intel/fs: Add SLM size to brw_cs_prog_data
[mesa.git] / src / intel / compiler / brw_schedule_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33
34 using namespace brw;
35
36 /** @file brw_fs_schedule_instructions.cpp
37 *
38 * List scheduling of FS instructions.
39 *
40 * The basic model of the list scheduler is to take a basic block,
41 * compute a DAG of the dependencies (RAW ordering with latency, WAW
42 * ordering with latency, WAR ordering), and make a list of the DAG heads.
43 * Heuristically pick a DAG head, then put all the children that are
44 * now DAG heads into the list of things to schedule.
45 *
46 * The heuristic is the important part. We're trying to be cheap,
47 * since actually computing the optimal scheduling is NP complete.
48 * What we do is track a "current clock". When we schedule a node, we
49 * update the earliest-unblocked clock time of its children, and
50 * increment the clock. Then, when trying to schedule, we just pick
51 * the earliest-unblocked instruction to schedule.
52 *
53 * Note that often there will be many things which could execute
54 * immediately, and there are a range of heuristic options to choose
55 * from in picking among those.
56 */
57
58 static bool debug = false;
59
60 class instruction_scheduler;
61
62 class schedule_node : public exec_node
63 {
64 public:
65 schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66 void set_latency_gen4();
67 void set_latency_gen7(bool is_haswell);
68
69 backend_instruction *inst;
70 schedule_node **children;
71 int *child_latency;
72 int child_count;
73 int parent_count;
74 int child_array_size;
75 int unblocked_time;
76 int latency;
77
78 /**
79 * Which iteration of pushing groups of children onto the candidates list
80 * this node was a part of.
81 */
82 unsigned cand_generation;
83
84 /**
85 * This is the sum of the instruction's latency plus the maximum delay of
86 * its children, or just the issue_time if it's a leaf node.
87 */
88 int delay;
89
90 /**
91 * Preferred exit node among the (direct or indirect) successors of this
92 * node. Among the scheduler nodes blocked by this node, this will be the
93 * one that may cause earliest program termination, or NULL if none of the
94 * successors is an exit node.
95 */
96 schedule_node *exit;
97 };
98
99 /**
100 * Lower bound of the scheduling time after which one of the instructions
101 * blocked by this node may lead to program termination.
102 *
103 * exit_unblocked_time() determines a strict partial ordering relation '«' on
104 * the set of scheduler nodes as follows:
105 *
106 * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107 *
108 * which can be used to heuristically order nodes according to how early they
109 * can unblock an exit node and lead to program termination.
110 */
111 static inline int
112 exit_unblocked_time(const schedule_node *n)
113 {
114 return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116
117 void
118 schedule_node::set_latency_gen4()
119 {
120 int chans = 8;
121 int math_latency = 22;
122
123 switch (inst->opcode) {
124 case SHADER_OPCODE_RCP:
125 this->latency = 1 * chans * math_latency;
126 break;
127 case SHADER_OPCODE_RSQ:
128 this->latency = 2 * chans * math_latency;
129 break;
130 case SHADER_OPCODE_INT_QUOTIENT:
131 case SHADER_OPCODE_SQRT:
132 case SHADER_OPCODE_LOG2:
133 /* full precision log. partial is 2. */
134 this->latency = 3 * chans * math_latency;
135 break;
136 case SHADER_OPCODE_INT_REMAINDER:
137 case SHADER_OPCODE_EXP2:
138 /* full precision. partial is 3, same throughput. */
139 this->latency = 4 * chans * math_latency;
140 break;
141 case SHADER_OPCODE_POW:
142 this->latency = 8 * chans * math_latency;
143 break;
144 case SHADER_OPCODE_SIN:
145 case SHADER_OPCODE_COS:
146 /* minimum latency, max is 12 rounds. */
147 this->latency = 5 * chans * math_latency;
148 break;
149 default:
150 this->latency = 2;
151 break;
152 }
153 }
154
155 void
156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158 switch (inst->opcode) {
159 case BRW_OPCODE_MAD:
160 /* 2 cycles
161 * (since the last two src operands are in different register banks):
162 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163 *
164 * 3 cycles on IVB, 4 on HSW
165 * (since the last two src operands are in the same register bank):
166 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167 *
168 * 18 cycles on IVB, 16 on HSW
169 * (since the last two src operands are in different register banks):
170 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171 * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
172 *
173 * 20 cycles on IVB, 18 on HSW
174 * (since the last two src operands are in the same register bank):
175 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
177 */
178
179 /* Our register allocator doesn't know about register banks, so use the
180 * higher latency.
181 */
182 latency = is_haswell ? 16 : 18;
183 break;
184
185 case BRW_OPCODE_LRP:
186 /* 2 cycles
187 * (since the last two src operands are in different register banks):
188 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189 *
190 * 3 cycles on IVB, 4 on HSW
191 * (since the last two src operands are in the same register bank):
192 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193 *
194 * 16 cycles on IVB, 14 on HSW
195 * (since the last two src operands are in different register banks):
196 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
198 *
199 * 16 cycles
200 * (since the last two src operands are in the same register bank):
201 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
203 */
204
205 /* Our register allocator doesn't know about register banks, so use the
206 * higher latency.
207 */
208 latency = 14;
209 break;
210
211 case SHADER_OPCODE_RCP:
212 case SHADER_OPCODE_RSQ:
213 case SHADER_OPCODE_SQRT:
214 case SHADER_OPCODE_LOG2:
215 case SHADER_OPCODE_EXP2:
216 case SHADER_OPCODE_SIN:
217 case SHADER_OPCODE_COS:
218 /* 2 cycles:
219 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
220 *
221 * 18 cycles:
222 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
223 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
224 *
225 * Same for exp2, log2, rsq, sqrt, sin, cos.
226 */
227 latency = is_haswell ? 14 : 16;
228 break;
229
230 case SHADER_OPCODE_POW:
231 /* 2 cycles:
232 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
233 *
234 * 26 cycles:
235 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
236 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
237 */
238 latency = is_haswell ? 22 : 24;
239 break;
240
241 case SHADER_OPCODE_TEX:
242 case SHADER_OPCODE_TXD:
243 case SHADER_OPCODE_TXF:
244 case SHADER_OPCODE_TXF_LZ:
245 case SHADER_OPCODE_TXL:
246 case SHADER_OPCODE_TXL_LZ:
247 /* 18 cycles:
248 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
249 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
250 * send(8) g4<1>UW g114<8,8,1>F
251 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
252 *
253 * 697 +/-49 cycles (min 610, n=26):
254 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
255 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
256 * send(8) g4<1>UW g114<8,8,1>F
257 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
258 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
259 *
260 * So the latency on our first texture load of the batchbuffer takes
261 * ~700 cycles, since the caches are cold at that point.
