b2bd514dc3be46291d96e35155b9d51b8f087a7d
[mesa.git] / src / intel / compiler / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_cfg.h"
31 #include "util/register_allocate.h"
32
33 using namespace brw;
34
35 static void
36 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
37 {
38 if (reg->file == VGRF) {
39 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
40 reg->offset %= REG_SIZE;
41 }
42 }
43
44 void
45 fs_visitor::assign_regs_trivial()
46 {
47 unsigned hw_reg_mapping[this->alloc.count + 1];
48 unsigned i;
49 int reg_width = dispatch_width / 8;
50
51 /* Note that compressed instructions require alignment to 2 registers. */
52 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
53 for (i = 1; i <= this->alloc.count; i++) {
54 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
55 this->alloc.sizes[i - 1]);
56 }
57 this->grf_used = hw_reg_mapping[this->alloc.count];
58
59 foreach_block_and_inst(block, fs_inst, inst, cfg) {
60 assign_reg(hw_reg_mapping, &inst->dst);
61 for (i = 0; i < inst->sources; i++) {
62 assign_reg(hw_reg_mapping, &inst->src[i]);
63 }
64 }
65
66 if (this->grf_used >= max_grf) {
67 fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 this->grf_used, max_grf);
69 } else {
70 this->alloc.count = this->grf_used;
71 }
72
73 }
74
75 static void
76 brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
77 {
78 const struct gen_device_info *devinfo = compiler->devinfo;
79 int base_reg_count = BRW_MAX_GRF;
80 const int index = _mesa_logbase2(dispatch_width / 8);
81
82 if (dispatch_width > 8 && devinfo->gen >= 7) {
83 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
84 * SIMD16. Therefore, we can use the exact same register sets for
85 * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
86 */
87 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
88 return;
89 }
90
91 /* The registers used to make up almost all values handled in the compiler
92 * are a scalar value occupying a single register (or 2 registers in the
93 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
94 * multiplying allocated register numbers by 2). Things that were
95 * aggregates of scalar values at the GLSL level were split to scalar
96 * values by split_virtual_grfs().
97 *
98 * However, texture SEND messages return a series of contiguous registers
99 * to write into. We currently always ask for 4 registers, but we may
100 * convert that to use less some day.
101 *
102 * Additionally, on gen5 we need aligned pairs of registers for the PLN
103 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
104 * texturing.
105 */
106 const int class_count = MAX_VGRF_SIZE;
107 int class_sizes[MAX_VGRF_SIZE];
108 for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
109 class_sizes[i] = i + 1;
110
111 memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
112 sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
113 int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
114
115 /* Compute the total number of registers across all classes. */
116 int ra_reg_count = 0;
117 for (int i = 0; i < class_count; i++) {
118 if (devinfo->gen <= 5 && dispatch_width >= 16) {
119 /* From the G45 PRM:
120 *
121 * In order to reduce the hardware complexity, the following
122 * rules and restrictions apply to the compressed instruction:
123 * ...
124 * * Operand Alignment Rule: With the exceptions listed below, a
125 * source/destination operand in general should be aligned to
126 * even 256-bit physical register with a region size equal to
127 * two 256-bit physical register
128 */
129 ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
130 } else {
131 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
132 }
133 /* Mark the last register. We'll fill in the beginnings later. */
134 class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
135 }
136
137 /* Fill out the rest of the range markers */
138 for (int i = 1; i < 17; ++i) {
139 if (class_to_ra_reg_range[i] == 0)
140 class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
141 }
142
143 uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
144 struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
145 if (devinfo->gen >= 6)
146 ra_set_allocate_round_robin(regs);
147 int *classes = ralloc_array(compiler, int, class_count);
148 int aligned_pairs_class = -1;
149
150 /* Allocate space for q values. We allocate class_count + 1 because we
151 * want to leave room for the aligned pairs class if we have it. */
152 unsigned int **q_values = ralloc_array(compiler, unsigned int *,
153 class_count + 1);
154 for (int i = 0; i < class_count + 1; ++i)
155 q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
156
157 /* Now, add the registers to their classes, and add the conflicts
158 * between them and the base GRF registers (and also each other).
159 */
160 int reg = 0;
161 int pairs_base_reg = 0;
162 int pairs_reg_count = 0;
163 for (int i = 0; i < class_count; i++) {
164 int class_reg_count;
165 if (devinfo->gen <= 5 && dispatch_width >= 16) {
166 class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
167
168 /* See comment below. The only difference here is that we are
169 * dealing with pairs of registers instead of single registers.
170 * Registers of odd sizes simply get rounded up. */
171 for (int j = 0; j < class_count; j++)
172 q_values[i][j] = (class_sizes[i] + 1) / 2 +
173 (class_sizes[j] + 1) / 2 - 1;
174 } else {
175 class_reg_count = base_reg_count - (class_sizes[i] - 1);
176
177 /* From register_allocate.c:
178 *
179 * q(B,C) (indexed by C, B is this register class) in
180 * Runeson/Nyström paper. This is "how many registers of B could
181 * the worst choice register from C conflict with".
