i965,iris,anv: Make alpha to coverage work with sample mask
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 write->last_rt = true;
107 if (devinfo->gen >= 6) {
108 write->base_mrf = 2;
109 write->mlen = 4 * reg_width;
110 } else {
111 write->header_size = 2;
112 write->base_mrf = 0;
113 write->mlen = 2 + 4 * reg_width;
114 }
115
116 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
117 * varying to avoid GPU hangs, so set that.
118 */
119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
120 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
121 memset(wm_prog_data->urb_setup, -1,
122 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
123
124 /* We don't have any uniforms. */
125 stage_prog_data->nr_params = 0;
126 stage_prog_data->nr_pull_params = 0;
127 stage_prog_data->curb_read_length = 0;
128 stage_prog_data->dispatch_grf_start_reg = 2;
129 wm_prog_data->dispatch_grf_start_reg_16 = 2;
130 wm_prog_data->dispatch_grf_start_reg_32 = 2;
131 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
132
133 calculate_cfg();
134 }
135
136 /* The register location here is relative to the start of the URB
137 * data. It will get adjusted to be a real location before
138 * generate_code() time.
139 */
140 fs_reg
141 fs_visitor::interp_reg(int location, int channel)
142 {
143 assert(stage == MESA_SHADER_FRAGMENT);
144 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
145 int regnr = prog_data->urb_setup[location] * 4 + channel;
146 assert(prog_data->urb_setup[location] != -1);
147
148 return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
149 }
150
151 /** Emits the interpolation for the varying inputs. */
152 void
153 fs_visitor::emit_interpolation_setup_gen4()
154 {
155 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
156
157 fs_builder abld = bld.annotate("compute pixel centers");
158 this->pixel_x = vgrf(glsl_type::uint_type);
159 this->pixel_y = vgrf(glsl_type::uint_type);
160 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
161 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
162 abld.ADD(this->pixel_x,
163 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
164 fs_reg(brw_imm_v(0x10101010)));
165 abld.ADD(this->pixel_y,
166 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
167 fs_reg(brw_imm_v(0x11001100)));
168
169 abld = bld.annotate("compute pixel deltas from v0");
170
171 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
172 vgrf(glsl_type::vec2_type);
173 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
174 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
175 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
176
177 if (devinfo->has_pln && dispatch_width == 16) {
178 for (unsigned i = 0; i < 2; i++) {
179 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
180 half(this->pixel_x, i), xstart);
181 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
182 half(this->pixel_y, i), ystart);
183 }
184 } else {
185 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
186 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
187 }
188
189 abld = bld.annotate("compute pos.w and 1/pos.w");
190 /* Compute wpos.w. It's always in our setup, since it's needed to
191 * interpolate the other attributes.
192 */
193 this->wpos_w = vgrf(glsl_type::float_type);
194 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
195 component(interp_reg(VARYING_SLOT_POS, 3), 0));
196 /* Compute the pixel 1/W value from wpos.w. */
197 this->pixel_w = vgrf(glsl_type::float_type);
198 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
199 }
200
201 /** Emits the interpolation for the varying inputs. */
202 void
203 fs_visitor::emit_interpolation_setup_gen6()
204 {
205 fs_builder abld = bld.annotate("compute pixel centers");
206
207 this->pixel_x = vgrf(glsl_type::float_type);
208 this->pixel_y = vgrf(glsl_type::float_type);
209
210 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
211 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
212 struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
213
214 if (devinfo->gen >= 8 || dispatch_width == 8) {
215 /* The "Register Region Restrictions" page says for BDW (and newer,
216 * presumably):
217 *
218 * "When destination spans two registers, the source may be one or
219 * two registers. The destination elements must be evenly split
220 * between the two registers."
221 *
222 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
223 * to compute our pixel centers.
224 */
225 const fs_builder dbld =
226 abld.exec_all().group(hbld.dispatch_width() * 2, 0);
227 fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
228
229 dbld.ADD(int_pixel_xy,
230 fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
231 fs_reg(brw_imm_v(0x11001010)));
232
233 hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy);
234 hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy);
235 } else {
236 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
237 *
238 * "When destination spans two registers, the source MUST span
239 * two registers."