262 *
263 * 840 +/- 92 cycles (min 720, n=25):
264 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
265 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
266 * send(8) g4<1>UW g114<8,8,1>F
267 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
268 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
269 * send(8) g4<1>UW g114<8,8,1>F
270 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
271 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
272 *
273 * On the second load, it takes just an extra ~140 cycles, and after
274 * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275 *
276 * 683 +/- 49 cycles (min = 602, n=47):
277 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
278 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
279 * send(8) g4<1>UW g114<8,8,1>F
280 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
281 * send(8) g50<1>UW g114<8,8,1>F
282 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
283 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
284 *
285 * The unit appears to be pipelined, since this matches up with the
286 * cache-cold case, despite there being two loads here. If you replace
287 * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288 *
289 * So, take some number between the cache-hot 140 cycles and the
290 * cache-cold 700 cycles. No particular tuning was done on this.
291 *
292 * I haven't done significant testing of the non-TEX opcodes. TXL at
293 * least looked about the same as TEX.
294 */
295 latency = 200;
296 break;
297
298 case SHADER_OPCODE_TXS:
299 /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300 * cycles (n=15):
301 * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
302 * send(8) g6<1>UW g114<8,8,1>F
303 * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
304 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
305 *
306 *
307 * Two loads was 535 +/- 30 cycles (n=19):
308 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
309 * send(16) g6<1>UW g114<8,8,1>F
310 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
311 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
312 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
313 * send(16) g8<1>UW g114<8,8,1>F
314 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
315 * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
316 * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
317 *
318 * Since the only caches that should matter are just the
319 * instruction/state cache containing the surface state, assume that we
320 * always have hot caches.
321 */
322 latency = 100;
323 break;
324
325 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
327 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
328 case VS_OPCODE_PULL_CONSTANT_LOAD:
329 /* testing using varying-index pull constants:
330 *
331 * 16 cycles:
332 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
333 * send(8) g4<1>F g4<8,8,1>D
334 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
335 *
336 * ~480 cycles:
337 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
338 * send(8) g4<1>F g4<8,8,1>D
339 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
340 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
341 *
342 * ~620 cycles:
343 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
344 * send(8) g4<1>F g4<8,8,1>D
345 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
346 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
347 * send(8) g4<1>F g4<8,8,1>D
348 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
349 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
350 *
351 * So, if it's cache-hot, it's about 140. If it's cache cold, it's
352 * about 460. We expect to mostly be cache hot, so pick something more
353 * in that direction.
354 */
355 latency = 200;
356 break;
357
358 case SHADER_OPCODE_GEN7_SCRATCH_READ:
359 /* Testing a load from offset 0, that had been previously written:
360 *
361 * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
362 * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
363 *
364 * The cycles spent seemed to be grouped around 40-50 (as low as 38),
365 * then around 140. Presumably this is cache hit vs miss.
366 */
367 latency = 50;
368 break;
369
370 case VEC4_OPCODE_UNTYPED_ATOMIC:
371 /* See GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
372 latency = 14000;
373 break;
374
375 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
376 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
377 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
378 latency = is_haswell ? 300 : 600;
379 break;
380
381 case SHADER_OPCODE_SEND:
382 switch (inst->sfid) {
383 case BRW_SFID_SAMPLER: {
384 unsigned msg_type = (inst->desc >> 12) & 0x1f;
385 switch (msg_type) {
386 case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
387 case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
388 /* See also SHADER_OPCODE_TXS */
389 latency = 100;
390 break;
391
392 default:
393 /* See also SHADER_OPCODE_TEX */
394 latency = 200;
395 break;
396 }
397 break;
398 }
399
400 case GEN6_SFID_DATAPORT_RENDER_CACHE:
401 switch ((inst->desc >> 14) & 0x1f) {
402 case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
403 case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
404 /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
405 assert(!is_haswell);
406 latency = 600;
407 break;
408
409 case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
410 /* See also SHADER_OPCODE_TYPED_ATOMIC */
411 assert(!is_haswell);
412 latency = 14000;
413 break;
414
415 default:
416 unreachable("Unknown render cache message");
417 }
418 break;
419
420 case GEN7_SFID_DATAPORT_DATA_CACHE:
421 switch ((inst->desc >> 14) & 0x1f) {
422 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
423 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
424 /* We have no data for this but assume it's roughly the same as
425 * untyped surface read/write.
426 */
427 latency = 300;
428 break;
429
430 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
431 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
432 /* Test code:
433 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
434 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
435 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
436 * send(8) g4<1>UD g112<8,8,1>UD
437 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
438 * .
439 * . [repeats 8 times]
440 * .
441 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
442 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
443 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
444 * send(8) g4<1>UD g112<8,8,1>UD
445 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
446 *
447 * Running it 100 times as fragment shader on a 128x128 quad
448 * gives an average latency of 583 cycles per surface read,
449 * standard deviation 0.9%.
450 */
451 assert(!is_haswell);
452 latency = 600;
453 break;
454
455 case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
456 /* Test code:
457 * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
458 * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
459 * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
460 * send(8) g4<1>ud g112<8,8,1>ud
461 * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
462 *
463 * Running it 100 times as fragment shader on a 128x128 quad
464 * gives an average latency of 13867 cycles per atomic op,
465 * standard deviation 3%. Note that this is a rather
466 * pessimistic estimate, the actual latency in cases with few
467 * collisions between threads and favorable pipelining has been
468 * seen to be reduced by a factor of 100.
