd =
1836 brw_rnd_mode_from_execution_mode(execution_mode);
1837 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1838 brw_imm_d(rnd));
1839 }
1840
1841 inst = bld.MAD(result, op[2], op[1], op[0]);
1842 break;
1843
1844 case nir_op_flrp:
1845 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1846 brw_rnd_mode rnd =
1847 brw_rnd_mode_from_execution_mode(execution_mode);
1848 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1849 brw_imm_d(rnd));
1850 }
1851
1852 inst = bld.LRP(result, op[0], op[1], op[2]);
1853 break;
1854
1855 case nir_op_b32csel:
1856 if (optimize_frontfacing_ternary(instr, result))
1857 return;
1858
1859 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1860 inst = bld.SEL(result, op[1], op[2]);
1861 inst->predicate = BRW_PREDICATE_NORMAL;
1862 break;
1863
1864 case nir_op_extract_u8:
1865 case nir_op_extract_i8: {
1866 unsigned byte = nir_src_as_uint(instr->src[1].src);
1867
1868 /* The PRMs say:
1869 *
1870 * BDW+
1871 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1872 * Use two instructions and a word or DWord intermediate integer type.
1873 */
1874 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1875 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1876
1877 if (instr->op == nir_op_extract_i8) {
1878 /* If we need to sign extend, extract to a word first */
1879 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1880 bld.MOV(w_temp, subscript(op[0], type, byte));
1881 bld.MOV(result, w_temp);
1882 } else if (byte & 1) {
1883 /* Extract the high byte from the word containing the desired byte
1884 * offset.
1885 */
1886 bld.SHR(result,
1887 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1888 brw_imm_uw(8));
1889 } else {
1890 /* Otherwise use an AND with 0xff and a word type */
1891 bld.AND(result,
1892 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1893 brw_imm_uw(0xff));
1894 }
1895 } else {
1896 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1897 bld.MOV(result, subscript(op[0], type, byte));
1898 }
1899 break;
1900 }
1901
1902 case nir_op_extract_u16:
1903 case nir_op_extract_i16: {
1904 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1905 unsigned word = nir_src_as_uint(instr->src[1].src);
1906 bld.MOV(result, subscript(op[0], type, word));
1907 break;
1908 }
1909
1910 default:
1911 unreachable("unhandled instruction");
1912 }
1913
1914 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1915 * to sign extend the low bit to 0/~0
1916 */
1917 if (devinfo->gen <= 5 &&
1918 !result.is_null() &&
1919 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1920 fs_reg masked = vgrf(glsl_type::int_type);
1921 bld.AND(masked, result, brw_imm_d(1));
1922 masked.negate = true;
1923 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1924 }
1925 }
1926
1927 void
1928 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1929 nir_load_const_instr *instr)
1930 {
1931 const brw_reg_type reg_type =
1932 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1933 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1934
1935 switch (instr->def.bit_size) {
1936 case 8:
1937 for (unsigned i = 0; i < instr->def.num_components; i++)
1938 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1939 break;
1940
1941 case 16:
1942 for (unsigned i = 0; i < instr->def.num_components; i++)
1943 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1944 break;
1945
1946 case 32:
1947 for (unsigned i = 0; i < instr->def.num_components; i++)
1948 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1949 break;
1950
1951 case 64:
1952 assert(devinfo->gen >= 7);
1953 if (devinfo->gen == 7) {
1954 /* We don't get 64-bit integer types until gen8 */
1955 for (unsigned i = 0; i < instr->def.num_components; i++) {
1956 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1957 setup_imm_df(bld, instr->value[i].f64));
1958 }
1959 } else {
1960 for (unsigned i = 0; i < instr->def.num_components; i++)
1961 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1962 }
1963 break;
1964
1965 default:
1966 unreachable("Invalid bit size");
1967 }
1968
1969 nir_ssa_values[instr->def.index] = reg;
1970 }
1971
1972 fs_reg
1973 fs_visitor::get_nir_src(const nir_src &src)
1974 {
1975 fs_reg reg;
1976 if (src.is_ssa) {
1977 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1978 const brw_reg_type reg_type =
1979 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1980 reg = bld.vgrf(reg_type, src.ssa->num_components);
1981 } else {
1982 reg = nir_ssa_values[src.ssa->index];
1983 }
1984 } else {
1985 /* We don't handle indirects on locals */
1986 assert(src.reg.indirect == NULL);
1987 reg = offset(nir_locals[src.reg.reg->index], bld,
1988 src.reg.base_offset * src.reg.reg->num_components);
1989 }
1990
1991 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1992 /* The only 64-bit type available on gen7 is DF, so use that. */
1993 reg.type = BRW_REGISTER_TYPE_DF;
1994 } else {
1995 /* To avoid floating-point denorm flushing problems, set the type by
1996 * default to an integer type - instructions that need floating point
1997 * semantics will set this to F if they need to
1998 */
1999 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
2000 BRW_REGISTER_TYPE_D);
2001 }
2002
2003 return reg;
2004 }
2005
2006 /**
2007 * Return an IMM for constants; otherwise call get_nir_src() as normal.
2008 *
2009 * This function should not be called on any value which may be 64 bits.
2010 * We could theoretically support 64-bit on gen8+ but we choose not to
2011 * because it wouldn't work in general (no gen7 support) and there are
2012 * enough restrictions in 64-bit immediates that you can't take the return
2013 * value and treat it the same as the result of get_nir_src().
2014 */
2015 fs_reg
2016 fs_visitor::get_nir_src_imm(const nir_src &src)
2017 {
2018 assert(nir_src_bit_size(src) == 32);
2019 return nir_src_is_const(src) ?
2020 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2021 }
2022
2023 fs_reg
2024 fs_visitor::get_nir_dest(const nir_dest &dest)
2025 {
2026 if (dest.is_ssa) {
2027 const brw_reg_type reg_type =
2028 brw_reg_type_from_bit_size(dest.ssa.bit_size,
2029 dest.ssa.bit_size == 8 ?
2030 BRW_REGISTER_TYPE_D :
2031 BRW_REGISTER_TYPE_F);
2032 nir_ssa_values[dest.ssa.index] =
2033 bld.vgrf(reg_type, dest.ssa.num_components);
2034 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2035 return nir_ssa_values[dest.ssa.index];
2036 } else {
2037 /* We don't handle indirects on locals */
2038 assert(dest.reg.indirect == NULL);
2039 return offset(nir_locals[dest.reg.reg->index], bld,
2040 dest.reg.base_offset * dest.reg.reg->num_components);
2041 }
2042 }
2043
2044 void
2045 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2046 unsigned wr_mask)
2047 {
2048 for (unsigned i = 0; i < 4; i++) {
2049 if (!((wr_mask >> i) & 1))
2050 continue;
2051
2052 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2053 new_inst->dst = offset(new_inst->dst, bld, i);
2054 for (unsigned j = 0; j < new_inst->sources; j++)
2055 if (new_inst->src[j].file == VGRF)
2056 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2057
2058 bld.emit(new_inst);
2059 }
2060 }
2061
2062 static fs_inst *
2063 emit_pixel_interpolater_send(const fs_builder &bld,
2064 enum opcode opcode,
2065 const fs_reg &dst,
2066 const fs_reg &src,
2067 const fs_reg &desc,
2068 glsl_interp_mode interpolation)
2069 {
2070 struct brw_wm_prog_data *wm_prog_data =
2071 brw_wm_prog_data(bld.shader->stage_prog_data);
2072
2073 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2074 /* 2 floats per slot returned */
2075 inst->size_written = 2 * dst.component_size(inst->exec_size);
2076 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2077
2078 wm_prog_data->pulls_bary = true;
2079
2080 return inst;
2081 }
2082
2083 /**
2084 * Computes 1 << x, given a D/UD register containing some value x.
2085 */
2086 static fs_reg
2087 intexp2(const fs_builder &bld, const fs_reg &x)
2088 {
2089 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2090
2091 fs_reg result = bld.vgrf(x.type, 1);
2092 fs_reg one = bld.vgrf(x.type, 1);
2093
2094 bld.MOV(one, retype(brw_imm_d(1), one.type));
2095 bld.SHL(result, one, x);
2096 return result;
2097 }
2098
2099 void
2100 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2101 {
2102 assert(stage == MESA_SHADER_GEOMETRY);
2103
2104 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2105
2106 if (gs_compile->control_data_header_size_bits == 0)
2107 return;
2108
2109 /* We can only do EndPrimitive() functionality when the control data
2110 * consists of cut bits. Fortunately, the only time it isn't is when the
2111 * output type is points, in which case EndPrimitive() is a no-op.
2112 */
2113 if (gs_prog_data->control_data_format !=
2114 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2115 return;
2116 }
2117
2118 /* Cut bits use one bit per vertex. */
2119 assert(gs_compile->control_data_bits_per_vertex == 1);
2120
2121 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2122 vertex_count.type = BRW_REGISTER_TYPE_UD;
2123
2124 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2125 * vertex n, 0 otherwise. So all we need to do here is mark bit
2126 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2127 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2128 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2129 *
2130 * Note that if EndPrimitive() is called before emitting any vertices, this
2131 * will cause us to set bit 31 of the control_data_bits register to 1.
2132 * That's fine because:
2133 *
2134 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2135 * output, so the hardware will ignore cut bit 31.
2136 *
2137 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2138 * last vertex, so setting cut bit 31 has no effect (since the primitive
2139 * is automatically ended when the GS terminates).
2140 *
2141 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2142 * control_data_bits register to 0 when the first vertex is emitted.
2143 */
2144
2145 const fs_builder abld = bld.annotate("end primitive");
2146
2147 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2148 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2149 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2150 fs_reg mask = intexp2(abld, prev_count);
2151 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2152 * attention to the lower 5 bits of its second source argument, so on this
2153 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2154 * ((vertex_count - 1) % 32).
2155 */
2156 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2157 }
2158
2159 void
2160 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2161 {
2162 assert(stage == MESA_SHADER_GEOMETRY);
2163 assert(gs_compile->control_data_bits_per_vertex != 0);
2164
2165 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2166
2167 const fs_builder abld = bld.annotate("emit control data bits");
2168 const fs_builder fwa_bld = bld.exec_all();
2169
2170 /* We use a single UD register to accumulate control data bits (32 bits
2171 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2172 * at a time.
2173 *
2174 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2175 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2176 * use the Channel Mask phase to enable/disable which DWord within that
2177 * group to write. (Remember, different SIMD8 channels may have emitted
2178 * different numbers of vertices, so we may need per-slot offsets.)
2179 *
2180 * Channel masking presents an annoying problem: we may have to replicate
2181 * the data up to 4 times:
2182 *
2183 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2184 *
2185 * To avoid penalizing shaders that emit a small number of vertices, we
2186 * can avoid these sometimes: if the size of the control data header is
2187 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2188 * land in the same 128-bit group, so we can skip per-slot offsets.
2189 *
2190 * Similarly, if the control data header is <= 32 bits, there is only one
2191 * DWord, so we can skip channel masks.
2192 */
2193 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2194
2195 fs_reg channel_mask, per_slot_offset;
2196
2197 if (gs_compile->control_data_header_size_bits > 32) {
2198 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2199 channel_mask = vgrf(glsl_type::uint_type);
2200 }
2201
2202 if (gs_compile->control_data_header_size_bits > 128) {
2203 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2204 per_slot_offset = vgrf(glsl_type::uint_type);
2205 }
2206
2207 /* Figure out which DWord we're trying to write to using the formula:
2208 *
2209 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2210 *
2211 * Since bits_per_vertex is a power of two, and is known at compile
2212 * time, this can be optimized to:
2213 *
2214 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2215 */
2216 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2217 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2218 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2219 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2220 unsigned log2_bits_per_vertex =
2221 util_last_bit(gs_compile->control_data_bits_per_vertex);
2222 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2223
2224 if (per_slot_offset.file != BAD_FILE) {
2225 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2226 * the appropriate OWord within the control data header.
2227 */
2228 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2229 }
2230
2231 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2232 * write to the appropriate DWORD within the OWORD.
2233 */
2234 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2235 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2236 channel_mask = intexp2(fwa_bld, channel);
2237 /* Then the channel masks need to be in bits 23:16. */
2238 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2239 }
2240
2241 /* Store the control data bits in the message payload and send it. */
2242 unsigned mlen = 2;
2243 if (channel_mask.file != BAD_FILE)
2244 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2245 if (per_slot_offset.file != BAD_FILE)
2246 mlen++;
2247
2248 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2249 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2250 unsigned i = 0;
2251 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2252 if (per_slot_offset.file != BAD_FILE)
2253 sources[i++] = per_slot_offset;
2254 if (channel_mask.file != BAD_FILE)
2255 sources[i++] = channel_mask;
2256 while (i < mlen) {
2257 sources[i++] = this->control_data_bits;
2258 }
2259
2260 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2261 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2262 inst->mlen = mlen;
2263 /* We need to increment Global Offset by 256-bits to make room for
2264 * Broadwell's extra "Vertex Count" payload at the beginning of the
2265 * URB entry. Since this is an OWord message, Global Offset is counted
2266 * in 128-bit units, so we must set it to 2.
2267 */
2268 if (gs_prog_data->static_vertex_count == -1)
2269 inst->offset = 2;
2270 }
2271
2272 void
2273 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2274 unsigned stream_id)
2275 {
2276 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2277
2278 /* Note: we are calling this *before* increasing vertex_count, so
2279 * this->vertex_count == vertex_count - 1 in the formula above.
2280 */
2281
2282 /* Stream mode uses 2 bits per vertex */
2283 assert(gs_compile->control_data_bits_per_vertex == 2);
2284
2285 /* Must be a valid stream */
2286 assert(stream_id < MAX_VERTEX_STREAMS);
2287
2288 /* Control data bits are initialized to 0 so we don't have to set any
2289 * bits when sending vertices to stream 0.
2290 */
2291 if (stream_id == 0)
2292 return;
2293
2294 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2295
2296 /* reg::sid = stream_id */
2297 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2298 abld.MOV(sid, brw_imm_ud(stream_id));
2299
2300 /* reg:shift_count = 2 * (vertex_count - 1) */
2301 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2302 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2303
2304 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2305 * attention to the lower 5 bits of its second source argument, so on this
2306 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2307 * stream_id << ((2 * (vertex_count - 1)) % 32).
2308 */
2309 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2310 abld.SHL(mask, sid, shift_count);
2311 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2312 }
2313
2314 void
2315 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2316 unsigned stream_id)
2317 {
2318 assert(stage == MESA_SHADER_GEOMETRY);
2319
2320 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2321
2322 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2323 vertex_count.type = BRW_REGISTER_TYPE_UD;
2324
2325 /* Haswell and later hardware ignores the "Render Stream Select" bits
2326 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2327 * and instead sends all primitives down the pipeline for rasterization.
2328 * If the SOL stage is enabled, "Render Stream Select" is honored and
2329 * primitives bound to non-zero streams are discarded after stream output.
2330 *
2331 * Since the only purpose of primives sent to non-zero streams is to
2332 * be recorded by transform feedback, we can simply discard all geometry
2333 * bound to these streams when transform feedback is disabled.
2334 */
2335 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2336 return;
2337
2338 /* If we're outputting 32 control data bits or less, then we can wait
2339 * until the shader is over to output them all. Otherwise we need to
2340 * output them as we go. Now is the time to do it, since we're about to
2341 * output the vertex_count'th vertex, so it's guaranteed that the
2342 * control data bits associated with the (vertex_count - 1)th vertex are
2343 * correct.