182 *
183 * If we just let the register allocation algorithm compute these
184 * values, is extremely expensive. However, since all of our
185 * registers are laid out, we can very easily compute them
186 * ourselves. View the register from C as fixed starting at GRF n
187 * somwhere in the middle, and the register from B as sliding back
188 * and forth. Then the first register to conflict from B is the
189 * one starting at n - class_size[B] + 1 and the last register to
190 * conflict will start at n + class_size[B] - 1. Therefore, the
191 * number of conflicts from B is class_size[B] + class_size[C] - 1.
192 *
193 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
194 * B | | | | | |n| --> | | | | | | |
195 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
196 * +-+-+-+-+-+
197 * C |n| | | | |
198 * +-+-+-+-+-+
199 */
200 for (int j = 0; j < class_count; j++)
201 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
202 }
203 classes[i] = ra_alloc_reg_class(regs);
204
205 /* Save this off for the aligned pair class at the end. */
206 if (class_sizes[i] == 2) {
207 pairs_base_reg = reg;
208 pairs_reg_count = class_reg_count;
209 }
210
211 if (devinfo->gen <= 5 && dispatch_width >= 16) {
212 for (int j = 0; j < class_reg_count; j++) {
213 ra_class_add_reg(regs, classes[i], reg);
214
215 ra_reg_to_grf[reg] = j * 2;
216
217 for (int base_reg = j;
218 base_reg < j + (class_sizes[i] + 1) / 2;
219 base_reg++) {
220 ra_add_reg_conflict(regs, base_reg, reg);
221 }
222
223 reg++;
224 }
225 } else {
226 for (int j = 0; j < class_reg_count; j++) {
227 ra_class_add_reg(regs, classes[i], reg);
228
229 ra_reg_to_grf[reg] = j;
230
231 for (int base_reg = j;
232 base_reg < j + class_sizes[i];
233 base_reg++) {
234 ra_add_reg_conflict(regs, base_reg, reg);
235 }
236
237 reg++;
238 }
239 }
240 }
241 assert(reg == ra_reg_count);
242
243 /* Applying transitivity to all of the base registers gives us the
244 * appropreate register conflict relationships everywhere.
245 */
246 for (int reg = 0; reg < base_reg_count; reg++)
247 ra_make_reg_conflicts_transitive(regs, reg);
248
249 /* Add a special class for aligned pairs, which we'll put delta_xy
250 * in on Gen <= 6 so that we can do PLN.
251 */
252 if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) {
253 aligned_pairs_class = ra_alloc_reg_class(regs);
254
255 for (int i = 0; i < pairs_reg_count; i++) {
256 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
257 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
258 }
259 }
260
261 for (int i = 0; i < class_count; i++) {
262 /* These are a little counter-intuitive because the pair registers
263 * are required to be aligned while the register they are
264 * potentially interferring with are not. In the case where the
265 * size is even, the worst-case is that the register is
266 * odd-aligned. In the odd-size case, it doesn't matter.
267 */
268 q_values[class_count][i] = class_sizes[i] / 2 + 1;
269 q_values[i][class_count] = class_sizes[i] + 1;
270 }
271 q_values[class_count][class_count] = 1;
272 }
273
274 ra_set_finalize(regs, q_values);
275
276 ralloc_free(q_values);
277
278 compiler->fs_reg_sets[index].regs = regs;
279 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
280 compiler->fs_reg_sets[index].classes[i] = -1;
281 for (int i = 0; i < class_count; i++)
282 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
283 compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
284 compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
285 }
286
287 void
288 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
289 {
290 brw_alloc_reg_set(compiler, 8);
291 brw_alloc_reg_set(compiler, 16);
292 brw_alloc_reg_set(compiler, 32);
293 }
294
295 static int
296 count_to_loop_end(const bblock_t *block)
297 {
298 if (block->end()->opcode == BRW_OPCODE_WHILE)
299 return block->end_ip;
300
301 int depth = 1;
302 /* Skip the first block, since we don't want to count the do the calling
303 * function found.
304 */
305 for (block = block->next();
306 depth > 0;
307 block = block->next()) {
308 if (block->start()->opcode == BRW_OPCODE_DO)
309 depth++;
310 if (block->end()->opcode == BRW_OPCODE_WHILE) {
311 depth--;
312 if (depth == 0)
313 return block->end_ip;
314 }
315 }
316 unreachable("not reached");
317 }
318
319 void fs_visitor::calculate_payload_ranges(int payload_node_count,
320 int *payload_last_use_ip)
321 {
322 int loop_depth = 0;
323 int loop_end_ip = 0;
324
325 for (int i = 0; i < payload_node_count; i++)
326 payload_last_use_ip[i] = -1;
327
328 int ip = 0;
329 foreach_block_and_inst(block, fs_inst, inst, cfg) {
330 switch (inst->opcode) {
331 case BRW_OPCODE_DO:
332 loop_depth++;
333
334 /* Since payload regs are deffed only at the start of the shader
335 * execution, any uses of the payload within a loop mean the live
336 * interval extends to the end of the outermost loop. Find the ip of
337 * the end now.
