intel/vec4: Make implied_mrf_writes() a vec4_instruction method
[mesa.git] / src / intel / compiler / brw_schedule_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33
34 using namespace brw;
35
36 /** @file brw_fs_schedule_instructions.cpp
37 *
38 * List scheduling of FS instructions.
39 *
40 * The basic model of the list scheduler is to take a basic block,
41 * compute a DAG of the dependencies (RAW ordering with latency, WAW
42 * ordering with latency, WAR ordering), and make a list of the DAG heads.
43 * Heuristically pick a DAG head, then put all the children that are
44 * now DAG heads into the list of things to schedule.
45 *
46 * The heuristic is the important part. We're trying to be cheap,
47 * since actually computing the optimal scheduling is NP complete.
48 * What we do is track a "current clock". When we schedule a node, we
49 * update the earliest-unblocked clock time of its children, and
50 * increment the clock. Then, when trying to schedule, we just pick
51 * the earliest-unblocked instruction to schedule.
52 *
53 * Note that often there will be many things which could execute
54 * immediately, and there are a range of heuristic options to choose
55 * from in picking among those.
56 */
57
58 static bool debug = false;
59
60 class instruction_scheduler;
61
62 class schedule_node : public exec_node
63 {
64 public:
65 schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66 void set_latency_gen4();
67 void set_latency_gen7(bool is_haswell);
68
69 backend_instruction *inst;
70 schedule_node **children;
71 int *child_latency;
72 int child_count;
73 int parent_count;
74 int child_array_size;
75 int unblocked_time;
76 int latency;
77
78 /**
79 * Which iteration of pushing groups of children onto the candidates list
80 * this node was a part of.
81 */
82 unsigned cand_generation;
83
84 /**
85 * This is the sum of the instruction's latency plus the maximum delay of
86 * its children, or just the issue_time if it's a leaf node.
87 */
88 int delay;
89
90 /**
91 * Preferred exit node among the (direct or indirect) successors of this
92 * node. Among the scheduler nodes blocked by this node, this will be the
93 * one that may cause earliest program termination, or NULL if none of the
94 * successors is an exit node.
95 */
96 schedule_node *exit;
97 };
98
99 /**
100 * Lower bound of the scheduling time after which one of the instructions
101 * blocked by this node may lead to program termination.
102 *
103 * exit_unblocked_time() determines a strict partial ordering relation '«' on
104 * the set of scheduler nodes as follows:
105 *
106 * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107 *
108 * which can be used to heuristically order nodes according to how early they
109 * can unblock an exit node and lead to program termination.
110 */
111 static inline int
112 exit_unblocked_time(const schedule_node *n)
113 {
114 return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116
117 void
118 schedule_node::set_latency_gen4()
119 {
120 int chans = 8;
121 int math_latency = 22;
122
123 switch (inst->opcode) {
124 case SHADER_OPCODE_RCP:
125 this->latency = 1 * chans * math_latency;
126 break;
127 case SHADER_OPCODE_RSQ:
128 this->latency = 2 * chans * math_latency;
129 break;
130 case SHADER_OPCODE_INT_QUOTIENT:
131 case SHADER_OPCODE_SQRT:
132 case SHADER_OPCODE_LOG2:
133 /* full precision log. partial is 2. */
134 this->latency = 3 * chans * math_latency;
135 break;
136 case SHADER_OPCODE_INT_REMAINDER:
137 case SHADER_OPCODE_EXP2:
138 /* full precision. partial is 3, same throughput. */
139 this->latency = 4 * chans * math_latency;
140 break;
141 case SHADER_OPCODE_POW:
142 this->latency = 8 * chans * math_latency;
143 break;
144 case SHADER_OPCODE_SIN:
145 case SHADER_OPCODE_COS:
146 /* minimum latency, max is 12 rounds. */
147 this->latency = 5 * chans * math_latency;
148 break;
149 default:
150 this->latency = 2;
151 break;
152 }
153 }
154
155 void
156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158 switch (inst->opcode) {
159 case BRW_OPCODE_MAD:
160 /* 2 cycles
161 * (since the last two src operands are in different register banks):
162 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163 *
164 * 3 cycles on IVB, 4 on HSW
165 * (since the last two src operands are in the same register bank):
166 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167 *
168 * 18 cycles on IVB, 16 on HSW
169 * (since the last two src operands are in different register banks):
170 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171 * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
172 *
173 * 20 cycles on IVB, 18 on HSW
174 * (since the last two src operands are in the same register bank):
175 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
177 */
178
179 /* Our register allocator doesn't know about register banks, so use the
180 * higher latency.
181 */
182 latency = is_haswell ? 16 : 18;
183 break;
184
185 case BRW_OPCODE_LRP:
186 /* 2 cycles
187 * (since the last two src operands are in different register banks):
188 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189 *
190 * 3 cycles on IVB, 4 on HSW
191 * (since the last two src operands are in the same register bank):
192 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193 *
194 * 16 cycles on IVB, 14 on HSW
195 * (since the last two src operands are in different register banks):
196 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
198 *
199 * 16 cycles
200 * (since the last two src operands are in the same register bank):
201 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
203 */
204
205 /* Our register allocator doesn't know about register banks, so use the
206 * higher latency.
207 */
208 latency = 14;
209 break;
210
211 case SHADER_OPCODE_RCP:
212 case SHADER_OPCODE_RSQ:
213 case SHADER_OPCODE_SQRT:
214 case SHADER_OPCODE_LOG2:
215 case SHADER_OPCODE_EXP2:
216 case SHADER_OPCODE_SIN:
217 case SHADER_OPCODE_COS:
218 /* 2 cycles:
219 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
220 *
221 * 18 cycles:
222 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
223 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
224 *
225 * Same for exp2, log2, rsq, sqrt, sin, cos.
226 */
227 latency = is_haswell ? 14 : 16;
228 break;
229
230 case SHADER_OPCODE_POW:
231 /* 2 cycles:
232 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
233 *
234 * 26 cycles:
235 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
236 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
237 */
238 latency = is_haswell ? 22 : 24;
239 break;
240
241 case SHADER_OPCODE_TEX:
242 case SHADER_OPCODE_TXD:
243 case SHADER_OPCODE_TXF:
244 case SHADER_OPCODE_TXF_LZ:
245 case SHADER_OPCODE_TXL:
246 case SHADER_OPCODE_TXL_LZ:
247 /* 18 cycles:
248 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
249 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
250 * send(8) g4<1>UW g114<8,8,1>F
251 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
252 *
253 * 697 +/-49 cycles (min 610, n=26):
254 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
255 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
256 * send(8) g4<1>UW g114<8,8,1>F
257 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
258 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
259 *
260 * So the latency on our first texture load of the batchbuffer takes
261 * ~700 cycles, since the caches are cold at that point.