2344 */
2345 if (gs_compile->control_data_header_size_bits > 32) {
2346 const fs_builder abld =
2347 bld.annotate("emit vertex: emit control data bits");
2348
2349 /* Only emit control data bits if we've finished accumulating a batch
2350 * of 32 bits. This is the case when:
2351 *
2352 * (vertex_count * bits_per_vertex) % 32 == 0
2353 *
2354 * (in other words, when the last 5 bits of vertex_count *
2355 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2356 * integer n (which is always the case, since bits_per_vertex is
2357 * always 1 or 2), this is equivalent to requiring that the last 5-n
2358 * bits of vertex_count are 0:
2359 *
2360 * vertex_count & (2^(5-n) - 1) == 0
2361 *
2362 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2363 * equivalent to:
2364 *
2365 * vertex_count & (32 / bits_per_vertex - 1) == 0
2366 *
2367 * TODO: If vertex_count is an immediate, we could do some of this math
2368 * at compile time...
2369 */
2370 fs_inst *inst =
2371 abld.AND(bld.null_reg_d(), vertex_count,
2372 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2373 inst->conditional_mod = BRW_CONDITIONAL_Z;
2374
2375 abld.IF(BRW_PREDICATE_NORMAL);
2376 /* If vertex_count is 0, then no control data bits have been
2377 * accumulated yet, so we can skip emitting them.
2378 */
2379 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2380 BRW_CONDITIONAL_NEQ);
2381 abld.IF(BRW_PREDICATE_NORMAL);
2382 emit_gs_control_data_bits(vertex_count);
2383 abld.emit(BRW_OPCODE_ENDIF);
2384
2385 /* Reset control_data_bits to 0 so we can start accumulating a new
2386 * batch.
2387 *
2388 * Note: in the case where vertex_count == 0, this neutralizes the
2389 * effect of any call to EndPrimitive() that the shader may have
2390 * made before outputting its first vertex.
2391 */
2392 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2393 inst->force_writemask_all = true;
2394 abld.emit(BRW_OPCODE_ENDIF);
2395 }
2396
2397 emit_urb_writes(vertex_count);
2398
2399 /* In stream mode we have to set control data bits for all vertices
2400 * unless we have disabled control data bits completely (which we do
2401 * do for GL_POINTS outputs that don't use streams).
2402 */
2403 if (gs_compile->control_data_header_size_bits > 0 &&
2404 gs_prog_data->control_data_format ==
2405 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2406 set_gs_stream_control_data_bits(vertex_count, stream_id);
2407 }
2408 }
2409
2410 void
2411 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2412 const nir_src &vertex_src,
2413 unsigned base_offset,
2414 const nir_src &offset_src,
2415 unsigned num_components,
2416 unsigned first_component)
2417 {
2418 assert(type_sz(dst.type) == 4);
2419 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2420 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2421
2422 /* TODO: figure out push input layout for invocations == 1 */
2423 if (gs_prog_data->invocations == 1 &&
2424 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2425 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2426 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2427 nir_src_as_uint(vertex_src) * push_reg_count;
2428 for (unsigned i = 0; i < num_components; i++) {
2429 bld.MOV(offset(dst, bld, i),
2430 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2431 }
2432 return;
2433 }
2434
2435 /* Resort to the pull model. Ensure the VUE handles are provided. */
2436 assert(gs_prog_data->base.include_vue_handles);
2437
2438 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2439 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2440
2441 if (gs_prog_data->invocations == 1) {
2442 if (nir_src_is_const(vertex_src)) {
2443 /* The vertex index is constant; just select the proper URB handle. */
2444 icp_handle =
2445 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2446 BRW_REGISTER_TYPE_UD);
2447 } else {
2448 /* The vertex index is non-constant. We need to use indirect
2449 * addressing to fetch the proper URB handle.
2450 *
2451 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2452 * indicating that channel <n> should read the handle from
2453 * DWord <n>. We convert that to bytes by multiplying by 4.
2454 *
2455 * Next, we convert the vertex index to bytes by multiplying
2456 * by 32 (shifting by 5), and add the two together. This is
2457 * the final indirect byte offset.
2458 */
2459 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2460 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2461 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2462 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2463
2464 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2465 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2466 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2467 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2468 /* Convert vertex_index to bytes (multiply by 32) */
2469 bld.SHL(vertex_offset_bytes,
2470 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2471 brw_imm_ud(5u));
2472 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2473
2474 /* Use first_icp_handle as the base offset. There is one register
2475 * of URB handles per vertex, so inform the register allocator that
2476 * we might read up to nir->info.gs.vertices_in registers.
2477 */
2478 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2479 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2480 fs_reg(icp_offset_bytes),
2481 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2482 }
2483 } else {
2484 assert(gs_prog_data->invocations > 1);
2485
2486 if (nir_src_is_const(vertex_src)) {
2487 unsigned vertex = nir_src_as_uint(vertex_src);
2488 assert(devinfo->gen >= 9 || vertex <= 5);
2489 bld.MOV(icp_handle,
2490 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2491 BRW_REGISTER_TYPE_UD));
2492 } else {
2493 /* The vertex index is non-constant. We need to use indirect
2494 * addressing to fetch the proper URB handle.
2495 *
2496 */
2497 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2498
2499 /* Convert vertex_index to bytes (multiply by 4) */
2500 bld.SHL(icp_offset_bytes,
2501 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2502 brw_imm_ud(2u));
2503
2504 /* Use first_icp_handle as the base offset. There is one DWord
2505 * of URB handles per vertex, so inform the register allocator that
2506 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2507 */
2508 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2509 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2510 fs_reg(icp_offset_bytes),
2511 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2512 REG_SIZE));
2513 }
2514 }
2515
2516 fs_inst *inst;
2517 fs_reg indirect_offset = get_nir_src(offset_src);
2518
2519 if (nir_src_is_const(offset_src)) {
2520 /* Constant indexing - use global offset. */
2521 if (first_component != 0) {
2522 unsigned read_components = num_components + first_component;
2523 fs_reg tmp = bld.vgrf(dst.type, read_components);
2524 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2525 inst->size_written = read_components *
2526 tmp.component_size(inst->exec_size);
2527 for (unsigned i = 0; i < num_components; i++) {
2528 bld.MOV(offset(dst, bld, i),
2529 offset(tmp, bld, i + first_component));
2530 }
2531 } else {
2532 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2533 inst->size_written = num_components *
2534 dst.component_size(inst->exec_size);
2535 }
2536 inst->offset = base_offset + nir_src_as_uint(offset_src);
2537 inst->mlen = 1;
2538 } else {
2539 /* Indirect indexing - use per-slot offsets as well. */
2540 const fs_reg srcs[] = { icp_handle, indirect_offset };
2541 unsigned read_components = num_components + first_component;
2542 fs_reg tmp = bld.vgrf(dst.type, read_components);
2543 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2544 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2545 if (first_component != 0) {
2546 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2547 payload);
2548 inst->size_written = read_components *
2549 tmp.component_size(inst->exec_size);
2550 for (unsigned i = 0; i < num_components; i++) {
2551 bld.MOV(offset(dst, bld, i),
2552 offset(tmp, bld, i + first_component));
2553 }
2554 } else {
2555 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2556 inst->size_written = num_components *
2557 dst.component_size(inst->exec_size);
2558 }
2559 inst->offset = base_offset;
2560 inst->mlen = 2;
2561 }
2562 }
2563
2564 fs_reg
2565 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2566 {
2567 nir_src *offset_src = nir_get_io_offset_src(instr);
2568
2569 if (nir_src_is_const(*offset_src)) {
2570 /* The only constant offset we should find is 0. brw_nir.c's
2571 * add_const_offset_to_base() will fold other constant offsets
2572 * into instr->const_index[0].
2573 */
2574 assert(nir_src_as_uint(*offset_src) == 0);
2575 return fs_reg();
2576 }
2577
2578 return get_nir_src(*offset_src);
2579 }
2580
2581 void
2582 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2583 nir_intrinsic_instr *instr)
2584 {
2585 assert(stage == MESA_SHADER_VERTEX);
2586
2587 fs_reg dest;
2588 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2589 dest = get_nir_dest(instr->dest);
2590
2591 switch (instr->intrinsic) {
2592 case nir_intrinsic_load_vertex_id:
2593 case nir_intrinsic_load_base_vertex:
2594 unreachable("should be lowered by nir_lower_system_values()");
2595
2596 case nir_intrinsic_load_input: {
2597 assert(nir_dest_bit_size(instr->dest) == 32);
2598 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2599 src = offset(src, bld, nir_intrinsic_component(instr));
2600 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2601
2602 for (unsigned i = 0; i < instr->num_components; i++)
2603 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2604 break;
2605 }
2606
2607 case nir_intrinsic_load_vertex_id_zero_base:
2608 case nir_intrinsic_load_instance_id:
2609 case nir_intrinsic_load_base_instance:
2610 case nir_intrinsic_load_draw_id:
2611 case nir_intrinsic_load_first_vertex:
2612 case nir_intrinsic_load_is_indexed_draw:
2613 unreachable("lowered by brw_nir_lower_vs_inputs");
2614
2615 default:
2616 nir_emit_intrinsic(bld, instr);
2617 break;
2618 }
2619 }
2620
2621 fs_reg
2622 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2623 nir_intrinsic_instr *instr)
2624 {
2625 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2626 const nir_src &vertex_src = instr->src[0];
2627 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2628 fs_reg icp_handle;
2629
2630 if (nir_src_is_const(vertex_src)) {
2631 /* Emit a MOV to resolve <0,1,0> regioning. */
2632 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2633 unsigned vertex = nir_src_as_uint(vertex_src);
2634 bld.MOV(icp_handle,
2635 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2636 BRW_REGISTER_TYPE_UD));
2637 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2638 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2639 /* For the common case of only 1 instance, an array index of
2640 * gl_InvocationID means reading g1. Skip all the indirect work.
2641 */
2642 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2643 } else {
2644 /* The vertex index is non-constant. We need to use indirect
2645 * addressing to fetch the proper URB handle.
2646 */
2647 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2648
2649 /* Each ICP handle is a single DWord (4 bytes) */
2650 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2651 bld.SHL(vertex_offset_bytes,
2652 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2653 brw_imm_ud(2u));
2654
2655 /* Start at g1. We might read up to 4 registers. */
2656 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2657 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2658 brw_imm_ud(4 * REG_SIZE));
2659 }
2660
2661 return icp_handle;
2662 }
2663
2664 fs_reg
2665 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2666 nir_intrinsic_instr *instr)
2667 {
2668 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2669 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2670 const nir_src &vertex_src = instr->src[0];
2671
2672 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2673
2674 if (nir_src_is_const(vertex_src)) {
2675 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2676 nir_src_as_uint(vertex_src), 0),
2677 BRW_REGISTER_TYPE_UD));
2678 }
2679
2680 /* The vertex index is non-constant. We need to use indirect
2681 * addressing to fetch the proper URB handle.
2682 *
2683 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2684 * indicating that channel <n> should read the handle from
2685 * DWord <n>. We convert that to bytes by multiplying by 4.
2686 *
2687 * Next, we convert the vertex index to bytes by multiplying
2688 * by 32 (shifting by 5), and add the two together. This is
2689 * the final indirect byte offset.
2690 */
2691 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2692 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2693 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2694 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2695 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2696
2697 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2698 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2699 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2700 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2701 /* Convert vertex_index to bytes (multiply by 32) */
2702 bld.SHL(vertex_offset_bytes,
2703 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2704 brw_imm_ud(5u));
2705 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2706
2707 /* Use first_icp_handle as the base offset. There is one register
2708 * of URB handles per vertex, so inform the register allocator that
2709 * we might read up to nir->info.gs.vertices_in registers.
2710 */
2711 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2712 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2713 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2714
2715 return icp_handle;
2716 }
2717
2718 struct brw_reg
2719 fs_visitor::get_tcs_output_urb_handle()
2720 {
2721 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2722
2723 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2724 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2725 } else {
2726 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2727 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2728 }
2729 }
2730
2731 void
2732 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2733 nir_intrinsic_instr *instr)
2734 {
2735 assert(stage == MESA_SHADER_TESS_CTRL);
2736 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2737 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2738 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2739
2740 bool eight_patch =
2741 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2742
2743 fs_reg dst;
2744 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2745 dst = get_nir_dest(instr->dest);
2746
2747 switch (instr->intrinsic) {
2748 case nir_intrinsic_load_primitive_id:
2749 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2750 : brw_vec1_grf(0, 1)));
2751 break;
2752 case nir_intrinsic_load_invocation_id:
2753 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2754 break;
2755 case nir_intrinsic_load_patch_vertices_in:
2756 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2757 brw_imm_d(tcs_key->input_vertices));
2758 break;
2759
2760 case nir_intrinsic_control_barrier: {
2761 if (tcs_prog_data->instances == 1)
2762 break;
2763
2764 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2765 fs_reg m0_2 = component(m0, 2);
2766
2767 const fs_builder chanbld = bld.exec_all().group(1, 0);
2768
2769 /* Zero the message header */
2770 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2771
2772 if (devinfo->gen < 11) {
2773 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2774 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2775 brw_imm_ud(INTEL_MASK(16, 13)));
2776
2777 /* Shift it up to bits 27:24. */
2778 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2779 } else {
2780 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2781 brw_imm_ud(INTEL_MASK(30, 24)));
2782 }
2783
2784 /* Set the Barrier Count and the enable bit */
2785 if (devinfo->gen < 11) {
2786 chanbld.OR(m0_2, m0_2,
2787 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2788 } else {
2789 chanbld.OR(m0_2, m0_2,
2790 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2791 }
2792
2793 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2794 break;
2795 }
2796
2797 case nir_intrinsic_load_input:
2798 unreachable("nir_lower_io should never give us these.");
2799 break;
2800
2801 case nir_intrinsic_load_per_vertex_input: {
2802 assert(nir_dest_bit_size(instr->dest) == 32);
2803 fs_reg indirect_offset = get_indirect_offset(instr);
2804 unsigned imm_offset = instr->const_index[0];
2805 fs_inst *inst;
2806
2807 fs_reg icp_handle =
2808 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2809 : get_tcs_single_patch_icp_handle(bld, instr);
2810
2811 /* We can only read two double components with each URB read, so
2812 * we send two read messages in that case, each one loading up to
2813 * two double components.
2814 */
2815 unsigned num_components = instr->num_components;
2816 unsigned first_component = nir_intrinsic_component(instr);
2817
2818 if (indirect_offset.file == BAD_FILE) {
2819 /* Constant indexing - use global offset. */
2820 if (first_component != 0) {
2821 unsigned read_components = num_components + first_component;
2822 fs_reg tmp = bld.vgrf(dst.type, read_components);
2823 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2824 for (unsigned i = 0; i < num_components; i++) {
2825 bld.MOV(offset(dst, bld, i),
2826 offset(tmp, bld, i + first_component));
2827 }
2828 } else {
2829 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2830 }
2831 inst->offset = imm_offset;
2832 inst->mlen = 1;
2833 } else {
2834 /* Indirect indexing - use per-slot offsets as well. */
2835 const fs_reg srcs[] = { icp_handle, indirect_offset };
2836 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2837 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2838 if (first_component != 0) {
2839 unsigned read_components = num_components + first_component;
2840 fs_reg tmp = bld.vgrf(dst.type, read_components);
2841 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2842 payload);
2843 for (unsigned i = 0; i < num_components; i++) {
2844 bld.MOV(offset(dst, bld, i),
2845 offset(tmp, bld, i + first_component));
2846 }
2847 } else {
2848 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2849 payload);
2850 }
2851 inst->offset = imm_offset;
2852 inst->mlen = 2;
2853 }
2854 inst->size_written = (num_components + first_component) *
2855 inst->dst.component_size(inst->exec_size);
2856
2857 /* Copy the temporary to the destination to deal with writemasking.
2858 *
2859 * Also attempt to deal with gl_PointSize being in the .w component.
2860 */
2861 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2862 assert(type_sz(dst.type) == 4);
2863 inst->dst = bld.vgrf(dst.type, 4);
2864 inst->size_written = 4 * REG_SIZE;
2865 bld.MOV(dst, offset(inst->dst, bld, 3));
2866 }
2867 break;
2868 }
2869
2870 case nir_intrinsic_load_output:
2871 case nir_intrinsic_load_per_vertex_output: {
2872 assert(nir_dest_bit_size(instr->dest) == 32);
2873 fs_reg indirect_offset = get_indirect_offset(instr);
2874 unsigned imm_offset = instr->const_index[0];
2875 unsigned first_component = nir_intrinsic_component(instr);
2876
2877 struct brw_reg output_handles = get_tcs_output_urb_handle();
2878
2879 fs_inst *inst;
2880 if (indirect_offset.file == BAD_FILE) {
2881 /* This MOV replicates the output handle to all enabled channels
2882 * is SINGLE_PATCH mode.