469 */
470 assert(!is_haswell);
471 latency = 14000;
472 break;
473
474 default:
475 unreachable("Unknown data cache message");
476 }
477 break;
478
479 case HSW_SFID_DATAPORT_DATA_CACHE_1:
480 switch ((inst->desc >> 14) & 0x1f) {
481 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
482 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
483 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
484 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
485 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
486 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
487 case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
488 case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
489 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
490 latency = 300;
491 break;
492
493 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
494 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
495 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
496 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
497 case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
498 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
499 case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
500 /* See also GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
501 latency = 14000;
502 break;
503
504 default:
505 unreachable("Unknown data cache message");
506 }
507 break;
508
509 default:
510 unreachable("Unknown SFID");
511 }
512 break;
513
514 default:
515 /* 2 cycles:
516 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
517 *
518 * 16 cycles:
519 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
520 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
521 */
522 latency = 14;
523 break;
524 }
525 }
526
527 class instruction_scheduler {
528 public:
529 instruction_scheduler(backend_shader *s, int grf_count,
530 unsigned hw_reg_count, int block_count,
531 instruction_scheduler_mode mode)
532 {
533 this->bs = s;
534 this->mem_ctx = ralloc_context(NULL);
535 this->grf_count = grf_count;
536 this->hw_reg_count = hw_reg_count;
537 this->instructions.make_empty();
538 this->instructions_to_schedule = 0;
539 this->post_reg_alloc = (mode == SCHEDULE_POST);
540 this->mode = mode;
541 if (!post_reg_alloc) {
542 this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
543
544 this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
545 for (int i = 0; i < block_count; i++)
546 this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
547 BITSET_WORDS(grf_count));
548
549 this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
550 for (int i = 0; i < block_count; i++)
551 this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
552 BITSET_WORDS(grf_count));
553
554 this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
555 for (int i = 0; i < block_count; i++)
556 this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
557 BITSET_WORDS(hw_reg_count));
558
559 this->written = rzalloc_array(mem_ctx, bool, grf_count);
560
561 this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
562
563 this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
564 } else {
565 this->reg_pressure_in = NULL;
566 this->livein = NULL;
567 this->liveout = NULL;
568 this->hw_liveout = NULL;
569 this->written = NULL;
570 this->reads_remaining = NULL;
571 this->hw_reads_remaining = NULL;
572 }
573 }
574
575 ~instruction_scheduler()
576 {
577 ralloc_free(this->mem_ctx);
578 }
579 void add_barrier_deps(schedule_node *n);
580 void add_dep(schedule_node *before, schedule_node *after, int latency);
581 void add_dep(schedule_node *before, schedule_node *after);
582
583 void run(cfg_t *cfg);
584 void add_insts_from_block(bblock_t *block);
585 void compute_delays();
586 void compute_exits();
587 virtual void calculate_deps() = 0;
588 virtual schedule_node *choose_instruction_to_schedule() = 0;
589
590 /**
591 * Returns how many cycles it takes the instruction to issue.
592 *
593 * Instructions in gen hardware are handled one simd4 vector at a time,
594 * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
595 * cycles to dispatch and SIMD16 (compressed) instructions take 4.
596 */
597 virtual int issue_time(backend_instruction *inst) = 0;
598
599 virtual void count_reads_remaining(backend_instruction *inst) = 0;
600 virtual void setup_liveness(cfg_t *cfg) = 0;
601 virtual void update_register_pressure(backend_instruction *inst) = 0;
602 virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
603
604 void schedule_instructions(bblock_t *block);
605
606 void *mem_ctx;
607
608 bool post_reg_alloc;
609 int instructions_to_schedule;
610 int grf_count;
611 unsigned hw_reg_count;
612 int reg_pressure;
613 int block_idx;
614 exec_list instructions;
615 backend_shader *bs;
616
617 instruction_scheduler_mode mode;
618
619 /*
620 * The register pressure at the beginning of each basic block.
621 */
622
623 int *reg_pressure_in;
624
625 /*
626 * The virtual GRF's whose range overlaps the beginning of each basic block.
627 */
628
629 BITSET_WORD **livein;
630
631 /*
632 * The virtual GRF's whose range overlaps the end of each basic block.
633 */
634
635 BITSET_WORD **liveout;
636
637 /*
638 * The hardware GRF's whose range overlaps the end of each basic block.
639 */
640
641 BITSET_WORD **hw_liveout;
642
643 /*
644 * Whether we've scheduled a write for this virtual GRF yet.
645 */
646
647 bool *written;
648
649 /*
650 * How many reads we haven't scheduled for this virtual GRF yet.
651 */
652
653 int *reads_remaining;
654
655 /*
656 * How many reads we haven't scheduled for this hardware GRF yet.
657 */
658
659 int *hw_reads_remaining;
660 };
661
662 class fs_instruction_scheduler : public instruction_scheduler
663 {
664 public:
665 fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
666 int block_count,
667 instruction_scheduler_mode mode);
668 void calculate_deps();
669 bool is_compressed(fs_inst *inst);
670 schedule_node *choose_instruction_to_schedule();
671 int issue_time(backend_instruction *inst);
672 fs_visitor *v;
673
674 void count_reads_remaining(backend_instruction *inst);
675 void setup_liveness(cfg_t *cfg);
676 void update_register_pressure(backend_instruction *inst);
677 int get_register_pressure_benefit(backend_instruction *inst);
678 };
679
680 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
681 int grf_count, int hw_reg_count,
682 int block_count,
683 instruction_scheduler_mode mode)
684 : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
685 v(v)
686 {
687 }
688
689 static bool
690 is_src_duplicate(fs_inst *inst, int src)
691 {
692 for (int i = 0; i < src; i++)
693 if (inst->src[i].equals(inst->src[src]))
694 return true;
695
696 return false;
697 }
698
699 void
700 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
701 {
702 fs_inst *inst = (fs_inst *)be;
703
704 if (!reads_remaining)
705 return;
706
707 for (int i = 0; i < inst->sources; i++) {
708 if (is_src_duplicate(inst, i))
709 continue;
710
711 if (inst->src[i].file == VGRF) {
712 reads_remaining[inst->src[i].nr]++;
713 } else if (inst->src[i].file == FIXED_GRF) {
714 if (inst->src[i].nr >= hw_reg_count)
715 continue;
716
717 for (unsigned j = 0; j < regs_read(inst, i); j++)
718 hw_reads_remaining[inst->src[i].nr + j]++;
719 }
720 }
721 }
722
723 void
724 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
725 {
726 /* First, compute liveness on a per-GRF level using the in/out sets from
727 * liveness calculation.
728 */
729 for (int block = 0; block < cfg->num_blocks; block++) {
730 for (int i = 0; i < v->live_intervals->num_vars; i++) {
731 if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
732 int vgrf = v->live_intervals->vgrf_from_var[i];
733 if (!BITSET_TEST(livein[block], vgrf)) {
734 reg_pressure_in[block] += v->alloc.sizes[vgrf];
735 BITSET_SET(livein[block], vgrf);
736 }
737 }
738
739 if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
740 BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
741 }
742 }
743
744 /* Now, extend the live in/live out sets for when a range crosses a block
745 * boundary, which matches what our register allocator/interference code
746 * does to account for force_writemask_all and incompatible exec_mask's.
