intel/fs: Fix Gen6+ interpolation setup for SIMD32
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 write->last_rt = true;
107 if (devinfo->gen >= 6) {
108 write->base_mrf = 2;
109 write->mlen = 4 * reg_width;
110 } else {
111 write->header_size = 2;
112 write->base_mrf = 0;
113 write->mlen = 2 + 4 * reg_width;
114 }
115
116 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
117 * varying to avoid GPU hangs, so set that.
118 */
119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
120 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
121 memset(wm_prog_data->urb_setup, -1,
122 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
123
124 /* We don't have any uniforms. */
125 stage_prog_data->nr_params = 0;
126 stage_prog_data->nr_pull_params = 0;
127 stage_prog_data->curb_read_length = 0;
128 stage_prog_data->dispatch_grf_start_reg = 2;
129 wm_prog_data->dispatch_grf_start_reg_16 = 2;
130 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
131
132 calculate_cfg();
133 }
134
135 /* The register location here is relative to the start of the URB
136 * data. It will get adjusted to be a real location before
137 * generate_code() time.
138 */
139 fs_reg
140 fs_visitor::interp_reg(int location, int channel)
141 {
142 assert(stage == MESA_SHADER_FRAGMENT);
143 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
144 int regnr = prog_data->urb_setup[location] * 4 + channel;
145 assert(prog_data->urb_setup[location] != -1);
146
147 return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
148 }
149
150 /** Emits the interpolation for the varying inputs. */
151 void
152 fs_visitor::emit_interpolation_setup_gen4()
153 {
154 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
155
156 fs_builder abld = bld.annotate("compute pixel centers");
157 this->pixel_x = vgrf(glsl_type::uint_type);
158 this->pixel_y = vgrf(glsl_type::uint_type);
159 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
160 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
161 abld.ADD(this->pixel_x,
162 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
163 fs_reg(brw_imm_v(0x10101010)));
164 abld.ADD(this->pixel_y,
165 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
166 fs_reg(brw_imm_v(0x11001100)));
167
168 abld = bld.annotate("compute pixel deltas from v0");
169
170 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
171 vgrf(glsl_type::vec2_type);
172 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
173 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
174 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
175
176 if (devinfo->has_pln && dispatch_width == 16) {
177 for (unsigned i = 0; i < 2; i++) {
178 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
179 half(this->pixel_x, i), xstart);
180 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
181 half(this->pixel_y, i), ystart);
182 }
183 } else {
184 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
185 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
186 }
187
188 abld = bld.annotate("compute pos.w and 1/pos.w");
189 /* Compute wpos.w. It's always in our setup, since it's needed to
190 * interpolate the other attributes.
191 */
192 this->wpos_w = vgrf(glsl_type::float_type);
193 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
194 component(interp_reg(VARYING_SLOT_POS, 3), 0));
195 /* Compute the pixel 1/W value from wpos.w. */
196 this->pixel_w = vgrf(glsl_type::float_type);
197 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
198 }
199
200 /** Emits the interpolation for the varying inputs. */
201 void
202 fs_visitor::emit_interpolation_setup_gen6()
203 {
204 fs_builder abld = bld.annotate("compute pixel centers");
205
206 this->pixel_x = vgrf(glsl_type::float_type);
207 this->pixel_y = vgrf(glsl_type::float_type);
208
209 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
210 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
211 struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
212
213 if (devinfo->gen >= 8 || dispatch_width == 8) {
214 /* The "Register Region Restrictions" page says for BDW (and newer,
215 * presumably):
216 *
217 * "When destination spans two registers, the source may be one or
218 * two registers. The destination elements must be evenly split
219 * between the two registers."
220 *
221 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
222 * to compute our pixel centers.
223 */
224 const fs_builder dbld =
225 abld.exec_all().group(hbld.dispatch_width() * 2, 0);
226 fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
227
228 dbld.ADD(int_pixel_xy,
229 fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
230 fs_reg(brw_imm_v(0x11001010)));
231
232 hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy);
233 hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy);
234 } else {
235 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
236 *
237 * "When destination spans two registers, the source MUST span
238 * two registers."
