intel/fs: Teach instruction scheduler about GRF bank conflict cycles.
[mesa.git] / src / intel / compiler / brw_schedule_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33
34 using namespace brw;
35
36 /** @file brw_fs_schedule_instructions.cpp
37 *
38 * List scheduling of FS instructions.
39 *
40 * The basic model of the list scheduler is to take a basic block,
41 * compute a DAG of the dependencies (RAW ordering with latency, WAW
42 * ordering with latency, WAR ordering), and make a list of the DAG heads.
43 * Heuristically pick a DAG head, then put all the children that are
44 * now DAG heads into the list of things to schedule.
45 *
46 * The heuristic is the important part. We're trying to be cheap,
47 * since actually computing the optimal scheduling is NP complete.
48 * What we do is track a "current clock". When we schedule a node, we
49 * update the earliest-unblocked clock time of its children, and
50 * increment the clock. Then, when trying to schedule, we just pick
51 * the earliest-unblocked instruction to schedule.
52 *
53 * Note that often there will be many things which could execute
54 * immediately, and there are a range of heuristic options to choose
55 * from in picking among those.
56 */
57
58 static bool debug = false;
59
60 class instruction_scheduler;
61
62 class schedule_node : public exec_node
63 {
64 public:
65 schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66 void set_latency_gen4();
67 void set_latency_gen7(bool is_haswell);
68
69 backend_instruction *inst;
70 schedule_node **children;
71 int *child_latency;
72 int child_count;
73 int parent_count;
74 int child_array_size;
75 int unblocked_time;
76 int latency;
77
78 /**
79 * Which iteration of pushing groups of children onto the candidates list
80 * this node was a part of.
81 */
82 unsigned cand_generation;
83
84 /**
85 * This is the sum of the instruction's latency plus the maximum delay of
86 * its children, or just the issue_time if it's a leaf node.
87 */
88 int delay;
89
90 /**
91 * Preferred exit node among the (direct or indirect) successors of this
92 * node. Among the scheduler nodes blocked by this node, this will be the
93 * one that may cause earliest program termination, or NULL if none of the
94 * successors is an exit node.
95 */
96 schedule_node *exit;
97 };
98
99 /**
100 * Lower bound of the scheduling time after which one of the instructions
101 * blocked by this node may lead to program termination.
102 *
103 * exit_unblocked_time() determines a strict partial ordering relation '«' on
104 * the set of scheduler nodes as follows:
105 *
106 * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107 *
108 * which can be used to heuristically order nodes according to how early they
109 * can unblock an exit node and lead to program termination.
110 */
111 static inline int
112 exit_unblocked_time(const schedule_node *n)
113 {
114 return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116
117 void
118 schedule_node::set_latency_gen4()
119 {
120 int chans = 8;
121 int math_latency = 22;
122
123 switch (inst->opcode) {
124 case SHADER_OPCODE_RCP:
125 this->latency = 1 * chans * math_latency;
126 break;
127 case SHADER_OPCODE_RSQ:
128 this->latency = 2 * chans * math_latency;
129 break;
130 case SHADER_OPCODE_INT_QUOTIENT:
131 case SHADER_OPCODE_SQRT:
132 case SHADER_OPCODE_LOG2:
133 /* full precision log. partial is 2. */
134 this->latency = 3 * chans * math_latency;
135 break;
136 case SHADER_OPCODE_INT_REMAINDER:
137 case SHADER_OPCODE_EXP2:
138 /* full precision. partial is 3, same throughput. */
139 this->latency = 4 * chans * math_latency;
140 break;
141 case SHADER_OPCODE_POW:
142 this->latency = 8 * chans * math_latency;
143 break;
144 case SHADER_OPCODE_SIN:
145 case SHADER_OPCODE_COS:
146 /* minimum latency, max is 12 rounds. */
147 this->latency = 5 * chans * math_latency;
148 break;
149 default:
150 this->latency = 2;
151 break;
152 }
153 }
154
155 void
156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158 switch (inst->opcode) {
159 case BRW_OPCODE_MAD:
160 /* 2 cycles
161 * (since the last two src operands are in different register banks):
162 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163 *
164 * 3 cycles on IVB, 4 on HSW
165 * (since the last two src operands are in the same register bank):
166 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167 *
168 * 18 cycles on IVB, 16 on HSW
169 * (since the last two src operands are in different register banks):
170 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171 * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
172 *
173 * 20 cycles on IVB, 18 on HSW
174 * (since the last two src operands are in the same register bank):
175 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
177 */
178
179 /* Our register allocator doesn't know about register banks, so use the
180 * higher latency.
181 */
182 latency = is_haswell ? 16 : 18;
183 break;
184
185 case BRW_OPCODE_LRP:
186 /* 2 cycles
187 * (since the last two src operands are in different register banks):
188 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189 *
190 * 3 cycles on IVB, 4 on HSW
191 * (since the last two src operands are in the same register bank):
192 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193 *
194 * 16 cycles on IVB, 14 on HSW
195 * (since the last two src operands are in different register banks):
196 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
198 *
199 * 16 cycles
200 * (since the last two src operands are in the same register bank):
201 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
203 */
204
205 /* Our register allocator doesn't know about register banks, so use the
206 * higher latency.
207 */
208 latency = 14;
209 break;
210
211 case SHADER_OPCODE_RCP:
212 case SHADER_OPCODE_RSQ:
213 case SHADER_OPCODE_SQRT:
214 case SHADER_OPCODE_LOG2:
215 case SHADER_OPCODE_EXP2:
216 case SHADER_OPCODE_SIN:
217 case SHADER_OPCODE_COS:
218 /* 2 cycles:
219 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
220 *
221 * 18 cycles:
222 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
223 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
224 *
225 * Same for exp2, log2, rsq, sqrt, sin, cos.
226 */
227 latency = is_haswell ? 14 : 16;
228 break;
229
230 case SHADER_OPCODE_POW:
231 /* 2 cycles:
232 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
233 *
234 * 26 cycles:
235 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
236 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
237 */
238 latency = is_haswell ? 22 : 24;
239 break;
240
241 case SHADER_OPCODE_TEX:
242 case SHADER_OPCODE_TXD:
243 case SHADER_OPCODE_TXF:
244 case SHADER_OPCODE_TXF_LZ:
245 case SHADER_OPCODE_TXL:
246 case SHADER_OPCODE_TXL_LZ:
247 /* 18 cycles:
248 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
249 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
250 * send(8) g4<1>UW g114<8,8,1>F
251 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
252 *
253 * 697 +/-49 cycles (min 610, n=26):
254 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
255 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
256 * send(8) g4<1>UW g114<8,8,1>F
257 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
258 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
259 *
260 * So the latency on our first texture load of the batchbuffer takes
261 * ~700 cycles, since the caches are cold at that point.