262 *
263 * 840 +/- 92 cycles (min 720, n=25):
264 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
265 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
266 * send(8) g4<1>UW g114<8,8,1>F
267 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
268 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
269 * send(8) g4<1>UW g114<8,8,1>F
270 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
271 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
272 *
273 * On the second load, it takes just an extra ~140 cycles, and after
274 * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275 *
276 * 683 +/- 49 cycles (min = 602, n=47):
277 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
278 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
279 * send(8) g4<1>UW g114<8,8,1>F
280 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
281 * send(8) g50<1>UW g114<8,8,1>F
282 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
283 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
284 *
285 * The unit appears to be pipelined, since this matches up with the
286 * cache-cold case, despite there being two loads here. If you replace
287 * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288 *
289 * So, take some number between the cache-hot 140 cycles and the
290 * cache-cold 700 cycles. No particular tuning was done on this.
291 *
292 * I haven't done significant testing of the non-TEX opcodes. TXL at
293 * least looked about the same as TEX.
294 */
295 latency = 200;
296 break;
297
298 case SHADER_OPCODE_TXS:
299 /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300 * cycles (n=15):
301 * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
302 * send(8) g6<1>UW g114<8,8,1>F
303 * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
304 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
305 *
306 *
307 * Two loads was 535 +/- 30 cycles (n=19):
308 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
309 * send(16) g6<1>UW g114<8,8,1>F
310 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
311 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
312 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
313 * send(16) g8<1>UW g114<8,8,1>F
314 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
315 * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
316 * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
317 *
318 * Since the only caches that should matter are just the
319 * instruction/state cache containing the surface state, assume that we
320 * always have hot caches.
321 */
322 latency = 100;
323 break;
324
325 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
327 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
328 case VS_OPCODE_PULL_CONSTANT_LOAD:
329 /* testing using varying-index pull constants:
330 *
331 * 16 cycles:
332 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
333 * send(8) g4<1>F g4<8,8,1>D
334 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
335 *
336 * ~480 cycles:
337 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
338 * send(8) g4<1>F g4<8,8,1>D
339 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
340 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
341 *
342 * ~620 cycles:
343 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
344 * send(8) g4<1>F g4<8,8,1>D
345 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
346 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
347 * send(8) g4<1>F g4<8,8,1>D
348 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
349 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
350 *
351 * So, if it's cache-hot, it's about 140. If it's cache cold, it's
352 * about 460. We expect to mostly be cache hot, so pick something more
353 * in that direction.
354 */
355 latency = 200;
356 break;
357
358 case SHADER_OPCODE_GEN7_SCRATCH_READ:
359 /* Testing a load from offset 0, that had been previously written:
360 *
361 * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
362 * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
363 *
364 * The cycles spent seemed to be grouped around 40-50 (as low as 38),
365 * then around 140. Presumably this is cache hit vs miss.
366 */
367 latency = 50;
368 break;
369
370 case VEC4_OPCODE_UNTYPED_ATOMIC:
371 /* See GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
372 latency = 14000;
373 break;
374
375 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
376 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
377 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
378 latency = is_haswell ? 300 : 600;
379 break;
380
381 case SHADER_OPCODE_SEND:
382 switch (inst->sfid) {
383 case BRW_SFID_SAMPLER: {
384 unsigned msg_type = (inst->desc >> 12) & 0x1f;
385 switch (msg_type) {
386 case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
387 case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
388 /* See also SHADER_OPCODE_TXS */
389 latency = 100;
390 break;
391
392 default:
393 /* See also SHADER_OPCODE_TEX */
394 latency = 200;
395 break;
396 }
397 break;
398 }
399
400 case GEN6_SFID_DATAPORT_RENDER_CACHE:
401 switch ((inst->desc >> 14) & 0x1f) {
402 case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
403 case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
404 /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
405 assert(!is_haswell);
406 latency = 600;
407 break;
408
409 case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
410 /* See also SHADER_OPCODE_TYPED_ATOMIC */
411 assert(!is_haswell);
412 latency = 14000;
413 break;
414
415 case GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
416 /* completely fabricated number */
417 latency = 600;
418 break;
419
420 default:
421 unreachable("Unknown render cache message");
422 }
423 break;
424
425 case GEN7_SFID_DATAPORT_DATA_CACHE:
426 switch ((inst->desc >> 14) & 0x1f) {
427 case GEN7_DATAPORT_DC_DWORD_SCATTERED_READ:
428 case GEN6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
429 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
430 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
431 /* We have no data for this but assume it's roughly the same as
432 * untyped surface read/write.
433 */
434 latency = 300;
435 break;
436
437 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
438 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
439 /* Test code:
440 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
441 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
442 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
443 * send(8) g4<1>UD g112<8,8,1>UD
444 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
445 * .
446 * . [repeats 8 times]
447 * .
448 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
449 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
450 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
451 * send(8) g4<1>UD g112<8,8,1>UD
452 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
453 *
454 * Running it 100 times as fragment shader on a 128x128 quad
455 * gives an average latency of 583 cycles per surface read,
456 * standard deviation 0.9%.
457 */
458 assert(!is_haswell);
459 latency = 600;
460 break;
461
462 case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
463 /* Test code:
464 * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
465 * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
466 * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
467 * send(8) g4<1>ud g112<8,8,1>ud
468 * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
469 *
470 * Running it 100 times as fragment shader on a 128x128 quad
471 * gives an average latency of 13867 cycles per atomic op,
472 * standard deviation 3%. Note that this is a rather
473 * pessimistic estimate, the actual latency in cases with few
474 * collisions between threads and favorable pipelining has been
475 * seen to be reduced by a factor of 100.