240 *
241 * Since the GRF source of the ADD will only read a single register,
242 * we must do two separate ADDs in SIMD16.
243 */
244 const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
245 const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
246
247 hbld.ADD(int_pixel_x,
248 fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
249 fs_reg(brw_imm_v(0x10101010)));
250 hbld.ADD(int_pixel_y,
251 fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
252 fs_reg(brw_imm_v(0x11001100)));
253
254 /* As of gen6, we can no longer mix float and int sources. We have
255 * to turn the integer pixel centers into floats for their actual
256 * use.
257 */
258 hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
259 hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
260 }
261 }
262
263 abld = bld.annotate("compute pos.w");
264 this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
265 this->wpos_w = vgrf(glsl_type::float_type);
266 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
267
268 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
269
270 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
271 this->delta_xy[i] = fetch_payload_reg(
272 bld, payload.barycentric_coord_reg[i], BRW_REGISTER_TYPE_F, 2);
273 }
274
275 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
276 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
277 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
278
279 if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
280 /* Get the pixel/sample mask into f0 so that we know which
281 * pixels are lit. Then, for each channel that is unlit,
282 * replace the centroid data with non-centroid data.
283 */
284 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
285 bld.exec_all().group(1, 0)
286 .MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
287 retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
288 }
289
290 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
291 if (!(centroid_modes & (1 << i)))
292 continue;
293
294 const fs_reg &pixel_delta_xy = delta_xy[i - 1];
295
296 for (unsigned q = 0; q < dispatch_width / 8; q++) {
297 for (unsigned c = 0; c < 2; c++) {
298 const unsigned idx = c + (q & 2) + (q & 1) * dispatch_width / 8;
299 set_predicate_inv(
300 BRW_PREDICATE_NORMAL, true,
301 bld.half(q).MOV(horiz_offset(delta_xy[i], idx * 8),
302 horiz_offset(pixel_delta_xy, idx * 8)));
303 }
304 }
305 }
306 }
307 }
308
309 static enum brw_conditional_mod
310 cond_for_alpha_func(GLenum func)
311 {
312 switch(func) {
313 case GL_GREATER:
314 return BRW_CONDITIONAL_G;
315 case GL_GEQUAL:
316 return BRW_CONDITIONAL_GE;
317 case GL_LESS:
318 return BRW_CONDITIONAL_L;
319 case GL_LEQUAL:
320 return BRW_CONDITIONAL_LE;
321 case GL_EQUAL:
322 return BRW_CONDITIONAL_EQ;
323 case GL_NOTEQUAL:
324 return BRW_CONDITIONAL_NEQ;
325 default:
326 unreachable("Not reached");
327 }
328 }
329
330 /**
331 * Alpha test support for when we compile it into the shader instead
332 * of using the normal fixed-function alpha test.
333 */
334 void
335 fs_visitor::emit_alpha_test()
336 {
337 assert(stage == MESA_SHADER_FRAGMENT);
338 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
339 const fs_builder abld = bld.annotate("Alpha test");
340
341 fs_inst *cmp;
342 if (key->alpha_test_func == GL_ALWAYS)
343 return;
344
345 if (key->alpha_test_func == GL_NEVER) {
346 /* f0.1 = 0 */
347 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
348 BRW_REGISTER_TYPE_UW));
349 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
350 BRW_CONDITIONAL_NEQ);
351 } else {
352 /* RT0 alpha */
353 fs_reg color = offset(outputs[0], bld, 3);
354
355 /* f0.1 &= func(color, ref) */
356 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
357 cond_for_alpha_func(key->alpha_test_func));
358 }
359 cmp->predicate = BRW_PREDICATE_NORMAL;
360 cmp->flag_subreg = 1;
361 }
362
363 fs_inst *
364 fs_visitor::emit_single_fb_write(const fs_builder &bld,
365 fs_reg color0, fs_reg color1,
366 fs_reg src0_alpha, unsigned components)
367 {
368 assert(stage == MESA_SHADER_FRAGMENT);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370
371 /* Hand over gl_FragDepth or the payload depth. */
372 const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
373 fs_reg src_depth, src_stencil;
374
375 if (source_depth_to_render_target) {
376 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
377 src_depth = frag_depth;
378 else
379 src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
380 }
381
382 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
383 src_stencil = frag_stencil;
384
385 const fs_reg sources[] = {
386 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
387 (prog_data->uses_omask ? sample_mask : fs_reg()),
388 brw_imm_ud(components)
389 };
390 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
391 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
392 sources, ARRAY_SIZE(sources));
393
394 if (prog_data->uses_kill) {
395 write->predicate = BRW_PREDICATE_NORMAL;
396 write->flag_subreg = 1;
397 }
398
399 return write;
400 }
401
402 void
403 fs_visitor::emit_alpha_to_coverage_workaround(const fs_reg &src0_alpha)
404 {
405 /* We need to compute alpha to coverage dithering manually in shader
406 * and replace sample mask store with the bitwise-AND of sample mask and
407 * alpha to coverage dithering.