239 *
240 * Since the GRF source of the ADD will only read a single register,
241 * we must do two separate ADDs in SIMD16.
242 */
243 const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
244 const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
245
246 hbld.ADD(int_pixel_x,
247 fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
248 fs_reg(brw_imm_v(0x10101010)));
249 hbld.ADD(int_pixel_y,
250 fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
251 fs_reg(brw_imm_v(0x11001100)));
252
253 /* As of gen6, we can no longer mix float and int sources. We have
254 * to turn the integer pixel centers into floats for their actual
255 * use.
256 */
257 hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
258 hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
259 }
260 }
261
262 abld = bld.annotate("compute pos.w");
263 this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
264 this->wpos_w = vgrf(glsl_type::float_type);
265 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
266
267 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
268
269 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
270 this->delta_xy[i] = fetch_payload_reg(
271 bld, payload.barycentric_coord_reg[i], BRW_REGISTER_TYPE_F, 2);
272 }
273
274 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
275 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
276 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
277
278 if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
279 /* Get the pixel/sample mask into f0 so that we know which
280 * pixels are lit. Then, for each channel that is unlit,
281 * replace the centroid data with non-centroid data.
282 */
283 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
284 bld.exec_all().group(1, 0)
285 .MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
286 retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
287 }
288
289 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
290 if (!(centroid_modes & (1 << i)))
291 continue;
292
293 const fs_reg &pixel_delta_xy = delta_xy[i - 1];
294
295 for (unsigned q = 0; q < dispatch_width / 8; q++) {
296 for (unsigned c = 0; c < 2; c++) {
297 const unsigned idx = c + (q & 2) + (q & 1) * dispatch_width / 8;
298 set_predicate_inv(
299 BRW_PREDICATE_NORMAL, true,
300 bld.half(q).MOV(horiz_offset(delta_xy[i], idx * 8),
301 horiz_offset(pixel_delta_xy, idx * 8)));
302 }
303 }
304 }
305 }
306 }
307
308 static enum brw_conditional_mod
309 cond_for_alpha_func(GLenum func)
310 {
311 switch(func) {
312 case GL_GREATER:
313 return BRW_CONDITIONAL_G;
314 case GL_GEQUAL:
315 return BRW_CONDITIONAL_GE;
316 case GL_LESS:
317 return BRW_CONDITIONAL_L;
318 case GL_LEQUAL:
319 return BRW_CONDITIONAL_LE;
320 case GL_EQUAL:
321 return BRW_CONDITIONAL_EQ;
322 case GL_NOTEQUAL:
323 return BRW_CONDITIONAL_NEQ;
324 default:
325 unreachable("Not reached");
326 }
327 }
328
329 /**
330 * Alpha test support for when we compile it into the shader instead
331 * of using the normal fixed-function alpha test.