476 */
477 assert(!is_haswell);
478 latency = 14000;
479 break;
480
481 default:
482 unreachable("Unknown data cache message");
483 }
484 break;
485
486 case HSW_SFID_DATAPORT_DATA_CACHE_1:
487 switch ((inst->desc >> 14) & 0x1f) {
488 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
489 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
490 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
491 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
492 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
493 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
494 case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
495 case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
496 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
497 latency = 300;
498 break;
499
500 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
501 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
502 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
503 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
504 case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
505 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
506 case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
507 /* See also GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
508 latency = 14000;
509 break;
510
511 default:
512 unreachable("Unknown data cache message");
513 }
514 break;
515
516 default:
517 unreachable("Unknown SFID");
518 }
519 break;
520
521 default:
522 /* 2 cycles:
523 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
524 *
525 * 16 cycles:
526 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
527 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
528 */
529 latency = 14;
530 break;
531 }
532 }
533
534 class instruction_scheduler {
535 public:
536 instruction_scheduler(backend_shader *s, int grf_count,
537 unsigned hw_reg_count, int block_count,
538 instruction_scheduler_mode mode)
539 {
540 this->bs = s;
541 this->mem_ctx = ralloc_context(NULL);
542 this->grf_count = grf_count;
543 this->hw_reg_count = hw_reg_count;
544 this->instructions.make_empty();
545 this->instructions_to_schedule = 0;
546 this->post_reg_alloc = (mode == SCHEDULE_POST);
547 this->mode = mode;
548 if (!post_reg_alloc) {
549 this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
550
551 this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
552 for (int i = 0; i < block_count; i++)
553 this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
554 BITSET_WORDS(grf_count));
555
556 this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
557 for (int i = 0; i < block_count; i++)
558 this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
559 BITSET_WORDS(grf_count));
560
561 this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
562 for (int i = 0; i < block_count; i++)
563 this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
564 BITSET_WORDS(hw_reg_count));
565
566 this->written = rzalloc_array(mem_ctx, bool, grf_count);
567
568 this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
569
570 this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
571 } else {
572 this->reg_pressure_in = NULL;
573 this->livein = NULL;
574 this->liveout = NULL;
575 this->hw_liveout = NULL;
576 this->written = NULL;
577 this->reads_remaining = NULL;
578 this->hw_reads_remaining = NULL;
579 }
580 }
581
582 ~instruction_scheduler()
583 {
584 ralloc_free(this->mem_ctx);
585 }
586 void add_barrier_deps(schedule_node *n);
587 void add_dep(schedule_node *before, schedule_node *after, int latency);
588 void add_dep(schedule_node *before, schedule_node *after);
589
590 void run(cfg_t *cfg);
591 void add_insts_from_block(bblock_t *block);
592 void compute_delays();
593 void compute_exits();
594 virtual void calculate_deps() = 0;
595 virtual schedule_node *choose_instruction_to_schedule() = 0;
596
597 /**
598 * Returns how many cycles it takes the instruction to issue.
599 *
600 * Instructions in gen hardware are handled one simd4 vector at a time,
601 * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
602 * cycles to dispatch and SIMD16 (compressed) instructions take 4.
603 */
604 virtual int issue_time(backend_instruction *inst) = 0;
605
606 virtual void count_reads_remaining(backend_instruction *inst) = 0;
607 virtual void setup_liveness(cfg_t *cfg) = 0;
608 virtual void update_register_pressure(backend_instruction *inst) = 0;
609 virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
610
611 void schedule_instructions(bblock_t *block);
612
613 void *mem_ctx;
614
615 bool post_reg_alloc;
616 int instructions_to_schedule;
617 int grf_count;
618 unsigned hw_reg_count;
619 int reg_pressure;
620 int block_idx;
621 exec_list instructions;
622 backend_shader *bs;
623
624 instruction_scheduler_mode mode;
625
626 /*
627 * The register pressure at the beginning of each basic block.
628 */
629
630 int *reg_pressure_in;
631
632 /*
633 * The virtual GRF's whose range overlaps the beginning of each basic block.
634 */
635
636 BITSET_WORD **livein;
637
638 /*
639 * The virtual GRF's whose range overlaps the end of each basic block.
640 */
641
642 BITSET_WORD **liveout;
643
644 /*
645 * The hardware GRF's whose range overlaps the end of each basic block.
646 */
647
648 BITSET_WORD **hw_liveout;
649
650 /*
651 * Whether we've scheduled a write for this virtual GRF yet.
652 */
653
654 bool *written;
655
656 /*
657 * How many reads we haven't scheduled for this virtual GRF yet.
658 */
659
660 int *reads_remaining;
661
662 /*
663 * How many reads we haven't scheduled for this hardware GRF yet.
664 */
665
666 int *hw_reads_remaining;
667 };
668
669 class fs_instruction_scheduler : public instruction_scheduler
670 {
671 public:
672 fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
673 int block_count,
674 instruction_scheduler_mode mode);
675 void calculate_deps();
676 bool is_compressed(fs_inst *inst);
677 schedule_node *choose_instruction_to_schedule();
678 int issue_time(backend_instruction *inst);
679 fs_visitor *v;
680
681 void count_reads_remaining(backend_instruction *inst);
682 void setup_liveness(cfg_t *cfg);
683 void update_register_pressure(backend_instruction *inst);
684 int get_register_pressure_benefit(backend_instruction *inst);
685 };
686
687 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
688 int grf_count, int hw_reg_count,
689 int block_count,
690 instruction_scheduler_mode mode)
691 : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
692 v(v)
693 {
694 }
695
696 static bool
697 is_src_duplicate(fs_inst *inst, int src)
698 {
699 for (int i = 0; i < src; i++)
700 if (inst->src[i].equals(inst->src[src]))
701 return true;
702
703 return false;
704 }
705
706 void
707 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
708 {
709 fs_inst *inst = (fs_inst *)be;
710
711 if (!reads_remaining)
712 return;
713
714 for (int i = 0; i < inst->sources; i++) {
715 if (is_src_duplicate(inst, i))
716 continue;
717
718 if (inst->src[i].file == VGRF) {
719 reads_remaining[inst->src[i].nr]++;
720 } else if (inst->src[i].file == FIXED_GRF) {
721 if (inst->src[i].nr >= hw_reg_count)
722 continue;
723
724 for (unsigned j = 0; j < regs_read(inst, i); j++)
725 hw_reads_remaining[inst->src[i].nr + j]++;
726 }
727 }
728 }
729
730 void
731 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
732 {
733 const fs_live_variables &live = v->live_analysis.require();
734
735 /* First, compute liveness on a per-GRF level using the in/out sets from
736 * liveness calculation.
737 */
738 for (int block = 0; block < cfg->num_blocks; block++) {
739 for (int i = 0; i < live.num_vars; i++) {
740 if (BITSET_TEST(live.block_data[block].livein, i)) {
741 int vgrf = live.vgrf_from_var[i];
742 if (!BITSET_TEST(livein[block], vgrf)) {
743 reg_pressure_in[block] += v->alloc.sizes[vgrf];
744 BITSET_SET(livein[block], vgrf);
745 }
746 }
747
748 if (BITSET_TEST(live.block_data[block].liveout, i))
749 BITSET_SET(liveout[block], live.vgrf_from_var[i]);
750 }
751 }
752
753 /* Now, extend the live in/live out sets for when a range crosses a block
754 * boundary, which matches what our register allocator/interference code
755 * does to account for force_writemask_all and incompatible exec_mask's.