2883 */
2884 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2885 bld.MOV(patch_handle, output_handles);
2886
2887 {
2888 if (first_component != 0) {
2889 unsigned read_components =
2890 instr->num_components + first_component;
2891 fs_reg tmp = bld.vgrf(dst.type, read_components);
2892 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2893 patch_handle);
2894 inst->size_written = read_components * REG_SIZE;
2895 for (unsigned i = 0; i < instr->num_components; i++) {
2896 bld.MOV(offset(dst, bld, i),
2897 offset(tmp, bld, i + first_component));
2898 }
2899 } else {
2900 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2901 patch_handle);
2902 inst->size_written = instr->num_components * REG_SIZE;
2903 }
2904 inst->offset = imm_offset;
2905 inst->mlen = 1;
2906 }
2907 } else {
2908 /* Indirect indexing - use per-slot offsets as well. */
2909 const fs_reg srcs[] = { output_handles, indirect_offset };
2910 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2911 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2912 if (first_component != 0) {
2913 unsigned read_components =
2914 instr->num_components + first_component;
2915 fs_reg tmp = bld.vgrf(dst.type, read_components);
2916 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2917 payload);
2918 inst->size_written = read_components * REG_SIZE;
2919 for (unsigned i = 0; i < instr->num_components; i++) {
2920 bld.MOV(offset(dst, bld, i),
2921 offset(tmp, bld, i + first_component));
2922 }
2923 } else {
2924 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2925 payload);
2926 inst->size_written = instr->num_components * REG_SIZE;
2927 }
2928 inst->offset = imm_offset;
2929 inst->mlen = 2;
2930 }
2931 break;
2932 }
2933
2934 case nir_intrinsic_store_output:
2935 case nir_intrinsic_store_per_vertex_output: {
2936 assert(nir_src_bit_size(instr->src[0]) == 32);
2937 fs_reg value = get_nir_src(instr->src[0]);
2938 fs_reg indirect_offset = get_indirect_offset(instr);
2939 unsigned imm_offset = instr->const_index[0];
2940 unsigned mask = instr->const_index[1];
2941 unsigned header_regs = 0;
2942 struct brw_reg output_handles = get_tcs_output_urb_handle();
2943
2944 fs_reg srcs[7];
2945 srcs[header_regs++] = output_handles;
2946
2947 if (indirect_offset.file != BAD_FILE) {
2948 srcs[header_regs++] = indirect_offset;
2949 }
2950
2951 if (mask == 0)
2952 break;
2953
2954 unsigned num_components = util_last_bit(mask);
2955 enum opcode opcode;
2956
2957 /* We can only pack two 64-bit components in a single message, so send
2958 * 2 messages if we have more components
2959 */
2960 unsigned first_component = nir_intrinsic_component(instr);
2961 mask = mask << first_component;
2962
2963 if (mask != WRITEMASK_XYZW) {
2964 srcs[header_regs++] = brw_imm_ud(mask << 16);
2965 opcode = indirect_offset.file != BAD_FILE ?
2966 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2967 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2968 } else {
2969 opcode = indirect_offset.file != BAD_FILE ?
2970 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2971 SHADER_OPCODE_URB_WRITE_SIMD8;
2972 }
2973
2974 for (unsigned i = 0; i < num_components; i++) {
2975 if (!(mask & (1 << (i + first_component))))
2976 continue;
2977
2978 srcs[header_regs + i + first_component] = offset(value, bld, i);
2979 }
2980
2981 unsigned mlen = header_regs + num_components + first_component;
2982 fs_reg payload =
2983 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2984 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2985
2986 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2987 inst->offset = imm_offset;
2988 inst->mlen = mlen;
2989 break;
2990 }
2991
2992 default:
2993 nir_emit_intrinsic(bld, instr);
2994 break;
2995 }
2996 }
2997
2998 void
2999 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3000 nir_intrinsic_instr *instr)
3001 {
3002 assert(stage == MESA_SHADER_TESS_EVAL);
3003 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3004
3005 fs_reg dest;
3006 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3007 dest = get_nir_dest(instr->dest);
3008
3009 switch (instr->intrinsic) {
3010 case nir_intrinsic_load_primitive_id:
3011 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3012 break;
3013 case nir_intrinsic_load_tess_coord:
3014 /* gl_TessCoord is part of the payload in g1-3 */
3015 for (unsigned i = 0; i < 3; i++) {
3016 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3017 }
3018 break;
3019
3020 case nir_intrinsic_load_input:
3021 case nir_intrinsic_load_per_vertex_input: {
3022 assert(nir_dest_bit_size(instr->dest) == 32);
3023 fs_reg indirect_offset = get_indirect_offset(instr);
3024 unsigned imm_offset = instr->const_index[0];
3025 unsigned first_component = nir_intrinsic_component(instr);
3026
3027 fs_inst *inst;
3028 if (indirect_offset.file == BAD_FILE) {
3029 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3030 * which is 16 registers (since each holds 2 vec4 slots).
3031 */
3032 const unsigned max_push_slots = 32;
3033 if (imm_offset < max_push_slots) {
3034 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3035 for (int i = 0; i < instr->num_components; i++) {
3036 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3037 bld.MOV(offset(dest, bld, i), component(src, comp));
3038 }
3039
3040 tes_prog_data->base.urb_read_length =
3041 MAX2(tes_prog_data->base.urb_read_length,
3042 (imm_offset / 2) + 1);
3043 } else {
3044 /* Replicate the patch handle to all enabled channels */
3045 const fs_reg srcs[] = {
3046 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3047 };
3048 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3049 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3050
3051 if (first_component != 0) {
3052 unsigned read_components =
3053 instr->num_components + first_component;
3054 fs_reg tmp = bld.vgrf(dest.type, read_components);
3055 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3056 patch_handle);
3057 inst->size_written = read_components * REG_SIZE;
3058 for (unsigned i = 0; i < instr->num_components; i++) {
3059 bld.MOV(offset(dest, bld, i),
3060 offset(tmp, bld, i + first_component));
3061 }
3062 } else {
3063 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3064 patch_handle);
3065 inst->size_written = instr->num_components * REG_SIZE;
3066 }
3067 inst->mlen = 1;
3068 inst->offset = imm_offset;
3069 }
3070 } else {
3071 /* Indirect indexing - use per-slot offsets as well. */
3072
3073 /* We can only read two double components with each URB read, so
3074 * we send two read messages in that case, each one loading up to
3075 * two double components.
3076 */
3077 unsigned num_components = instr->num_components;
3078 const fs_reg srcs[] = {
3079 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3080 indirect_offset
3081 };
3082 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3083 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3084
3085 if (first_component != 0) {
3086 unsigned read_components =
3087 num_components + first_component;
3088 fs_reg tmp = bld.vgrf(dest.type, read_components);
3089 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3090 payload);
3091 for (unsigned i = 0; i < num_components; i++) {
3092 bld.MOV(offset(dest, bld, i),
3093 offset(tmp, bld, i + first_component));
3094 }
3095 } else {
3096 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3097 payload);
3098 }
3099 inst->mlen = 2;
3100 inst->offset = imm_offset;
3101 inst->size_written = (num_components + first_component) *
3102 inst->dst.component_size(inst->exec_size);
3103 }
3104 break;
3105 }
3106 default:
3107 nir_emit_intrinsic(bld, instr);
3108 break;
3109 }
3110 }
3111
3112 void
3113 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3114 nir_intrinsic_instr *instr)
3115 {
3116 assert(stage == MESA_SHADER_GEOMETRY);
3117 fs_reg indirect_offset;
3118
3119 fs_reg dest;
3120 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3121 dest = get_nir_dest(instr->dest);
3122
3123 switch (instr->intrinsic) {
3124 case nir_intrinsic_load_primitive_id:
3125 assert(stage == MESA_SHADER_GEOMETRY);
3126 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3127 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3128 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3129 break;
3130
3131 case nir_intrinsic_load_input:
3132 unreachable("load_input intrinsics are invalid for the GS stage");
3133
3134 case nir_intrinsic_load_per_vertex_input:
3135 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3136 instr->src[1], instr->num_components,
3137 nir_intrinsic_component(instr));
3138 break;
3139
3140 case nir_intrinsic_emit_vertex_with_counter:
3141 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3142 break;
3143
3144 case nir_intrinsic_end_primitive_with_counter:
3145 emit_gs_end_primitive(instr->src[0]);
3146 break;
3147
3148 case nir_intrinsic_set_vertex_count:
3149 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3150 break;
3151
3152 case nir_intrinsic_load_invocation_id: {
3153 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3154 assert(val.file != BAD_FILE);
3155 dest.type = val.type;
3156 bld.MOV(dest, val);
3157 break;
3158 }
3159
3160 default:
3161 nir_emit_intrinsic(bld, instr);
3162 break;
3163 }
3164 }
3165
3166 /**
3167 * Fetch the current render target layer index.
3168 */
3169 static fs_reg
3170 fetch_render_target_array_index(const fs_builder &bld)
3171 {
3172 if (bld.shader->devinfo->gen >= 12) {
3173 /* The render target array index is provided in the thread payload as
3174 * bits 26:16 of r1.1.
3175 */
3176 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3177 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 3),
3178 brw_imm_uw(0x7ff));
3179 return idx;
3180 } else if (bld.shader->devinfo->gen >= 6) {
3181 /* The render target array index is provided in the thread payload as
3182 * bits 26:16 of r0.0.
3183 */
3184 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3185 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3186 brw_imm_uw(0x7ff));
3187 return idx;
3188 } else {
3189 /* Pre-SNB we only ever render into the first layer of the framebuffer
3190 * since layered rendering is not implemented.
3191 */
3192 return brw_imm_ud(0);
3193 }
3194 }
3195
3196 /**
3197 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3198 * framebuffer at the current fragment coordinates and sample index.
3199 */
3200 fs_inst *
3201 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3202 unsigned target)
3203 {
3204 const struct gen_device_info *devinfo = bld.shader->devinfo;
3205
3206 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3207 const brw_wm_prog_key *wm_key =
3208 reinterpret_cast<const brw_wm_prog_key *>(key);
3209 assert(!wm_key->coherent_fb_fetch);
3210 const struct brw_wm_prog_data *wm_prog_data =
3211 brw_wm_prog_data(stage_prog_data);
3212
3213 /* Calculate the surface index relative to the start of the texture binding
3214 * table block, since that's what the texturing messages expect.
3215 */
3216 const unsigned surface = target +
3217 wm_prog_data->binding_table.render_target_read_start -
3218 wm_prog_data->base.binding_table.texture_start;
3219
3220 /* Calculate the fragment coordinates. */
3221 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3222 bld.MOV(offset(coords, bld, 0), pixel_x);
3223 bld.MOV(offset(coords, bld, 1), pixel_y);
3224 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3225
3226 /* Calculate the sample index and MCS payload when multisampling. Luckily
3227 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3228 * shouldn't be necessary to recompile based on whether the framebuffer is
3229 * CMS or UMS.
3230 */
3231 if (wm_key->multisample_fbo &&
3232 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3233 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3234
3235 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3236 const fs_reg mcs = wm_key->multisample_fbo ?
3237 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3238
3239 /* Use either a normal or a CMS texel fetch message depending on whether
3240 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3241 * message just in case the framebuffer uses 16x multisampling, it should
3242 * be equivalent to the normal CMS fetch for lower multisampling modes.
3243 */
3244 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3245 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3246 SHADER_OPCODE_TXF_CMS_LOGICAL;
3247
3248 /* Emit the instruction. */
3249 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3250 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3251 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3252 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3253 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3254 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3255 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3256 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3257 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3258
3259 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3260 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3261
3262 return inst;
3263 }
3264
3265 /**
3266 * Actual coherent framebuffer read implemented using the native render target
3267 * read message. Requires SKL+.
3268 */
3269 static fs_inst *
3270 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3271 {
3272 assert(bld.shader->devinfo->gen >= 9);
3273 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3274 inst->target = target;
3275 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3276
3277 return inst;
3278 }
3279
3280 static fs_reg
3281 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3282 {
3283 if (n && regs[0].file != BAD_FILE) {
3284 return regs[0];
3285
3286 } else {
3287 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3288
3289 for (unsigned i = 0; i < n; i++)
3290 regs[i] = tmp;
3291
3292 return tmp;
3293 }
3294 }
3295
3296 static fs_reg
3297 alloc_frag_output(fs_visitor *v, unsigned location)
3298 {
3299 assert(v->stage == MESA_SHADER_FRAGMENT);
3300 const brw_wm_prog_key *const key =
3301 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3302 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3303 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3304
3305 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3306 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3307
3308 else if (l == FRAG_RESULT_COLOR)
3309 return alloc_temporary(v->bld, 4, v->outputs,
3310 MAX2(key->nr_color_regions, 1));
3311
3312 else if (l == FRAG_RESULT_DEPTH)
3313 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3314
3315 else if (l == FRAG_RESULT_STENCIL)
3316 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3317
3318 else if (l == FRAG_RESULT_SAMPLE_MASK)
3319 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3320
3321 else if (l >= FRAG_RESULT_DATA0 &&
3322 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3323 return alloc_temporary(v->bld, 4,
3324 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3325
3326 else
3327 unreachable("Invalid location");
3328 }
3329
3330 void
3331 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3332 nir_intrinsic_instr *instr)
3333 {
3334 assert(stage == MESA_SHADER_FRAGMENT);
3335
3336 fs_reg dest;
3337 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3338 dest = get_nir_dest(instr->dest);
3339
3340 switch (instr->intrinsic) {
3341 case nir_intrinsic_load_front_face:
3342 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3343 *emit_frontfacing_interpolation());
3344 break;
3345
3346 case nir_intrinsic_load_sample_pos: {
3347 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3348 assert(sample_pos.file != BAD_FILE);
3349 dest.type = sample_pos.type;
3350 bld.MOV(dest, sample_pos);
3351 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3352 break;
3353 }
3354
3355 case nir_intrinsic_load_layer_id:
3356 dest.type = BRW_REGISTER_TYPE_UD;
3357 bld.MOV(dest, fetch_render_target_array_index(bld));
3358 break;
3359
3360 case nir_intrinsic_is_helper_invocation: {
3361 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3362 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3363 * consideration demoted invocations. That information is stored in
3364 * f0.1.
3365 */
3366 dest.type = BRW_REGISTER_TYPE_UD;
3367
3368 bld.MOV(dest, brw_imm_ud(0));
3369
3370 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3371 mov->predicate = BRW_PREDICATE_NORMAL;
3372 mov->predicate_inverse = true;
3373 mov->flag_subreg = sample_mask_flag_subreg(this);
3374 break;
3375 }
3376
3377 case nir_intrinsic_load_helper_invocation:
3378 case nir_intrinsic_load_sample_mask_in:
3379 case nir_intrinsic_load_sample_id: {
3380 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3381 fs_reg val = nir_system_values[sv];
3382 assert(val.file != BAD_FILE);
3383 dest.type = val.type;
3384 bld.MOV(dest, val);
3385 break;
3386 }
3387
3388 case nir_intrinsic_store_output: {
3389 const fs_reg src = get_nir_src(instr->src[0]);
3390 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3391 const unsigned location = nir_intrinsic_base(instr) +
3392 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3393 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3394 src.type);
3395
3396 for (unsigned j = 0; j < instr->num_components; j++)
3397 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3398 offset(src, bld, j));
3399
3400 break;
3401 }
3402
3403 case nir_intrinsic_load_output: {
3404 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3405 BRW_NIR_FRAG_OUTPUT_LOCATION);
3406 assert(l >= FRAG_RESULT_DATA0);
3407 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3408 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3409 const fs_reg tmp = bld.vgrf(dest.type, 4);
3410
3411 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3412 emit_coherent_fb_read(bld, tmp, target);
3413 else
3414 emit_non_coherent_fb_read(bld, tmp, target);
3415
3416 for (unsigned j = 0; j < instr->num_components; j++) {
3417 bld.MOV(offset(dest, bld, j),
3418 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3419 }
3420
3421 break;
3422 }
3423
3424 case nir_intrinsic_demote:
3425 case nir_intrinsic_discard:
3426 case nir_intrinsic_demote_if:
3427 case nir_intrinsic_discard_if: {
3428 /* We track our discarded pixels in f0.1/f1.0. By predicating on it, we
3429 * can update just the flag bits that aren't yet discarded. If there's
3430 * no condition, we emit a CMP of g0 != g0, so all currently executing
3431 * channels will get turned off.