338 */
339 if (loop_depth == 1)
340 loop_end_ip = count_to_loop_end(block);
341 break;
342 case BRW_OPCODE_WHILE:
343 loop_depth--;
344 break;
345 default:
346 break;
347 }
348
349 int use_ip;
350 if (loop_depth > 0)
351 use_ip = loop_end_ip;
352 else
353 use_ip = ip;
354
355 /* Note that UNIFORM args have been turned into FIXED_GRF by
356 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
357 * the start (see interp_reg()).
358 */
359 for (int i = 0; i < inst->sources; i++) {
360 if (inst->src[i].file == FIXED_GRF) {
361 int node_nr = inst->src[i].nr;
362 if (node_nr >= payload_node_count)
363 continue;
364
365 for (unsigned j = 0; j < regs_read(inst, i); j++) {
366 payload_last_use_ip[node_nr + j] = use_ip;
367 assert(node_nr + j < unsigned(payload_node_count));
368 }
369 }
370 }
371
372 /* Special case instructions which have extra implied registers used. */
373 switch (inst->opcode) {
374 case CS_OPCODE_CS_TERMINATE:
375 payload_last_use_ip[0] = use_ip;
376 break;
377
378 default:
379 if (inst->eot) {
380 /* We could omit this for the !inst->header_present case, except
381 * that the simulator apparently incorrectly reads from g0/g1
382 * instead of sideband. It also really freaks out driver
383 * developers to see g0 used in unusual places, so just always
384 * reserve it.
385 */
386 payload_last_use_ip[0] = use_ip;
387 payload_last_use_ip[1] = use_ip;
388 }
389 break;
390 }
391
392 ip++;
393 }
394 }
395
396 class fs_reg_alloc {
397 public:
398 fs_reg_alloc(fs_visitor *fs):
399 fs(fs), devinfo(fs->devinfo), compiler(fs->compiler), g(NULL)
400 {
401 mem_ctx = ralloc_context(NULL);
402
403 /* Most of this allocation was written for a reg_width of 1
404 * (dispatch_width == 8). In extending to SIMD16, the code was
405 * left in place and it was converted to have the hardware
406 * registers it's allocating be contiguous physical pairs of regs
407 * for reg_width == 2.
408 */
409 int reg_width = fs->dispatch_width / 8;
410 rsi = _mesa_logbase2(reg_width);
411 payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
412
413 /* Get payload IP information */
414 payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
415
416 spill_vgrf_ip = NULL;
417 spill_vgrf_ip_alloc = 0;
418 spill_node_count = 0;
419 }
420
421 ~fs_reg_alloc()
422 {
423 ralloc_free(mem_ctx);
424 }
425
426 bool assign_regs(bool allow_spilling, bool spill_all);
427
428 private:
429 void setup_live_interference(unsigned node,
430 int node_start_ip, int node_end_ip);
431 void setup_inst_interference(fs_inst *inst);
432
433 void build_interference_graph(bool allow_spilling);
434
435 void set_spill_costs();
436 int choose_spill_reg();
437 fs_reg alloc_spill_reg(unsigned size, int ip);
438 void spill_reg(unsigned spill_reg);
439
440 void *mem_ctx;
441 fs_visitor *fs;
442 const gen_device_info *devinfo;
443 const brw_compiler *compiler;
444
445 /* Which compiler->fs_reg_sets[] to use */
446 int rsi;
447
448 ra_graph *g;
449
450 int payload_node_count;
451 int *payload_last_use_ip;
452
453 int node_count;
454 int first_payload_node;
455 int first_mrf_hack_node;
456 int grf127_send_hack_node;
457 int first_vgrf_node;
458 int first_spill_node;
459
460 int *spill_vgrf_ip;
461 int spill_vgrf_ip_alloc;
462 int spill_node_count;
463 };
464
465 /**
466 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
467 *
468 * This is used in assign_regs() to decide which of the GRFs that we use as
469 * MRFs on gen7 get normally register allocated, and in register spilling to
470 * see if we can actually use MRFs to do spills without overwriting normal MRF
471 * contents.
472 */
473 static void
474 get_used_mrfs(fs_visitor *v, bool *mrf_used)
475 {
476 int reg_width = v->dispatch_width / 8;
477
478 memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));
479
480 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
481 if (inst->dst.file == MRF) {
482 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
483 mrf_used[reg] = true;
484 if (reg_width == 2) {
485 if (inst->dst.nr & BRW_MRF_COMPR4) {
486 mrf_used[reg + 4] = true;
487 } else {
488 mrf_used[reg + 1] = true;
489 }
490 }
491 }
492
493 if (inst->mlen > 0) {
494 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
495 mrf_used[inst->base_mrf + i] = true;
496 }
497 }
498 }
499 }
500
501 namespace {
502 /**
503 * Maximum spill block size we expect to encounter in 32B units.