262 *
263 * 840 +/- 92 cycles (min 720, n=25):
264 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
265 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
266 * send(8) g4<1>UW g114<8,8,1>F
267 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
268 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
269 * send(8) g4<1>UW g114<8,8,1>F
270 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
271 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
272 *
273 * On the second load, it takes just an extra ~140 cycles, and after
274 * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275 *
276 * 683 +/- 49 cycles (min = 602, n=47):
277 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
278 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
279 * send(8) g4<1>UW g114<8,8,1>F
280 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
281 * send(8) g50<1>UW g114<8,8,1>F
282 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
283 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
284 *
285 * The unit appears to be pipelined, since this matches up with the
286 * cache-cold case, despite there being two loads here. If you replace
287 * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288 *
289 * So, take some number between the cache-hot 140 cycles and the
290 * cache-cold 700 cycles. No particular tuning was done on this.
291 *
292 * I haven't done significant testing of the non-TEX opcodes. TXL at
293 * least looked about the same as TEX.
294 */
295 latency = 200;
296 break;
297
298 case SHADER_OPCODE_TXS:
299 /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300 * cycles (n=15):
301 * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
302 * send(8) g6<1>UW g114<8,8,1>F
303 * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
304 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
305 *
306 *
307 * Two loads was 535 +/- 30 cycles (n=19):
308 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
309 * send(16) g6<1>UW g114<8,8,1>F
310 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
311 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
312 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
313 * send(16) g8<1>UW g114<8,8,1>F
314 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
315 * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
316 * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
317 *
318 * Since the only caches that should matter are just the
319 * instruction/state cache containing the surface state, assume that we
320 * always have hot caches.
321 */
322 latency = 100;
323 break;
324
325 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
327 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
328 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
329 case VS_OPCODE_PULL_CONSTANT_LOAD:
330 /* testing using varying-index pull constants:
331 *
332 * 16 cycles:
333 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
334 * send(8) g4<1>F g4<8,8,1>D
335 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
336 *
337 * ~480 cycles:
338 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
339 * send(8) g4<1>F g4<8,8,1>D
340 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
341 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
342 *
343 * ~620 cycles:
344 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
345 * send(8) g4<1>F g4<8,8,1>D
346 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
347 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
348 * send(8) g4<1>F g4<8,8,1>D
349 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
350 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
351 *
352 * So, if it's cache-hot, it's about 140. If it's cache cold, it's
353 * about 460. We expect to mostly be cache hot, so pick something more
354 * in that direction.
355 */
356 latency = 200;
357 break;
358
359 case SHADER_OPCODE_GEN7_SCRATCH_READ:
360 /* Testing a load from offset 0, that had been previously written:
361 *
362 * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
363 * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
364 *
365 * The cycles spent seemed to be grouped around 40-50 (as low as 38),
366 * then around 140. Presumably this is cache hit vs miss.
367 */
368 latency = 50;
369 break;
370
371 case SHADER_OPCODE_UNTYPED_ATOMIC:
372 case SHADER_OPCODE_TYPED_ATOMIC:
373 /* Test code:
374 * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
375 * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
376 * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
377 * send(8) g4<1>ud g112<8,8,1>ud
378 * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
379 *
380 * Running it 100 times as fragment shader on a 128x128 quad
381 * gives an average latency of 13867 cycles per atomic op,
382 * standard deviation 3%. Note that this is a rather
383 * pessimistic estimate, the actual latency in cases with few
384 * collisions between threads and favorable pipelining has been
385 * seen to be reduced by a factor of 100.
386 */
387 latency = 14000;
388 break;
389
390 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
391 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
392 case SHADER_OPCODE_TYPED_SURFACE_READ:
393 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
394 /* Test code:
395 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
396 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
397 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
398 * send(8) g4<1>UD g112<8,8,1>UD
399 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
400 * .
401 * . [repeats 8 times]
402 * .
403 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
404 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
405 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
406 * send(8) g4<1>UD g112<8,8,1>UD
407 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
408 *
409 * Running it 100 times as fragment shader on a 128x128 quad
410 * gives an average latency of 583 cycles per surface read,
411 * standard deviation 0.9%.
412 */
413 latency = is_haswell ? 300 : 600;
414 break;
415
416 default:
417 /* 2 cycles:
418 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
419 *
420 * 16 cycles:
421 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
422 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
423 */
424 latency = 14;
425 break;
426 }
427 }
428
429 class instruction_scheduler {
430 public:
431 instruction_scheduler(backend_shader *s, int grf_count,
432 int hw_reg_count, int block_count,
433 instruction_scheduler_mode mode)
434 {
435 this->bs = s;
436 this->mem_ctx = ralloc_context(NULL);
437 this->grf_count = grf_count;
438 this->hw_reg_count = hw_reg_count;
439 this->instructions.make_empty();
440 this->instructions_to_schedule = 0;
441 this->post_reg_alloc = (mode == SCHEDULE_POST);
442 this->mode = mode;
443 if (!post_reg_alloc) {
444 this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
445
446 this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
447 for (int i = 0; i < block_count; i++)
448 this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
449 BITSET_WORDS(grf_count));
450
451 this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
452 for (int i = 0; i < block_count; i++)
453 this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
454 BITSET_WORDS(grf_count));
455
456 this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
457 for (int i = 0; i < block_count; i++)
458 this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
459 BITSET_WORDS(hw_reg_count));
460
461 this->written = rzalloc_array(mem_ctx, bool, grf_count);
462
463 this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
464
465 this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
466 } else {
467 this->reg_pressure_in = NULL;
468 this->livein = NULL;
469 this->liveout = NULL;
470 this->hw_liveout = NULL;
471 this->written = NULL;
472 this->reads_remaining = NULL;
473 this->hw_reads_remaining = NULL;
474 }
475 }
476
477 ~instruction_scheduler()
478 {
479 ralloc_free(this->mem_ctx);
480 }
481 void add_barrier_deps(schedule_node *n);
482 void add_dep(schedule_node *before, schedule_node *after, int latency);
483 void add_dep(schedule_node *before, schedule_node *after);
484
485 void run(cfg_t *cfg);
486 void add_insts_from_block(bblock_t *block);
487 void compute_delays();
488 void compute_exits();
489 virtual void calculate_deps() = 0;
490 virtual schedule_node *choose_instruction_to_schedule() = 0;
491
492 /**
493 * Returns how many cycles it takes the instruction to issue.