3432 */
3433 fs_inst *cmp = NULL;
3434 if (instr->intrinsic == nir_intrinsic_demote_if ||
3435 instr->intrinsic == nir_intrinsic_discard_if) {
3436 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3437
3438 if (alu != NULL &&
3439 alu->op != nir_op_bcsel &&
3440 (devinfo->gen > 5 ||
3441 (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3442 alu->op == nir_op_fneu32 || alu->op == nir_op_feq32 ||
3443 alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3444 alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3445 alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3446 alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3447 /* Re-emit the instruction that generated the Boolean value, but
3448 * do not store it. Since this instruction will be conditional,
3449 * other instructions that want to use the real Boolean value may
3450 * get garbage. This was a problem for piglit's fs-discard-exit-2
3451 * test.
3452 *
3453 * Ideally we'd detect that the instruction cannot have a
3454 * conditional modifier before emitting the instructions. Alas,
3455 * that is nigh impossible. Instead, we're going to assume the
3456 * instruction (or last instruction) generated can have a
3457 * conditional modifier. If it cannot, fallback to the old-style
3458 * compare, and hope dead code elimination will clean up the
3459 * extra instructions generated.
3460 */
3461 nir_emit_alu(bld, alu, false);
3462
3463 cmp = (fs_inst *) instructions.get_tail();
3464 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3465 if (cmp->can_do_cmod())
3466 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3467 else
3468 cmp = NULL;
3469 } else {
3470 /* The old sequence that would have been generated is,
3471 * basically, bool_result == false. This is equivalent to
3472 * !bool_result, so negate the old modifier.
3473 */
3474 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3475 }
3476 }
3477
3478 if (cmp == NULL) {
3479 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3480 brw_imm_d(0), BRW_CONDITIONAL_Z);
3481 }
3482 } else {
3483 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3484 BRW_REGISTER_TYPE_UW));
3485 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3486 }
3487
3488 cmp->predicate = BRW_PREDICATE_NORMAL;
3489 cmp->flag_subreg = sample_mask_flag_subreg(this);
3490
3491 emit_discard_jump();
3492
3493 if (devinfo->gen < 7)
3494 limit_dispatch_width(
3495 16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3496 break;
3497 }
3498
3499 case nir_intrinsic_load_input: {
3500 /* load_input is only used for flat inputs */
3501 assert(nir_dest_bit_size(instr->dest) == 32);
3502 unsigned base = nir_intrinsic_base(instr);
3503 unsigned comp = nir_intrinsic_component(instr);
3504 unsigned num_components = instr->num_components;
3505
3506 /* Special case fields in the VUE header */
3507 if (base == VARYING_SLOT_LAYER)
3508 comp = 1;
3509 else if (base == VARYING_SLOT_VIEWPORT)
3510 comp = 2;
3511
3512 for (unsigned int i = 0; i < num_components; i++) {
3513 bld.MOV(offset(dest, bld, i),
3514 retype(component(interp_reg(base, comp + i), 3), dest.type));
3515 }
3516 break;
3517 }
3518
3519 case nir_intrinsic_load_fs_input_interp_deltas: {
3520 assert(stage == MESA_SHADER_FRAGMENT);
3521 assert(nir_src_as_uint(instr->src[0]) == 0);
3522 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3523 nir_intrinsic_component(instr));
3524 dest.type = BRW_REGISTER_TYPE_F;
3525 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3526 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3527 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3528 break;
3529 }
3530
3531 case nir_intrinsic_load_barycentric_pixel:
3532 case nir_intrinsic_load_barycentric_centroid:
3533 case nir_intrinsic_load_barycentric_sample: {
3534 /* Use the delta_xy values computed from the payload */
3535 const glsl_interp_mode interp_mode =
3536 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3537 enum brw_barycentric_mode bary =
3538 brw_barycentric_mode(interp_mode, instr->intrinsic);
3539 const fs_reg srcs[] = { offset(this->delta_xy[bary], bld, 0),
3540 offset(this->delta_xy[bary], bld, 1) };
3541 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3542 break;
3543 }
3544
3545 case nir_intrinsic_load_barycentric_at_sample: {
3546 const glsl_interp_mode interpolation =
3547 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3548
3549 if (nir_src_is_const(instr->src[0])) {
3550 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3551
3552 emit_pixel_interpolater_send(bld,
3553 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3554 dest,
3555 fs_reg(), /* src */
3556 brw_imm_ud(msg_data),
3557 interpolation);
3558 } else {
3559 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3560 BRW_REGISTER_TYPE_UD);
3561
3562 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3563 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3564 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3565 bld.exec_all().group(1, 0)
3566 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3567 emit_pixel_interpolater_send(bld,
3568 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3569 dest,
3570 fs_reg(), /* src */
3571 component(msg_data, 0),
3572 interpolation);
3573 } else {
3574 /* Make a loop that sends a message to the pixel interpolater
3575 * for the sample number in each live channel. If there are
3576 * multiple channels with the same sample number then these
3577 * will be handled simultaneously with a single interation of
3578 * the loop.
3579 */
3580 bld.emit(BRW_OPCODE_DO);
3581
3582 /* Get the next live sample number into sample_id_reg */
3583 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3584
3585 /* Set the flag register so that we can perform the send
3586 * message on all channels that have the same sample number
3587 */
3588 bld.CMP(bld.null_reg_ud(),
3589 sample_src, sample_id,
3590 BRW_CONDITIONAL_EQ);
3591 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3592 bld.exec_all().group(1, 0)
3593 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3594 fs_inst *inst =
3595 emit_pixel_interpolater_send(bld,
3596 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3597 dest,
3598 fs_reg(), /* src */
3599 component(msg_data, 0),
3600 interpolation);
3601 set_predicate(BRW_PREDICATE_NORMAL, inst);
3602
3603 /* Continue the loop if there are any live channels left */
3604 set_predicate_inv(BRW_PREDICATE_NORMAL,
3605 true, /* inverse */
3606 bld.emit(BRW_OPCODE_WHILE));
3607 }
3608 }
3609 break;
3610 }
3611
3612 case nir_intrinsic_load_barycentric_at_offset: {
3613 const glsl_interp_mode interpolation =
3614 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3615
3616 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3617
3618 if (const_offset) {
3619 assert(nir_src_bit_size(instr->src[0]) == 32);
3620 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3621 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3622
3623 emit_pixel_interpolater_send(bld,
3624 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3625 dest,
3626 fs_reg(), /* src */
3627 brw_imm_ud(off_x | (off_y << 4)),
3628 interpolation);
3629 } else {
3630 fs_reg src = vgrf(glsl_type::ivec2_type);
3631 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3632 BRW_REGISTER_TYPE_F);
3633 for (int i = 0; i < 2; i++) {
3634 fs_reg temp = vgrf(glsl_type::float_type);
3635 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3636 fs_reg itemp = vgrf(glsl_type::int_type);
3637 /* float to int */
3638 bld.MOV(itemp, temp);
3639
3640 /* Clamp the upper end of the range to +7/16.
3641 * ARB_gpu_shader5 requires that we support a maximum offset
3642 * of +0.5, which isn't representable in a S0.4 value -- if
3643 * we didn't clamp it, we'd end up with -8/16, which is the
3644 * opposite of what the shader author wanted.
3645 *
3646 * This is legal due to ARB_gpu_shader5's quantization
3647 * rules:
3648 *
3649 * "Not all values of <offset> may be supported; x and y
3650 * offsets may be rounded to fixed-point values with the
3651 * number of fraction bits given by the
3652 * implementation-dependent constant
3653 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3654 */
3655 set_condmod(BRW_CONDITIONAL_L,
3656 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3657 }
3658
3659 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3660 emit_pixel_interpolater_send(bld,
3661 opcode,
3662 dest,
3663 src,
3664 brw_imm_ud(0u),
3665 interpolation);
3666 }
3667 break;
3668 }
3669
3670 case nir_intrinsic_load_frag_coord:
3671 emit_fragcoord_interpolation(dest);
3672 break;
3673
3674 case nir_intrinsic_load_interpolated_input: {
3675 assert(instr->src[0].ssa &&
3676 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3677 nir_intrinsic_instr *bary_intrinsic =
3678 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3679 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3680 enum glsl_interp_mode interp_mode =
3681 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3682 fs_reg dst_xy;
3683
3684 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3685 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3686 /* Use the result of the PI message. */
3687 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3688 } else {
3689 /* Use the delta_xy values computed from the payload */
3690 enum brw_barycentric_mode bary =
3691 brw_barycentric_mode(interp_mode, bary_intrin);
3692 dst_xy = this->delta_xy[bary];
3693 }
3694
3695 for (unsigned int i = 0; i < instr->num_components; i++) {
3696 fs_reg interp =
3697 component(interp_reg(nir_intrinsic_base(instr),
3698 nir_intrinsic_component(instr) + i), 0);
3699 interp.type = BRW_REGISTER_TYPE_F;
3700 dest.type = BRW_REGISTER_TYPE_F;
3701
3702 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3703 fs_reg tmp = vgrf(glsl_type::float_type);
3704 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3705 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3706 } else {
3707 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3708 }
3709 }
3710 break;
3711 }
3712
3713 default:
3714 nir_emit_intrinsic(bld, instr);
3715 break;
3716 }
3717 }
3718
3719 void
3720 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3721 nir_intrinsic_instr *instr)
3722 {
3723 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3724 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3725
3726 fs_reg dest;
3727 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3728 dest = get_nir_dest(instr->dest);
3729
3730 switch (instr->intrinsic) {
3731 case nir_intrinsic_control_barrier:
3732 /* The whole workgroup fits in a single HW thread, so all the
3733 * invocations are already executed lock-step. Instead of an actual
3734 * barrier just emit a scheduling fence, that will generate no code.
3735 */
3736 if (!nir->info.cs.local_size_variable &&
3737 workgroup_size() <= dispatch_width) {
3738 bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE);
3739 break;
3740 }
3741
3742 emit_barrier();
3743 cs_prog_data->uses_barrier = true;
3744 break;
3745
3746 case nir_intrinsic_load_subgroup_id:
3747 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3748 break;
3749
3750 case nir_intrinsic_load_local_invocation_id:
3751 case nir_intrinsic_load_work_group_id: {
3752 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3753 fs_reg val = nir_system_values[sv];
3754 assert(val.file != BAD_FILE);
3755 dest.type = val.type;
3756 for (unsigned i = 0; i < 3; i++)
3757 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3758 break;
3759 }
3760
3761 case nir_intrinsic_load_num_work_groups: {
3762 assert(nir_dest_bit_size(instr->dest) == 32);
3763 const unsigned surface =
3764 cs_prog_data->binding_table.work_groups_start;
3765
3766 cs_prog_data->uses_num_work_groups = true;
3767
3768 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3769 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3770 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3771 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(3); /* num components */
3772 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(0);
3773 fs_inst *inst =
3774 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3775 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3776 inst->size_written = 3 * dispatch_width * 4;
3777 break;
3778 }
3779
3780 case nir_intrinsic_shared_atomic_add:
3781 case nir_intrinsic_shared_atomic_imin:
3782 case nir_intrinsic_shared_atomic_umin:
3783 case nir_intrinsic_shared_atomic_imax:
3784 case nir_intrinsic_shared_atomic_umax:
3785 case nir_intrinsic_shared_atomic_and:
3786 case nir_intrinsic_shared_atomic_or:
3787 case nir_intrinsic_shared_atomic_xor:
3788 case nir_intrinsic_shared_atomic_exchange:
3789 case nir_intrinsic_shared_atomic_comp_swap:
3790 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3791 break;
3792 case nir_intrinsic_shared_atomic_fmin:
3793 case nir_intrinsic_shared_atomic_fmax:
3794 case nir_intrinsic_shared_atomic_fcomp_swap:
3795 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3796 break;
3797
3798 case nir_intrinsic_load_shared: {
3799 assert(devinfo->gen >= 7);
3800 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3801
3802 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3803 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3804 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3805 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3806 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3807
3808 /* Make dest unsigned because that's what the temporary will be */
3809 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3810
3811 /* Read the vector */
3812 assert(nir_dest_bit_size(instr->dest) <= 32);
3813 assert(nir_intrinsic_align(instr) > 0);
3814 if (nir_dest_bit_size(instr->dest) == 32 &&
3815 nir_intrinsic_align(instr) >= 4) {
3816 assert(nir_dest_num_components(instr->dest) <= 4);
3817 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3818 fs_inst *inst =
3819 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3820 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3821 inst->size_written = instr->num_components * dispatch_width * 4;
3822 } else {
3823 assert(nir_dest_num_components(instr->dest) == 1);
3824 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3825
3826 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3827 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3828 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3829 bld.MOV(dest, subscript(read_result, dest.type, 0));
3830 }
3831 break;
3832 }
3833
3834 case nir_intrinsic_store_shared: {
3835 assert(devinfo->gen >= 7);
3836 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3837
3838 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3839 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3840 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3841 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3842 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3843
3844 fs_reg data = get_nir_src(instr->src[0]);
3845 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3846
3847 assert(nir_src_bit_size(instr->src[0]) <= 32);
3848 assert(nir_intrinsic_write_mask(instr) ==
3849 (1u << instr->num_components) - 1);
3850 assert(nir_intrinsic_align(instr) > 0);
3851 if (nir_src_bit_size(instr->src[0]) == 32 &&
3852 nir_intrinsic_align(instr) >= 4) {
3853 assert(nir_src_num_components(instr->src[0]) <= 4);
3854 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3855 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3856 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3857 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3858 } else {
3859 assert(nir_src_num_components(instr->src[0]) == 1);
3860 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3861
3862 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3863 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3864
3865 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3866 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3867 }
3868 break;
3869 }
3870
3871 case nir_intrinsic_load_local_group_size: {
3872 assert(compiler->lower_variable_group_size);
3873 assert(nir->info.cs.local_size_variable);
3874 for (unsigned i = 0; i < 3; i++) {
3875 bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
3876 group_size[i]);
3877 }
3878 break;
3879 }
3880
3881 default:
3882 nir_emit_intrinsic(bld, instr);
3883 break;
3884 }
3885 }
3886
3887 static fs_reg
3888 brw_nir_reduction_op_identity(const fs_builder &bld,
3889 nir_op op, brw_reg_type type)
3890 {
3891 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3892 switch (type_sz(type)) {
3893 case 1:
3894 if (type == BRW_REGISTER_TYPE_UB) {
3895 return brw_imm_uw(value.u8);
3896 } else {
3897 assert(type == BRW_REGISTER_TYPE_B);
3898 return brw_imm_w(value.i8);
3899 }
3900 case 2:
3901 return retype(brw_imm_uw(value.u16), type);
3902 case 4:
3903 return retype(brw_imm_ud(value.u32), type);
3904 case 8:
3905 if (type == BRW_REGISTER_TYPE_DF)
3906 return setup_imm_df(bld, value.f64);
3907 else
3908 return retype(brw_imm_u64(value.u64), type);
3909 default:
3910 unreachable("Invalid type size");
3911 }
3912 }
3913
3914 static opcode
3915 brw_op_for_nir_reduction_op(nir_op op)
3916 {
3917 switch (op) {
3918 case nir_op_iadd: return BRW_OPCODE_ADD;
3919 case nir_op_fadd: return BRW_OPCODE_ADD;
3920 case nir_op_imul: return BRW_OPCODE_MUL;
3921 case nir_op_fmul: return BRW_OPCODE_MUL;
3922 case nir_op_imin: return BRW_OPCODE_SEL;
3923 case nir_op_umin: return BRW_OPCODE_SEL;
3924 case nir_op_fmin: return BRW_OPCODE_SEL;
3925 case nir_op_imax: return BRW_OPCODE_SEL;
3926 case nir_op_umax: return BRW_OPCODE_SEL;
3927 case nir_op_fmax: return BRW_OPCODE_SEL;
3928 case nir_op_iand: return BRW_OPCODE_AND;
3929 case nir_op_ior: return BRW_OPCODE_OR;
3930 case nir_op_ixor: return BRW_OPCODE_XOR;
3931 default:
3932 unreachable("Invalid reduction operation");
3933 }
3934 }
3935
3936 static brw_conditional_mod
3937 brw_cond_mod_for_nir_reduction_op(nir_op op)
3938 {
3939 switch (op) {
3940 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3941 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3942 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3943 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3944 case nir_op_imin: return BRW_CONDITIONAL_L;
3945 case nir_op_umin: return BRW_CONDITIONAL_L;
3946 case nir_op_fmin: return BRW_CONDITIONAL_L;
3947 case nir_op_imax: return BRW_CONDITIONAL_GE;
3948 case nir_op_umax: return BRW_CONDITIONAL_GE;
3949 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3950 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3951 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3952 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3953 default:
3954 unreachable("Invalid reduction operation");
3955 }
3956 }
3957
3958 fs_reg
3959 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3960 nir_intrinsic_instr *instr)
3961 {
3962 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3963 fs_reg surf_index = image;
3964
3965 if (stage_prog_data->binding_table.image_start > 0) {
3966 if (image.file == BRW_IMMEDIATE_VALUE) {
3967 surf_index =
3968 brw_imm_ud(image.d + stage_prog_data->binding_table.image_start);
3969 } else {
3970 surf_index = vgrf(glsl_type::uint_type);
3971 bld.ADD(surf_index, image,
3972 brw_imm_d(stage_prog_data->binding_table.image_start));
3973 }
3974 }
3975
3976 return bld.emit_uniformize(surf_index);
3977 }
3978
3979 fs_reg
3980 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3981 nir_intrinsic_instr *instr)
3982 {
3983 /* SSBO stores are weird in that their index is in src[1] */
3984 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3985
3986 fs_reg surf_index;
3987 if (nir_src_is_const(instr->src[src])) {
3988 unsigned index = stage_prog_data->binding_table.ssbo_start +
3989 nir_src_as_uint(instr->src[src]);
3990 surf_index = brw_imm_ud(index);
3991 } else {
3992 surf_index = vgrf(glsl_type::uint_type);
3993 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3994 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3995 }
3996
3997 return bld.emit_uniformize(surf_index);
3998 }
3999
4000 /**
4001 * The offsets we get from NIR act as if each SIMD channel has it's own blob
4002 * of contiguous space. However, if we actually place each SIMD channel in
4003 * it's own space, we end up with terrible cache performance because each SIMD
4004 * channel accesses a different cache line even when they're all accessing the
4005 * same byte offset. To deal with this problem, we swizzle the address using
4006 * a simple algorithm which ensures that any time a SIMD message reads or
4007 * writes the same address, it's all in the same cache line. We have to keep
4008 * the bottom two bits fixed so that we can read/write up to a dword at a time
4009 * and the individual element is contiguous. We do this by splitting the
4010 * address as follows:
4011 *
4012 * 31 4-6 2 0
4013 * +-------------------------------+------------+----------+
4014 * | Hi address bits | chan index | addr low |
4015 * +-------------------------------+------------+----------+
4016 *
4017 * In other words, the bottom two address bits stay, and the top 30 get
4018 * shifted up so that we can stick the SIMD channel index in the middle. This
4019 * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4020 * at the same logical offset, the scratch read/write instruction acts on
4021 * continuous elements and we get good cache locality.