332 */
333 void
334 fs_visitor::emit_alpha_test()
335 {
336 assert(stage == MESA_SHADER_FRAGMENT);
337 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
338 const fs_builder abld = bld.annotate("Alpha test");
339
340 fs_inst *cmp;
341 if (key->alpha_test_func == GL_ALWAYS)
342 return;
343
344 if (key->alpha_test_func == GL_NEVER) {
345 /* f0.1 = 0 */
346 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
347 BRW_REGISTER_TYPE_UW));
348 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
349 BRW_CONDITIONAL_NEQ);
350 } else {
351 /* RT0 alpha */
352 fs_reg color = offset(outputs[0], bld, 3);
353
354 /* f0.1 &= func(color, ref) */
355 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
356 cond_for_alpha_func(key->alpha_test_func));
357 }
358 cmp->predicate = BRW_PREDICATE_NORMAL;
359 cmp->flag_subreg = 1;
360 }
361
362 fs_inst *
363 fs_visitor::emit_single_fb_write(const fs_builder &bld,
364 fs_reg color0, fs_reg color1,
365 fs_reg src0_alpha, unsigned components)
366 {
367 assert(stage == MESA_SHADER_FRAGMENT);
368 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
369
370 /* Hand over gl_FragDepth or the payload depth. */
371 const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
372 fs_reg src_depth, src_stencil;
373
374 if (source_depth_to_render_target) {
375 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
376 src_depth = frag_depth;
377 else
378 src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
379 }
380
381 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
382 src_stencil = frag_stencil;
383
384 const fs_reg sources[] = {
385 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
386 (prog_data->uses_omask ? sample_mask : fs_reg()),
387 brw_imm_ud(components)
388 };
389 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
390 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
391 sources, ARRAY_SIZE(sources));
392
393 if (prog_data->uses_kill) {
394 write->predicate = BRW_PREDICATE_NORMAL;
395 write->flag_subreg = 1;
396 }
397
398 return write;
399 }
400
401 void
402 fs_visitor::emit_fb_writes()
403 {
404 assert(stage == MESA_SHADER_FRAGMENT);
405 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
406 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
407
408 fs_inst *inst = NULL;
409
410 if (source_depth_to_render_target && devinfo->gen == 6) {
411 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
412 * would require SIMD8 moves of each half to message regs, e.g. by using
413 * the SIMD lowering pass. Unfortunately this is more difficult than it
414 * sounds because the SIMD8 single-source message lacks channel selects
415 * for the second and third subspans.
416 */
417 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
418 }
419
420 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
421 /* From the 'Render Target Write message' section of the docs:
422 * "Output Stencil is not supported with SIMD16 Render Target Write
423 * Messages."
424 */
425 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
426 "in SIMD16+ mode.\n");
427 }
428
429 for (int target = 0; target < key->nr_color_regions; target++) {
430 /* Skip over outputs that weren't written. */
431 if (this->outputs[target].file == BAD_FILE)
432 continue;
433
434 const fs_builder abld = bld.annotate(
435 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
436
437 fs_reg src0_alpha;
438 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
439 src0_alpha = offset(outputs[0], bld, 3);
440
441 inst = emit_single_fb_write(abld, this->outputs[target],
442 this->dual_src_output, src0_alpha, 4);
443 inst->target = target;
444 }
445
446 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
447 this->outputs[0].file != BAD_FILE);
448 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
449
450 if (inst == NULL) {
451 /* Even if there's no color buffers enabled, we still need to send
452 * alpha out the pipeline to our null renderbuffer to support
453 * alpha-testing, alpha-to-coverage, and so on.
454 */
455 /* FINISHME: Factor out this frequently recurring pattern into a
456 * helper function.
457 */
458 const fs_reg srcs[] = { reg_undef, reg_undef,
459 reg_undef, offset(this->outputs[0], bld, 3) };
460 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
461 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
462
463 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
464 inst->target = 0;
465 }
466
467 inst->last_rt = true;
468 inst->eot = true;
469 }
470
471 void
472 fs_visitor::setup_uniform_clipplane_values()
473 {
474 const struct brw_vs_prog_key *key =
475 (const struct brw_vs_prog_key *) this->key;
476
477 if (key->nr_userclip_plane_consts == 0)
478 return;
479
480 assert(stage_prog_data->nr_params == uniforms);
481 brw_stage_prog_data_add_params(stage_prog_data,
482 key->nr_userclip_plane_consts * 4);
483
484 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
485 this->userplane[i] = fs_reg(UNIFORM, uniforms);
486 for (int j = 0; j < 4; ++j) {
487 stage_prog_data->param[uniforms + j] =
488 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
489 }
490 uniforms += 4;
491 }
492 }
493
494 /**
495 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
496 *
497 * This does nothing if the shader uses gl_ClipDistance or user clipping is
498 * disabled altogether.
499 */
500 void fs_visitor::compute_clip_distance()
501 {
502 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
503 const struct brw_vs_prog_key *key =
504 (const struct brw_vs_prog_key *) this->key;
505
506 /* Bail unless some sort of legacy clipping is enabled */
507 if (key->nr_userclip_plane_consts == 0)
508 return;
509
510 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
511 *
512 * "If a linked set of shaders forming the vertex stage contains no
513 * static write to gl_ClipVertex or gl_ClipDistance, but the
514 * application has requested clipping against user clip planes through
515 * the API, then the coordinate written to gl_Position is used for
516 * comparison against the user clip planes."