408 *
409 * The following formula is used to compute final sample mask:
410 * m = int(16.0 * clamp(src0_alpha, 0.0, 1.0))
411 * dither_mask = 0x1111 * ((0xfea80 >> (m & ~3)) & 0xf) |
412 * 0x0808 * (m & 2) | 0x0100 * (m & 1)
413 * sample_mask = sample_mask & dither_mask
414 *
415 * It gives a number of ones proportional to the alpha for 2, 4, 8 or 16
416 * least significant bits of the result:
417 * 0.0000 0000000000000000
418 * 0.0625 0000000100000000
419 * 0.1250 0001000000010000
420 * 0.1875 0001000100010000
421 * 0.2500 1000100010001000
422 * 0.3125 1000100110001000
423 * 0.3750 1001100010011000
424 * 0.4375 1001100110011000
425 * 0.5000 1010101010101010
426 * 0.5625 1010101110101010
427 * 0.6250 1011101010111010
428 * 0.6875 1011101110111010
429 * 0.7500 1110111011101110
430 * 0.8125 1110111111101110
431 * 0.8750 1111111011111110
432 * 0.9375 1111111111111110
433 * 1.0000 1111111111111111
434 */
435 const fs_builder abld = bld.annotate("compute alpha_to_coverage & "
436 "sample_mask");
437
438 /* clamp(src0_alpha, 0.f, 1.f) */
439 const fs_reg float_tmp = abld.vgrf(BRW_REGISTER_TYPE_F);
440 set_saturate(true, abld.MOV(float_tmp, src0_alpha));
441
442 /* 16.0 * clamp(src0_alpha, 0.0, 1.0) */
443 abld.MUL(float_tmp, float_tmp, brw_imm_f(16.0));
444
445 /* m = int(16.0 * clamp(src0_alpha, 0.0, 1.0)) */
446 const fs_reg m = abld.vgrf(BRW_REGISTER_TYPE_UW);
447 abld.MOV(m, float_tmp);
448
449 /* 0x1111 * ((0xfea80 >> (m & ~3)) & 0xf) */
450 const fs_reg int_tmp_1 = abld.vgrf(BRW_REGISTER_TYPE_UW);
451 const fs_reg shift_const = abld.vgrf(BRW_REGISTER_TYPE_UD);
452 abld.MOV(shift_const, brw_imm_d(0xfea80));
453 abld.AND(int_tmp_1, m, brw_imm_uw(~3));
454 abld.SHR(int_tmp_1, shift_const, int_tmp_1);
455 abld.AND(int_tmp_1, int_tmp_1, brw_imm_uw(0xf));
456 abld.MUL(int_tmp_1, int_tmp_1, brw_imm_uw(0x1111));
457
458 /* 0x0808 * (m & 2) */
459 const fs_reg int_tmp_2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
460 abld.AND(int_tmp_2, m, brw_imm_uw(2));
461 abld.MUL(int_tmp_2, int_tmp_2, brw_imm_uw(0x0808));
462
463 abld.OR(int_tmp_1, int_tmp_1, int_tmp_2);
464
465 /* 0x0100 * (m & 1) */
466 const fs_reg int_tmp_3 = abld.vgrf(BRW_REGISTER_TYPE_UW);
467 abld.AND(int_tmp_3, m, brw_imm_uw(1));
468 abld.MUL(int_tmp_3, int_tmp_3, brw_imm_uw(0x0100));
469
470 abld.OR(int_tmp_1, int_tmp_1, int_tmp_3);
471
472 /* sample_mask = sample_mask & dither_mask */
473 const fs_reg mask = abld.vgrf(BRW_REGISTER_TYPE_UD);
474 abld.AND(mask, sample_mask, int_tmp_1);
475 sample_mask = mask;
476 }
477
478 void
479 fs_visitor::emit_fb_writes()
480 {
481 assert(stage == MESA_SHADER_FRAGMENT);
482 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
483 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
484
485 fs_inst *inst = NULL;
486
487 if (source_depth_to_render_target && devinfo->gen == 6) {
488 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
489 * would require SIMD8 moves of each half to message regs, e.g. by using
490 * the SIMD lowering pass. Unfortunately this is more difficult than it
491 * sounds because the SIMD8 single-source message lacks channel selects
492 * for the second and third subspans.