756 */
757 for (int block = 0; block < cfg->num_blocks - 1; block++) {
758 for (int i = 0; i < grf_count; i++) {
759 if (live.vgrf_start[i] <= cfg->blocks[block]->end_ip &&
760 live.vgrf_end[i] >= cfg->blocks[block + 1]->start_ip) {
761 if (!BITSET_TEST(livein[block + 1], i)) {
762 reg_pressure_in[block + 1] += v->alloc.sizes[i];
763 BITSET_SET(livein[block + 1], i);
764 }
765
766 BITSET_SET(liveout[block], i);
767 }
768 }
769 }
770
771 int payload_last_use_ip[hw_reg_count];
772 v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
773
774 for (unsigned i = 0; i < hw_reg_count; i++) {
775 if (payload_last_use_ip[i] == -1)
776 continue;
777
778 for (int block = 0; block < cfg->num_blocks; block++) {
779 if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
780 reg_pressure_in[block]++;
781
782 if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
783 BITSET_SET(hw_liveout[block], i);
784 }
785 }
786 }
787
788 void
789 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
790 {
791 fs_inst *inst = (fs_inst *)be;
792
793 if (!reads_remaining)
794 return;
795
796 if (inst->dst.file == VGRF) {
797 written[inst->dst.nr] = true;
798 }
799
800 for (int i = 0; i < inst->sources; i++) {
801 if (is_src_duplicate(inst, i))
802 continue;
803
804 if (inst->src[i].file == VGRF) {
805 reads_remaining[inst->src[i].nr]--;
806 } else if (inst->src[i].file == FIXED_GRF &&
807 inst->src[i].nr < hw_reg_count) {
808 for (unsigned off = 0; off < regs_read(inst, i); off++)
809 hw_reads_remaining[inst->src[i].nr + off]--;
810 }
811 }
812 }
813
814 int
815 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
816 {
817 fs_inst *inst = (fs_inst *)be;
818 int benefit = 0;
819
820 if (inst->dst.file == VGRF) {
821 if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
822 !written[inst->dst.nr])
823 benefit -= v->alloc.sizes[inst->dst.nr];
824 }
825
826 for (int i = 0; i < inst->sources; i++) {
827 if (is_src_duplicate(inst, i))
828 continue;
829
830 if (inst->src[i].file == VGRF &&
831 !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
832 reads_remaining[inst->src[i].nr] == 1)
833 benefit += v->alloc.sizes[inst->src[i].nr];
834
835 if (inst->src[i].file == FIXED_GRF &&
836 inst->src[i].nr < hw_reg_count) {
837 for (unsigned off = 0; off < regs_read(inst, i); off++) {
838 int reg = inst->src[i].nr + off;
839 if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
840 hw_reads_remaining[reg] == 1) {
841 benefit++;
842 }
843 }
844 }
845 }
846
847 return benefit;
848 }
849
850 class vec4_instruction_scheduler : public instruction_scheduler
851 {
852 public:
853 vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
854 void calculate_deps();
855 schedule_node *choose_instruction_to_schedule();
856 int issue_time(backend_instruction *inst);
857 vec4_visitor *v;
858
859 void count_reads_remaining(backend_instruction *inst);
860 void setup_liveness(cfg_t *cfg);
861 void update_register_pressure(backend_instruction *inst);
862 int get_register_pressure_benefit(backend_instruction *inst);
863 };
864
865 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
866 int grf_count)
867 : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
868 v(v)
869 {
870 }
871
872 void
873 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
874 {
875 }
876
877 void
878 vec4_instruction_scheduler::setup_liveness(cfg_t *)
879 {
880 }
881
882 void
883 vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
884 {
885 }
886
887 int
888 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
889 {
890 return 0;
891 }
892
893 schedule_node::schedule_node(backend_instruction *inst,
894 instruction_scheduler *sched)
895 {
896 const struct gen_device_info *devinfo = sched->bs->devinfo;
897
898 this->inst = inst;
899 this->child_array_size = 0;
900 this->children = NULL;
901 this->child_latency = NULL;
902 this->child_count = 0;
903 this->parent_count = 0;
904 this->unblocked_time = 0;
905 this->cand_generation = 0;
906 this->delay = 0;
907 this->exit = NULL;
908
909 /* We can't measure Gen6 timings directly but expect them to be much
910 * closer to Gen7 than Gen4.
911 */
912 if (!sched->post_reg_alloc)
913 this->latency = 1;
914 else if (devinfo->gen >= 6)
915 set_latency_gen7(devinfo->is_haswell);
916 else
917 set_latency_gen4();
918 }
919
920 void
921 instruction_scheduler::add_insts_from_block(bblock_t *block)
922 {
923 foreach_inst_in_block(backend_instruction, inst, block) {
924 schedule_node *n = new(mem_ctx) schedule_node(inst, this);
925
926 instructions.push_tail(n);
927 }
928
929 this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
930 }
931
932 /** Computation of the delay member of each node. */
933 void
934 instruction_scheduler::compute_delays()
935 {
936 foreach_in_list_reverse(schedule_node, n, &instructions) {
937 if (!n->child_count) {
938 n->delay = issue_time(n->inst);
939 } else {
940 for (int i = 0; i < n->child_count; i++) {
941 assert(n->children[i]->delay);
942 n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
943 }
944 }
945 }
946 }
947
948 void
949 instruction_scheduler::compute_exits()
950 {
951 /* Calculate a lower bound of the scheduling time of each node in the
952 * graph. This is analogous to the node's critical path but calculated
953 * from the top instead of from the bottom of the block.
954 */
955 foreach_in_list(schedule_node, n, &instructions) {
956 for (int i = 0; i < n->child_count; i++) {
957 n->children[i]->unblocked_time =
958 MAX2(n->children[i]->unblocked_time,
959 n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
960 }
961 }
962
963 /* Calculate the exit of each node by induction based on the exit nodes of
964 * its children. The preferred exit of a node is the one among the exit
965 * nodes of its children which can be unblocked first according to the
966 * optimistic unblocked time estimate calculated above.
967 */
968 foreach_in_list_reverse(schedule_node, n, &instructions) {
969 n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
970
971 for (int i = 0; i < n->child_count; i++) {
972 if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
973 n->exit = n->children[i]->exit;
974 }
975 }
976 }
977
978 /**
979 * Add a dependency between two instruction nodes.
980 *
981 * The @after node will be scheduled after @before. We will try to
982 * schedule it @latency cycles after @before, but no guarantees there.
983 */
984 void
985 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
986 int latency)
987 {
988 if (!before || !after)
989 return;
990
991 assert(before != after);
992
993 for (int i = 0; i < before->child_count; i++) {
994 if (before->children[i] == after) {
995 before->child_latency[i] = MAX2(before->child_latency[i], latency);
996 return;
997 }
998 }
999
1000 if (before->child_array_size <= before->child_count) {
1001 if (before->child_array_size < 16)
1002 before->child_array_size = 16;
1003 else
1004 before->child_array_size *= 2;
1005
1006 before->children = reralloc(mem_ctx, before->children,
1007 schedule_node *,
1008 before->child_array_size);
1009 before->child_latency = reralloc(mem_ctx, before->child_latency,
1010 int, before->child_array_size);
1011 }
1012
1013 before->children[before->child_count] = after;
1014 before->child_latency[before->child_count] = latency;
1015 before->child_count++;
1016 after->parent_count++;
1017 }
1018
1019 void
1020 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1021 {
1022 if (!before)
1023 return;
1024
1025 add_dep(before, after, before->latency);
1026 }
1027
1028 static bool
1029 is_scheduling_barrier(const backend_instruction *inst)
1030 {
1031 return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
1032 inst->is_control_flow() ||
1033 inst->has_side_effects();
1034 }
1035
1036 /**
1037 * Sometimes we really want this node to execute after everything that
1038 * was before it and before everything that followed it. This adds
1039 * the deps to do so.