494 *
495 * Instructions in gen hardware are handled one simd4 vector at a time,
496 * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
497 * cycles to dispatch and SIMD16 (compressed) instructions take 4.
498 */
499 virtual int issue_time(backend_instruction *inst) = 0;
500
501 virtual void count_reads_remaining(backend_instruction *inst) = 0;
502 virtual void setup_liveness(cfg_t *cfg) = 0;
503 virtual void update_register_pressure(backend_instruction *inst) = 0;
504 virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
505
506 void schedule_instructions(bblock_t *block);
507
508 void *mem_ctx;
509
510 bool post_reg_alloc;
511 int instructions_to_schedule;
512 int grf_count;
513 int hw_reg_count;
514 int reg_pressure;
515 int block_idx;
516 exec_list instructions;
517 backend_shader *bs;
518
519 instruction_scheduler_mode mode;
520
521 /*
522 * The register pressure at the beginning of each basic block.
523 */
524
525 int *reg_pressure_in;
526
527 /*
528 * The virtual GRF's whose range overlaps the beginning of each basic block.
529 */
530
531 BITSET_WORD **livein;
532
533 /*
534 * The virtual GRF's whose range overlaps the end of each basic block.
535 */
536
537 BITSET_WORD **liveout;
538
539 /*
540 * The hardware GRF's whose range overlaps the end of each basic block.
541 */
542
543 BITSET_WORD **hw_liveout;
544
545 /*
546 * Whether we've scheduled a write for this virtual GRF yet.
547 */
548
549 bool *written;
550
551 /*
552 * How many reads we haven't scheduled for this virtual GRF yet.
553 */
554
555 int *reads_remaining;
556
557 /*
558 * How many reads we haven't scheduled for this hardware GRF yet.
559 */
560
561 int *hw_reads_remaining;
562 };
563
564 class fs_instruction_scheduler : public instruction_scheduler
565 {
566 public:
567 fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
568 int block_count,
569 instruction_scheduler_mode mode);
570 void calculate_deps();
571 bool is_compressed(fs_inst *inst);
572 schedule_node *choose_instruction_to_schedule();
573 int issue_time(backend_instruction *inst);
574 fs_visitor *v;
575
576 void count_reads_remaining(backend_instruction *inst);
577 void setup_liveness(cfg_t *cfg);
578 void update_register_pressure(backend_instruction *inst);
579 int get_register_pressure_benefit(backend_instruction *inst);
580 };
581
582 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
583 int grf_count, int hw_reg_count,
584 int block_count,
585 instruction_scheduler_mode mode)
586 : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
587 v(v)
588 {
589 }
590
591 static bool
592 is_src_duplicate(fs_inst *inst, int src)
593 {
594 for (int i = 0; i < src; i++)
595 if (inst->src[i].equals(inst->src[src]))
596 return true;
597
598 return false;
599 }
600
601 void
602 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
603 {
604 fs_inst *inst = (fs_inst *)be;
605
606 if (!reads_remaining)
607 return;
608
609 for (int i = 0; i < inst->sources; i++) {
610 if (is_src_duplicate(inst, i))
611 continue;
612
613 if (inst->src[i].file == VGRF) {
614 reads_remaining[inst->src[i].nr]++;
615 } else if (inst->src[i].file == FIXED_GRF) {
616 if (inst->src[i].nr >= hw_reg_count)
617 continue;
618
619 for (unsigned j = 0; j < regs_read(inst, i); j++)
620 hw_reads_remaining[inst->src[i].nr + j]++;
621 }
622 }
623 }
624
625 void
626 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
627 {
628 /* First, compute liveness on a per-GRF level using the in/out sets from
629 * liveness calculation.
630 */
631 for (int block = 0; block < cfg->num_blocks; block++) {
632 for (int i = 0; i < v->live_intervals->num_vars; i++) {
633 if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
634 int vgrf = v->live_intervals->vgrf_from_var[i];
635 if (!BITSET_TEST(livein[block], vgrf)) {
636 reg_pressure_in[block] += v->alloc.sizes[vgrf];
637 BITSET_SET(livein[block], vgrf);
638 }
639 }
640
641 if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
642 BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
643 }
644 }
645
646 /* Now, extend the live in/live out sets for when a range crosses a block
647 * boundary, which matches what our register allocator/interference code
648 * does to account for force_writemask_all and incompatible exec_mask's.