747 */
748 for (int block = 0; block < cfg->num_blocks - 1; block++) {
749 for (int i = 0; i < grf_count; i++) {
750 if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
751 v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
752 if (!BITSET_TEST(livein[block + 1], i)) {
753 reg_pressure_in[block + 1] += v->alloc.sizes[i];
754 BITSET_SET(livein[block + 1], i);
755 }
756
757 BITSET_SET(liveout[block], i);
758 }
759 }
760 }
761
762 int payload_last_use_ip[hw_reg_count];
763 v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
764
765 for (unsigned i = 0; i < hw_reg_count; i++) {
766 if (payload_last_use_ip[i] == -1)
767 continue;
768
769 for (int block = 0; block < cfg->num_blocks; block++) {
770 if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
771 reg_pressure_in[block]++;
772
773 if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
774 BITSET_SET(hw_liveout[block], i);
775 }
776 }
777 }
778
779 void
780 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
781 {
782 fs_inst *inst = (fs_inst *)be;
783
784 if (!reads_remaining)
785 return;
786
787 if (inst->dst.file == VGRF) {
788 written[inst->dst.nr] = true;
789 }
790
791 for (int i = 0; i < inst->sources; i++) {
792 if (is_src_duplicate(inst, i))
793 continue;
794
795 if (inst->src[i].file == VGRF) {
796 reads_remaining[inst->src[i].nr]--;
797 } else if (inst->src[i].file == FIXED_GRF &&
798 inst->src[i].nr < hw_reg_count) {
799 for (unsigned off = 0; off < regs_read(inst, i); off++)
800 hw_reads_remaining[inst->src[i].nr + off]--;
801 }
802 }
803 }
804
805 int
806 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
807 {
808 fs_inst *inst = (fs_inst *)be;
809 int benefit = 0;
810
811 if (inst->dst.file == VGRF) {
812 if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
813 !written[inst->dst.nr])
814 benefit -= v->alloc.sizes[inst->dst.nr];
815 }
816
817 for (int i = 0; i < inst->sources; i++) {
818 if (is_src_duplicate(inst, i))
819 continue;
820
821 if (inst->src[i].file == VGRF &&
822 !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
823 reads_remaining[inst->src[i].nr] == 1)
824 benefit += v->alloc.sizes[inst->src[i].nr];
825
826 if (inst->src[i].file == FIXED_GRF &&
827 inst->src[i].nr < hw_reg_count) {
828 for (unsigned off = 0; off < regs_read(inst, i); off++) {
829 int reg = inst->src[i].nr + off;
830 if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
831 hw_reads_remaining[reg] == 1) {
832 benefit++;
833 }
834 }
835 }
836 }
837
838 return benefit;
839 }
840
841 class vec4_instruction_scheduler : public instruction_scheduler
842 {
843 public:
844 vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
845 void calculate_deps();
846 schedule_node *choose_instruction_to_schedule();
847 int issue_time(backend_instruction *inst);
848 vec4_visitor *v;
849
850 void count_reads_remaining(backend_instruction *inst);
851 void setup_liveness(cfg_t *cfg);
852 void update_register_pressure(backend_instruction *inst);
853 int get_register_pressure_benefit(backend_instruction *inst);
854 };
855
856 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
857 int grf_count)
858 : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
859 v(v)
860 {
861 }
862
863 void
864 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
865 {
866 }
867
868 void
869 vec4_instruction_scheduler::setup_liveness(cfg_t *)
870 {
871 }
872
873 void
874 vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
875 {
876 }
877
878 int
879 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
880 {
881 return 0;
882 }
883
884 schedule_node::schedule_node(backend_instruction *inst,
885 instruction_scheduler *sched)
886 {
887 const struct gen_device_info *devinfo = sched->bs->devinfo;
888
889 this->inst = inst;
890 this->child_array_size = 0;
891 this->children = NULL;
892 this->child_latency = NULL;
893 this->child_count = 0;
894 this->parent_count = 0;
895 this->unblocked_time = 0;
896 this->cand_generation = 0;
897 this->delay = 0;
898 this->exit = NULL;
899
900 /* We can't measure Gen6 timings directly but expect them to be much
901 * closer to Gen7 than Gen4.
902 */
903 if (!sched->post_reg_alloc)
904 this->latency = 1;
905 else if (devinfo->gen >= 6)
906 set_latency_gen7(devinfo->is_haswell);
907 else
908 set_latency_gen4();
909 }
910
911 void
912 instruction_scheduler::add_insts_from_block(bblock_t *block)
913 {
914 foreach_inst_in_block(backend_instruction, inst, block) {
915 schedule_node *n = new(mem_ctx) schedule_node(inst, this);
916
917 instructions.push_tail(n);
918 }
919
920 this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
921 }
922
923 /** Computation of the delay member of each node. */
924 void
925 instruction_scheduler::compute_delays()
926 {
927 foreach_in_list_reverse(schedule_node, n, &instructions) {
928 if (!n->child_count) {
929 n->delay = issue_time(n->inst);
930 } else {
931 for (int i = 0; i < n->child_count; i++) {
932 assert(n->children[i]->delay);
933 n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
934 }
935 }
936 }
937 }
938
939 void
940 instruction_scheduler::compute_exits()
941 {
942 /* Calculate a lower bound of the scheduling time of each node in the
943 * graph. This is analogous to the node's critical path but calculated
944 * from the top instead of from the bottom of the block.
945 */
946 foreach_in_list(schedule_node, n, &instructions) {
947 for (int i = 0; i < n->child_count; i++) {
948 n->children[i]->unblocked_time =
949 MAX2(n->children[i]->unblocked_time,
950 n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
951 }
952 }
953
954 /* Calculate the exit of each node by induction based on the exit nodes of
955 * its children. The preferred exit of a node is the one among the exit
956 * nodes of its children which can be unblocked first according to the
957 * optimistic unblocked time estimate calculated above.
958 */
959 foreach_in_list_reverse(schedule_node, n, &instructions) {
960 n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
961
962 for (int i = 0; i < n->child_count; i++) {
963 if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
964 n->exit = n->children[i]->exit;
965 }
966 }
967 }
968
969 /**
970 * Add a dependency between two instruction nodes.
971 *
972 * The @after node will be scheduled after @before. We will try to
973 * schedule it @latency cycles after @before, but no guarantees there.
974 */
975 void
976 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
977 int latency)
978 {
979 if (!before || !after)
980 return;
981
982 assert(before != after);
983
984 for (int i = 0; i < before->child_count; i++) {
985 if (before->children[i] == after) {
986 before->child_latency[i] = MAX2(before->child_latency[i], latency);
987 return;
988 }
989 }
990
991 if (before->child_array_size <= before->child_count) {
992 if (before->child_array_size < 16)
993 before->child_array_size = 16;
994 else
995 before->child_array_size *= 2;
996
997 before->children = reralloc(mem_ctx, before->children,
998 schedule_node *,
999 before->child_array_size);
1000 before->child_latency = reralloc(mem_ctx, before->child_latency,
1001 int, before->child_array_size);
1002 }
1003
1004 before->children[before->child_count] = after;
1005 before->child_latency[before->child_count] = latency;
1006 before->child_count++;
1007 after->parent_count++;
1008 }
1009
1010 void
1011 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1012 {
1013 if (!before)
1014 return;
1015
1016 add_dep(before, after, before->latency);
1017 }
1018
1019 static bool
1020 is_scheduling_barrier(const backend_instruction *inst)
1021 {
1022 return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
1023 inst->is_control_flow() ||
1024 inst->has_side_effects();
1025 }
1026
1027 /**
1028 * Sometimes we really want this node to execute after everything that
1029 * was before it and before everything that followed it. This adds
1030 * the deps to do so.