517 *
518 * This function is only called if the shader didn't write to
519 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
520 * if the user wrote to it; otherwise we use gl_Position.
521 */
522
523 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
524 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
525 clip_vertex = VARYING_SLOT_POS;
526
527 /* If the clip vertex isn't written, skip this. Typically this means
528 * the GS will set up clipping. */
529 if (outputs[clip_vertex].file == BAD_FILE)
530 return;
531
532 setup_uniform_clipplane_values();
533
534 const fs_builder abld = bld.annotate("user clip distances");
535
536 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
537 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
538
539 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
540 fs_reg u = userplane[i];
541 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
542 bld, i & 3);
543
544 abld.MUL(output, outputs[clip_vertex], u);
545 for (int j = 1; j < 4; j++) {
546 u.nr = userplane[i].nr + j;
547 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
548 }
549 }
550 }
551
552 void
553 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
554 {
555 int slot, urb_offset, length;
556 int starting_urb_offset = 0;
557 const struct brw_vue_prog_data *vue_prog_data =
558 brw_vue_prog_data(this->prog_data);
559 const struct brw_vs_prog_key *vs_key =
560 (const struct brw_vs_prog_key *) this->key;
561 const GLbitfield64 psiz_mask =
562 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
563 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
564 bool flush;
565 fs_reg sources[8];
566 fs_reg urb_handle;
567
568 if (stage == MESA_SHADER_TESS_EVAL)
569 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
570 else
571 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
572
573 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
574 int header_size = 1;
575 fs_reg per_slot_offsets;
576
577 if (stage == MESA_SHADER_GEOMETRY) {
578 const struct brw_gs_prog_data *gs_prog_data =
579 brw_gs_prog_data(this->prog_data);
580
581 /* We need to increment the Global Offset to skip over the control data
582 * header and the extra "Vertex Count" field (1 HWord) at the beginning
583 * of the VUE. We're counting in OWords, so the units are doubled.
584 */
585 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
586 if (gs_prog_data->static_vertex_count == -1)
587 starting_urb_offset += 2;
588
589 /* We also need to use per-slot offsets. The per-slot offset is the
590 * Vertex Count. SIMD8 mode processes 8 different primitives at a
591 * time; each may output a different number of vertices.
592 */
593 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
594 header_size++;
595
596 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
597 const int output_vertex_size_owords =
598 gs_prog_data->output_vertex_size_hwords * 2;
599
600 if (gs_vertex_count.file == IMM) {
601 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
602 gs_vertex_count.ud);
603 } else {
604 per_slot_offsets = vgrf(glsl_type::int_type);
605 bld.MUL(per_slot_offsets, gs_vertex_count,
606 brw_imm_ud(output_vertex_size_owords));
607 }
608 }
609
610 length = 0;
611 urb_offset = starting_urb_offset;
612 flush = false;
613
614 /* SSO shaders can have VUE slots allocated which are never actually
615 * written to, so ignore them when looking for the last (written) slot.