649 */
650 for (int block = 0; block < cfg->num_blocks - 1; block++) {
651 for (int i = 0; i < grf_count; i++) {
652 if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
653 v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
654 if (!BITSET_TEST(livein[block + 1], i)) {
655 reg_pressure_in[block + 1] += v->alloc.sizes[i];
656 BITSET_SET(livein[block + 1], i);
657 }
658
659 BITSET_SET(liveout[block], i);
660 }
661 }
662 }
663
664 int payload_last_use_ip[hw_reg_count];
665 v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
666
667 for (int i = 0; i < hw_reg_count; i++) {
668 if (payload_last_use_ip[i] == -1)
669 continue;
670
671 for (int block = 0; block < cfg->num_blocks; block++) {
672 if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
673 reg_pressure_in[block]++;
674
675 if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
676 BITSET_SET(hw_liveout[block], i);
677 }
678 }
679 }
680
681 void
682 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
683 {
684 fs_inst *inst = (fs_inst *)be;
685
686 if (!reads_remaining)
687 return;
688
689 if (inst->dst.file == VGRF) {
690 written[inst->dst.nr] = true;
691 }
692
693 for (int i = 0; i < inst->sources; i++) {
694 if (is_src_duplicate(inst, i))
695 continue;
696
697 if (inst->src[i].file == VGRF) {
698 reads_remaining[inst->src[i].nr]--;
699 } else if (inst->src[i].file == FIXED_GRF &&
700 inst->src[i].nr < hw_reg_count) {
701 for (unsigned off = 0; off < regs_read(inst, i); off++)
702 hw_reads_remaining[inst->src[i].nr + off]--;
703 }
704 }
705 }
706
707 int
708 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
709 {
710 fs_inst *inst = (fs_inst *)be;
711 int benefit = 0;
712
713 if (inst->dst.file == VGRF) {
714 if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
715 !written[inst->dst.nr])
716 benefit -= v->alloc.sizes[inst->dst.nr];
717 }
718
719 for (int i = 0; i < inst->sources; i++) {
720 if (is_src_duplicate(inst, i))
721 continue;
722
723 if (inst->src[i].file == VGRF &&
724 !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
725 reads_remaining[inst->src[i].nr] == 1)
726 benefit += v->alloc.sizes[inst->src[i].nr];
727
728 if (inst->src[i].file == FIXED_GRF &&
729 inst->src[i].nr < hw_reg_count) {
730 for (unsigned off = 0; off < regs_read(inst, i); off++) {
731 int reg = inst->src[i].nr + off;
732 if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
733 hw_reads_remaining[reg] == 1) {
734 benefit++;
735 }
736 }
737 }
738 }
739
740 return benefit;
741 }
742
743 class vec4_instruction_scheduler : public instruction_scheduler
744 {
745 public:
746 vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
747 void calculate_deps();
748 schedule_node *choose_instruction_to_schedule();
749 int issue_time(backend_instruction *inst);
750 vec4_visitor *v;
751
752 void count_reads_remaining(backend_instruction *inst);
753 void setup_liveness(cfg_t *cfg);
754 void update_register_pressure(backend_instruction *inst);
755 int get_register_pressure_benefit(backend_instruction *inst);
756 };
757
758 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
759 int grf_count)
760 : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
761 v(v)
762 {
763 }
764
765 void
766 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
767 {
768 }
769
770 void
771 vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
772 {
773 }
774
775 void
776 vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
777 {
778 }
779
780 int
781 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
782 {
783 return 0;
784 }
785
786 schedule_node::schedule_node(backend_instruction *inst,
787 instruction_scheduler *sched)
788 {
789 const struct gen_device_info *devinfo = sched->bs->devinfo;
790
791 this->inst = inst;
792 this->child_array_size = 0;
793 this->children = NULL;
794 this->child_latency = NULL;
795 this->child_count = 0;
796 this->parent_count = 0;
797 this->unblocked_time = 0;
798 this->cand_generation = 0;
799 this->delay = 0;
800 this->exit = NULL;
801
802 /* We can't measure Gen6 timings directly but expect them to be much
803 * closer to Gen7 than Gen4.
804 */
805 if (!sched->post_reg_alloc)
806 this->latency = 1;
807 else if (devinfo->gen >= 6)
808 set_latency_gen7(devinfo->is_haswell);
809 else
810 set_latency_gen4();
811 }
812
813 void
814 instruction_scheduler::add_insts_from_block(bblock_t *block)
815 {
816 foreach_inst_in_block(backend_instruction, inst, block) {
817 schedule_node *n = new(mem_ctx) schedule_node(inst, this);
818
819 instructions.push_tail(n);
820 }
821
822 this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
823 }
824
825 /** Computation of the delay member of each node. */
826 void
827 instruction_scheduler::compute_delays()
828 {
829 foreach_in_list_reverse(schedule_node, n, &instructions) {
830 if (!n->child_count) {
831 n->delay = issue_time(n->inst);
832 } else {
833 for (int i = 0; i < n->child_count; i++) {
834 assert(n->children[i]->delay);
835 n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
836 }
837 }
838 }
839 }
840
841 void
842 instruction_scheduler::compute_exits()
843 {
844 /* Calculate a lower bound of the scheduling time of each node in the
845 * graph. This is analogous to the node's critical path but calculated
846 * from the top instead of from the bottom of the block.
847 */
848 foreach_in_list(schedule_node, n, &instructions) {
849 for (int i = 0; i < n->child_count; i++) {
850 n->children[i]->unblocked_time =
851 MAX2(n->children[i]->unblocked_time,
852 n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
853 }
854 }
855
856 /* Calculate the exit of each node by induction based on the exit nodes of
857 * its children. The preferred exit of a node is the one among the exit
858 * nodes of its children which can be unblocked first according to the
859 * optimistic unblocked time estimate calculated above.
860 */
861 foreach_in_list_reverse(schedule_node, n, &instructions) {
862 n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
863
864 for (int i = 0; i < n->child_count; i++) {
865 if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
866 n->exit = n->children[i]->exit;
867 }
868 }
869 }
870
871 /**
872 * Add a dependency between two instruction nodes.
873 *
874 * The @after node will be scheduled after @before. We will try to
875 * schedule it @latency cycles after @before, but no guarantees there.
876 */
877 void
878 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
879 int latency)
880 {
881 if (!before || !after)
882 return;
883
884 assert(before != after);
885
886 for (int i = 0; i < before->child_count; i++) {
887 if (before->children[i] == after) {
888 before->child_latency[i] = MAX2(before->child_latency[i], latency);
889 return;
890 }
891 }
892
893 if (before->child_array_size <= before->child_count) {
894 if (before->child_array_size < 16)
895 before->child_array_size = 16;
896 else
897 before->child_array_size *= 2;
898
899 before->children = reralloc(mem_ctx, before->children,
900 schedule_node *,
901 before->child_array_size);
902 before->child_latency = reralloc(mem_ctx, before->child_latency,
903 int, before->child_array_size);
904 }
905
906 before->children[before->child_count] = after;
907 before->child_latency[before->child_count] = latency;
908 before->child_count++;
909 after->parent_count++;
910 }
911
912 void
913 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
914 {
915 if (!before)
916 return;
917
918 add_dep(before, after, before->latency);
919 }
920
921 static bool
922 is_scheduling_barrier(const backend_instruction *inst)
923 {
924 return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
925 inst->is_control_flow() ||
926 inst->has_side_effects();
927 }
928
929 /**
930 * Sometimes we really want this node to execute after everything that
931 * was before it and before everything that followed it. This adds
932 * the deps to do so.
933 */
934 void
935 instruction_scheduler::add_barrier_deps(schedule_node *n)
936 {
937 schedule_node *prev = (schedule_node *)n->prev;
938 schedule_node *next = (schedule_node *)n->next;
939
940 if (prev) {
941 while (!prev->is_head_sentinel()) {
942 add_dep(prev, n, 0);
943 if (is_scheduling_barrier(prev->inst))
944 break;
945 prev = (schedule_node *)prev->prev;
946 }
947 }
948
949 if (next) {
950 while (!next->is_tail_sentinel()) {
951 add_dep(n, next, 0);
952 if (is_scheduling_barrier(next->inst))
953 break;
954 next = (schedule_node *)next->next;
955 }
956 }
957 }
958
959 /* instruction scheduling needs to be aware of when an MRF write
960 * actually writes 2 MRFs.