4022 */
4023 fs_reg
4024 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4025 const fs_reg &nir_addr,
4026 bool in_dwords)
4027 {
4028 const fs_reg &chan_index =
4029 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4030 const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4031
4032 fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4033 if (in_dwords) {
4034 /* In this case, we know the address is aligned to a DWORD and we want
4035 * the final address in DWORDs.
4036 */
4037 bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4038 bld.OR(addr, addr, chan_index);
4039 } else {
4040 /* This case substantially more annoying because we have to pay
4041 * attention to those pesky two bottom bits.
4042 */
4043 fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4044 bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4045 bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4046 fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4047 bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4048 bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4049 bld.OR(addr, addr, addr_hi);
4050 bld.OR(addr, addr, chan_addr);
4051 }
4052 return addr;
4053 }
4054
4055 void
4056 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4057 {
4058 fs_reg dest;
4059 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4060 dest = get_nir_dest(instr->dest);
4061
4062 switch (instr->intrinsic) {
4063 case nir_intrinsic_image_load:
4064 case nir_intrinsic_image_store:
4065 case nir_intrinsic_image_atomic_add:
4066 case nir_intrinsic_image_atomic_imin:
4067 case nir_intrinsic_image_atomic_umin:
4068 case nir_intrinsic_image_atomic_imax:
4069 case nir_intrinsic_image_atomic_umax:
4070 case nir_intrinsic_image_atomic_and:
4071 case nir_intrinsic_image_atomic_or:
4072 case nir_intrinsic_image_atomic_xor:
4073 case nir_intrinsic_image_atomic_exchange:
4074 case nir_intrinsic_image_atomic_comp_swap:
4075 case nir_intrinsic_bindless_image_load:
4076 case nir_intrinsic_bindless_image_store:
4077 case nir_intrinsic_bindless_image_atomic_add:
4078 case nir_intrinsic_bindless_image_atomic_imin:
4079 case nir_intrinsic_bindless_image_atomic_umin:
4080 case nir_intrinsic_bindless_image_atomic_imax:
4081 case nir_intrinsic_bindless_image_atomic_umax:
4082 case nir_intrinsic_bindless_image_atomic_and:
4083 case nir_intrinsic_bindless_image_atomic_or:
4084 case nir_intrinsic_bindless_image_atomic_xor:
4085 case nir_intrinsic_bindless_image_atomic_exchange:
4086 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4087 /* Get some metadata from the image intrinsic. */
4088 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4089
4090 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4091
4092 switch (instr->intrinsic) {
4093 case nir_intrinsic_image_load:
4094 case nir_intrinsic_image_store:
4095 case nir_intrinsic_image_atomic_add:
4096 case nir_intrinsic_image_atomic_imin:
4097 case nir_intrinsic_image_atomic_umin:
4098 case nir_intrinsic_image_atomic_imax:
4099 case nir_intrinsic_image_atomic_umax:
4100 case nir_intrinsic_image_atomic_and:
4101 case nir_intrinsic_image_atomic_or:
4102 case nir_intrinsic_image_atomic_xor:
4103 case nir_intrinsic_image_atomic_exchange:
4104 case nir_intrinsic_image_atomic_comp_swap:
4105 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4106 get_nir_image_intrinsic_image(bld, instr);
4107 break;
4108
4109 default:
4110 /* Bindless */
4111 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4112 bld.emit_uniformize(get_nir_src(instr->src[0]));
4113 break;
4114 }
4115
4116 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4117 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4118 brw_imm_ud(nir_image_intrinsic_coord_components(instr));
4119
4120 /* Emit an image load, store or atomic op. */
4121 if (instr->intrinsic == nir_intrinsic_image_load ||
4122 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4123 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4124 fs_inst *inst =
4125 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4126 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4127 inst->size_written = instr->num_components * dispatch_width * 4;
4128 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4129 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4130 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4131 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4132 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4133 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4134 } else {
4135 unsigned num_srcs = info->num_srcs;
4136 int op = brw_aop_for_nir_intrinsic(instr);
4137 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4138 assert(num_srcs == 4);
4139 num_srcs = 3;
4140 }
4141
4142 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4143
4144 fs_reg data;
4145 if (num_srcs >= 4)
4146 data = get_nir_src(instr->src[3]);
4147 if (num_srcs >= 5) {
4148 fs_reg tmp = bld.vgrf(data.type, 2);
4149 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4150 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4151 data = tmp;
4152 }
4153 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4154
4155 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4156 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4157 }
4158 break;
4159 }
4160
4161 case nir_intrinsic_image_size:
4162 case nir_intrinsic_bindless_image_size: {
4163 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4164 * into will handle the binding table index for us in the geneerator.
4165 * Incidentally, this means that we can handle bindless with exactly the
4166 * same code.
4167 */
4168 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4169 BRW_REGISTER_TYPE_UD);
4170 image = bld.emit_uniformize(image);
4171
4172 assert(nir_src_as_uint(instr->src[1]) == 0);
4173
4174 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4175 if (instr->intrinsic == nir_intrinsic_image_size)
4176 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4177 else
4178 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4179 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4180 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4181 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4182
4183 /* Since the image size is always uniform, we can just emit a SIMD8
4184 * query instruction and splat the result out.
4185 */
4186 const fs_builder ubld = bld.exec_all().group(8, 0);
4187
4188 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4189 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4190 tmp, srcs, ARRAY_SIZE(srcs));
4191 inst->size_written = 4 * REG_SIZE;
4192
4193 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4194 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4195 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4196 offset(retype(dest, tmp.type), bld, c),
4197 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4198 } else {
4199 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4200 component(offset(tmp, ubld, c), 0));
4201 }
4202 }
4203 break;
4204 }
4205
4206 case nir_intrinsic_image_load_raw_intel: {
4207 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4208 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4209 get_nir_image_intrinsic_image(bld, instr);
4210 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4211 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4212 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4213
4214 fs_inst *inst =
4215 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4216 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4217 inst->size_written = instr->num_components * dispatch_width * 4;
4218 break;
4219 }
4220
4221 case nir_intrinsic_image_store_raw_intel: {
4222 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4223 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4224 get_nir_image_intrinsic_image(bld, instr);
4225 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4226 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4227 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4228 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4229
4230 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4231 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4232 break;
4233 }
4234
4235 case nir_intrinsic_scoped_barrier:
4236 assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
4237 /* Fall through. */
4238 case nir_intrinsic_group_memory_barrier:
4239 case nir_intrinsic_memory_barrier_shared:
4240 case nir_intrinsic_memory_barrier_buffer:
4241 case nir_intrinsic_memory_barrier_image:
4242 case nir_intrinsic_memory_barrier:
4243 case nir_intrinsic_begin_invocation_interlock:
4244 case nir_intrinsic_end_invocation_interlock: {
4245 bool l3_fence, slm_fence;
4246 const enum opcode opcode =
4247 instr->intrinsic == nir_intrinsic_begin_invocation_interlock ?
4248 SHADER_OPCODE_INTERLOCK : SHADER_OPCODE_MEMORY_FENCE;
4249
4250 switch (instr->intrinsic) {
4251 case nir_intrinsic_scoped_barrier: {
4252 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4253 l3_fence = modes & (nir_var_shader_out |
4254 nir_var_mem_ssbo |
4255 nir_var_mem_global);
4256 slm_fence = modes & nir_var_mem_shared;
4257 break;
4258 }
4259
4260 case nir_intrinsic_begin_invocation_interlock:
4261 case nir_intrinsic_end_invocation_interlock:
4262 /* For beginInvocationInterlockARB(), we will generate a memory fence
4263 * but with a different opcode so that generator can pick SENDC
4264 * instead of SEND.
4265 *
4266 * For endInvocationInterlockARB(), we need to insert a memory fence which
4267 * stalls in the shader until the memory transactions prior to that
4268 * fence are complete. This ensures that the shader does not end before
4269 * any writes from its critical section have landed. Otherwise, you can
4270 * end up with a case where the next invocation on that pixel properly
4271 * stalls for previous FS invocation on its pixel to complete but
4272 * doesn't actually wait for the dataport memory transactions from that
4273 * thread to land before submitting its own.
4274 *
4275 * Handling them here will allow the logic for IVB render cache (see
4276 * below) to be reused.
4277 */
4278 l3_fence = true;
4279 slm_fence = false;
4280 break;
4281
4282 default:
4283 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4284 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4285 instr->intrinsic == nir_intrinsic_memory_barrier ||
4286 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4287 break;
4288 }
4289
4290 if (stage != MESA_SHADER_COMPUTE && stage != MESA_SHADER_KERNEL)
4291 slm_fence = false;
4292
4293 /* If the workgroup fits in a single HW thread, the messages for SLM are
4294 * processed in-order and the shader itself is already synchronized so
4295 * the memory fence is not necessary.
4296 *
4297 * TODO: Check if applies for many HW threads sharing same Data Port.
4298 */
4299 if (!nir->info.cs.local_size_variable &&
4300 slm_fence && workgroup_size() <= dispatch_width)
4301 slm_fence = false;
4302
4303 /* Prior to Gen11, there's only L3 fence, so emit that instead. */
4304 if (slm_fence && devinfo->gen < 11) {
4305 slm_fence = false;
4306 l3_fence = true;
4307 }
4308
4309 /* IVB does typed surface access through the render cache, so we need
4310 * to flush it too.
4311 */
4312 const bool needs_render_fence =
4313 devinfo->gen == 7 && !devinfo->is_haswell;
4314
4315 /* Be conservative in Gen11+ and always stall in a fence. Since there
4316 * are two different fences, and shader might want to synchronize
4317 * between them.
4318 *
4319 * TODO: Use scope and visibility information for the barriers from NIR
4320 * to make a better decision on whether we need to stall.
4321 */
4322 const bool stall = devinfo->gen >= 11 || needs_render_fence ||
4323 instr->intrinsic == nir_intrinsic_end_invocation_interlock;
4324
4325 const bool commit_enable = stall ||
4326 devinfo->gen >= 10; /* HSD ES # 1404612949 */
4327
4328 unsigned fence_regs_count = 0;
4329 fs_reg fence_regs[2] = {};
4330
4331 const fs_builder ubld = bld.group(8, 0);
4332
4333 if (l3_fence) {
4334 fs_inst *fence =
4335 ubld.emit(opcode,
4336 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4337 brw_vec8_grf(0, 0),
4338 brw_imm_ud(commit_enable),
4339 brw_imm_ud(/* bti */ 0));
4340 fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4341
4342 fence_regs[fence_regs_count++] = fence->dst;
4343
4344 if (needs_render_fence) {
4345 fs_inst *render_fence =
4346 ubld.emit(opcode,
4347 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4348 brw_vec8_grf(0, 0),
4349 brw_imm_ud(commit_enable),
4350 brw_imm_ud(/* bti */ 0));
4351 render_fence->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4352
4353 fence_regs[fence_regs_count++] = render_fence->dst;
4354 }
4355 }
4356
4357 if (slm_fence) {
4358 assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4359 fs_inst *fence =
4360 ubld.emit(opcode,
4361 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4362 brw_vec8_grf(0, 0),
4363 brw_imm_ud(commit_enable),
4364 brw_imm_ud(GEN7_BTI_SLM));
4365 fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4366
4367 fence_regs[fence_regs_count++] = fence->dst;
4368 }
4369
4370 assert(fence_regs_count <= 2);
4371
4372 if (stall || fence_regs_count == 0) {
4373 ubld.exec_all().group(1, 0).emit(
4374 FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(),
4375 fence_regs, fence_regs_count);
4376 }
4377
4378 break;
4379 }
4380
4381 case nir_intrinsic_memory_barrier_tcs_patch:
4382 break;
4383
4384 case nir_intrinsic_shader_clock: {
4385 /* We cannot do anything if there is an event, so ignore it for now */
4386 const fs_reg shader_clock = get_timestamp(bld);
4387 const fs_reg srcs[] = { component(shader_clock, 0),
4388 component(shader_clock, 1) };
4389 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4390 break;
4391 }
4392
4393 case nir_intrinsic_image_samples:
4394 /* The driver does not support multi-sampled images. */
4395 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4396 break;
4397
4398 case nir_intrinsic_load_reloc_const_intel: {
4399 uint32_t id = nir_intrinsic_param_idx(instr);
4400 bld.emit(SHADER_OPCODE_MOV_RELOC_IMM,
4401 dest, brw_imm_ud(id));
4402 break;
4403 }
4404
4405 case nir_intrinsic_load_uniform: {
4406 /* Offsets are in bytes but they should always aligned to
4407 * the type size
4408 */
4409 assert(instr->const_index[0] % 4 == 0 ||
4410 instr->const_index[0] % type_sz(dest.type) == 0);
4411
4412 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4413
4414 if (nir_src_is_const(instr->src[0])) {
4415 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4416 assert(load_offset % type_sz(dest.type) == 0);
4417 /* For 16-bit types we add the module of the const_index[0]
4418 * offset to access to not 32-bit aligned element
4419 */
4420 src.offset = load_offset + instr->const_index[0] % 4;
4421
4422 for (unsigned j = 0; j < instr->num_components; j++) {
4423 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4424 }
4425 } else {
4426 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4427 BRW_REGISTER_TYPE_UD);
4428
4429 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4430 * go past the end of the uniform. In order to keep the n'th
4431 * component from running past, we subtract off the size of all but
4432 * one component of the vector.