1040 */
1041 void
1042 instruction_scheduler::add_barrier_deps(schedule_node *n)
1043 {
1044 schedule_node *prev = (schedule_node *)n->prev;
1045 schedule_node *next = (schedule_node *)n->next;
1046
1047 if (prev) {
1048 while (!prev->is_head_sentinel()) {
1049 add_dep(prev, n, 0);
1050 if (is_scheduling_barrier(prev->inst))
1051 break;
1052 prev = (schedule_node *)prev->prev;
1053 }
1054 }
1055
1056 if (next) {
1057 while (!next->is_tail_sentinel()) {
1058 add_dep(n, next, 0);
1059 if (is_scheduling_barrier(next->inst))
1060 break;
1061 next = (schedule_node *)next->next;
1062 }
1063 }
1064 }
1065
1066 /* instruction scheduling needs to be aware of when an MRF write
1067 * actually writes 2 MRFs.
1068 */
1069 bool
1070 fs_instruction_scheduler::is_compressed(fs_inst *inst)
1071 {
1072 return inst->exec_size == 16;
1073 }
1074
1075 void
1076 fs_instruction_scheduler::calculate_deps()
1077 {
1078 /* Pre-register-allocation, this tracks the last write per VGRF offset.
1079 * After register allocation, reg_offsets are gone and we track individual
1080 * GRF registers.
1081 */
1082 schedule_node **last_grf_write;
1083 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1084 schedule_node *last_conditional_mod[8] = {};
1085 schedule_node *last_accumulator_write = NULL;
1086 /* Fixed HW registers are assumed to be separate from the virtual
1087 * GRFs, so they can be tracked separately. We don't really write
1088 * to fixed GRFs much, so don't bother tracking them on a more
1089 * granular level.
1090 */
1091 schedule_node *last_fixed_grf_write = NULL;
1092
1093 last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
1094 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1095
1096 /* top-to-bottom dependencies: RAW and WAW. */
1097 foreach_in_list(schedule_node, n, &instructions) {
1098 fs_inst *inst = (fs_inst *)n->inst;
1099
1100 if (is_scheduling_barrier(inst))
1101 add_barrier_deps(n);
1102
1103 /* read-after-write deps. */
1104 for (int i = 0; i < inst->sources; i++) {
1105 if (inst->src[i].file == VGRF) {
1106 if (post_reg_alloc) {
1107 for (unsigned r = 0; r < regs_read(inst, i); r++)
1108 add_dep(last_grf_write[inst->src[i].nr + r], n);
1109 } else {
1110 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1111 add_dep(last_grf_write[inst->src[i].nr * 16 +
1112 inst->src[i].offset / REG_SIZE + r], n);
1113 }
1114 }
1115 } else if (inst->src[i].file == FIXED_GRF) {
1116 if (post_reg_alloc) {
1117 for (unsigned r = 0; r < regs_read(inst, i); r++)
1118 add_dep(last_grf_write[inst->src[i].nr + r], n);
1119 } else {
1120 add_dep(last_fixed_grf_write, n);
1121 }
1122 } else if (inst->src[i].is_accumulator()) {
1123 add_dep(last_accumulator_write, n);
1124 } else if (inst->src[i].file == ARF) {
1125 add_barrier_deps(n);
1126 }
1127 }
1128
1129 if (inst->base_mrf != -1) {
1130 for (int i = 0; i < inst->mlen; i++) {
1131 /* It looks like the MRF regs are released in the send
1132 * instruction once it's sent, not when the result comes
1133 * back.
1134 */
1135 add_dep(last_mrf_write[inst->base_mrf + i], n);
1136 }
1137 }
1138
1139 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1140 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1141
1142 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1143 if (mask & (1 << i))
1144 add_dep(last_conditional_mod[i], n);
1145 }
1146 }
1147
1148 if (inst->reads_accumulator_implicitly()) {
1149 add_dep(last_accumulator_write, n);
1150 }
1151
1152 /* write-after-write deps. */
1153 if (inst->dst.file == VGRF) {
1154 if (post_reg_alloc) {
1155 for (unsigned r = 0; r < regs_written(inst); r++) {
1156 add_dep(last_grf_write[inst->dst.nr + r], n);
1157 last_grf_write[inst->dst.nr + r] = n;
1158 }
1159 } else {
1160 for (unsigned r = 0; r < regs_written(inst); r++) {
1161 add_dep(last_grf_write[inst->dst.nr * 16 +
1162 inst->dst.offset / REG_SIZE + r], n);
1163 last_grf_write[inst->dst.nr * 16 +
1164 inst->dst.offset / REG_SIZE + r] = n;
1165 }
1166 }
1167 } else if (inst->dst.file == MRF) {
1168 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1169
1170 add_dep(last_mrf_write[reg], n);
1171 last_mrf_write[reg] = n;
1172 if (is_compressed(inst)) {
1173 if (inst->dst.nr & BRW_MRF_COMPR4)
1174 reg += 4;
1175 else
1176 reg++;
1177 add_dep(last_mrf_write[reg], n);
1178 last_mrf_write[reg] = n;
1179 }
1180 } else if (inst->dst.file == FIXED_GRF) {
1181 if (post_reg_alloc) {
1182 for (unsigned r = 0; r < regs_written(inst); r++)
1183 last_grf_write[inst->dst.nr + r] = n;
1184 } else {
1185 last_fixed_grf_write = n;
1186 }
1187 } else if (inst->dst.is_accumulator()) {
1188 add_dep(last_accumulator_write, n);
1189 last_accumulator_write = n;
1190 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1191 add_barrier_deps(n);
1192 }
1193
1194 if (inst->mlen > 0 && inst->base_mrf != -1) {
1195 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1196 add_dep(last_mrf_write[inst->base_mrf + i], n);
1197 last_mrf_write[inst->base_mrf + i] = n;
1198 }
1199 }
1200
1201 if (const unsigned mask = inst->flags_written()) {
1202 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1203
1204 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1205 if (mask & (1 << i)) {
1206 add_dep(last_conditional_mod[i], n, 0);
1207 last_conditional_mod[i] = n;
1208 }
1209 }
1210 }
1211
1212 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1213 !inst->dst.is_accumulator()) {
1214 add_dep(last_accumulator_write, n);
1215 last_accumulator_write = n;
1216 }
1217 }
1218
1219 /* bottom-to-top dependencies: WAR */
1220 memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
1221 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1222 memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1223 last_accumulator_write = NULL;
1224 last_fixed_grf_write = NULL;
1225
1226 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1227 fs_inst *inst = (fs_inst *)n->inst;
1228
1229 /* write-after-read deps. */
1230 for (int i = 0; i < inst->sources; i++) {
1231 if (inst->src[i].file == VGRF) {
1232 if (post_reg_alloc) {
1233 for (unsigned r = 0; r < regs_read(inst, i); r++)
1234 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1235 } else {
1236 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1237 add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1238 inst->src[i].offset / REG_SIZE + r], 0);
1239 }
1240 }
1241 } else if (inst->src[i].file == FIXED_GRF) {
1242 if (post_reg_alloc) {
1243 for (unsigned r = 0; r < regs_read(inst, i); r++)
1244 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1245 } else {
1246 add_dep(n, last_fixed_grf_write, 0);
1247 }
1248 } else if (inst->src[i].is_accumulator()) {
1249 add_dep(n, last_accumulator_write, 0);
1250 } else if (inst->src[i].file == ARF) {
1251 add_barrier_deps(n);
1252 }
1253 }
1254
1255 if (inst->base_mrf != -1) {
1256 for (int i = 0; i < inst->mlen; i++) {
1257 /* It looks like the MRF regs are released in the send
1258 * instruction once it's sent, not when the result comes
1259 * back.