493 */
494 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
495 }
496
497 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
498 /* From the 'Render Target Write message' section of the docs:
499 * "Output Stencil is not supported with SIMD16 Render Target Write
500 * Messages."
501 */
502 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
503 "in SIMD16+ mode.\n");
504 }
505
506 /* ANV doesn't know about sample mask output during the wm key creation
507 * so we compute if we need replicate alpha and emit alpha to coverage
508 * workaround here.
509 */
510 prog_data->replicate_alpha = key->alpha_test_replicate_alpha ||
511 (key->nr_color_regions > 1 && key->alpha_to_coverage &&
512 (sample_mask.file == BAD_FILE || devinfo->gen == 6));
513
514 /* From the SKL PRM, Volume 7, "Alpha Coverage":
515 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
516 * hardware, regardless of the state setting for this feature."
517 */
518 if (devinfo->gen > 6 && key->alpha_to_coverage &&
519 sample_mask.file != BAD_FILE && this->outputs[0].file != BAD_FILE)
520 emit_alpha_to_coverage_workaround(offset(this->outputs[0], bld, 3));
521
522 for (int target = 0; target < key->nr_color_regions; target++) {
523 /* Skip over outputs that weren't written. */
524 if (this->outputs[target].file == BAD_FILE)
525 continue;
526
527 const fs_builder abld = bld.annotate(
528 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
529
530 fs_reg src0_alpha;
531 if (devinfo->gen >= 6 && prog_data->replicate_alpha && target != 0)
532 src0_alpha = offset(outputs[0], bld, 3);
533
534 inst = emit_single_fb_write(abld, this->outputs[target],
535 this->dual_src_output, src0_alpha, 4);
536 inst->target = target;
537 }
538
539 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
540 this->outputs[0].file != BAD_FILE);
541 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
542
543 if (inst == NULL) {
544 /* Even if there's no color buffers enabled, we still need to send
545 * alpha out the pipeline to our null renderbuffer to support
546 * alpha-testing, alpha-to-coverage, and so on.
547 */
548 /* FINISHME: Factor out this frequently recurring pattern into a
549 * helper function.
550 */
551 const fs_reg srcs[] = { reg_undef, reg_undef,
552 reg_undef, offset(this->outputs[0], bld, 3) };
553 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
554 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
555
556 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
557 inst->target = 0;
558 }
559
560 inst->last_rt = true;
561 inst->eot = true;
562 }
563
564 void
565 fs_visitor::setup_uniform_clipplane_values()
566 {
567 const struct brw_vs_prog_key *key =
568 (const struct brw_vs_prog_key *) this->key;
569
570 if (key->nr_userclip_plane_consts == 0)
571 return;
572
573 assert(stage_prog_data->nr_params == uniforms);
574 brw_stage_prog_data_add_params(stage_prog_data,
575 key->nr_userclip_plane_consts * 4);
576
577 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
578 this->userplane[i] = fs_reg(UNIFORM, uniforms);
579 for (int j = 0; j < 4; ++j) {
580 stage_prog_data->param[uniforms + j] =
581 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
582 }
583 uniforms += 4;
584 }
585 }
586
587 /**
588 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
589 *
590 * This does nothing if the shader uses gl_ClipDistance or user clipping is
591 * disabled altogether.