504 *
505 * This is somewhat arbitrary and doesn't necessarily limit the maximum
506 * variable size that can be spilled -- A higher value will allow a
507 * variable of a given size to be spilled more efficiently with a smaller
508 * number of scratch messages, but will increase the likelihood of a
509 * collision between the MRFs reserved for spilling and other MRFs used by
510 * the program (and possibly increase GRF register pressure on platforms
511 * without hardware MRFs), what could cause register allocation to fail.
512 *
513 * For the moment reserve just enough space so a register of 32 bit
514 * component type and natural region width can be spilled without splitting
515 * into multiple (force_writemask_all) scratch messages.
516 */
517 unsigned
518 spill_max_size(const backend_shader *s)
519 {
520 /* FINISHME - On Gen7+ it should be possible to avoid this limit
521 * altogether by spilling directly from the temporary GRF
522 * allocated to hold the result of the instruction (and the
523 * scratch write header).
524 */
525 /* FINISHME - The shader's dispatch width probably belongs in
526 * backend_shader (or some nonexistent fs_shader class?)
527 * rather than in the visitor class.
528 */
529 return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
530 }
531
532 /**
533 * First MRF register available for spilling.
534 */
535 unsigned
536 spill_base_mrf(const backend_shader *s)
537 {
538 return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1;
539 }
540 }
541
542 void
543 fs_reg_alloc::setup_live_interference(unsigned node,
544 int node_start_ip, int node_end_ip)
545 {
546 /* Mark any virtual grf that is live between the start of the program and
547 * the last use of a payload node interfering with that payload node.
548 */
549 for (int i = 0; i < payload_node_count; i++) {
550 if (payload_last_use_ip[i] == -1)
551 continue;
552
553 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
554 * in order to not have to worry about the uniform issue described in
555 * calculate_live_intervals().
556 */
557 if (node_start_ip <= payload_last_use_ip[i])
558 ra_add_node_interference(g, node, first_payload_node + i);
559 }
560
561 /* If we have the MRF hack enabled, mark this node as interfering with all
562 * MRF registers.
563 */
564 if (first_mrf_hack_node >= 0) {
565 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++)
566 ra_add_node_interference(g, node, first_mrf_hack_node + i);
567 }
568
569 /* Add interference with every vgrf whose live range intersects this
570 * node's. We only need to look at nodes below this one as the reflexivity
571 * of interference will take care of the rest.
572 */
573 for (unsigned n2 = first_vgrf_node;
574 n2 < (unsigned)first_spill_node && n2 < node; n2++) {
575 unsigned vgrf = n2 - first_vgrf_node;
576 if (!(node_end_ip <= fs->virtual_grf_start[vgrf] ||
577 fs->virtual_grf_end[vgrf] <= node_start_ip))
578 ra_add_node_interference(g, node, n2);
579 }
580 }
581
582 void
583 fs_reg_alloc::setup_inst_interference(fs_inst *inst)
584 {
585 /* Certain instructions can't safely use the same register for their
586 * sources and destination. Add interference.
587 */
588 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
589 for (unsigned i = 0; i < inst->sources; i++) {
590 if (inst->src[i].file == VGRF) {
591 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
592 first_vgrf_node + inst->src[i].nr);
593 }
594 }
595 }
596
597 /* In 16-wide instructions we have an issue where a compressed
598 * instruction is actually two instructions executed simultaneously.
599 * It's actually ok to have the source and destination registers be
600 * the same. In this case, each instruction over-writes its own
601 * source and there's no problem. The real problem here is if the
602 * source and destination registers are off by one. Then you can end
603 * up in a scenario where the first instruction over-writes the
604 * source of the second instruction. Since the compiler doesn't know
605 * about this level of granularity, we simply make the source and
606 * destination interfere.
607 */
608 if (inst->exec_size >= 16 && inst->dst.file == VGRF) {
609 for (int i = 0; i < inst->sources; ++i) {
610 if (inst->src[i].file == VGRF) {
611 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
612 first_vgrf_node + inst->src[i].nr);
613 }
614 }
615 }
616
617 if (grf127_send_hack_node >= 0) {
618 /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
619 * subsection "EUISA Instructions", Send Message (page 990):
620 *
621 * "r127 must not be used for return address when there is a src and
622 * dest overlap in send instruction."
623 *
624 * We are avoiding using grf127 as part of the destination of send
625 * messages adding a node interference to the grf127_send_hack_node.
626 * This node has a fixed asignment to grf127.
627 *
628 * We don't apply it to SIMD16 instructions because previous code avoids
629 * any register overlap between sources and destination.