1260 */
1261 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1262 }
1263 }
1264
1265 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1266 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1267
1268 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1269 if (mask & (1 << i))
1270 add_dep(n, last_conditional_mod[i]);
1271 }
1272 }
1273
1274 if (inst->reads_accumulator_implicitly()) {
1275 add_dep(n, last_accumulator_write);
1276 }
1277
1278 /* Update the things this instruction wrote, so earlier reads
1279 * can mark this as WAR dependency.
1280 */
1281 if (inst->dst.file == VGRF) {
1282 if (post_reg_alloc) {
1283 for (unsigned r = 0; r < regs_written(inst); r++)
1284 last_grf_write[inst->dst.nr + r] = n;
1285 } else {
1286 for (unsigned r = 0; r < regs_written(inst); r++) {
1287 last_grf_write[inst->dst.nr * 16 +
1288 inst->dst.offset / REG_SIZE + r] = n;
1289 }
1290 }
1291 } else if (inst->dst.file == MRF) {
1292 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1293
1294 last_mrf_write[reg] = n;
1295
1296 if (is_compressed(inst)) {
1297 if (inst->dst.nr & BRW_MRF_COMPR4)
1298 reg += 4;
1299 else
1300 reg++;
1301
1302 last_mrf_write[reg] = n;
1303 }
1304 } else if (inst->dst.file == FIXED_GRF) {
1305 if (post_reg_alloc) {
1306 for (unsigned r = 0; r < regs_written(inst); r++)
1307 last_grf_write[inst->dst.nr + r] = n;
1308 } else {
1309 last_fixed_grf_write = n;
1310 }
1311 } else if (inst->dst.is_accumulator()) {
1312 last_accumulator_write = n;
1313 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1314 add_barrier_deps(n);
1315 }
1316
1317 if (inst->mlen > 0 && inst->base_mrf != -1) {
1318 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1319 last_mrf_write[inst->base_mrf + i] = n;
1320 }
1321 }
1322
1323 if (const unsigned mask = inst->flags_written()) {
1324 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1325
1326 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1327 if (mask & (1 << i))
1328 last_conditional_mod[i] = n;
1329 }
1330 }
1331
1332 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1333 last_accumulator_write = n;
1334 }
1335 }
1336
1337 free(last_grf_write);
1338 }
1339
1340 void
1341 vec4_instruction_scheduler::calculate_deps()
1342 {
1343 schedule_node *last_grf_write[grf_count];
1344 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1345 schedule_node *last_conditional_mod = NULL;
1346 schedule_node *last_accumulator_write = NULL;
1347 /* Fixed HW registers are assumed to be separate from the virtual
1348 * GRFs, so they can be tracked separately. We don't really write
1349 * to fixed GRFs much, so don't bother tracking them on a more
1350 * granular level.
1351 */
1352 schedule_node *last_fixed_grf_write = NULL;
1353
1354 memset(last_grf_write, 0, sizeof(last_grf_write));
1355 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1356
1357 /* top-to-bottom dependencies: RAW and WAW. */
1358 foreach_in_list(schedule_node, n, &instructions) {
1359 vec4_instruction *inst = (vec4_instruction *)n->inst;
1360
1361 if (is_scheduling_barrier(inst))
1362 add_barrier_deps(n);
1363
1364 /* read-after-write deps. */
1365 for (int i = 0; i < 3; i++) {
1366 if (inst->src[i].file == VGRF) {
1367 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1368 add_dep(last_grf_write[inst->src[i].nr + j], n);
1369 } else if (inst->src[i].file == FIXED_GRF) {
1370 add_dep(last_fixed_grf_write, n);
1371 } else if (inst->src[i].is_accumulator()) {
1372 assert(last_accumulator_write);
1373 add_dep(last_accumulator_write, n);
1374 } else if (inst->src[i].file == ARF) {
1375 add_barrier_deps(n);
1376 }
1377 }
1378
1379 if (inst->reads_g0_implicitly())
1380 add_dep(last_fixed_grf_write, n);
1381
1382 if (!inst->is_send_from_grf()) {
1383 for (int i = 0; i < inst->mlen; i++) {
1384 /* It looks like the MRF regs are released in the send
1385 * instruction once it's sent, not when the result comes
1386 * back.