592 */
593 void fs_visitor::compute_clip_distance()
594 {
595 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
596 const struct brw_vs_prog_key *key =
597 (const struct brw_vs_prog_key *) this->key;
598
599 /* Bail unless some sort of legacy clipping is enabled */
600 if (key->nr_userclip_plane_consts == 0)
601 return;
602
603 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
604 *
605 * "If a linked set of shaders forming the vertex stage contains no
606 * static write to gl_ClipVertex or gl_ClipDistance, but the
607 * application has requested clipping against user clip planes through
608 * the API, then the coordinate written to gl_Position is used for
609 * comparison against the user clip planes."
610 *
611 * This function is only called if the shader didn't write to
612 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
613 * if the user wrote to it; otherwise we use gl_Position.
614 */
615
616 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
617 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
618 clip_vertex = VARYING_SLOT_POS;
619
620 /* If the clip vertex isn't written, skip this. Typically this means
621 * the GS will set up clipping. */
622 if (outputs[clip_vertex].file == BAD_FILE)
623 return;
624
625 setup_uniform_clipplane_values();
626
627 const fs_builder abld = bld.annotate("user clip distances");
628
629 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
630 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
631
632 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
633 fs_reg u = userplane[i];
634 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
635 bld, i & 3);
636
637 abld.MUL(output, outputs[clip_vertex], u);
638 for (int j = 1; j < 4; j++) {
639 u.nr = userplane[i].nr + j;
640 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
641 }
642 }
643 }
644
645 void
646 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
647 {
648 int slot, urb_offset, length;
649 int starting_urb_offset = 0;
650 const struct brw_vue_prog_data *vue_prog_data =
651 brw_vue_prog_data(this->prog_data);
652 const struct brw_vs_prog_key *vs_key =
653 (const struct brw_vs_prog_key *) this->key;
654 const GLbitfield64 psiz_mask =
655 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
656 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
657 bool flush;
658 fs_reg sources[8];
659 fs_reg urb_handle;
660
661 if (stage == MESA_SHADER_TESS_EVAL)
662 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
663 else
664 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
665
666 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
667 int header_size = 1;
668 fs_reg per_slot_offsets;
669
670 if (stage == MESA_SHADER_GEOMETRY) {
671 const struct brw_gs_prog_data *gs_prog_data =
672 brw_gs_prog_data(this->prog_data);
673
674 /* We need to increment the Global Offset to skip over the control data
675 * header and the extra "Vertex Count" field (1 HWord) at the beginning
676 * of the VUE. We're counting in OWords, so the units are doubled.
677 */
678 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
679 if (gs_prog_data->static_vertex_count == -1)
680 starting_urb_offset += 2;
681
682 /* We also need to use per-slot offsets. The per-slot offset is the
683 * Vertex Count. SIMD8 mode processes 8 different primitives at a
684 * time; each may output a different number of vertices.
685 */
686 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
687 header_size++;
688
689 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
690 const int output_vertex_size_owords =
691 gs_prog_data->output_vertex_size_hwords * 2;
692
693 if (gs_vertex_count.file == IMM) {
694 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
695 gs_vertex_count.ud);
696 } else {
697 per_slot_offsets = vgrf(glsl_type::uint_type);
698 bld.MUL(per_slot_offsets, gs_vertex_count,
699 brw_imm_ud(output_vertex_size_owords));
700 }
701 }
702
703 length = 0;
704 urb_offset = starting_urb_offset;
705 flush = false;
706
707 /* SSO shaders can have VUE slots allocated which are never actually
708 * written to, so ignore them when looking for the last (written) slot.