630 */
631 if (inst->exec_size < 16 && inst->is_send_from_grf() &&
632 inst->dst.file == VGRF)
633 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
634 grf127_send_hack_node);
635
636 /* Spilling instruction are genereated as SEND messages from MRF but as
637 * Gen7+ supports sending from GRF the driver will maps assingn these
638 * MRF registers to a GRF. Implementations reuses the dest of the send
639 * message as source. So as we will have an overlap for sure, we create
640 * an interference between destination and grf127.
641 */
642 if ((inst->opcode == SHADER_OPCODE_GEN7_SCRATCH_READ ||
643 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) &&
644 inst->dst.file == VGRF)
645 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
646 grf127_send_hack_node);
647 }
648
649 /* From the Skylake PRM Vol. 2a docs for sends:
650 *
651 * "It is required that the second block of GRFs does not overlap with
652 * the first block."
653 *
654 * Normally, this is taken care of by fixup_sends_duplicate_payload() but
655 * in the case where one of the registers is an undefined value, the
656 * register allocator may decide that they don't interfere even though
657 * they're used as sources in the same instruction. We also need to add
658 * interference here.
659 */
660 if (devinfo->gen >= 9) {
661 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
662 inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
663 inst->src[2].nr != inst->src[3].nr)
664 ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
665 first_vgrf_node + inst->src[3].nr);
666 }
667
668 /* When we do send-from-GRF for FB writes, we need to ensure that the last
669 * write instruction sends from a high register. This is because the
670 * vertex fetcher wants to start filling the low payload registers while
671 * the pixel data port is still working on writing out the memory. If we
672 * don't do this, we get rendering artifacts.
673 *
674 * We could just do "something high". Instead, we just pick the highest
675 * register that works.
676 */
677 if (inst->eot) {
678 const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
679 inst->src[2].nr : inst->src[0].nr;
680 int size = fs->alloc.sizes[vgrf];
681 int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
682
683 /* If something happened to spill, we want to push the EOT send
684 * register early enough in the register file that we don't
685 * conflict with any used MRF hack registers.
686 */
687 if (first_mrf_hack_node >= 0)
688 reg -= BRW_MAX_MRF(devinfo->gen) - spill_base_mrf(fs);
689
690 ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
691 }
692 }
693
694 void
695 fs_reg_alloc::build_interference_graph(bool allow_spilling)
696 {
697 const gen_device_info *devinfo = fs->devinfo;
698 const brw_compiler *compiler = fs->compiler;
699
700 /* Compute the RA node layout */
701 node_count = 0;
702 first_payload_node = node_count;
703 node_count += payload_node_count;
704 if (devinfo->gen >= 7 && allow_spilling) {
705 first_mrf_hack_node = node_count;
706 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
707 } else {
708 first_mrf_hack_node = -1;
709 }
710 if (devinfo->gen >= 8) {
711 grf127_send_hack_node = node_count;
712 node_count ++;
713 } else {
714 grf127_send_hack_node = -1;
715 }
716 first_vgrf_node = node_count;
717 node_count += fs->alloc.count;
718 first_spill_node = node_count;
719
720 fs->calculate_live_intervals();
721 fs->calculate_payload_ranges(payload_node_count,
722 payload_last_use_ip);
723
724 assert(g == NULL);
725 g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
726 ralloc_steal(mem_ctx, g);
727
728 /* Set up the payload nodes */
729 for (int i = 0; i < payload_node_count; i++) {
730 /* Mark each payload node as being allocated to its physical register.
731 *
732 * The alternative would be to have per-physical-register classes, which
733 * would just be silly.
734 */
735 if (devinfo->gen <= 5 && fs->dispatch_width >= 16) {
736 /* We have to divide by 2 here because we only have even numbered
737 * registers. Some of the payload registers will be odd, but
738 * that's ok because their physical register numbers have already
739 * been assigned. The only thing this is used for is interference.
740 */
741 ra_set_node_reg(g, first_payload_node + i, i / 2);
742 } else {
743 ra_set_node_reg(g, first_payload_node + i, i);
744 }
745 }
746
747 if (first_mrf_hack_node >= 0) {
748 /* Mark each MRF reg node as being allocated to its physical
749 * register.
750 *
751 * The alternative would be to have per-physical-register classes,
752 * which would just be silly.
753 */
754 for (int i = 0; i < BRW_MAX_MRF(devinfo->gen); i++) {
755 ra_set_node_reg(g, first_mrf_hack_node + i,
756 GEN7_MRF_HACK_START + i);
757 }
758 }
759
760 if (grf127_send_hack_node >= 0)
761 ra_set_node_reg(g, grf127_send_hack_node, 127);
762
763 for (unsigned i = 0; i < fs->alloc.count; i++) {
764 unsigned size = fs->alloc.sizes[i];
765 int c;
766
767 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
768 "Register allocation relies on split_virtual_grfs()");
769 c = compiler->fs_reg_sets[rsi].classes[size - 1];
770
771 /* Special case: on pre-GEN6 hardware that supports PLN, the
772 * second operand of a PLN instruction needs to be an
773 * even-numbered register, so we have a special register class
774 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
775 * uses fs->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] as the
776 * second operand of a PLN instruction (since it doesn't support
777 * any other interpolation modes). So all we need to do is find
778 * that register and set it to the appropriate class.