1031 */
1032 void
1033 instruction_scheduler::add_barrier_deps(schedule_node *n)
1034 {
1035 schedule_node *prev = (schedule_node *)n->prev;
1036 schedule_node *next = (schedule_node *)n->next;
1037
1038 if (prev) {
1039 while (!prev->is_head_sentinel()) {
1040 add_dep(prev, n, 0);
1041 if (is_scheduling_barrier(prev->inst))
1042 break;
1043 prev = (schedule_node *)prev->prev;
1044 }
1045 }
1046
1047 if (next) {
1048 while (!next->is_tail_sentinel()) {
1049 add_dep(n, next, 0);
1050 if (is_scheduling_barrier(next->inst))
1051 break;
1052 next = (schedule_node *)next->next;
1053 }
1054 }
1055 }
1056
1057 /* instruction scheduling needs to be aware of when an MRF write
1058 * actually writes 2 MRFs.
1059 */
1060 bool
1061 fs_instruction_scheduler::is_compressed(fs_inst *inst)
1062 {
1063 return inst->exec_size == 16;
1064 }
1065
1066 void
1067 fs_instruction_scheduler::calculate_deps()
1068 {
1069 /* Pre-register-allocation, this tracks the last write per VGRF offset.
1070 * After register allocation, reg_offsets are gone and we track individual
1071 * GRF registers.
1072 */
1073 schedule_node **last_grf_write;
1074 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1075 schedule_node *last_conditional_mod[8] = {};
1076 schedule_node *last_accumulator_write = NULL;
1077 /* Fixed HW registers are assumed to be separate from the virtual
1078 * GRFs, so they can be tracked separately. We don't really write
1079 * to fixed GRFs much, so don't bother tracking them on a more
1080 * granular level.
1081 */
1082 schedule_node *last_fixed_grf_write = NULL;
1083
1084 last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
1085 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1086
1087 /* top-to-bottom dependencies: RAW and WAW. */
1088 foreach_in_list(schedule_node, n, &instructions) {
1089 fs_inst *inst = (fs_inst *)n->inst;
1090
1091 if (is_scheduling_barrier(inst))
1092 add_barrier_deps(n);
1093
1094 /* read-after-write deps. */
1095 for (int i = 0; i < inst->sources; i++) {
1096 if (inst->src[i].file == VGRF) {
1097 if (post_reg_alloc) {
1098 for (unsigned r = 0; r < regs_read(inst, i); r++)
1099 add_dep(last_grf_write[inst->src[i].nr + r], n);
1100 } else {
1101 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1102 add_dep(last_grf_write[inst->src[i].nr * 16 +
1103 inst->src[i].offset / REG_SIZE + r], n);
1104 }
1105 }
1106 } else if (inst->src[i].file == FIXED_GRF) {
1107 if (post_reg_alloc) {
1108 for (unsigned r = 0; r < regs_read(inst, i); r++)
1109 add_dep(last_grf_write[inst->src[i].nr + r], n);
1110 } else {
1111 add_dep(last_fixed_grf_write, n);
1112 }
1113 } else if (inst->src[i].is_accumulator()) {
1114 add_dep(last_accumulator_write, n);
1115 } else if (inst->src[i].file == ARF) {
1116 add_barrier_deps(n);
1117 }
1118 }
1119
1120 if (inst->base_mrf != -1) {
1121 for (int i = 0; i < inst->mlen; i++) {
1122 /* It looks like the MRF regs are released in the send
1123 * instruction once it's sent, not when the result comes
1124 * back.
1125 */
1126 add_dep(last_mrf_write[inst->base_mrf + i], n);
1127 }
1128 }
1129
1130 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1131 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1132
1133 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1134 if (mask & (1 << i))
1135 add_dep(last_conditional_mod[i], n);
1136 }
1137 }
1138
1139 if (inst->reads_accumulator_implicitly()) {
1140 add_dep(last_accumulator_write, n);
1141 }
1142
1143 /* write-after-write deps. */
1144 if (inst->dst.file == VGRF) {
1145 if (post_reg_alloc) {
1146 for (unsigned r = 0; r < regs_written(inst); r++) {
1147 add_dep(last_grf_write[inst->dst.nr + r], n);
1148 last_grf_write[inst->dst.nr + r] = n;
1149 }
1150 } else {
1151 for (unsigned r = 0; r < regs_written(inst); r++) {
1152 add_dep(last_grf_write[inst->dst.nr * 16 +
1153 inst->dst.offset / REG_SIZE + r], n);
1154 last_grf_write[inst->dst.nr * 16 +
1155 inst->dst.offset / REG_SIZE + r] = n;
1156 }
1157 }
1158 } else if (inst->dst.file == MRF) {
1159 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1160
1161 add_dep(last_mrf_write[reg], n);
1162 last_mrf_write[reg] = n;
1163 if (is_compressed(inst)) {
1164 if (inst->dst.nr & BRW_MRF_COMPR4)
1165 reg += 4;
1166 else
1167 reg++;
1168 add_dep(last_mrf_write[reg], n);
1169 last_mrf_write[reg] = n;
1170 }
1171 } else if (inst->dst.file == FIXED_GRF) {
1172 if (post_reg_alloc) {
1173 for (unsigned r = 0; r < regs_written(inst); r++)
1174 last_grf_write[inst->dst.nr + r] = n;
1175 } else {
1176 last_fixed_grf_write = n;
1177 }
1178 } else if (inst->dst.is_accumulator()) {
1179 add_dep(last_accumulator_write, n);
1180 last_accumulator_write = n;
1181 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1182 add_barrier_deps(n);
1183 }
1184
1185 if (inst->mlen > 0 && inst->base_mrf != -1) {
1186 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1187 add_dep(last_mrf_write[inst->base_mrf + i], n);
1188 last_mrf_write[inst->base_mrf + i] = n;
1189 }
1190 }
1191
1192 if (const unsigned mask = inst->flags_written()) {
1193 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1194
1195 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1196 if (mask & (1 << i)) {
1197 add_dep(last_conditional_mod[i], n, 0);
1198 last_conditional_mod[i] = n;
1199 }
1200 }
1201 }
1202
1203 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1204 !inst->dst.is_accumulator()) {
1205 add_dep(last_accumulator_write, n);
1206 last_accumulator_write = n;
1207 }
1208 }
1209
1210 /* bottom-to-top dependencies: WAR */
1211 memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
1212 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1213 memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1214 last_accumulator_write = NULL;
1215 last_fixed_grf_write = NULL;
1216
1217 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1218 fs_inst *inst = (fs_inst *)n->inst;
1219
1220 /* write-after-read deps. */
1221 for (int i = 0; i < inst->sources; i++) {
1222 if (inst->src[i].file == VGRF) {
1223 if (post_reg_alloc) {
1224 for (unsigned r = 0; r < regs_read(inst, i); r++)
1225 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1226 } else {
1227 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1228 add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1229 inst->src[i].offset / REG_SIZE + r], 0);
1230 }
1231 }
1232 } else if (inst->src[i].file == FIXED_GRF) {
1233 if (post_reg_alloc) {
1234 for (unsigned r = 0; r < regs_read(inst, i); r++)
1235 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1236 } else {
1237 add_dep(n, last_fixed_grf_write, 0);
1238 }
1239 } else if (inst->src[i].is_accumulator()) {
1240 add_dep(n, last_accumulator_write, 0);
1241 } else if (inst->src[i].file == ARF) {
1242 add_barrier_deps(n);
1243 }
1244 }
1245
1246 if (inst->base_mrf != -1) {
1247 for (int i = 0; i < inst->mlen; i++) {
1248 /* It looks like the MRF regs are released in the send
1249 * instruction once it's sent, not when the result comes
1250 * back.