709 */
710 int last_slot = vue_map->num_slots - 1;
711 while (last_slot > 0 &&
712 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
713 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
714 last_slot--;
715 }
716
717 bool urb_written = false;
718 for (slot = 0; slot < vue_map->num_slots; slot++) {
719 int varying = vue_map->slot_to_varying[slot];
720 switch (varying) {
721 case VARYING_SLOT_PSIZ: {
722 /* The point size varying slot is the vue header and is always in the
723 * vue map. But often none of the special varyings that live there
724 * are written and in that case we can skip writing to the vue
725 * header, provided the corresponding state properly clamps the
726 * values further down the pipeline. */
727 if ((vue_map->slots_valid & psiz_mask) == 0) {
728 assert(length == 0);
729 urb_offset++;
730 break;
731 }
732
733 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
734 bld.MOV(zero, brw_imm_ud(0u));
735
736 sources[length++] = zero;
737 if (vue_map->slots_valid & VARYING_BIT_LAYER)
738 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
739 else
740 sources[length++] = zero;
741
742 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
743 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
744 else
745 sources[length++] = zero;
746
747 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
748 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
749 else
750 sources[length++] = zero;
751 break;
752 }
753 case BRW_VARYING_SLOT_NDC:
754 case VARYING_SLOT_EDGE:
755 unreachable("unexpected scalar vs output");
756 break;
757
758 default:
759 /* gl_Position is always in the vue map, but isn't always written by
760 * the shader. Other varyings (clip distances) get added to the vue
761 * map but don't always get written. In those cases, the
762 * corresponding this->output[] slot will be invalid we and can skip
763 * the urb write for the varying. If we've already queued up a vue
764 * slot for writing we flush a mlen 5 urb write, otherwise we just
765 * advance the urb_offset.
766 */
767 if (varying == BRW_VARYING_SLOT_PAD ||
768 this->outputs[varying].file == BAD_FILE) {
769 if (length > 0)
770 flush = true;
771 else
772 urb_offset++;
773 break;
774 }
775
776 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
777 (varying == VARYING_SLOT_COL0 ||
778 varying == VARYING_SLOT_COL1 ||
779 varying == VARYING_SLOT_BFC0 ||
780 varying == VARYING_SLOT_BFC1)) {
781 /* We need to clamp these guys, so do a saturating MOV into a
782 * temp register and use that for the payload.
783 */
784 for (int i = 0; i < 4; i++) {
785 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
786 fs_reg src = offset(this->outputs[varying], bld, i);
787 set_saturate(true, bld.MOV(reg, src));
788 sources[length++] = reg;
789 }
790 } else {
791 for (unsigned i = 0; i < 4; i++)
792 sources[length++] = offset(this->outputs[varying], bld, i);
793 }
794 break;
795 }
796
797 const fs_builder abld = bld.annotate("URB write");
798
799 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
800 * the last slot or if we need to flush (see BAD_FILE varying case
801 * above), emit a URB write send now to flush out the data.
802 */
803 if (length == 8 || (length > 0 && slot == last_slot))
804 flush = true;
805 if (flush) {
806 fs_reg *payload_sources =
807 ralloc_array(mem_ctx, fs_reg, length + header_size);
808 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
809 BRW_REGISTER_TYPE_F);
810 payload_sources[0] = urb_handle;
811
812 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
813 payload_sources[1] = per_slot_offsets;
814
815 memcpy(&payload_sources[header_size], sources,
816 length * sizeof sources[0]);
817
818 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
819 header_size);
820
821 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
822 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
823 inst->mlen = length + header_size;
824 inst->offset = urb_offset;
825 urb_offset = starting_urb_offset + slot + 1;
826 length = 0;
827 flush = false;
828 urb_written = true;
829 }
830 }
831
832 /* If we don't have any valid slots to write, just do a minimal urb write
833 * send to terminate the shader. This includes 1 slot of undefined data,
834 * because it's invalid to write 0 data:
835 *
836 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
837 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
838 * Write Data Payload:
839 *
840 * "The write data payload can be between 1 and 8 message phases long."
841 */
842 if (!urb_written) {
843 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
844 * end the thread, and emit_gs_thread_end() already emits a SEND with
845 * EOT at the end of the program for us.
846 */
847 if (stage == MESA_SHADER_GEOMETRY)
848 return;
849
850 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
851 bld.exec_all().MOV(payload, urb_handle);
852
853 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
854 inst->eot = true;
855 inst->mlen = 2;
856 inst->offset = 1;
857 return;
858 }
859 }
860
861 void
862 fs_visitor::emit_cs_terminate()
863 {
864 assert(devinfo->gen >= 7);
865
866 /* We are getting the thread ID from the compute shader header */
867 assert(stage == MESA_SHADER_COMPUTE);
868
869 /* We can't directly send from g0, since sends with EOT have to use
870 * g112-127. So, copy it to a virtual register, The register allocator will
871 * make sure it uses the appropriate register range.