779 */
780 if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
781 fs->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].file == VGRF &&
782 fs->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].nr == i) {
783 c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
784 }
785
786 ra_set_node_class(g, first_vgrf_node + i, c);
787
788 /* Add interference based on the live range of the register */
789 setup_live_interference(first_vgrf_node + i,
790 fs->virtual_grf_start[i],
791 fs->virtual_grf_end[i]);
792 }
793
794 /* Add interference based on the instructions in which a register is used.
795 */
796 foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
797 setup_inst_interference(inst);
798
799 if (allow_spilling)
800 set_spill_costs();
801 }
802
803 static void
804 emit_unspill(const fs_builder &bld, fs_reg dst,
805 uint32_t spill_offset, unsigned count)
806 {
807 const gen_device_info *devinfo = bld.shader->devinfo;
808 const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
809 REG_SIZE;
810 assert(count % reg_size == 0);
811
812 for (unsigned i = 0; i < count / reg_size; i++) {
813 /* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because
814 * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
815 * it would cause the DC to do an IA-coherent read, what largely
816 * outweighs the slight advantage from not having to provide the address
817 * as part of the message header, so we're better off using plain old
818 * oword block reads.
819 */
820 bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
821 spill_offset < (1 << 12) * REG_SIZE);
822 fs_inst *unspill_inst = bld.emit(gen7_read ?
823 SHADER_OPCODE_GEN7_SCRATCH_READ :
824 SHADER_OPCODE_GEN4_SCRATCH_READ,
825 dst);
826 unspill_inst->offset = spill_offset;
827
828 if (!gen7_read) {
829 unspill_inst->base_mrf = spill_base_mrf(bld.shader);
830 unspill_inst->mlen = 1; /* header contains offset */
831 }
832
833 dst.offset += reg_size * REG_SIZE;
834 spill_offset += reg_size * REG_SIZE;
835 }
836 }
837
838 static void
839 emit_spill(const fs_builder &bld, fs_reg src,
840 uint32_t spill_offset, unsigned count)
841 {
842 const unsigned reg_size = src.component_size(bld.dispatch_width()) /
843 REG_SIZE;
844 assert(count % reg_size == 0);
845
846 for (unsigned i = 0; i < count / reg_size; i++) {
847 fs_inst *spill_inst =
848 bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
849 src.offset += reg_size * REG_SIZE;
850 spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
851 spill_inst->mlen = 1 + reg_size; /* header, value */
852 spill_inst->base_mrf = spill_base_mrf(bld.shader);
853 }
854 }
855
856 void
857 fs_reg_alloc::set_spill_costs()
858 {
859 float block_scale = 1.0;
860 float spill_costs[fs->alloc.count];
861 bool no_spill[fs->alloc.count];
862
863 for (unsigned i = 0; i < fs->alloc.count; i++) {
864 spill_costs[i] = 0.0;
865 no_spill[i] = false;
866 }
867
868 /* Calculate costs for spilling nodes. Call it a cost of 1 per
869 * spill/unspill we'll have to do, and guess that the insides of
870 * loops run 10 times.
871 */
872 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
873 for (unsigned int i = 0; i < inst->sources; i++) {
874 if (inst->src[i].file == VGRF)
875 spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
876 }
877
878 if (inst->dst.file == VGRF)
879 spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
880
881 switch (inst->opcode) {
882
883 case BRW_OPCODE_DO:
884 block_scale *= 10;
885 break;
886
887 case BRW_OPCODE_WHILE:
888 block_scale /= 10;
889 break;
890
891 case BRW_OPCODE_IF:
892 case BRW_OPCODE_IFF:
893 block_scale *= 0.5;
894 break;
895
896 case BRW_OPCODE_ENDIF:
897 block_scale /= 0.5;
898 break;
899
900 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
901 if (inst->src[0].file == VGRF)
902 no_spill[inst->src[0].nr] = true;
903 break;
904
905 case SHADER_OPCODE_GEN4_SCRATCH_READ:
906 case SHADER_OPCODE_GEN7_SCRATCH_READ:
907 if (inst->dst.file == VGRF)
908 no_spill[inst->dst.nr] = true;
909 break;
910
911 default:
912 break;
913 }
914 }
915
916 for (unsigned i = 0; i < fs->alloc.count; i++) {
917 int live_length = fs->virtual_grf_end[i] - fs->virtual_grf_start[i];
918 if (live_length <= 0)
919 continue;
920
921 /* Divide the cost (in number of spills/fills) by the log of the length
922 * of the live range of the register. This will encourage spill logic
923 * to spill long-living things before spilling short-lived things where
924 * spilling is less likely to actually do us any good. We use the log
925 * of the length because it will fall off very quickly and not cause us
926 * to spill medium length registers with more uses.