1251 */
1252 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1253 }
1254 }
1255
1256 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1257 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1258
1259 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1260 if (mask & (1 << i))
1261 add_dep(n, last_conditional_mod[i]);
1262 }
1263 }
1264
1265 if (inst->reads_accumulator_implicitly()) {
1266 add_dep(n, last_accumulator_write);
1267 }
1268
1269 /* Update the things this instruction wrote, so earlier reads
1270 * can mark this as WAR dependency.
1271 */
1272 if (inst->dst.file == VGRF) {
1273 if (post_reg_alloc) {
1274 for (unsigned r = 0; r < regs_written(inst); r++)
1275 last_grf_write[inst->dst.nr + r] = n;
1276 } else {
1277 for (unsigned r = 0; r < regs_written(inst); r++) {
1278 last_grf_write[inst->dst.nr * 16 +
1279 inst->dst.offset / REG_SIZE + r] = n;
1280 }
1281 }
1282 } else if (inst->dst.file == MRF) {
1283 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1284
1285 last_mrf_write[reg] = n;
1286
1287 if (is_compressed(inst)) {
1288 if (inst->dst.nr & BRW_MRF_COMPR4)
1289 reg += 4;
1290 else
1291 reg++;
1292
1293 last_mrf_write[reg] = n;
1294 }
1295 } else if (inst->dst.file == FIXED_GRF) {
1296 if (post_reg_alloc) {
1297 for (unsigned r = 0; r < regs_written(inst); r++)
1298 last_grf_write[inst->dst.nr + r] = n;
1299 } else {
1300 last_fixed_grf_write = n;
1301 }
1302 } else if (inst->dst.is_accumulator()) {
1303 last_accumulator_write = n;
1304 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1305 add_barrier_deps(n);
1306 }
1307
1308 if (inst->mlen > 0 && inst->base_mrf != -1) {
1309 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1310 last_mrf_write[inst->base_mrf + i] = n;
1311 }
1312 }
1313
1314 if (const unsigned mask = inst->flags_written()) {
1315 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1316
1317 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1318 if (mask & (1 << i))
1319 last_conditional_mod[i] = n;
1320 }
1321 }
1322
1323 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1324 last_accumulator_write = n;
1325 }
1326 }
1327
1328 free(last_grf_write);
1329 }
1330
1331 void
1332 vec4_instruction_scheduler::calculate_deps()
1333 {
1334 schedule_node *last_grf_write[grf_count];
1335 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1336 schedule_node *last_conditional_mod = NULL;
1337 schedule_node *last_accumulator_write = NULL;
1338 /* Fixed HW registers are assumed to be separate from the virtual
1339 * GRFs, so they can be tracked separately. We don't really write
1340 * to fixed GRFs much, so don't bother tracking them on a more
1341 * granular level.
1342 */
1343 schedule_node *last_fixed_grf_write = NULL;
1344
1345 memset(last_grf_write, 0, sizeof(last_grf_write));
1346 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1347
1348 /* top-to-bottom dependencies: RAW and WAW. */
1349 foreach_in_list(schedule_node, n, &instructions) {
1350 vec4_instruction *inst = (vec4_instruction *)n->inst;
1351
1352 if (is_scheduling_barrier(inst))
1353 add_barrier_deps(n);
1354
1355 /* read-after-write deps. */
1356 for (int i = 0; i < 3; i++) {
1357 if (inst->src[i].file == VGRF) {
1358 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1359 add_dep(last_grf_write[inst->src[i].nr + j], n);
1360 } else if (inst->src[i].file == FIXED_GRF) {
1361 add_dep(last_fixed_grf_write, n);
1362 } else if (inst->src[i].is_accumulator()) {
1363 assert(last_accumulator_write);
1364 add_dep(last_accumulator_write, n);
1365 } else if (inst->src[i].file == ARF) {
1366 add_barrier_deps(n);
1367 }
1368 }
1369
1370 if (inst->reads_g0_implicitly())
1371 add_dep(last_fixed_grf_write, n);
1372
1373 if (!inst->is_send_from_grf()) {
1374 for (int i = 0; i < inst->mlen; i++) {
1375 /* It looks like the MRF regs are released in the send
1376 * instruction once it's sent, not when the result comes
1377 * back.
1378 */
1379 add_dep(last_mrf_write[inst->base_mrf + i], n);
1380 }
1381 }
1382
1383 if (inst->reads_flag()) {
1384 assert(last_conditional_mod);
1385 add_dep(last_conditional_mod, n);
1386 }
1387
1388 if (inst->reads_accumulator_implicitly()) {
1389 assert(last_accumulator_write);
1390 add_dep(last_accumulator_write, n);
1391 }
1392
1393 /* write-after-write deps. */
1394 if (inst->dst.file == VGRF) {
1395 for (unsigned j = 0; j < regs_written(inst); ++j) {
1396 add_dep(last_grf_write[inst->dst.nr + j], n);
1397 last_grf_write[inst->dst.nr + j] = n;
1398 }
1399 } else if (inst->dst.file == MRF) {
1400 add_dep(last_mrf_write[inst->dst.nr], n);
1401 last_mrf_write[inst->dst.nr] = n;
1402 } else if (inst->dst.file == FIXED_GRF) {
1403 last_fixed_grf_write = n;
1404 } else if (inst->dst.is_accumulator()) {
1405 add_dep(last_accumulator_write, n);
1406 last_accumulator_write = n;
1407 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1408 add_barrier_deps(n);
1409 }
1410
1411 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1412 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1413 add_dep(last_mrf_write[inst->base_mrf + i], n);
1414 last_mrf_write[inst->base_mrf + i] = n;
1415 }
1416 }
1417
1418 if (inst->writes_flag()) {
1419 add_dep(last_conditional_mod, n, 0);
1420 last_conditional_mod = n;
1421 }
1422
1423 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1424 !inst->dst.is_accumulator()) {
1425 add_dep(last_accumulator_write, n);
1426 last_accumulator_write = n;
1427 }
1428 }
1429
1430 /* bottom-to-top dependencies: WAR */
1431 memset(last_grf_write, 0, sizeof(last_grf_write));
1432 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1433 last_conditional_mod = NULL;
1434 last_accumulator_write = NULL;
1435 last_fixed_grf_write = NULL;
1436
1437 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1438 vec4_instruction *inst = (vec4_instruction *)n->inst;
1439
1440 /* write-after-read deps. */
1441 for (int i = 0; i < 3; i++) {
1442 if (inst->src[i].file == VGRF) {
1443 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1444 add_dep(n, last_grf_write[inst->src[i].nr + j]);
1445 } else if (inst->src[i].file == FIXED_GRF) {
1446 add_dep(n, last_fixed_grf_write);
1447 } else if (inst->src[i].is_accumulator()) {
1448 add_dep(n, last_accumulator_write);
1449 } else if (inst->src[i].file == ARF) {
1450 add_barrier_deps(n);
1451 }
1452 }
1453
1454 if (!inst->is_send_from_grf()) {
1455 for (int i = 0; i < inst->mlen; i++) {
1456 /* It looks like the MRF regs are released in the send
1457 * instruction once it's sent, not when the result comes
1458 * back.