4433 */
4434 assert(instr->const_index[1] >=
4435 instr->num_components * (int) type_sz(dest.type));
4436 unsigned read_size = instr->const_index[1] -
4437 (instr->num_components - 1) * type_sz(dest.type);
4438
4439 bool supports_64bit_indirects =
4440 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4441
4442 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4443 for (unsigned j = 0; j < instr->num_components; j++) {
4444 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4445 offset(dest, bld, j), offset(src, bld, j),
4446 indirect, brw_imm_ud(read_size));
4447 }
4448 } else {
4449 const unsigned num_mov_indirects =
4450 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4451 /* We read a little bit less per MOV INDIRECT, as they are now
4452 * 32-bits ones instead of 64-bit. Fix read_size then.
4453 */
4454 const unsigned read_size_32bit = read_size -
4455 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4456 for (unsigned j = 0; j < instr->num_components; j++) {
4457 for (unsigned i = 0; i < num_mov_indirects; i++) {
4458 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4459 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4460 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4461 indirect, brw_imm_ud(read_size_32bit));
4462 }
4463 }
4464 }
4465 }
4466 break;
4467 }
4468
4469 case nir_intrinsic_load_ubo: {
4470 fs_reg surf_index;
4471 if (nir_src_is_const(instr->src[0])) {
4472 const unsigned index = stage_prog_data->binding_table.ubo_start +
4473 nir_src_as_uint(instr->src[0]);
4474 surf_index = brw_imm_ud(index);
4475 } else {
4476 /* The block index is not a constant. Evaluate the index expression
4477 * per-channel and add the base UBO index; we have to select a value
4478 * from any live channel.
4479 */
4480 surf_index = vgrf(glsl_type::uint_type);
4481 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4482 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4483 surf_index = bld.emit_uniformize(surf_index);
4484 }
4485
4486 if (!nir_src_is_const(instr->src[1])) {
4487 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4488 BRW_REGISTER_TYPE_UD);
4489
4490 for (int i = 0; i < instr->num_components; i++)
4491 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4492 base_offset, i * type_sz(dest.type));
4493
4494 prog_data->has_ubo_pull = true;
4495 } else {
4496 /* Even if we are loading doubles, a pull constant load will load
4497 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4498 * need to load a full dvec4 we will have to emit 2 loads. This is
4499 * similar to demote_pull_constants(), except that in that case we
4500 * see individual accesses to each component of the vector and then
4501 * we let CSE deal with duplicate loads. Here we see a vector access
4502 * and we have to split it if necessary.
4503 */
4504 const unsigned type_size = type_sz(dest.type);
4505 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4506
4507 /* See if we've selected this as a push constant candidate */
4508 if (nir_src_is_const(instr->src[0])) {
4509 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4510 const unsigned offset_256b = load_offset / 32;
4511
4512 fs_reg push_reg;
4513 for (int i = 0; i < 4; i++) {
4514 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4515 if (range->block == ubo_block &&
4516 offset_256b >= range->start &&
4517 offset_256b < range->start + range->length) {
4518
4519 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4520 push_reg.offset = load_offset - 32 * range->start;
4521 break;
4522 }
4523 }
4524
4525 if (push_reg.file != BAD_FILE) {
4526 for (unsigned i = 0; i < instr->num_components; i++) {
4527 bld.MOV(offset(dest, bld, i),
4528 byte_offset(push_reg, i * type_size));
4529 }
4530 break;
4531 }
4532 }
4533
4534 prog_data->has_ubo_pull = true;
4535
4536 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4537 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4538 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4539
4540 for (unsigned c = 0; c < instr->num_components;) {
4541 const unsigned base = load_offset + c * type_size;
4542 /* Number of usable components in the next block-aligned load. */
4543 const unsigned count = MIN2(instr->num_components - c,
4544 (block_sz - base % block_sz) / type_size);
4545
4546 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4547 packed_consts, surf_index,
4548 brw_imm_ud(base & ~(block_sz - 1)));
4549
4550 const fs_reg consts =
4551 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4552 dest.type);
4553
4554 for (unsigned d = 0; d < count; d++)
4555 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4556
4557 c += count;
4558 }
4559 }
4560 break;
4561 }
4562
4563 case nir_intrinsic_load_global:
4564 case nir_intrinsic_load_global_constant: {
4565 assert(devinfo->gen >= 8);
4566
4567 assert(nir_dest_bit_size(instr->dest) <= 32);
4568 assert(nir_intrinsic_align(instr) > 0);
4569 if (nir_dest_bit_size(instr->dest) == 32 &&
4570 nir_intrinsic_align(instr) >= 4) {
4571 assert(nir_dest_num_components(instr->dest) <= 4);
4572 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4573 dest,
4574 get_nir_src(instr->src[0]), /* Address */
4575 fs_reg(), /* No source data */
4576 brw_imm_ud(instr->num_components));
4577 inst->size_written = instr->num_components *
4578 inst->dst.component_size(inst->exec_size);
4579 } else {
4580 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4581 assert(nir_dest_num_components(instr->dest) == 1);
4582 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4583 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4584 tmp,
4585 get_nir_src(instr->src[0]), /* Address */
4586 fs_reg(), /* No source data */
4587 brw_imm_ud(bit_size));
4588 bld.MOV(dest, subscript(tmp, dest.type, 0));
4589 }
4590 break;
4591 }
4592
4593 case nir_intrinsic_store_global:
4594 assert(devinfo->gen >= 8);
4595
4596 assert(nir_src_bit_size(instr->src[0]) <= 32);
4597 assert(nir_intrinsic_write_mask(instr) ==
4598 (1u << instr->num_components) - 1);
4599 assert(nir_intrinsic_align(instr) > 0);
4600 if (nir_src_bit_size(instr->src[0]) == 32 &&
4601 nir_intrinsic_align(instr) >= 4) {
4602 assert(nir_src_num_components(instr->src[0]) <= 4);
4603 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4604 fs_reg(),
4605 get_nir_src(instr->src[1]), /* Address */
4606 get_nir_src(instr->src[0]), /* Data */
4607 brw_imm_ud(instr->num_components));
4608 } else {
4609 assert(nir_src_num_components(instr->src[0]) == 1);
4610 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4611 brw_reg_type data_type =
4612 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4613 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4614 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4615 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4616 fs_reg(),
4617 get_nir_src(instr->src[1]), /* Address */
4618 tmp, /* Data */
4619 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4620 }
4621 break;
4622
4623 case nir_intrinsic_global_atomic_add:
4624 case nir_intrinsic_global_atomic_imin:
4625 case nir_intrinsic_global_atomic_umin:
4626 case nir_intrinsic_global_atomic_imax:
4627 case nir_intrinsic_global_atomic_umax:
4628 case nir_intrinsic_global_atomic_and:
4629 case nir_intrinsic_global_atomic_or:
4630 case nir_intrinsic_global_atomic_xor:
4631 case nir_intrinsic_global_atomic_exchange:
4632 case nir_intrinsic_global_atomic_comp_swap:
4633 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4634 break;
4635 case nir_intrinsic_global_atomic_fmin:
4636 case nir_intrinsic_global_atomic_fmax:
4637 case nir_intrinsic_global_atomic_fcomp_swap:
4638 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4639 break;
4640
4641 case nir_intrinsic_load_ssbo: {
4642 assert(devinfo->gen >= 7);
4643
4644 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4645 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4646 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4647 get_nir_ssbo_intrinsic_index(bld, instr);
4648 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4649 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4650
4651 /* Make dest unsigned because that's what the temporary will be */
4652 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4653
4654 /* Read the vector */
4655 assert(nir_dest_bit_size(instr->dest) <= 32);
4656 assert(nir_intrinsic_align(instr) > 0);
4657 if (nir_dest_bit_size(instr->dest) == 32 &&
4658 nir_intrinsic_align(instr) >= 4) {
4659 assert(nir_dest_num_components(instr->dest) <= 4);
4660 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4661 fs_inst *inst =
4662 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4663 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4664 inst->size_written = instr->num_components * dispatch_width * 4;
4665 } else {
4666 assert(nir_dest_num_components(instr->dest) == 1);
4667 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4668
4669 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4670 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4671 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4672 bld.MOV(dest, subscript(read_result, dest.type, 0));
4673 }
4674 break;
4675 }
4676
4677 case nir_intrinsic_store_ssbo: {
4678 assert(devinfo->gen >= 7);
4679
4680 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4681 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4682 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4683 get_nir_ssbo_intrinsic_index(bld, instr);
4684 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4685 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4686
4687 fs_reg data = get_nir_src(instr->src[0]);
4688 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4689
4690 assert(nir_src_bit_size(instr->src[0]) <= 32);
4691 assert(nir_intrinsic_write_mask(instr) ==
4692 (1u << instr->num_components) - 1);
4693 assert(nir_intrinsic_align(instr) > 0);
4694 if (nir_src_bit_size(instr->src[0]) == 32 &&
4695 nir_intrinsic_align(instr) >= 4) {
4696 assert(nir_src_num_components(instr->src[0]) <= 4);
4697 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4698 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4699 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4700 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4701 } else {
4702 assert(nir_src_num_components(instr->src[0]) == 1);
4703 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4704
4705 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4706 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4707
4708 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4709 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4710 }
4711 break;
4712 }
4713
4714 case nir_intrinsic_store_output: {
4715 assert(nir_src_bit_size(instr->src[0]) == 32);
4716 fs_reg src = get_nir_src(instr->src[0]);
4717
4718 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4719 unsigned num_components = instr->num_components;
4720 unsigned first_component = nir_intrinsic_component(instr);
4721
4722 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4723 4 * store_offset), src.type);
4724 for (unsigned j = 0; j < num_components; j++) {
4725 bld.MOV(offset(new_dest, bld, j + first_component),
4726 offset(src, bld, j));
4727 }
4728 break;
4729 }
4730
4731 case nir_intrinsic_ssbo_atomic_add:
4732 case nir_intrinsic_ssbo_atomic_imin:
4733 case nir_intrinsic_ssbo_atomic_umin:
4734 case nir_intrinsic_ssbo_atomic_imax:
4735 case nir_intrinsic_ssbo_atomic_umax:
4736 case nir_intrinsic_ssbo_atomic_and:
4737 case nir_intrinsic_ssbo_atomic_or:
4738 case nir_intrinsic_ssbo_atomic_xor:
4739 case nir_intrinsic_ssbo_atomic_exchange:
4740 case nir_intrinsic_ssbo_atomic_comp_swap:
4741 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4742 break;
4743 case nir_intrinsic_ssbo_atomic_fmin:
4744 case nir_intrinsic_ssbo_atomic_fmax:
4745 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4746 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4747 break;
4748
4749 case nir_intrinsic_get_buffer_size: {
4750 assert(nir_src_num_components(instr->src[0]) == 1);
4751 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4752 nir_src_as_uint(instr->src[0]) : 0;
4753
4754 /* A resinfo's sampler message is used to get the buffer size. The
4755 * SIMD8's writeback message consists of four registers and SIMD16's
4756 * writeback message consists of 8 destination registers (two per each
4757 * component). Because we are only interested on the first channel of
4758 * the first returned component, where resinfo returns the buffer size
4759 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4760 * the dispatch width.
4761 */
4762 const fs_builder ubld = bld.exec_all().group(8, 0);
4763 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4764 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4765
4766 /* Set LOD = 0 */
4767 ubld.MOV(src_payload, brw_imm_d(0));
4768
4769 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4770 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4771 src_payload, brw_imm_ud(index));
4772 inst->header_size = 0;
4773 inst->mlen = 1;
4774 inst->size_written = 4 * REG_SIZE;
4775
4776 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4777 *
4778 * "Out-of-bounds checking is always performed at a DWord granularity. If
4779 * any part of the DWord is out-of-bounds then the whole DWord is
4780 * considered out-of-bounds."
4781 *
4782 * This implies that types with size smaller than 4-bytes need to be
4783 * padded if they don't complete the last dword of the buffer. But as we
4784 * need to maintain the original size we need to reverse the padding
4785 * calculation to return the correct size to know the number of elements
4786 * of an unsized array. As we stored in the last two bits of the surface
4787 * size the needed padding for the buffer, we calculate here the
4788 * original buffer_size reversing the surface_size calculation:
4789 *
4790 * surface_size = isl_align(buffer_size, 4) +
4791 * (isl_align(buffer_size) - buffer_size)
4792 *
4793 * buffer_size = surface_size & ~3 - surface_size & 3
4794 */
4795
4796 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4797 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4798 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4799
4800 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4801 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4802 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4803
4804 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4805 break;
4806 }
4807
4808 case nir_intrinsic_load_scratch: {
4809 assert(devinfo->gen >= 7);
4810
4811 assert(nir_dest_num_components(instr->dest) == 1);
4812 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4813 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4814
4815 if (devinfo->gen >= 8) {
4816 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4817 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4818 } else {
4819 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4820 }
4821
4822 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4823 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4824 const fs_reg nir_addr = get_nir_src(instr->src[0]);
4825
4826 /* Make dest unsigned because that's what the temporary will be */
4827 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4828
4829 /* Read the vector */
4830 assert(nir_dest_num_components(instr->dest) == 1);
4831 assert(nir_dest_bit_size(instr->dest) <= 32);
4832 assert(nir_intrinsic_align(instr) > 0);
4833 if (nir_dest_bit_size(instr->dest) >= 4 &&
4834 nir_intrinsic_align(instr) >= 4) {
4835 /* The offset for a DWORD scattered message is in dwords. */
4836 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4837 swizzle_nir_scratch_addr(bld, nir_addr, true);
4838
4839 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
4840 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4841 } else {
4842 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4843 swizzle_nir_scratch_addr(bld, nir_addr, false);
4844
4845 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4846 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4847 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4848 bld.MOV(dest, read_result);
4849 }
4850 break;
4851 }
4852
4853 case nir_intrinsic_store_scratch: {
4854 assert(devinfo->gen >= 7);
4855
4856 assert(nir_src_num_components(instr->src[0]) == 1);
4857 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4858 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4859
4860 if (devinfo->gen >= 8) {
4861 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4862 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4863 } else {
4864 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4865 }
4866
4867 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4868 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4869 const fs_reg nir_addr = get_nir_src(instr->src[1]);
4870
4871 fs_reg data = get_nir_src(instr->src[0]);
4872 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4873
4874 assert(nir_src_num_components(instr->src[0]) == 1);
4875 assert(nir_src_bit_size(instr->src[0]) <= 32);
4876 assert(nir_intrinsic_write_mask(instr) == 1);
4877 assert(nir_intrinsic_align(instr) > 0);
4878 if (nir_src_bit_size(instr->src[0]) == 32 &&
4879 nir_intrinsic_align(instr) >= 4) {
4880 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4881
4882 /* The offset for a DWORD scattered message is in dwords. */
4883 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4884 swizzle_nir_scratch_addr(bld, nir_addr, true);
4885
4886 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
4887 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4888 } else {
4889 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4890 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4891
4892 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4893 swizzle_nir_scratch_addr(bld, nir_addr, false);
4894
4895 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4896 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4897 }
4898 break;
4899 }
4900
4901 case nir_intrinsic_load_subgroup_size:
4902 /* This should only happen for fragment shaders because every other case
4903 * is lowered in NIR so we can optimize on it.