961 */
962 bool
963 fs_instruction_scheduler::is_compressed(fs_inst *inst)
964 {
965 return inst->exec_size == 16;
966 }
967
968 void
969 fs_instruction_scheduler::calculate_deps()
970 {
971 /* Pre-register-allocation, this tracks the last write per VGRF offset.
972 * After register allocation, reg_offsets are gone and we track individual
973 * GRF registers.
974 */
975 schedule_node *last_grf_write[grf_count * 16];
976 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
977 schedule_node *last_conditional_mod[4] = {};
978 schedule_node *last_accumulator_write = NULL;
979 /* Fixed HW registers are assumed to be separate from the virtual
980 * GRFs, so they can be tracked separately. We don't really write
981 * to fixed GRFs much, so don't bother tracking them on a more
982 * granular level.
983 */
984 schedule_node *last_fixed_grf_write = NULL;
985
986 memset(last_grf_write, 0, sizeof(last_grf_write));
987 memset(last_mrf_write, 0, sizeof(last_mrf_write));
988
989 /* top-to-bottom dependencies: RAW and WAW. */
990 foreach_in_list(schedule_node, n, &instructions) {
991 fs_inst *inst = (fs_inst *)n->inst;
992
993 if (is_scheduling_barrier(inst))
994 add_barrier_deps(n);
995
996 /* read-after-write deps. */
997 for (int i = 0; i < inst->sources; i++) {
998 if (inst->src[i].file == VGRF) {
999 if (post_reg_alloc) {
1000 for (unsigned r = 0; r < regs_read(inst, i); r++)
1001 add_dep(last_grf_write[inst->src[i].nr + r], n);
1002 } else {
1003 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1004 add_dep(last_grf_write[inst->src[i].nr * 16 +
1005 inst->src[i].offset / REG_SIZE + r], n);
1006 }
1007 }
1008 } else if (inst->src[i].file == FIXED_GRF) {
1009 if (post_reg_alloc) {
1010 for (unsigned r = 0; r < regs_read(inst, i); r++)
1011 add_dep(last_grf_write[inst->src[i].nr + r], n);
1012 } else {
1013 add_dep(last_fixed_grf_write, n);
1014 }
1015 } else if (inst->src[i].is_accumulator()) {
1016 add_dep(last_accumulator_write, n);
1017 } else if (inst->src[i].file == ARF) {
1018 add_barrier_deps(n);
1019 }
1020 }
1021
1022 if (inst->base_mrf != -1) {
1023 for (int i = 0; i < inst->mlen; i++) {
1024 /* It looks like the MRF regs are released in the send
1025 * instruction once it's sent, not when the result comes
1026 * back.
1027 */
1028 add_dep(last_mrf_write[inst->base_mrf + i], n);
1029 }
1030 }
1031
1032 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1033 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1034
1035 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1036 if (mask & (1 << i))
1037 add_dep(last_conditional_mod[i], n);
1038 }
1039 }
1040
1041 if (inst->reads_accumulator_implicitly()) {
1042 add_dep(last_accumulator_write, n);
1043 }
1044
1045 /* write-after-write deps. */
1046 if (inst->dst.file == VGRF) {
1047 if (post_reg_alloc) {
1048 for (unsigned r = 0; r < regs_written(inst); r++) {
1049 add_dep(last_grf_write[inst->dst.nr + r], n);
1050 last_grf_write[inst->dst.nr + r] = n;
1051 }
1052 } else {
1053 for (unsigned r = 0; r < regs_written(inst); r++) {
1054 add_dep(last_grf_write[inst->dst.nr * 16 +
1055 inst->dst.offset / REG_SIZE + r], n);
1056 last_grf_write[inst->dst.nr * 16 +
1057 inst->dst.offset / REG_SIZE + r] = n;
1058 }
1059 }
1060 } else if (inst->dst.file == MRF) {
1061 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1062
1063 add_dep(last_mrf_write[reg], n);
1064 last_mrf_write[reg] = n;
1065 if (is_compressed(inst)) {
1066 if (inst->dst.nr & BRW_MRF_COMPR4)
1067 reg += 4;
1068 else
1069 reg++;
1070 add_dep(last_mrf_write[reg], n);
1071 last_mrf_write[reg] = n;
1072 }
1073 } else if (inst->dst.file == FIXED_GRF) {
1074 if (post_reg_alloc) {
1075 for (unsigned r = 0; r < regs_written(inst); r++)
1076 last_grf_write[inst->dst.nr + r] = n;
1077 } else {
1078 last_fixed_grf_write = n;
1079 }
1080 } else if (inst->dst.is_accumulator()) {
1081 add_dep(last_accumulator_write, n);
1082 last_accumulator_write = n;
1083 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1084 add_barrier_deps(n);
1085 }
1086
1087 if (inst->mlen > 0 && inst->base_mrf != -1) {
1088 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1089 add_dep(last_mrf_write[inst->base_mrf + i], n);
1090 last_mrf_write[inst->base_mrf + i] = n;
1091 }
1092 }
1093
1094 if (const unsigned mask = inst->flags_written()) {
1095 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1096
1097 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1098 if (mask & (1 << i)) {
1099 add_dep(last_conditional_mod[i], n, 0);
1100 last_conditional_mod[i] = n;
1101 }
1102 }
1103 }
1104
1105 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1106 !inst->dst.is_accumulator()) {
1107 add_dep(last_accumulator_write, n);
1108 last_accumulator_write = n;
1109 }
1110 }
1111
1112 /* bottom-to-top dependencies: WAR */
1113 memset(last_grf_write, 0, sizeof(last_grf_write));
1114 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1115 memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1116 last_accumulator_write = NULL;
1117 last_fixed_grf_write = NULL;
1118
1119 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1120 fs_inst *inst = (fs_inst *)n->inst;
1121
1122 /* write-after-read deps. */
1123 for (int i = 0; i < inst->sources; i++) {
1124 if (inst->src[i].file == VGRF) {
1125 if (post_reg_alloc) {
1126 for (unsigned r = 0; r < regs_read(inst, i); r++)
1127 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1128 } else {
1129 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1130 add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1131 inst->src[i].offset / REG_SIZE + r], 0);
1132 }
1133 }
1134 } else if (inst->src[i].file == FIXED_GRF) {
1135 if (post_reg_alloc) {
1136 for (unsigned r = 0; r < regs_read(inst, i); r++)
1137 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1138 } else {
1139 add_dep(n, last_fixed_grf_write, 0);
1140 }
1141 } else if (inst->src[i].is_accumulator()) {
1142 add_dep(n, last_accumulator_write, 0);
1143 } else if (inst->src[i].file == ARF) {
1144 add_barrier_deps(n);
1145 }
1146 }
1147
1148 if (inst->base_mrf != -1) {
1149 for (int i = 0; i < inst->mlen; i++) {
1150 /* It looks like the MRF regs are released in the send
1151 * instruction once it's sent, not when the result comes
1152 * back.