1459 */
1460 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1461 }
1462 }
1463
1464 if (inst->reads_flag()) {
1465 add_dep(n, last_conditional_mod);
1466 }
1467
1468 if (inst->reads_accumulator_implicitly()) {
1469 add_dep(n, last_accumulator_write);
1470 }
1471
1472 /* Update the things this instruction wrote, so earlier reads
1473 * can mark this as WAR dependency.
1474 */
1475 if (inst->dst.file == VGRF) {
1476 for (unsigned j = 0; j < regs_written(inst); ++j)
1477 last_grf_write[inst->dst.nr + j] = n;
1478 } else if (inst->dst.file == MRF) {
1479 last_mrf_write[inst->dst.nr] = n;
1480 } else if (inst->dst.file == FIXED_GRF) {
1481 last_fixed_grf_write = n;
1482 } else if (inst->dst.is_accumulator()) {
1483 last_accumulator_write = n;
1484 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1485 add_barrier_deps(n);
1486 }
1487
1488 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1489 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1490 last_mrf_write[inst->base_mrf + i] = n;
1491 }
1492 }
1493
1494 if (inst->writes_flag()) {
1495 last_conditional_mod = n;
1496 }
1497
1498 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1499 last_accumulator_write = n;
1500 }
1501 }
1502 }
1503
1504 schedule_node *
1505 fs_instruction_scheduler::choose_instruction_to_schedule()
1506 {
1507 schedule_node *chosen = NULL;
1508
1509 if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1510 int chosen_time = 0;
1511
1512 /* Of the instructions ready to execute or the closest to being ready,
1513 * choose the one most likely to unblock an early program exit, or
1514 * otherwise the oldest one.
1515 */
1516 foreach_in_list(schedule_node, n, &instructions) {
1517 if (!chosen ||
1518 exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1519 (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1520 n->unblocked_time < chosen_time)) {
1521 chosen = n;
1522 chosen_time = n->unblocked_time;
1523 }
1524 }
1525 } else {
1526 /* Before register allocation, we don't care about the latencies of
1527 * instructions. All we care about is reducing live intervals of
1528 * variables so that we can avoid register spilling, or get SIMD16
1529 * shaders which naturally do a better job of hiding instruction
1530 * latency.
1531 */
1532 foreach_in_list(schedule_node, n, &instructions) {
1533 fs_inst *inst = (fs_inst *)n->inst;
1534
1535 if (!chosen) {
1536 chosen = n;
1537 continue;
1538 }
1539
1540 /* Most important: If we can definitely reduce register pressure, do
1541 * so immediately.
1542 */
1543 int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1544 int chosen_register_pressure_benefit =
1545 get_register_pressure_benefit(chosen->inst);
1546
1547 if (register_pressure_benefit > 0 &&
1548 register_pressure_benefit > chosen_register_pressure_benefit) {
1549 chosen = n;
1550 continue;
1551 } else if (chosen_register_pressure_benefit > 0 &&
1552 (register_pressure_benefit <
1553 chosen_register_pressure_benefit)) {
1554 continue;
1555 }
1556
1557 if (mode == SCHEDULE_PRE_LIFO) {
1558 /* Prefer instructions that recently became available for
1559 * scheduling. These are the things that are most likely to
1560 * (eventually) make a variable dead and reduce register pressure.
1561 * Typical register pressure estimates don't work for us because
1562 * most of our pressure comes from texturing, where no single
1563 * instruction to schedule will make a vec4 value dead.
1564 */
1565 if (n->cand_generation > chosen->cand_generation) {
1566 chosen = n;
1567 continue;
1568 } else if (n->cand_generation < chosen->cand_generation) {
1569 continue;
1570 }
1571
1572 /* On MRF-using chips, prefer non-SEND instructions. If we don't
1573 * do this, then because we prefer instructions that just became
1574 * candidates, we'll end up in a pattern of scheduling a SEND,
1575 * then the MRFs for the next SEND, then the next SEND, then the
1576 * MRFs, etc., without ever consuming the results of a send.
1577 */
1578 if (v->devinfo->gen < 7) {
1579 fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1580
1581 /* We use size_written > 4 * exec_size as our test for the kind
1582 * of send instruction to avoid -- only sends generate many
1583 * regs, and a single-result send is probably actually reducing
1584 * register pressure.
1585 */
1586 if (inst->size_written <= 4 * inst->exec_size &&
1587 chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1588 chosen = n;
1589 continue;
1590 } else if (inst->size_written > chosen_inst->size_written) {
1591 continue;
1592 }
1593 }
1594 }
1595
1596 /* For instructions pushed on the cands list at the same time, prefer
1597 * the one with the highest delay to the end of the program. This is
1598 * most likely to have its values able to be consumed first (such as
1599 * for a large tree of lowered ubo loads, which appear reversed in
1600 * the instruction stream with respect to when they can be consumed).
1601 */
1602 if (n->delay > chosen->delay) {
1603 chosen = n;
1604 continue;
1605 } else if (n->delay < chosen->delay) {
1606 continue;
1607 }
1608
1609 /* Prefer the node most likely to unblock an early program exit.
1610 */
1611 if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1612 chosen = n;
1613 continue;
1614 } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1615 continue;
1616 }
1617
1618 /* If all other metrics are equal, we prefer the first instruction in
1619 * the list (program execution).