616 */
617 int last_slot = vue_map->num_slots - 1;
618 while (last_slot > 0 &&
619 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
620 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
621 last_slot--;
622 }
623
624 bool urb_written = false;
625 for (slot = 0; slot < vue_map->num_slots; slot++) {
626 int varying = vue_map->slot_to_varying[slot];
627 switch (varying) {
628 case VARYING_SLOT_PSIZ: {
629 /* The point size varying slot is the vue header and is always in the
630 * vue map. But often none of the special varyings that live there
631 * are written and in that case we can skip writing to the vue
632 * header, provided the corresponding state properly clamps the
633 * values further down the pipeline. */
634 if ((vue_map->slots_valid & psiz_mask) == 0) {
635 assert(length == 0);
636 urb_offset++;
637 break;
638 }
639
640 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
641 bld.MOV(zero, brw_imm_ud(0u));
642
643 sources[length++] = zero;
644 if (vue_map->slots_valid & VARYING_BIT_LAYER)
645 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
646 else
647 sources[length++] = zero;
648
649 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
650 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
651 else
652 sources[length++] = zero;
653
654 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
655 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
656 else
657 sources[length++] = zero;
658 break;
659 }
660 case BRW_VARYING_SLOT_NDC:
661 case VARYING_SLOT_EDGE:
662 unreachable("unexpected scalar vs output");
663 break;
664
665 default:
666 /* gl_Position is always in the vue map, but isn't always written by
667 * the shader. Other varyings (clip distances) get added to the vue
668 * map but don't always get written. In those cases, the
669 * corresponding this->output[] slot will be invalid we and can skip
670 * the urb write for the varying. If we've already queued up a vue
671 * slot for writing we flush a mlen 5 urb write, otherwise we just
672 * advance the urb_offset.
673 */
674 if (varying == BRW_VARYING_SLOT_PAD ||
675 this->outputs[varying].file == BAD_FILE) {
676 if (length > 0)
677 flush = true;
678 else
679 urb_offset++;
680 break;
681 }
682
683 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
684 (varying == VARYING_SLOT_COL0 ||
685 varying == VARYING_SLOT_COL1 ||
686 varying == VARYING_SLOT_BFC0 ||
687 varying == VARYING_SLOT_BFC1)) {
688 /* We need to clamp these guys, so do a saturating MOV into a
689 * temp register and use that for the payload.
690 */
691 for (int i = 0; i < 4; i++) {
692 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
693 fs_reg src = offset(this->outputs[varying], bld, i);
694 set_saturate(true, bld.MOV(reg, src));
695 sources[length++] = reg;
696 }
697 } else {
698 for (unsigned i = 0; i < 4; i++)
699 sources[length++] = offset(this->outputs[varying], bld, i);
700 }
701 break;
702 }
703
704 const fs_builder abld = bld.annotate("URB write");
705
706 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
707 * the last slot or if we need to flush (see BAD_FILE varying case
708 * above), emit a URB write send now to flush out the data.
709 */
710 if (length == 8 || (length > 0 && slot == last_slot))
711 flush = true;
712 if (flush) {
713 fs_reg *payload_sources =
714 ralloc_array(mem_ctx, fs_reg, length + header_size);
715 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
716 BRW_REGISTER_TYPE_F);
717 payload_sources[0] = urb_handle;
718
719 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
720 payload_sources[1] = per_slot_offsets;
721
722 memcpy(&payload_sources[header_size], sources,
723 length * sizeof sources[0]);
724
725 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
726 header_size);
727
728 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
729 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
730 inst->mlen = length + header_size;
731 inst->offset = urb_offset;
732 urb_offset = starting_urb_offset + slot + 1;
733 length = 0;
734 flush = false;
735 urb_written = true;
736 }
737 }
738
739 /* If we don't have any valid slots to write, just do a minimal urb write
740 * send to terminate the shader. This includes 1 slot of undefined data,
741 * because it's invalid to write 0 data:
742 *
743 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
744 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
745 * Write Data Payload:
746 *
747 * "The write data payload can be between 1 and 8 message phases long."
748 */
749 if (!urb_written) {
750 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
751 * end the thread, and emit_gs_thread_end() already emits a SEND with
752 * EOT at the end of the program for us.
753 */
754 if (stage == MESA_SHADER_GEOMETRY)
755 return;
756
757 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
758 bld.exec_all().MOV(payload, urb_handle);
759
760 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
761 inst->eot = true;
762 inst->mlen = 2;
763 inst->offset = 1;
764 return;
765 }
766 }
767
768 void
769 fs_visitor::emit_cs_terminate()
770 {
771 assert(devinfo->gen >= 7);
772
773 /* We are getting the thread ID from the compute shader header */
774 assert(stage == MESA_SHADER_COMPUTE);
775
776 /* We can't directly send from g0, since sends with EOT have to use
777 * g112-127. So, copy it to a virtual register, The register allocator will
778 * make sure it uses the appropriate register range.