927 */
928 float adjusted_cost = spill_costs[i] / logf(live_length);
929 if (!no_spill[i])
930 ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
931 }
932 }
933
934 int
935 fs_reg_alloc::choose_spill_reg()
936 {
937 int node = ra_get_best_spill_node(g);
938 if (node < 0)
939 return -1;
940
941 assert(node >= first_vgrf_node);
942 return node - first_vgrf_node;
943 }
944
945 fs_reg
946 fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
947 {
948 int vgrf = fs->alloc.allocate(size);
949 int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[size - 1]);
950 assert(n == first_vgrf_node + vgrf);
951 assert(n == first_spill_node + spill_node_count);
952
953 setup_live_interference(n, ip - 1, ip + 1);
954
955 /* Add interference between this spill node and any other spill nodes for
956 * the same instruction.
957 */
958 for (int s = 0; s < spill_node_count; s++) {
959 if (spill_vgrf_ip[s] == ip)
960 ra_add_node_interference(g, n, first_spill_node + s);
961 }
962
963 /* Add this spill node to the list for next time */
964 if (spill_node_count >= spill_vgrf_ip_alloc) {
965 if (spill_vgrf_ip_alloc == 0)
966 spill_vgrf_ip_alloc = 16;
967 else
968 spill_vgrf_ip_alloc *= 2;
969 spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
970 spill_vgrf_ip_alloc);
971 }
972 spill_vgrf_ip[spill_node_count++] = ip;
973
974 return fs_reg(VGRF, vgrf);
975 }
976
977 void
978 fs_reg_alloc::spill_reg(unsigned spill_reg)
979 {
980 int size = fs->alloc.sizes[spill_reg];
981 unsigned int spill_offset = fs->last_scratch;
982 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
983
984 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
985 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
986 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
987 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
988 * depth), starting from m1. In summary: We may not be able to spill in
989 * SIMD16 mode, because we'd stomp the FB writes.
990 */
991 if (!fs->spilled_any_registers) {
992 bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
993 get_used_mrfs(fs, mrf_used);
994
995 for (int i = spill_base_mrf(fs); i < BRW_MAX_MRF(devinfo->gen); i++) {
996 if (mrf_used[i]) {
997 fs->fail("Register spilling not supported with m%d used", i);
998 return;
999 }
1000 }
1001
1002 fs->spilled_any_registers = true;
1003 }
1004
1005 fs->last_scratch += size * REG_SIZE;
1006
1007 /* We're about to replace all uses of this register. It no longer
1008 * conflicts with anything so we can get rid of its interference.
1009 */
1010 ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1011 ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1012
1013 /* Generate spill/unspill instructions for the objects being
1014 * spilled. Right now, we spill or unspill the whole thing to a
1015 * virtual grf of the same size. For most instructions, though, we
1016 * could just spill/unspill the GRF being accessed.
1017 */
1018 int ip = 0;
1019 foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1020 const fs_builder ibld = fs_builder(fs, block, inst);
1021 exec_node *before = inst->prev;
1022 exec_node *after = inst->next;
1023
1024 for (unsigned int i = 0; i < inst->sources; i++) {
1025 if (inst->src[i].file == VGRF &&
1026 inst->src[i].nr == spill_reg) {
1027 int count = regs_read(inst, i);
1028 int subset_spill_offset = spill_offset +
1029 ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1030 fs_reg unspill_dst = alloc_spill_reg(count, ip);
1031
1032 inst->src[i].nr = unspill_dst.nr;
1033 inst->src[i].offset %= REG_SIZE;
1034
1035 /* We read the largest power-of-two divisor of the register count
1036 * (because only POT scratch read blocks are allowed by the
1037 * hardware) up to the maximum supported block size.
1038 */
1039 const unsigned width =
1040 MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1041
1042 /* Set exec_all() on unspill messages under the (rather
1043 * pessimistic) assumption that there is no one-to-one
1044 * correspondence between channels of the spilled variable in
1045 * scratch space and the scratch read message, which operates on
1046 * 32 bit channels. It shouldn't hurt in any case because the
1047 * unspill destination is a block-local temporary.
1048 */
1049 emit_unspill(ibld.exec_all().group(width, 0),
1050 unspill_dst, subset_spill_offset, count);
1051 }
1052 }
1053
1054 if (inst->dst.file == VGRF &&
1055 inst->dst.nr == spill_reg) {
1056 int subset_spill_offset = spill_offset +
1057 ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1058 fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1059
1060 inst->dst.nr = spill_src.nr;
1061 inst->dst.offset %= REG_SIZE;
1062
1063 /* If we're immediately spilling the register, we should not use
1064 * destination dependency hints. Doing so will cause the GPU do
1065 * try to read and write the register at the same time and may
1066 * hang the GPU.