1620 */
1621 }
1622 }
1623
1624 return chosen;
1625 }
1626
1627 schedule_node *
1628 vec4_instruction_scheduler::choose_instruction_to_schedule()
1629 {
1630 schedule_node *chosen = NULL;
1631 int chosen_time = 0;
1632
1633 /* Of the instructions ready to execute or the closest to being ready,
1634 * choose the oldest one.
1635 */
1636 foreach_in_list(schedule_node, n, &instructions) {
1637 if (!chosen || n->unblocked_time < chosen_time) {
1638 chosen = n;
1639 chosen_time = n->unblocked_time;
1640 }
1641 }
1642
1643 return chosen;
1644 }
1645
1646 int
1647 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1648 {
1649 const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1650 if (is_compressed((fs_inst *)inst))
1651 return 4 + overhead;
1652 else
1653 return 2 + overhead;
1654 }
1655
1656 int
1657 vec4_instruction_scheduler::issue_time(backend_instruction *)
1658 {
1659 /* We always execute as two vec4s in parallel. */
1660 return 2;
1661 }
1662
1663 void
1664 instruction_scheduler::schedule_instructions(bblock_t *block)
1665 {
1666 const struct gen_device_info *devinfo = bs->devinfo;
1667 int time = 0;
1668 if (!post_reg_alloc)
1669 reg_pressure = reg_pressure_in[block->num];
1670 block_idx = block->num;
1671
1672 /* Remove non-DAG heads from the list. */
1673 foreach_in_list_safe(schedule_node, n, &instructions) {
1674 if (n->parent_count != 0)
1675 n->remove();
1676 }
1677
1678 unsigned cand_generation = 1;
1679 while (!instructions.is_empty()) {
1680 schedule_node *chosen = choose_instruction_to_schedule();
1681
1682 /* Schedule this instruction. */
1683 assert(chosen);
1684 chosen->remove();
1685 chosen->inst->exec_node::remove();
1686 block->instructions.push_tail(chosen->inst);
1687 instructions_to_schedule--;
1688
1689 if (!post_reg_alloc) {
1690 reg_pressure -= get_register_pressure_benefit(chosen->inst);
1691 update_register_pressure(chosen->inst);
1692 }
1693
1694 /* If we expected a delay for scheduling, then bump the clock to reflect
1695 * that. In reality, the hardware will switch to another hyperthread
1696 * and may not return to dispatching our thread for a while even after
1697 * we're unblocked. After this, we have the time when the chosen
1698 * instruction will start executing.
1699 */
1700 time = MAX2(time, chosen->unblocked_time);
1701
1702 /* Update the clock for how soon an instruction could start after the
1703 * chosen one.
1704 */
1705 time += issue_time(chosen->inst);
1706
1707 if (debug) {
1708 fprintf(stderr, "clock %4d, scheduled: ", time);
1709 bs->dump_instruction(chosen->inst);
1710 if (!post_reg_alloc)
1711 fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1712 }
1713
1714 /* Now that we've scheduled a new instruction, some of its
1715 * children can be promoted to the list of instructions ready to
1716 * be scheduled. Update the children's unblocked time for this
1717 * DAG edge as we do so.
1718 */
1719 for (int i = chosen->child_count - 1; i >= 0; i--) {
1720 schedule_node *child = chosen->children[i];
1721
1722 child->unblocked_time = MAX2(child->unblocked_time,
1723 time + chosen->child_latency[i]);
1724
1725 if (debug) {
1726 fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1727 bs->dump_instruction(child->inst);
1728 }
1729
1730 child->cand_generation = cand_generation;
1731 child->parent_count--;
1732 if (child->parent_count == 0) {
1733 if (debug) {
1734 fprintf(stderr, "\t\tnow available\n");
1735 }
1736 instructions.push_head(child);
1737 }
1738 }
1739 cand_generation++;
1740
1741 /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
1742 * but it's more limited pre-gen6, so if we send something off to it then
1743 * the next math instruction isn't going to make progress until the first
1744 * is done.
1745 */
1746 if (devinfo->gen < 6 && chosen->inst->is_math()) {
1747 foreach_in_list(schedule_node, n, &instructions) {
1748 if (n->inst->is_math())
1749 n->unblocked_time = MAX2(n->unblocked_time,
1750 time + chosen->latency);
1751 }
1752 }
1753 }
1754
1755 assert(instructions_to_schedule == 0);
1756
1757 block->cycle_count = time;
1758 }
1759
1760 static unsigned get_cycle_count(cfg_t *cfg)
1761 {
1762 unsigned count = 0, multiplier = 1;
1763 foreach_block(block, cfg) {
1764 if (block->start()->opcode == BRW_OPCODE_DO)
1765 multiplier *= 10; /* assume that loops execute ~10 times */
1766
1767 count += block->cycle_count * multiplier;
1768
1769 if (block->end()->opcode == BRW_OPCODE_WHILE)
1770 multiplier /= 10;
1771 }
1772
1773 return count;
1774 }
1775
1776 void
1777 instruction_scheduler::run(cfg_t *cfg)
1778 {
1779 if (debug && !post_reg_alloc) {
1780 fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1781 post_reg_alloc);
1782 bs->dump_instructions();
1783 }
1784
1785 if (!post_reg_alloc)
1786 setup_liveness(cfg);
1787
1788 foreach_block(block, cfg) {
1789 if (reads_remaining) {
1790 memset(reads_remaining, 0,
1791 grf_count * sizeof(*reads_remaining));
1792 memset(hw_reads_remaining, 0,
1793 hw_reg_count * sizeof(*hw_reads_remaining));
1794 memset(written, 0, grf_count * sizeof(*written));
1795
1796 foreach_inst_in_block(fs_inst, inst, block)
1797 count_reads_remaining(inst);
1798 }
1799
1800 add_insts_from_block(block);
1801
1802 calculate_deps();
1803
1804 compute_delays();
1805 compute_exits();
1806
1807 schedule_instructions(block);
1808 }
1809
1810 if (debug && !post_reg_alloc) {
1811 fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1812 post_reg_alloc);
1813 bs->dump_instructions();
1814 }
1815
1816 cfg->cycle_count = get_cycle_count(cfg);
1817 }
1818
1819 void
1820 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1821 {
1822 if (mode != SCHEDULE_POST)
1823 calculate_live_intervals();
1824
1825 int grf_count;
1826 if (mode == SCHEDULE_POST)
1827 grf_count = grf_used;
1828 else
1829 grf_count = alloc.count;
1830
1831 fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1832 cfg->num_blocks, mode);
1833 sched.run(cfg);
1834
1835 invalidate_live_intervals();
1836 }
1837
1838 void
1839 vec4_visitor::opt_schedule_instructions()
1840 {
1841 vec4_instruction_scheduler sched(this, prog_data->total_grf);
1842 sched.run(cfg);
1843
1844 invalidate_live_intervals();
1845 }