1153 */
1154 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1155 }
1156 }
1157
1158 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1159 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1160
1161 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1162 if (mask & (1 << i))
1163 add_dep(n, last_conditional_mod[i]);
1164 }
1165 }
1166
1167 if (inst->reads_accumulator_implicitly()) {
1168 add_dep(n, last_accumulator_write);
1169 }
1170
1171 /* Update the things this instruction wrote, so earlier reads
1172 * can mark this as WAR dependency.
1173 */
1174 if (inst->dst.file == VGRF) {
1175 if (post_reg_alloc) {
1176 for (unsigned r = 0; r < regs_written(inst); r++)
1177 last_grf_write[inst->dst.nr + r] = n;
1178 } else {
1179 for (unsigned r = 0; r < regs_written(inst); r++) {
1180 last_grf_write[inst->dst.nr * 16 +
1181 inst->dst.offset / REG_SIZE + r] = n;
1182 }
1183 }
1184 } else if (inst->dst.file == MRF) {
1185 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1186
1187 last_mrf_write[reg] = n;
1188
1189 if (is_compressed(inst)) {
1190 if (inst->dst.nr & BRW_MRF_COMPR4)
1191 reg += 4;
1192 else
1193 reg++;
1194
1195 last_mrf_write[reg] = n;
1196 }
1197 } else if (inst->dst.file == FIXED_GRF) {
1198 if (post_reg_alloc) {
1199 for (unsigned r = 0; r < regs_written(inst); r++)
1200 last_grf_write[inst->dst.nr + r] = n;
1201 } else {
1202 last_fixed_grf_write = n;
1203 }
1204 } else if (inst->dst.is_accumulator()) {
1205 last_accumulator_write = n;
1206 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1207 add_barrier_deps(n);
1208 }
1209
1210 if (inst->mlen > 0 && inst->base_mrf != -1) {
1211 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1212 last_mrf_write[inst->base_mrf + i] = n;
1213 }
1214 }
1215
1216 if (const unsigned mask = inst->flags_written()) {
1217 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1218
1219 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1220 if (mask & (1 << i))
1221 last_conditional_mod[i] = n;
1222 }
1223 }
1224
1225 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1226 last_accumulator_write = n;
1227 }
1228 }
1229 }
1230
1231 void
1232 vec4_instruction_scheduler::calculate_deps()
1233 {
1234 schedule_node *last_grf_write[grf_count];
1235 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1236 schedule_node *last_conditional_mod = NULL;
1237 schedule_node *last_accumulator_write = NULL;
1238 /* Fixed HW registers are assumed to be separate from the virtual
1239 * GRFs, so they can be tracked separately. We don't really write
1240 * to fixed GRFs much, so don't bother tracking them on a more
1241 * granular level.
1242 */
1243 schedule_node *last_fixed_grf_write = NULL;
1244
1245 memset(last_grf_write, 0, sizeof(last_grf_write));
1246 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1247
1248 /* top-to-bottom dependencies: RAW and WAW. */
1249 foreach_in_list(schedule_node, n, &instructions) {
1250 vec4_instruction *inst = (vec4_instruction *)n->inst;
1251
1252 if (is_scheduling_barrier(inst))
1253 add_barrier_deps(n);
1254
1255 /* read-after-write deps. */
1256 for (int i = 0; i < 3; i++) {
1257 if (inst->src[i].file == VGRF) {
1258 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1259 add_dep(last_grf_write[inst->src[i].nr + j], n);
1260 } else if (inst->src[i].file == FIXED_GRF) {
1261 add_dep(last_fixed_grf_write, n);
1262 } else if (inst->src[i].is_accumulator()) {
1263 assert(last_accumulator_write);
1264 add_dep(last_accumulator_write, n);
1265 } else if (inst->src[i].file == ARF) {
1266 add_barrier_deps(n);
1267 }
1268 }
1269
1270 if (!inst->is_send_from_grf()) {
1271 for (int i = 0; i < inst->mlen; i++) {
1272 /* It looks like the MRF regs are released in the send
1273 * instruction once it's sent, not when the result comes
1274 * back.