1387 */
1388 add_dep(last_mrf_write[inst->base_mrf + i], n);
1389 }
1390 }
1391
1392 if (inst->reads_flag()) {
1393 assert(last_conditional_mod);
1394 add_dep(last_conditional_mod, n);
1395 }
1396
1397 if (inst->reads_accumulator_implicitly()) {
1398 assert(last_accumulator_write);
1399 add_dep(last_accumulator_write, n);
1400 }
1401
1402 /* write-after-write deps. */
1403 if (inst->dst.file == VGRF) {
1404 for (unsigned j = 0; j < regs_written(inst); ++j) {
1405 add_dep(last_grf_write[inst->dst.nr + j], n);
1406 last_grf_write[inst->dst.nr + j] = n;
1407 }
1408 } else if (inst->dst.file == MRF) {
1409 add_dep(last_mrf_write[inst->dst.nr], n);
1410 last_mrf_write[inst->dst.nr] = n;
1411 } else if (inst->dst.file == FIXED_GRF) {
1412 last_fixed_grf_write = n;
1413 } else if (inst->dst.is_accumulator()) {
1414 add_dep(last_accumulator_write, n);
1415 last_accumulator_write = n;
1416 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1417 add_barrier_deps(n);
1418 }
1419
1420 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1421 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1422 add_dep(last_mrf_write[inst->base_mrf + i], n);
1423 last_mrf_write[inst->base_mrf + i] = n;
1424 }
1425 }
1426
1427 if (inst->writes_flag()) {
1428 add_dep(last_conditional_mod, n, 0);
1429 last_conditional_mod = n;
1430 }
1431
1432 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1433 !inst->dst.is_accumulator()) {
1434 add_dep(last_accumulator_write, n);
1435 last_accumulator_write = n;
1436 }
1437 }
1438
1439 /* bottom-to-top dependencies: WAR */
1440 memset(last_grf_write, 0, sizeof(last_grf_write));
1441 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1442 last_conditional_mod = NULL;
1443 last_accumulator_write = NULL;
1444 last_fixed_grf_write = NULL;
1445
1446 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1447 vec4_instruction *inst = (vec4_instruction *)n->inst;
1448
1449 /* write-after-read deps. */
1450 for (int i = 0; i < 3; i++) {
1451 if (inst->src[i].file == VGRF) {
1452 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1453 add_dep(n, last_grf_write[inst->src[i].nr + j]);
1454 } else if (inst->src[i].file == FIXED_GRF) {
1455 add_dep(n, last_fixed_grf_write);
1456 } else if (inst->src[i].is_accumulator()) {
1457 add_dep(n, last_accumulator_write);
1458 } else if (inst->src[i].file == ARF) {
1459 add_barrier_deps(n);
1460 }
1461 }
1462
1463 if (!inst->is_send_from_grf()) {
1464 for (int i = 0; i < inst->mlen; i++) {
1465 /* It looks like the MRF regs are released in the send
1466 * instruction once it's sent, not when the result comes
1467 * back.
1468 */
1469 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1470 }
1471 }
1472
1473 if (inst->reads_flag()) {
1474 add_dep(n, last_conditional_mod);
1475 }
1476
1477 if (inst->reads_accumulator_implicitly()) {
1478 add_dep(n, last_accumulator_write);
1479 }
1480
1481 /* Update the things this instruction wrote, so earlier reads
1482 * can mark this as WAR dependency.
1483 */
1484 if (inst->dst.file == VGRF) {
1485 for (unsigned j = 0; j < regs_written(inst); ++j)
1486 last_grf_write[inst->dst.nr + j] = n;
1487 } else if (inst->dst.file == MRF) {
1488 last_mrf_write[inst->dst.nr] = n;
1489 } else if (inst->dst.file == FIXED_GRF) {
1490 last_fixed_grf_write = n;
1491 } else if (inst->dst.is_accumulator()) {
1492 last_accumulator_write = n;
1493 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1494 add_barrier_deps(n);
1495 }
1496
1497 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1498 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1499 last_mrf_write[inst->base_mrf + i] = n;
1500 }
1501 }
1502
1503 if (inst->writes_flag()) {
1504 last_conditional_mod = n;
1505 }
1506
1507 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1508 last_accumulator_write = n;
1509 }
1510 }
1511 }
1512
1513 schedule_node *
1514 fs_instruction_scheduler::choose_instruction_to_schedule()
1515 {
1516 schedule_node *chosen = NULL;
1517
1518 if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1519 int chosen_time = 0;
1520
1521 /* Of the instructions ready to execute or the closest to being ready,
1522 * choose the one most likely to unblock an early program exit, or
1523 * otherwise the oldest one.
1524 */
1525 foreach_in_list(schedule_node, n, &instructions) {
1526 if (!chosen ||
1527 exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1528 (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1529 n->unblocked_time < chosen_time)) {
1530 chosen = n;
1531 chosen_time = n->unblocked_time;
1532 }
1533 }
1534 } else {
1535 /* Before register allocation, we don't care about the latencies of
1536 * instructions. All we care about is reducing live intervals of
1537 * variables so that we can avoid register spilling, or get SIMD16
1538 * shaders which naturally do a better job of hiding instruction
1539 * latency.
1540 */
1541 foreach_in_list(schedule_node, n, &instructions) {
1542 fs_inst *inst = (fs_inst *)n->inst;
1543
1544 if (!chosen) {
1545 chosen = n;
1546 continue;
1547 }
1548
1549 /* Most important: If we can definitely reduce register pressure, do
1550 * so immediately.
1551 */
1552 int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1553 int chosen_register_pressure_benefit =
1554 get_register_pressure_benefit(chosen->inst);
1555
1556 if (register_pressure_benefit > 0 &&
1557 register_pressure_benefit > chosen_register_pressure_benefit) {
1558 chosen = n;
1559 continue;
1560 } else if (chosen_register_pressure_benefit > 0 &&
1561 (register_pressure_benefit <
1562 chosen_register_pressure_benefit)) {
1563 continue;
1564 }
1565
1566 if (mode == SCHEDULE_PRE_LIFO) {
1567 /* Prefer instructions that recently became available for
1568 * scheduling. These are the things that are most likely to
1569 * (eventually) make a variable dead and reduce register pressure.
1570 * Typical register pressure estimates don't work for us because
1571 * most of our pressure comes from texturing, where no single
1572 * instruction to schedule will make a vec4 value dead.
1573 */
1574 if (n->cand_generation > chosen->cand_generation) {
1575 chosen = n;
1576 continue;
1577 } else if (n->cand_generation < chosen->cand_generation) {
1578 continue;
1579 }
1580
1581 /* On MRF-using chips, prefer non-SEND instructions. If we don't
1582 * do this, then because we prefer instructions that just became
1583 * candidates, we'll end up in a pattern of scheduling a SEND,
1584 * then the MRFs for the next SEND, then the next SEND, then the
1585 * MRFs, etc., without ever consuming the results of a send.
1586 */
1587 if (v->devinfo->gen < 7) {
1588 fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1589
1590 /* We use size_written > 4 * exec_size as our test for the kind
1591 * of send instruction to avoid -- only sends generate many
1592 * regs, and a single-result send is probably actually reducing
1593 * register pressure.
1594 */
1595 if (inst->size_written <= 4 * inst->exec_size &&
1596 chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1597 chosen = n;
1598 continue;
1599 } else if (inst->size_written > chosen_inst->size_written) {
1600 continue;
1601 }
1602 }
1603 }
1604
1605 /* For instructions pushed on the cands list at the same time, prefer
1606 * the one with the highest delay to the end of the program. This is
1607 * most likely to have its values able to be consumed first (such as
1608 * for a large tree of lowered ubo loads, which appear reversed in
1609 * the instruction stream with respect to when they can be consumed).
1610 */
1611 if (n->delay > chosen->delay) {
1612 chosen = n;
1613 continue;
1614 } else if (n->delay < chosen->delay) {
1615 continue;
1616 }
1617
1618 /* Prefer the node most likely to unblock an early program exit.