779 */
780 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
781 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
782 bld.group(8, 0).exec_all().MOV(payload, g0);
783
784 /* Send a message to the thread spawner to terminate the thread. */
785 fs_inst *inst = bld.exec_all()
786 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
787 inst->eot = true;
788 }
789
790 void
791 fs_visitor::emit_barrier()
792 {
793 assert(devinfo->gen >= 7);
794 const uint32_t barrier_id_mask =
795 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
796
797 /* We are getting the barrier ID from the compute shader header */
798 assert(stage == MESA_SHADER_COMPUTE);
799
800 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
801
802 /* Clear the message payload */
803 bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
804
805 /* Copy the barrier id from r0.2 to the message payload reg.2 */
806 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
807 bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
808 brw_imm_ud(barrier_id_mask));
809
810 /* Emit a gateway "barrier" message using the payload we set up, followed
811 * by a wait instruction.
812 */
813 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
814 }
815
816 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
817 void *mem_ctx,
818 const void *key,
819 struct brw_stage_prog_data *prog_data,
820 struct gl_program *prog,
821 const nir_shader *shader,
822 unsigned dispatch_width,
823 int shader_time_index,
824 const struct brw_vue_map *input_vue_map)
825 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
826 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
827 input_vue_map(input_vue_map),
828 dispatch_width(dispatch_width),
829 shader_time_index(shader_time_index),
830 bld(fs_builder(this, dispatch_width).at_end())
831 {
832 init();
833 }
834
835 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
836 void *mem_ctx,
837 struct brw_gs_compile *c,
838 struct brw_gs_prog_data *prog_data,
839 const nir_shader *shader,
840 int shader_time_index)
841 : backend_shader(compiler, log_data, mem_ctx, shader,
842 &prog_data->base.base),
843 key(&c->key), gs_compile(c),
844 prog_data(&prog_data->base.base), prog(NULL),
845 dispatch_width(8),
846 shader_time_index(shader_time_index),
847 bld(fs_builder(this, dispatch_width).at_end())
848 {
849 init();
850 }
851
852
853 void
854 fs_visitor::init()
855 {
856 switch (stage) {
857 case MESA_SHADER_FRAGMENT:
858 key_tex = &((const brw_wm_prog_key *) key)->tex;
859 break;
860 case MESA_SHADER_VERTEX:
861 key_tex = &((const brw_vs_prog_key *) key)->tex;
862 break;
863 case MESA_SHADER_TESS_CTRL:
864 key_tex = &((const brw_tcs_prog_key *) key)->tex;
865 break;
866 case MESA_SHADER_TESS_EVAL:
867 key_tex = &((const brw_tes_prog_key *) key)->tex;
868 break;
869 case MESA_SHADER_GEOMETRY:
870 key_tex = &((const brw_gs_prog_key *) key)->tex;
871 break;
872 case MESA_SHADER_COMPUTE:
873 key_tex = &((const brw_cs_prog_key*) key)->tex;
874 break;
875 default:
876 unreachable("unhandled shader stage");
877 }
878
879 this->max_dispatch_width = 32;
880 this->prog_data = this->stage_prog_data;
881
882 this->failed = false;
883
884 this->nir_locals = NULL;
885 this->nir_ssa_values = NULL;
886
887 memset(&this->payload, 0, sizeof(this->payload));
888 this->source_depth_to_render_target = false;
889 this->runtime_check_aads_emit = false;
890 this->first_non_payload_grf = 0;
891 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
892
893 this->virtual_grf_start = NULL;
894 this->virtual_grf_end = NULL;
895 this->live_intervals = NULL;
896 this->regs_live_at_ip = NULL;
897
898 this->uniforms = 0;
899 this->last_scratch = 0;
900 this->pull_constant_loc = NULL;
901 this->push_constant_loc = NULL;
902
903 this->promoted_constants = 0,
904
905 this->grf_used = 0;
906 this->spilled_any_registers = false;
907 }
908
909 fs_visitor::~fs_visitor()
910 {
911 }