4904 */
4905 assert(stage == MESA_SHADER_FRAGMENT);
4906 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4907 break;
4908
4909 case nir_intrinsic_load_subgroup_invocation:
4910 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4911 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4912 break;
4913
4914 case nir_intrinsic_load_subgroup_eq_mask:
4915 case nir_intrinsic_load_subgroup_ge_mask:
4916 case nir_intrinsic_load_subgroup_gt_mask:
4917 case nir_intrinsic_load_subgroup_le_mask:
4918 case nir_intrinsic_load_subgroup_lt_mask:
4919 unreachable("not reached");
4920
4921 case nir_intrinsic_vote_any: {
4922 const fs_builder ubld = bld.exec_all().group(1, 0);
4923
4924 /* The any/all predicates do not consider channel enables. To prevent
4925 * dead channels from affecting the result, we initialize the flag with
4926 * with the identity value for the logical operation.
4927 */
4928 if (dispatch_width == 32) {
4929 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4930 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4931 brw_imm_ud(0));
4932 } else {
4933 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4934 }
4935 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4936
4937 /* For some reason, the any/all predicates don't work properly with
4938 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4939 * doesn't read the correct subset of the flag register and you end up
4940 * getting garbage in the second half. Work around this by using a pair
4941 * of 1-wide MOVs and scattering the result.
4942 */
4943 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4944 ubld.MOV(res1, brw_imm_d(0));
4945 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4946 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4947 BRW_PREDICATE_ALIGN1_ANY32H,
4948 ubld.MOV(res1, brw_imm_d(-1)));
4949
4950 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4951 break;
4952 }
4953 case nir_intrinsic_vote_all: {
4954 const fs_builder ubld = bld.exec_all().group(1, 0);
4955
4956 /* The any/all predicates do not consider channel enables. To prevent
4957 * dead channels from affecting the result, we initialize the flag with
4958 * with the identity value for the logical operation.
4959 */
4960 if (dispatch_width == 32) {
4961 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4962 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4963 brw_imm_ud(0xffffffff));
4964 } else {
4965 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4966 }
4967 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4968
4969 /* For some reason, the any/all predicates don't work properly with
4970 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4971 * doesn't read the correct subset of the flag register and you end up
4972 * getting garbage in the second half. Work around this by using a pair
4973 * of 1-wide MOVs and scattering the result.
4974 */
4975 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4976 ubld.MOV(res1, brw_imm_d(0));
4977 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4978 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4979 BRW_PREDICATE_ALIGN1_ALL32H,
4980 ubld.MOV(res1, brw_imm_d(-1)));
4981
4982 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4983 break;
4984 }
4985 case nir_intrinsic_vote_feq:
4986 case nir_intrinsic_vote_ieq: {
4987 fs_reg value = get_nir_src(instr->src[0]);
4988 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4989 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4990 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4991 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4992 }
4993
4994 fs_reg uniformized = bld.emit_uniformize(value);
4995 const fs_builder ubld = bld.exec_all().group(1, 0);
4996
4997 /* The any/all predicates do not consider channel enables. To prevent
4998 * dead channels from affecting the result, we initialize the flag with
4999 * with the identity value for the logical operation.
5000 */
5001 if (dispatch_width == 32) {
5002 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5003 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5004 brw_imm_ud(0xffffffff));
5005 } else {
5006 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5007 }
5008 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5009
5010 /* For some reason, the any/all predicates don't work properly with
5011 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5012 * doesn't read the correct subset of the flag register and you end up
5013 * getting garbage in the second half. Work around this by using a pair
5014 * of 1-wide MOVs and scattering the result.
5015 */
5016 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5017 ubld.MOV(res1, brw_imm_d(0));
5018 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
5019 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5020 BRW_PREDICATE_ALIGN1_ALL32H,
5021 ubld.MOV(res1, brw_imm_d(-1)));
5022
5023 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5024 break;
5025 }
5026
5027 case nir_intrinsic_ballot: {
5028 const fs_reg value = retype(get_nir_src(instr->src[0]),
5029 BRW_REGISTER_TYPE_UD);
5030 struct brw_reg flag = brw_flag_reg(0, 0);
5031 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5032 * as f0.0. This is a problem for fragment programs as we currently use
5033 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
5034 * programs yet so this isn't a problem. When we do, something will
5035 * have to change.
5036 */
5037 if (dispatch_width == 32)
5038 flag.type = BRW_REGISTER_TYPE_UD;
5039
5040 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5041 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5042
5043 if (instr->dest.ssa.bit_size > 32) {
5044 dest.type = BRW_REGISTER_TYPE_UQ;
5045 } else {
5046 dest.type = BRW_REGISTER_TYPE_UD;
5047 }
5048 bld.MOV(dest, flag);
5049 break;
5050 }
5051
5052 case nir_intrinsic_read_invocation: {
5053 const fs_reg value = get_nir_src(instr->src[0]);
5054 const fs_reg invocation = get_nir_src(instr->src[1]);
5055 fs_reg tmp = bld.vgrf(value.type);
5056
5057 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5058 bld.emit_uniformize(invocation));
5059
5060 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5061 break;
5062 }
5063
5064 case nir_intrinsic_read_first_invocation: {
5065 const fs_reg value = get_nir_src(instr->src[0]);
5066 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5067 break;
5068 }
5069
5070 case nir_intrinsic_shuffle: {
5071 const fs_reg value = get_nir_src(instr->src[0]);
5072 const fs_reg index = get_nir_src(instr->src[1]);
5073
5074 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5075 break;
5076 }
5077
5078 case nir_intrinsic_first_invocation: {
5079 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5080 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5081 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5082 fs_reg(component(tmp, 0)));
5083 break;
5084 }
5085
5086 case nir_intrinsic_quad_broadcast: {
5087 const fs_reg value = get_nir_src(instr->src[0]);
5088 const unsigned index = nir_src_as_uint(instr->src[1]);
5089
5090 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5091 value, brw_imm_ud(index), brw_imm_ud(4));
5092 break;
5093 }
5094
5095 case nir_intrinsic_quad_swap_horizontal: {
5096 const fs_reg value = get_nir_src(instr->src[0]);
5097 const fs_reg tmp = bld.vgrf(value.type);
5098 if (devinfo->gen <= 7) {
5099 /* The hardware doesn't seem to support these crazy regions with
5100 * compressed instructions on gen7 and earlier so we fall back to
5101 * using quad swizzles. Fortunately, we don't support 64-bit
5102 * anything in Vulkan on gen7.
5103 */
5104 assert(nir_src_bit_size(instr->src[0]) == 32);
5105 const fs_builder ubld = bld.exec_all();
5106 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5107 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5108 bld.MOV(retype(dest, value.type), tmp);
5109 } else {
5110 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5111
5112 const fs_reg src_left = horiz_stride(value, 2);
5113 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5114 const fs_reg tmp_left = horiz_stride(tmp, 2);
5115 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5116
5117 ubld.MOV(tmp_left, src_right);
5118 ubld.MOV(tmp_right, src_left);
5119
5120 }
5121 bld.MOV(retype(dest, value.type), tmp);
5122 break;
5123 }
5124
5125 case nir_intrinsic_quad_swap_vertical: {
5126 const fs_reg value = get_nir_src(instr->src[0]);
5127 if (nir_src_bit_size(instr->src[0]) == 32) {
5128 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5129 const fs_reg tmp = bld.vgrf(value.type);
5130 const fs_builder ubld = bld.exec_all();
5131 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5132 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5133 bld.MOV(retype(dest, value.type), tmp);
5134 } else {
5135 /* For larger data types, we have to either emit dispatch_width many
5136 * MOVs or else fall back to doing indirects.
5137 */
5138 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5139 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5140 brw_imm_w(0x2));
5141 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5142 }
5143 break;
5144 }
5145
5146 case nir_intrinsic_quad_swap_diagonal: {
5147 const fs_reg value = get_nir_src(instr->src[0]);
5148 if (nir_src_bit_size(instr->src[0]) == 32) {
5149 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5150 const fs_reg tmp = bld.vgrf(value.type);
5151 const fs_builder ubld = bld.exec_all();
5152 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5153 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5154 bld.MOV(retype(dest, value.type), tmp);
5155 } else {
5156 /* For larger data types, we have to either emit dispatch_width many
5157 * MOVs or else fall back to doing indirects.
5158 */
5159 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5160 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5161 brw_imm_w(0x3));
5162 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5163 }
5164 break;
5165 }
5166
5167 case nir_intrinsic_reduce: {
5168 fs_reg src = get_nir_src(instr->src[0]);
5169 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5170 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5171 if (cluster_size == 0 || cluster_size > dispatch_width)
5172 cluster_size = dispatch_width;
5173
5174 /* Figure out the source type */
5175 src.type = brw_type_for_nir_type(devinfo,
5176 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5177 nir_src_bit_size(instr->src[0])));
5178
5179 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5180 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5181 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5182
5183 /* There are a couple of register region issues that make things
5184 * complicated for 8-bit types:
5185 *
5186 * 1. Only raw moves are allowed to write to a packed 8-bit
5187 * destination.
5188 * 2. If we use a strided destination, the efficient way to do scan
5189 * operations ends up using strides that are too big to encode in
5190 * an instruction.
5191 *
5192 * To get around these issues, we just do all 8-bit scan operations in
5193 * 16 bits. It's actually fewer instructions than what we'd have to do
5194 * if we were trying to do it in native 8-bit types and the results are
5195 * the same once we truncate to 8 bits at the end.
5196 */
5197 brw_reg_type scan_type = src.type;
5198 if (type_sz(scan_type) == 1)
5199 scan_type = brw_reg_type_from_bit_size(16, src.type);
5200
5201 /* Set up a register for all of our scratching around and initialize it
5202 * to reduction operation's identity value.
5203 */
5204 fs_reg scan = bld.vgrf(scan_type);
5205 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5206
5207 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5208
5209 dest.type = src.type;
5210 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5211 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5212 * the distance between clusters is at least 2 GRFs. In this case,
5213 * we don't need the weird striding of the CLUSTER_BROADCAST
5214 * instruction and can just do regular MOVs.
5215 */
5216 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5217 const unsigned groups =
5218 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5219 const unsigned group_size = dispatch_width / groups;
5220 for (unsigned i = 0; i < groups; i++) {
5221 const unsigned cluster = (i * group_size) / cluster_size;
5222 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5223 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5224 component(scan, comp));
5225 }
5226 } else {
5227 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5228 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5229 }
5230 break;
5231 }
5232
5233 case nir_intrinsic_inclusive_scan:
5234 case nir_intrinsic_exclusive_scan: {
5235 fs_reg src = get_nir_src(instr->src[0]);
5236 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5237
5238 /* Figure out the source type */
5239 src.type = brw_type_for_nir_type(devinfo,
5240 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5241 nir_src_bit_size(instr->src[0])));
5242
5243 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5244 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5245 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5246
5247 /* There are a couple of register region issues that make things
5248 * complicated for 8-bit types:
5249 *
5250 * 1. Only raw moves are allowed to write to a packed 8-bit
5251 * destination.
5252 * 2. If we use a strided destination, the efficient way to do scan
5253 * operations ends up using strides that are too big to encode in
5254 * an instruction.
5255 *
5256 * To get around these issues, we just do all 8-bit scan operations in
5257 * 16 bits. It's actually fewer instructions than what we'd have to do
5258 * if we were trying to do it in native 8-bit types and the results are
5259 * the same once we truncate to 8 bits at the end.
5260 */
5261 brw_reg_type scan_type = src.type;
5262 if (type_sz(scan_type) == 1)
5263 scan_type = brw_reg_type_from_bit_size(16, src.type);
5264
5265 /* Set up a register for all of our scratching around and initialize it
5266 * to reduction operation's identity value.
5267 */
5268 fs_reg scan = bld.vgrf(scan_type);
5269 const fs_builder allbld = bld.exec_all();
5270 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5271
5272 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5273 /* Exclusive scan is a bit harder because we have to do an annoying
5274 * shift of the contents before we can begin. To make things worse,
5275 * we can't do this with a normal stride; we have to use indirects.
5276 */
5277 fs_reg shifted = bld.vgrf(scan_type);
5278 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5279 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5280 brw_imm_w(-1));
5281 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5282 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5283 scan = shifted;
5284 }
5285
5286 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5287
5288 bld.MOV(retype(dest, src.type), scan);
5289 break;
5290 }
5291
5292 default:
5293 unreachable("unknown intrinsic");
5294 }
5295 }
5296
5297 void
5298 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5299 int op, nir_intrinsic_instr *instr)
5300 {
5301 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5302 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5303 * appear to exist. However, if you look at Vol 2a, there are no message
5304 * descriptors provided for Qword atomic ops except for A64 messages.