1067 */
1068 inst->no_dd_clear = false;
1069 inst->no_dd_check = false;
1070
1071 /* Calculate the execution width of the scratch messages (which work
1072 * in terms of 32 bit components so we have a fixed number of eight
1073 * channels per spilled register). We attempt to write one
1074 * exec_size-wide component of the variable at a time without
1075 * exceeding the maximum number of (fake) MRF registers reserved for
1076 * spills.
1077 */
1078 const unsigned width = 8 * MIN2(
1079 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
1080 spill_max_size(fs));
1081
1082 /* Spills should only write data initialized by the instruction for
1083 * whichever channels are enabled in the excution mask. If that's
1084 * not possible we'll have to emit a matching unspill before the
1085 * instruction and set force_writemask_all on the spill.
1086 */
1087 const bool per_channel =
1088 inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1089 inst->exec_size == width;
1090
1091 /* Builder used to emit the scratch messages. */
1092 const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1093
1094 /* If our write is going to affect just part of the
1095 * regs_written(inst), then we need to unspill the destination since
1096 * we write back out all of the regs_written(). If the original
1097 * instruction had force_writemask_all set and is not a partial
1098 * write, there should be no need for the unspill since the
1099 * instruction will be overwriting the whole destination in any case.
1100 */
1101 if (inst->is_partial_write() ||
1102 (!inst->force_writemask_all && !per_channel))
1103 emit_unspill(ubld, spill_src, subset_spill_offset,
1104 regs_written(inst));
1105
1106 emit_spill(ubld.at(block, inst->next), spill_src,
1107 subset_spill_offset, regs_written(inst));
1108 }
1109
1110 for (fs_inst *inst = (fs_inst *)before->next;
1111 inst != after; inst = (fs_inst *)inst->next)
1112 setup_inst_interference(inst);
1113
1114 /* We don't advance the ip for scratch read/write instructions
1115 * because we consider them to have the same ip as instruction we're
1116 * spilling around for the purposes of interference.
1117 */
1118 if (inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_WRITE &&
1119 inst->opcode != SHADER_OPCODE_GEN4_SCRATCH_READ &&
1120 inst->opcode != SHADER_OPCODE_GEN7_SCRATCH_READ)
1121 ip++;
1122 }
1123 }
1124
1125 bool
1126 fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1127 {
1128 build_interference_graph(fs->spilled_any_registers || spill_all);
1129
1130 bool spilled = false;
1131 while (1) {
1132 /* Debug of register spilling: Go spill everything. */
1133 if (unlikely(spill_all)) {
1134 int reg = choose_spill_reg();
1135 if (reg != -1) {
1136 spill_reg(reg);
1137 continue;
1138 }
1139 }
1140
1141 if (ra_allocate(g))
1142 break;
1143
1144 if (!allow_spilling)
1145 return false;
1146
1147 /* If we're going to spill but we've never spilled before, we need to
1148 * re-build the interference graph with MRFs enabled to allow spilling.
1149 */
1150 if (!fs->spilled_any_registers) {
1151 ralloc_free(g);
1152 g = NULL;
1153 build_interference_graph(true);
1154 }
1155
1156 spilled = true;
1157
1158 /* Failed to allocate registers. Spill a reg, and the caller will
1159 * loop back into here to try again.
1160 */
1161 int reg = choose_spill_reg();
1162 if (reg == -1)
1163 return false;
1164
1165 spill_reg(reg);
1166 }
1167
1168 if (spilled)
1169 fs->invalidate_live_intervals();
1170
1171 /* Get the chosen virtual registers for each node, and map virtual
1172 * regs in the register classes back down to real hardware reg
1173 * numbers.
1174 */
1175 unsigned hw_reg_mapping[fs->alloc.count];
1176 fs->grf_used = fs->first_non_payload_grf;
1177 for (unsigned i = 0; i < fs->alloc.count; i++) {
1178 int reg = ra_get_node_reg(g, first_vgrf_node + i);
1179
1180 hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
1181 fs->grf_used = MAX2(fs->grf_used,
1182 hw_reg_mapping[i] + fs->alloc.sizes[i]);
1183 }
1184
1185 foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1186 assign_reg(hw_reg_mapping, &inst->dst);
1187 for (int i = 0; i < inst->sources; i++) {
1188 assign_reg(hw_reg_mapping, &inst->src[i]);
1189 }
1190 }
1191
1192 fs->alloc.count = fs->grf_used;
1193
1194 return true;
1195 }
1196
1197 bool
1198 fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1199 {
1200 fs_reg_alloc alloc(this);
1201 bool success = alloc.assign_regs(allow_spilling, spill_all);
1202 if (!success && allow_spilling) {
1203 fail("no register to spill:\n");
1204 dump_instructions(NULL);
1205 }
1206 return success;
1207 }