1619 */
1620 if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1621 chosen = n;
1622 continue;
1623 } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1624 continue;
1625 }
1626
1627 /* If all other metrics are equal, we prefer the first instruction in
1628 * the list (program execution).
1629 */
1630 }
1631 }
1632
1633 return chosen;
1634 }
1635
1636 schedule_node *
1637 vec4_instruction_scheduler::choose_instruction_to_schedule()
1638 {
1639 schedule_node *chosen = NULL;
1640 int chosen_time = 0;
1641
1642 /* Of the instructions ready to execute or the closest to being ready,
1643 * choose the oldest one.
1644 */
1645 foreach_in_list(schedule_node, n, &instructions) {
1646 if (!chosen || n->unblocked_time < chosen_time) {
1647 chosen = n;
1648 chosen_time = n->unblocked_time;
1649 }
1650 }
1651
1652 return chosen;
1653 }
1654
1655 int
1656 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1657 {
1658 const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1659 if (is_compressed((fs_inst *)inst))
1660 return 4 + overhead;
1661 else
1662 return 2 + overhead;
1663 }
1664
1665 int
1666 vec4_instruction_scheduler::issue_time(backend_instruction *)
1667 {
1668 /* We always execute as two vec4s in parallel. */
1669 return 2;
1670 }
1671
1672 void
1673 instruction_scheduler::schedule_instructions(bblock_t *block)
1674 {
1675 const struct gen_device_info *devinfo = bs->devinfo;
1676 int time = 0;
1677 if (!post_reg_alloc)
1678 reg_pressure = reg_pressure_in[block->num];
1679 block_idx = block->num;
1680
1681 /* Remove non-DAG heads from the list. */
1682 foreach_in_list_safe(schedule_node, n, &instructions) {
1683 if (n->parent_count != 0)
1684 n->remove();
1685 }
1686
1687 unsigned cand_generation = 1;
1688 while (!instructions.is_empty()) {
1689 schedule_node *chosen = choose_instruction_to_schedule();
1690
1691 /* Schedule this instruction. */
1692 assert(chosen);
1693 chosen->remove();
1694 chosen->inst->exec_node::remove();
1695 block->instructions.push_tail(chosen->inst);
1696 instructions_to_schedule--;
1697
1698 if (!post_reg_alloc) {
1699 reg_pressure -= get_register_pressure_benefit(chosen->inst);
1700 update_register_pressure(chosen->inst);
1701 }
1702
1703 /* If we expected a delay for scheduling, then bump the clock to reflect
1704 * that. In reality, the hardware will switch to another hyperthread
1705 * and may not return to dispatching our thread for a while even after
1706 * we're unblocked. After this, we have the time when the chosen
1707 * instruction will start executing.
1708 */
1709 time = MAX2(time, chosen->unblocked_time);
1710
1711 /* Update the clock for how soon an instruction could start after the
1712 * chosen one.
1713 */
1714 time += issue_time(chosen->inst);
1715
1716 if (debug) {
1717 fprintf(stderr, "clock %4d, scheduled: ", time);
1718 bs->dump_instruction(chosen->inst);
1719 if (!post_reg_alloc)
1720 fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1721 }
1722
1723 /* Now that we've scheduled a new instruction, some of its
1724 * children can be promoted to the list of instructions ready to
1725 * be scheduled. Update the children's unblocked time for this
1726 * DAG edge as we do so.
1727 */
1728 for (int i = chosen->child_count - 1; i >= 0; i--) {
1729 schedule_node *child = chosen->children[i];
1730
1731 child->unblocked_time = MAX2(child->unblocked_time,
1732 time + chosen->child_latency[i]);
1733
1734 if (debug) {
1735 fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1736 bs->dump_instruction(child->inst);
1737 }
1738
1739 child->cand_generation = cand_generation;
1740 child->parent_count--;
1741 if (child->parent_count == 0) {
1742 if (debug) {
1743 fprintf(stderr, "\t\tnow available\n");
1744 }
1745 instructions.push_head(child);
1746 }
1747 }
1748 cand_generation++;
1749
1750 /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
1751 * but it's more limited pre-gen6, so if we send something off to it then
1752 * the next math instruction isn't going to make progress until the first
1753 * is done.
1754 */
1755 if (devinfo->gen < 6 && chosen->inst->is_math()) {
1756 foreach_in_list(schedule_node, n, &instructions) {
1757 if (n->inst->is_math())
1758 n->unblocked_time = MAX2(n->unblocked_time,
1759 time + chosen->latency);
1760 }
1761 }
1762 }
1763
1764 assert(instructions_to_schedule == 0);
1765
1766 block->cycle_count = time;
1767 }
1768
1769 static unsigned get_cycle_count(cfg_t *cfg)
1770 {
1771 unsigned count = 0, multiplier = 1;
1772 foreach_block(block, cfg) {
1773 if (block->start()->opcode == BRW_OPCODE_DO)
1774 multiplier *= 10; /* assume that loops execute ~10 times */
1775
1776 count += block->cycle_count * multiplier;
1777
1778 if (block->end()->opcode == BRW_OPCODE_WHILE)
1779 multiplier /= 10;
1780 }
1781
1782 return count;
1783 }
1784
1785 void
1786 instruction_scheduler::run(cfg_t *cfg)
1787 {
1788 if (debug && !post_reg_alloc) {
1789 fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1790 post_reg_alloc);
1791 bs->dump_instructions();
1792 }
1793
1794 if (!post_reg_alloc)
1795 setup_liveness(cfg);
1796
1797 foreach_block(block, cfg) {
1798 if (reads_remaining) {
1799 memset(reads_remaining, 0,
1800 grf_count * sizeof(*reads_remaining));
1801 memset(hw_reads_remaining, 0,
1802 hw_reg_count * sizeof(*hw_reads_remaining));
1803 memset(written, 0, grf_count * sizeof(*written));
1804
1805 foreach_inst_in_block(fs_inst, inst, block)
1806 count_reads_remaining(inst);
1807 }
1808
1809 add_insts_from_block(block);
1810
1811 calculate_deps();
1812
1813 compute_delays();
1814 compute_exits();
1815
1816 schedule_instructions(block);
1817 }
1818
1819 if (debug && !post_reg_alloc) {
1820 fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1821 post_reg_alloc);
1822 bs->dump_instructions();
1823 }
1824
1825 cfg->cycle_count = get_cycle_count(cfg);
1826 }
1827
1828 void
1829 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1830 {
1831 int grf_count;
1832 if (mode == SCHEDULE_POST)
1833 grf_count = grf_used;
1834 else
1835 grf_count = alloc.count;
1836
1837 fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1838 cfg->num_blocks, mode);
1839 sched.run(cfg);
1840
1841 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1842 }
1843
1844 void
1845 vec4_visitor::opt_schedule_instructions()
1846 {
1847 vec4_instruction_scheduler sched(this, prog_data->total_grf);
1848 sched.run(cfg);
1849
1850 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1851 }