5305 */
5306 assert(nir_dest_bit_size(instr->dest) == 32);
5307
5308 fs_reg dest;
5309 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5310 dest = get_nir_dest(instr->dest);
5311
5312 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5313 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5314 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5315 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5316 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5317
5318 fs_reg data;
5319 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5320 data = get_nir_src(instr->src[2]);
5321
5322 if (op == BRW_AOP_CMPWR) {
5323 fs_reg tmp = bld.vgrf(data.type, 2);
5324 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5325 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5326 data = tmp;
5327 }
5328 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5329
5330 /* Emit the actual atomic operation */
5331
5332 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5333 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5334 }
5335
5336 void
5337 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5338 int op, nir_intrinsic_instr *instr)
5339 {
5340 fs_reg dest;
5341 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5342 dest = get_nir_dest(instr->dest);
5343
5344 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5345 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5346 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5347 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5348 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5349
5350 fs_reg data = get_nir_src(instr->src[2]);
5351 if (op == BRW_AOP_FCMPWR) {
5352 fs_reg tmp = bld.vgrf(data.type, 2);
5353 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5354 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5355 data = tmp;
5356 }
5357 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5358
5359 /* Emit the actual atomic operation */
5360
5361 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5362 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5363 }
5364
5365 void
5366 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5367 int op, nir_intrinsic_instr *instr)
5368 {
5369 fs_reg dest;
5370 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5371 dest = get_nir_dest(instr->dest);
5372
5373 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5374 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5375 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5376 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5377
5378 fs_reg data;
5379 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5380 data = get_nir_src(instr->src[1]);
5381 if (op == BRW_AOP_CMPWR) {
5382 fs_reg tmp = bld.vgrf(data.type, 2);
5383 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5384 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5385 data = tmp;
5386 }
5387 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5388
5389 /* Get the offset */
5390 if (nir_src_is_const(instr->src[0])) {
5391 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5392 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5393 } else {
5394 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5395 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5396 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5397 brw_imm_ud(instr->const_index[0]));
5398 }
5399
5400 /* Emit the actual atomic operation operation */
5401
5402 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5403 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5404 }
5405
5406 void
5407 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5408 int op, nir_intrinsic_instr *instr)
5409 {
5410 fs_reg dest;
5411 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5412 dest = get_nir_dest(instr->dest);
5413
5414 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5415 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5416 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5417 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5418
5419 fs_reg data = get_nir_src(instr->src[1]);
5420 if (op == BRW_AOP_FCMPWR) {
5421 fs_reg tmp = bld.vgrf(data.type, 2);
5422 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5423 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5424 data = tmp;
5425 }
5426 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5427
5428 /* Get the offset */
5429 if (nir_src_is_const(instr->src[0])) {
5430 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5431 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5432 } else {
5433 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5434 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5435 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5436 brw_imm_ud(instr->const_index[0]));
5437 }
5438
5439 /* Emit the actual atomic operation operation */
5440
5441 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5442 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5443 }
5444
5445 void
5446 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5447 int op, nir_intrinsic_instr *instr)
5448 {
5449 fs_reg dest;
5450 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5451 dest = get_nir_dest(instr->dest);
5452
5453 fs_reg addr = get_nir_src(instr->src[0]);
5454
5455 fs_reg data;
5456 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5457 data = get_nir_src(instr->src[1]);
5458
5459 if (op == BRW_AOP_CMPWR) {
5460 fs_reg tmp = bld.vgrf(data.type, 2);
5461 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5462 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5463 data = tmp;
5464 }
5465
5466 if (nir_dest_bit_size(instr->dest) == 64) {
5467 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5468 dest, addr, data, brw_imm_ud(op));
5469 } else {
5470 assert(nir_dest_bit_size(instr->dest) == 32);
5471 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5472 dest, addr, data, brw_imm_ud(op));
5473 }
5474 }
5475
5476 void
5477 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5478 int op, nir_intrinsic_instr *instr)
5479 {
5480 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5481 fs_reg dest = get_nir_dest(instr->dest);
5482
5483 fs_reg addr = get_nir_src(instr->src[0]);
5484
5485 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5486 fs_reg data = get_nir_src(instr->src[1]);
5487
5488 if (op == BRW_AOP_FCMPWR) {
5489 fs_reg tmp = bld.vgrf(data.type, 2);
5490 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5491 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5492 data = tmp;
5493 }
5494
5495 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5496 dest, addr, data, brw_imm_ud(op));
5497 }
5498
5499 void
5500 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5501 {
5502 unsigned texture = instr->texture_index;
5503 unsigned sampler = instr->sampler_index;
5504
5505 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5506
5507 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5508 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5509
5510 int lod_components = 0;
5511
5512 /* The hardware requires a LOD for buffer textures */
5513 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5514 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5515
5516 uint32_t header_bits = 0;
5517 for (unsigned i = 0; i < instr->num_srcs; i++) {
5518 fs_reg src = get_nir_src(instr->src[i].src);
5519 switch (instr->src[i].src_type) {
5520 case nir_tex_src_bias:
5521 srcs[TEX_LOGICAL_SRC_LOD] =
5522 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5523 break;
5524 case nir_tex_src_comparator:
5525 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5526 break;
5527 case nir_tex_src_coord:
5528 switch (instr->op) {
5529 case nir_texop_txf:
5530 case nir_texop_txf_ms:
5531 case nir_texop_txf_ms_mcs:
5532 case nir_texop_samples_identical:
5533 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5534 break;
5535 default:
5536 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5537 break;
5538 }
5539 break;
5540 case nir_tex_src_ddx:
5541 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5542 lod_components = nir_tex_instr_src_size(instr, i);
5543 break;
5544 case nir_tex_src_ddy:
5545 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5546 break;
5547 case nir_tex_src_lod:
5548 switch (instr->op) {
5549 case nir_texop_txs:
5550 srcs[TEX_LOGICAL_SRC_LOD] =
5551 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5552 break;
5553 case nir_texop_txf:
5554 srcs[TEX_LOGICAL_SRC_LOD] =
5555 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5556 break;
5557 default:
5558 srcs[TEX_LOGICAL_SRC_LOD] =
5559 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5560 break;
5561 }
5562 break;
5563 case nir_tex_src_min_lod:
5564 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5565 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5566 break;
5567 case nir_tex_src_ms_index:
5568 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5569 break;
5570
5571 case nir_tex_src_offset: {
5572 uint32_t offset_bits = 0;
5573 if (brw_texture_offset(instr, i, &offset_bits)) {
5574 header_bits |= offset_bits;
5575 } else {
5576 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5577 retype(src, BRW_REGISTER_TYPE_D);
5578 }
5579 break;
5580 }
5581
5582 case nir_tex_src_projector:
5583 unreachable("should be lowered");
5584
5585 case nir_tex_src_texture_offset: {
5586 /* Emit code to evaluate the actual indexing expression */
5587 fs_reg tmp = vgrf(glsl_type::uint_type);
5588 bld.ADD(tmp, src, brw_imm_ud(texture));
5589 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5590 break;
5591 }
5592
5593 case nir_tex_src_sampler_offset: {
5594 /* Emit code to evaluate the actual indexing expression */
5595 fs_reg tmp = vgrf(glsl_type::uint_type);
5596 bld.ADD(tmp, src, brw_imm_ud(sampler));
5597 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5598 break;
5599 }
5600
5601 case nir_tex_src_texture_handle:
5602 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5603 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5604 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5605 break;
5606
5607 case nir_tex_src_sampler_handle:
5608 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5609 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5610 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5611 break;
5612
5613 case nir_tex_src_ms_mcs:
5614 assert(instr->op == nir_texop_txf_ms);
5615 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5616 break;
5617
5618 case nir_tex_src_plane: {
5619 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5620 const uint32_t texture_index =
5621 instr->texture_index +
5622 stage_prog_data->binding_table.plane_start[plane] -
5623 stage_prog_data->binding_table.texture_start;
5624
5625 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5626 break;
5627 }
5628
5629 default:
5630 unreachable("unknown texture source");
5631 }
5632 }
5633
5634 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5635 (instr->op == nir_texop_txf_ms ||
5636 instr->op == nir_texop_samples_identical)) {
5637 if (devinfo->gen >= 7 &&
5638 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5639 srcs[TEX_LOGICAL_SRC_MCS] =
5640 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5641 instr->coord_components,
5642 srcs[TEX_LOGICAL_SRC_SURFACE],
5643 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5644 } else {
5645 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5646 }
5647 }
5648
5649 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5650 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5651
5652 enum opcode opcode;
5653 switch (instr->op) {
5654 case nir_texop_tex:
5655 opcode = SHADER_OPCODE_TEX_LOGICAL;
5656 break;
5657 case nir_texop_txb:
5658 opcode = FS_OPCODE_TXB_LOGICAL;
5659 break;
5660 case nir_texop_txl:
5661 opcode = SHADER_OPCODE_TXL_LOGICAL;
5662 break;
5663 case nir_texop_txd:
5664 opcode = SHADER_OPCODE_TXD_LOGICAL;
5665 break;
5666 case nir_texop_txf:
5667 opcode = SHADER_OPCODE_TXF_LOGICAL;
5668 break;
5669 case nir_texop_txf_ms:
5670 if ((key_tex->msaa_16 & (1 << sampler)))
5671 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5672 else
5673 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5674 break;
5675 case nir_texop_txf_ms_mcs:
5676 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5677 break;
5678 case nir_texop_query_levels:
5679 case nir_texop_txs:
5680 opcode = SHADER_OPCODE_TXS_LOGICAL;
5681 break;
5682 case nir_texop_lod:
5683 opcode = SHADER_OPCODE_LOD_LOGICAL;
5684 break;
5685 case nir_texop_tg4:
5686 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5687 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5688 else
5689 opcode = SHADER_OPCODE_TG4_LOGICAL;
5690 break;
5691 case nir_texop_texture_samples:
5692 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5693 break;
5694 case nir_texop_samples_identical: {
5695 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5696
5697 /* If mcs is an immediate value, it means there is no MCS. In that case
5698 * just return false.
5699 */
5700 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5701 bld.MOV(dst, brw_imm_ud(0u));
5702 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5703 fs_reg tmp = vgrf(glsl_type::uint_type);
5704 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5705 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5706 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5707 } else {
5708 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5709 BRW_CONDITIONAL_EQ);
5710 }
5711 return;
5712 }
5713 default:
5714 unreachable("unknown texture opcode");
5715 }
5716
5717 if (instr->op == nir_texop_tg4) {
5718 if (instr->component == 1 &&
5719 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5720 /* gather4 sampler is broken for green channel on RG32F --
5721 * we must ask for blue instead.
5722 */
5723 header_bits |= 2 << 16;
5724 } else {
5725 header_bits |= instr->component << 16;
5726 }
5727 }
5728
5729 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5730 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5731 inst->offset = header_bits;
5732
5733 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5734 if (devinfo->gen >= 9 &&
5735 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5736 unsigned write_mask = instr->dest.is_ssa ?
5737 nir_ssa_def_components_read(&instr->dest.ssa):
5738 (1 << dest_size) - 1;
5739 assert(write_mask != 0); /* dead code should have been eliminated */
5740 inst->size_written = util_last_bit(write_mask) *
5741 inst->dst.component_size(inst->exec_size);
5742 } else {
5743 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5744 }
5745
5746 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5747 inst->shadow_compare = true;
5748
5749 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5750 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5751
5752 fs_reg nir_dest[4];
5753 for (unsigned i = 0; i < dest_size; i++)
5754 nir_dest[i] = offset(dst, bld, i);
5755
5756 if (instr->op == nir_texop_query_levels) {
5757 /* # levels is in .w */
5758 nir_dest[0] = offset(dst, bld, 3);
5759 } else if (instr->op == nir_texop_txs &&
5760 dest_size >= 3 && devinfo->gen < 7) {
5761 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5762 fs_reg depth = offset(dst, bld, 2);
5763 nir_dest[2] = vgrf(glsl_type::int_type);
5764 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5765 }
5766
5767 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5768 }
5769
5770 void
5771 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5772 {
5773 switch (instr->type) {
5774 case nir_jump_break:
5775 bld.emit(BRW_OPCODE_BREAK);
5776 break;
5777 case nir_jump_continue:
5778 bld.emit(BRW_OPCODE_CONTINUE);
5779 break;
5780 case nir_jump_return:
5781 default:
5782 unreachable("unknown jump");
5783 }
5784 }
5785
5786 /*
5787 * This helper takes a source register and un/shuffles it into the destination
5788 * register.
5789 *
5790 * If source type size is smaller than destination type size the operation
5791 * needed is a component shuffle. The opposite case would be an unshuffle. If
5792 * source/destination type size is equal a shuffle is done that would be
5793 * equivalent to a simple MOV.
5794 *
5795 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5796 * components .xyz 16-bit vector on SIMD8 would be.
5797 *
5798 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5799 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5800 *
5801 * This helper will return the following 2 32-bit components with the 16-bit
5802 * values shuffled:
5803 *
5804 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5805 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5806 *
5807 * For unshuffle, the example would be the opposite, a 64-bit type source
5808 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5809 * would be:
5810 *
5811 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5812 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5813 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5814 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5815 *
5816 * The returned result would be the following 4 32-bit components unshuffled:
5817 *
5818 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5819 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5820 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5821 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5822 *
5823 * - Source and destination register must not be overlapped.
5824 * - components units are measured in terms of the smaller type between
5825 * source and destination because we are un/shuffling the smaller
5826 * components from/into the bigger ones.
5827 * - first_component parameter allows skipping source components.
5828 */
5829 void
5830 shuffle_src_to_dst(const fs_builder &bld,
5831 const fs_reg &dst,
5832 const fs_reg &src,
5833 uint32_t first_component,
5834 uint32_t components)
5835 {
5836 if (type_sz(src.type) == type_sz(dst.type)) {
5837 assert(!regions_overlap(dst,
5838 type_sz(dst.type) * bld.dispatch_width() * components,
5839 offset(src, bld, first_component),
5840 type_sz(src.type) * bld.dispatch_width() * components));
5841 for (unsigned i = 0; i < components; i++) {
5842 bld.MOV(retype(offset(dst, bld, i), src.type),
5843 offset(src, bld, i + first_component));
5844 }
5845 } else if (type_sz(src.type) < type_sz(dst.type)) {
5846 /* Source is shuffled into destination */
5847 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5848 assert(!regions_overlap(dst,
5849 type_sz(dst.type) * bld.dispatch_width() *
5850 DIV_ROUND_UP(components, size_ratio),
5851 offset(src, bld, first_component),
5852 type_sz(src.type) * bld.dispatch_width() * components));
5853
5854 brw_reg_type shuffle_type =
5855 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5856 BRW_REGISTER_TYPE_D);
5857 for (unsigned i = 0; i < components; i++) {
5858 fs_reg shuffle_component_i =
5859 subscript(offset(dst, bld, i / size_ratio),
5860 shuffle_type, i % size_ratio);
5861 bld.MOV(shuffle_component_i,
5862 retype(offset(src, bld, i + first_component), shuffle_type));
5863 }
5864 } else {
5865 /* Source is unshuffled into destination */
5866 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5867 assert(!regions_overlap(dst,
5868 type_sz(dst.type) * bld.dispatch_width() * components,
5869 offset(src, bld, first_component / size_ratio),
5870 type_sz(src.type) * bld.dispatch_width() *
5871 DIV_ROUND_UP(components + (first_component % size_ratio),
5872 size_ratio)));
5873
5874 brw_reg_type shuffle_type =
5875 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5876 BRW_REGISTER_TYPE_D);
5877 for (unsigned i = 0; i < components; i++) {
5878 fs_reg shuffle_component_i =
5879 subscript(offset(src, bld, (first_component + i) / size_ratio),
5880 shuffle_type, (first_component + i) % size_ratio);
5881 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5882 shuffle_component_i);
5883 }
5884 }
5885 }
5886
5887 void
5888 shuffle_from_32bit_read(const fs_builder &bld,
5889 const fs_reg &dst,
5890 const fs_reg &src,
5891 uint32_t first_component,
5892 uint32_t components)
5893 {
5894 assert(type_sz(src.type) == 4);
5895
5896 /* This function takes components in units of the destination type while
5897 * shuffle_src_to_dst takes components in units of the smallest type
5898 */
5899 if (type_sz(dst.type) > 4) {
5900 assert(type_sz(dst.type) == 8);
5901 first_component *= 2;
5902 components *= 2;
5903 }
5904
5905 shuffle_src_to_dst(bld, dst, src, first_component, components);
5906 }
5907
5908 fs_reg
5909 setup_imm_df(const fs_builder &bld, double v)
5910 {
5911 const struct gen_device_info *devinfo = bld.shader->devinfo;
5912 assert(devinfo->gen >= 7);
5913
5914 if (devinfo->gen >= 8)
5915 return brw_imm_df(v);
5916
5917 /* gen7.5 does not support DF immediates straighforward but the DIM
5918 * instruction allows to set the 64-bit immediate value.
5919 */
5920 if (devinfo->is_haswell) {
5921 const fs_builder ubld = bld.exec_all().group(1, 0);
5922 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5923 ubld.DIM(dst, brw_imm_df(v));
5924 return component(dst, 0);
5925 }
5926
5927 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5928 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5929 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5930 *
5931 * Alternatively, we could also produce a normal VGRF (without stride 0)
5932 * by writing to all the channels in the VGRF, however, that would hit the
5933 * gen7 bug where we have to split writes that span more than 1 register
5934 * into instructions with a width of 4 (otherwise the write to the second
5935 * register written runs into an execmask hardware bug) which isn't very
5936 * nice.
5937 */
5938 union {
5939 double d;
5940 struct {
5941 uint32_t i1;
5942 uint32_t i2;
5943 };
5944 } di;
5945
5946 di.d = v;
5947
5948 const fs_builder ubld = bld.exec_all().group(1, 0);
5949 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5950 ubld.MOV(tmp, brw_imm_ud(di.i1));
5951 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5952
5953 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5954 }
5955
5956 fs_reg
5957 setup_imm_b(const fs_builder &bld, int8_t v)
5958 {
5959 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5960 bld.MOV(tmp, brw_imm_w(v));
5961 return tmp;
5962 }
5963
5964 fs_reg
5965 setup_imm_ub(const fs_builder &bld, uint8_t v)
5966 {
5967 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5968 bld.MOV(tmp, brw_imm_uw(v));
5969 return tmp;
5970 }