872 */
873 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
874 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
875 bld.group(8, 0).exec_all().MOV(payload, g0);
876
877 /* Send a message to the thread spawner to terminate the thread. */
878 fs_inst *inst = bld.exec_all()
879 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
880 inst->eot = true;
881 }
882
883 void
884 fs_visitor::emit_barrier()
885 {
886 uint32_t barrier_id_mask;
887 switch (devinfo->gen) {
888 case 7:
889 case 8:
890 barrier_id_mask = 0x0f000000u; break;
891 case 9:
892 case 10:
893 barrier_id_mask = 0x8f000000u; break;
894 case 11:
895 barrier_id_mask = 0x7f000000u; break;
896 default:
897 unreachable("barrier is only available on gen >= 7");
898 }
899
900 /* We are getting the barrier ID from the compute shader header */
901 assert(stage == MESA_SHADER_COMPUTE);
902
903 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
904
905 /* Clear the message payload */
906 bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
907
908 /* Copy the barrier id from r0.2 to the message payload reg.2 */
909 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
910 bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
911 brw_imm_ud(barrier_id_mask));
912
913 /* Emit a gateway "barrier" message using the payload we set up, followed
914 * by a wait instruction.
915 */
916 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
917 }
918
919 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
920 void *mem_ctx,
921 const void *key,
922 struct brw_stage_prog_data *prog_data,
923 struct gl_program *prog,
924 const nir_shader *shader,
925 unsigned dispatch_width,
926 int shader_time_index,
927 const struct brw_vue_map *input_vue_map)
928 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
929 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
930 input_vue_map(input_vue_map),
931 dispatch_width(dispatch_width),
932 shader_time_index(shader_time_index),
933 bld(fs_builder(this, dispatch_width).at_end())
934 {
935 init();
936 }
937
938 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
939 void *mem_ctx,
940 struct brw_gs_compile *c,
941 struct brw_gs_prog_data *prog_data,
942 const nir_shader *shader,
943 int shader_time_index)
944 : backend_shader(compiler, log_data, mem_ctx, shader,
945 &prog_data->base.base),
946 key(&c->key), gs_compile(c),
947 prog_data(&prog_data->base.base), prog(NULL),
948 dispatch_width(8),
949 shader_time_index(shader_time_index),
950 bld(fs_builder(this, dispatch_width).at_end())
951 {
952 init();
953 }
954
955
956 void
957 fs_visitor::init()
958 {
959 switch (stage) {
960 case MESA_SHADER_FRAGMENT:
961 key_tex = &((const brw_wm_prog_key *) key)->tex;
962 break;
963 case MESA_SHADER_VERTEX:
964 key_tex = &((const brw_vs_prog_key *) key)->tex;
965 break;
966 case MESA_SHADER_TESS_CTRL:
967 key_tex = &((const brw_tcs_prog_key *) key)->tex;
968 break;
969 case MESA_SHADER_TESS_EVAL:
970 key_tex = &((const brw_tes_prog_key *) key)->tex;
971 break;
972 case MESA_SHADER_GEOMETRY:
973 key_tex = &((const brw_gs_prog_key *) key)->tex;
974 break;
975 case MESA_SHADER_COMPUTE:
976 key_tex = &((const brw_cs_prog_key*) key)->tex;
977 break;
978 default:
979 unreachable("unhandled shader stage");
980 }
981
982 this->max_dispatch_width = 32;
983 this->prog_data = this->stage_prog_data;
984
985 this->failed = false;
986
987 this->nir_locals = NULL;
988 this->nir_ssa_values = NULL;
989
990 memset(&this->payload, 0, sizeof(this->payload));
991 this->source_depth_to_render_target = false;
992 this->runtime_check_aads_emit = false;
993 this->first_non_payload_grf = 0;
994 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
995
996 this->virtual_grf_start = NULL;
997 this->virtual_grf_end = NULL;
998 this->live_intervals = NULL;
999 this->regs_live_at_ip = NULL;
1000
1001 this->uniforms = 0;
1002 this->last_scratch = 0;
1003 this->pull_constant_loc = NULL;
1004 this->push_constant_loc = NULL;
1005
1006 this->promoted_constants = 0,
1007
1008 this->grf_used = 0;
1009 this->spilled_any_registers = false;
1010 }
1011
1012 fs_visitor::~fs_visitor()
1013 {
1014 }