1275 */
1276 add_dep(last_mrf_write[inst->base_mrf + i], n);
1277 }
1278 }
1279
1280 if (inst->reads_flag()) {
1281 assert(last_conditional_mod);
1282 add_dep(last_conditional_mod, n);
1283 }
1284
1285 if (inst->reads_accumulator_implicitly()) {
1286 assert(last_accumulator_write);
1287 add_dep(last_accumulator_write, n);
1288 }
1289
1290 /* write-after-write deps. */
1291 if (inst->dst.file == VGRF) {
1292 for (unsigned j = 0; j < regs_written(inst); ++j) {
1293 add_dep(last_grf_write[inst->dst.nr + j], n);
1294 last_grf_write[inst->dst.nr + j] = n;
1295 }
1296 } else if (inst->dst.file == MRF) {
1297 add_dep(last_mrf_write[inst->dst.nr], n);
1298 last_mrf_write[inst->dst.nr] = n;
1299 } else if (inst->dst.file == FIXED_GRF) {
1300 last_fixed_grf_write = n;
1301 } else if (inst->dst.is_accumulator()) {
1302 add_dep(last_accumulator_write, n);
1303 last_accumulator_write = n;
1304 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1305 add_barrier_deps(n);
1306 }
1307
1308 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1309 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1310 add_dep(last_mrf_write[inst->base_mrf + i], n);
1311 last_mrf_write[inst->base_mrf + i] = n;
1312 }
1313 }
1314
1315 if (inst->writes_flag()) {
1316 add_dep(last_conditional_mod, n, 0);
1317 last_conditional_mod = n;
1318 }
1319
1320 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1321 !inst->dst.is_accumulator()) {
1322 add_dep(last_accumulator_write, n);
1323 last_accumulator_write = n;
1324 }
1325 }
1326
1327 /* bottom-to-top dependencies: WAR */
1328 memset(last_grf_write, 0, sizeof(last_grf_write));
1329 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1330 last_conditional_mod = NULL;
1331 last_accumulator_write = NULL;
1332 last_fixed_grf_write = NULL;
1333
1334 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1335 vec4_instruction *inst = (vec4_instruction *)n->inst;
1336
1337 /* write-after-read deps. */
1338 for (int i = 0; i < 3; i++) {
1339 if (inst->src[i].file == VGRF) {
1340 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1341 add_dep(n, last_grf_write[inst->src[i].nr + j]);
1342 } else if (inst->src[i].file == FIXED_GRF) {
1343 add_dep(n, last_fixed_grf_write);
1344 } else if (inst->src[i].is_accumulator()) {
1345 add_dep(n, last_accumulator_write);
1346 } else if (inst->src[i].file == ARF) {
1347 add_barrier_deps(n);
1348 }
1349 }
1350
1351 if (!inst->is_send_from_grf()) {
1352 for (int i = 0; i < inst->mlen; i++) {
1353 /* It looks like the MRF regs are released in the send
1354 * instruction once it's sent, not when the result comes
1355 * back.
1356 */
1357 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1358 }
1359 }
1360
1361 if (inst->reads_flag()) {
1362 add_dep(n, last_conditional_mod);
1363 }
1364
1365 if (inst->reads_accumulator_implicitly()) {
1366 add_dep(n, last_accumulator_write);
1367 }
1368
1369 /* Update the things this instruction wrote, so earlier reads
1370 * can mark this as WAR dependency.
1371 */
1372 if (inst->dst.file == VGRF) {
1373 for (unsigned j = 0; j < regs_written(inst); ++j)
1374 last_grf_write[inst->dst.nr + j] = n;
1375 } else if (inst->dst.file == MRF) {
1376 last_mrf_write[inst->dst.nr] = n;
1377 } else if (inst->dst.file == FIXED_GRF) {
1378 last_fixed_grf_write = n;
1379 } else if (inst->dst.is_accumulator()) {
1380 last_accumulator_write = n;
1381 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1382 add_barrier_deps(n);
1383 }
1384
1385 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1386 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1387 last_mrf_write[inst->base_mrf + i] = n;
1388 }
1389 }
1390
1391 if (inst->writes_flag()) {
1392 last_conditional_mod = n;
1393 }
1394
1395 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1396 last_accumulator_write = n;
1397 }
1398 }
1399 }
1400
1401 schedule_node *
1402 fs_instruction_scheduler::choose_instruction_to_schedule()
1403 {
1404 schedule_node *chosen = NULL;
1405
1406 if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1407 int chosen_time = 0;
1408
1409 /* Of the instructions ready to execute or the closest to being ready,
1410 * choose the one most likely to unblock an early program exit, or
1411 * otherwise the oldest one.
1412 */
1413 foreach_in_list(schedule_node, n, &instructions) {
1414 if (!chosen ||
1415 exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1416 (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1417 n->unblocked_time < chosen_time)) {
1418 chosen = n;
1419 chosen_time = n->unblocked_time;
1420 }
1421 }
1422 } else {
1423 /* Before register allocation, we don't care about the latencies of
1424 * instructions. All we care about is reducing live intervals of
1425 * variables so that we can avoid register spilling, or get SIMD16
1426 * shaders which naturally do a better job of hiding instruction
1427 * latency.
1428 */
1429 foreach_in_list(schedule_node, n, &instructions) {
1430 fs_inst *inst = (fs_inst *)n->inst;
1431
1432 if (!chosen) {
1433 chosen = n;
1434 continue;
1435 }
1436
1437 /* Most important: If we can definitely reduce register pressure, do
1438 * so immediately.
1439 */
1440 int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1441 int chosen_register_pressure_benefit =
1442 get_register_pressure_benefit(chosen->inst);
1443
1444 if (register_pressure_benefit > 0 &&
1445 register_pressure_benefit > chosen_register_pressure_benefit) {
1446 chosen = n;
1447 continue;
1448 } else if (chosen_register_pressure_benefit > 0 &&
1449 (register_pressure_benefit <
1450 chosen_register_pressure_benefit)) {
1451 continue;
1452 }
1453
1454 if (mode == SCHEDULE_PRE_LIFO) {
1455 /* Prefer instructions that recently became available for
1456 * scheduling. These are the things that are most likely to
1457 * (eventually) make a variable dead and reduce register pressure.
1458 * Typical register pressure estimates don't work for us because
1459 * most of our pressure comes from texturing, where no single
1460 * instruction to schedule will make a vec4 value dead.
1461 */
1462 if (n->cand_generation > chosen->cand_generation) {
1463 chosen = n;
1464 continue;
1465 } else if (n->cand_generation < chosen->cand_generation) {
1466 continue;
1467 }
1468
1469 /* On MRF-using chips, prefer non-SEND instructions. If we don't
1470 * do this, then because we prefer instructions that just became
1471 * candidates, we'll end up in a pattern of scheduling a SEND,
1472 * then the MRFs for the next SEND, then the next SEND, then the
1473 * MRFs, etc., without ever consuming the results of a send.
1474 */
1475 if (v->devinfo->gen < 7) {
1476 fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1477
1478 /* We use size_written > 4 * exec_size as our test for the kind
1479 * of send instruction to avoid -- only sends generate many
1480 * regs, and a single-result send is probably actually reducing
1481 * register pressure.
1482 */
1483 if (inst->size_written <= 4 * inst->exec_size &&
1484 chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1485 chosen = n;
1486 continue;
1487 } else if (inst->size_written > chosen_inst->size_written) {
1488 continue;
1489 }
1490 }
1491 }
1492
1493 /* For instructions pushed on the cands list at the same time, prefer
1494 * the one with the highest delay to the end of the program. This is
1495 * most likely to have its values able to be consumed first (such as
1496 * for a large tree of lowered ubo loads, which appear reversed in
1497 * the instruction stream with respect to when they can be consumed).
1498 */
1499 if (n->delay > chosen->delay) {
1500 chosen = n;
1501 continue;
1502 } else if (n->delay < chosen->delay) {
1503 continue;
1504 }
1505
1506 /* Prefer the node most likely to unblock an early program exit.
1507 */
1508 if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1509 chosen = n;
1510 continue;
1511 } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1512 continue;
1513 }
1514
1515 /* If all other metrics are equal, we prefer the first instruction in
1516 * the list (program execution).
1517 */
1518 }
1519 }
1520
1521 return chosen;
1522 }
1523
1524 schedule_node *
1525 vec4_instruction_scheduler::choose_instruction_to_schedule()
1526 {
1527 schedule_node *chosen = NULL;
1528 int chosen_time = 0;
1529
1530 /* Of the instructions ready to execute or the closest to being ready,
1531 * choose the oldest one.
1532 */
1533 foreach_in_list(schedule_node, n, &instructions) {
1534 if (!chosen || n->unblocked_time < chosen_time) {
1535 chosen = n;
1536 chosen_time = n->unblocked_time;
1537 }
1538 }
1539
1540 return chosen;
1541 }
1542
1543 int
1544 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1545 {
1546 const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1547 if (is_compressed((fs_inst *)inst))
1548 return 4 + overhead;
1549 else
1550 return 2 + overhead;
1551 }
1552
1553 int
1554 vec4_instruction_scheduler::issue_time(backend_instruction *inst)
1555 {
1556 /* We always execute as two vec4s in parallel. */
1557 return 2;
1558 }
1559
1560 void
1561 instruction_scheduler::schedule_instructions(bblock_t *block)
1562 {
1563 const struct gen_device_info *devinfo = bs->devinfo;
1564 int time = 0;
1565 if (!post_reg_alloc)
1566 reg_pressure = reg_pressure_in[block->num];
1567 block_idx = block->num;
1568
1569 /* Remove non-DAG heads from the list. */
1570 foreach_in_list_safe(schedule_node, n, &instructions) {
1571 if (n->parent_count != 0)
1572 n->remove();
1573 }
1574
1575 unsigned cand_generation = 1;
1576 while (!instructions.is_empty()) {
1577 schedule_node *chosen = choose_instruction_to_schedule();
1578
1579 /* Schedule this instruction. */
1580 assert(chosen);
1581 chosen->remove();
1582 chosen->inst->exec_node::remove();
1583 block->instructions.push_tail(chosen->inst);
1584 instructions_to_schedule--;
1585
1586 if (!post_reg_alloc) {
1587 reg_pressure -= get_register_pressure_benefit(chosen->inst);
1588 update_register_pressure(chosen->inst);
1589 }
1590
1591 /* If we expected a delay for scheduling, then bump the clock to reflect
1592 * that. In reality, the hardware will switch to another hyperthread
1593 * and may not return to dispatching our thread for a while even after
1594 * we're unblocked. After this, we have the time when the chosen
1595 * instruction will start executing.
1596 */
1597 time = MAX2(time, chosen->unblocked_time);
1598
1599 /* Update the clock for how soon an instruction could start after the
1600 * chosen one.
1601 */
1602 time += issue_time(chosen->inst);
1603
1604 if (debug) {
1605 fprintf(stderr, "clock %4d, scheduled: ", time);
1606 bs->dump_instruction(chosen->inst);
1607 if (!post_reg_alloc)
1608 fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1609 }
1610
1611 /* Now that we've scheduled a new instruction, some of its
1612 * children can be promoted to the list of instructions ready to
1613 * be scheduled. Update the children's unblocked time for this
1614 * DAG edge as we do so.
1615 */
1616 for (int i = chosen->child_count - 1; i >= 0; i--) {
1617 schedule_node *child = chosen->children[i];
1618
1619 child->unblocked_time = MAX2(child->unblocked_time,
1620 time + chosen->child_latency[i]);
1621
1622 if (debug) {
1623 fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1624 bs->dump_instruction(child->inst);
1625 }
1626
1627 child->cand_generation = cand_generation;
1628 child->parent_count--;
1629 if (child->parent_count == 0) {
1630 if (debug) {
1631 fprintf(stderr, "\t\tnow available\n");
1632 }
1633 instructions.push_head(child);
1634 }
1635 }
1636 cand_generation++;
1637
1638 /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
1639 * but it's more limited pre-gen6, so if we send something off to it then
1640 * the next math instruction isn't going to make progress until the first
1641 * is done.
1642 */
1643 if (devinfo->gen < 6 && chosen->inst->is_math()) {
1644 foreach_in_list(schedule_node, n, &instructions) {
1645 if (n->inst->is_math())
1646 n->unblocked_time = MAX2(n->unblocked_time,
1647 time + chosen->latency);
1648 }
1649 }
1650 }
1651
1652 assert(instructions_to_schedule == 0);
1653
1654 block->cycle_count = time;
1655 }
1656
1657 static unsigned get_cycle_count(cfg_t *cfg)
1658 {
1659 unsigned count = 0, multiplier = 1;
1660 foreach_block(block, cfg) {
1661 if (block->start()->opcode == BRW_OPCODE_DO)
1662 multiplier *= 10; /* assume that loops execute ~10 times */
1663
1664 count += block->cycle_count * multiplier;
1665
1666 if (block->end()->opcode == BRW_OPCODE_WHILE)
1667 multiplier /= 10;
1668 }
1669
1670 return count;
1671 }
1672
1673 void
1674 instruction_scheduler::run(cfg_t *cfg)
1675 {
1676 if (debug && !post_reg_alloc) {
1677 fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1678 post_reg_alloc);
1679 bs->dump_instructions();
1680 }
1681
1682 if (!post_reg_alloc)
1683 setup_liveness(cfg);
1684
1685 foreach_block(block, cfg) {
1686 if (reads_remaining) {
1687 memset(reads_remaining, 0,
1688 grf_count * sizeof(*reads_remaining));
1689 memset(hw_reads_remaining, 0,
1690 hw_reg_count * sizeof(*hw_reads_remaining));
1691 memset(written, 0, grf_count * sizeof(*written));
1692
1693 foreach_inst_in_block(fs_inst, inst, block)
1694 count_reads_remaining(inst);
1695 }
1696
1697 add_insts_from_block(block);
1698
1699 calculate_deps();
1700
1701 compute_delays();
1702 compute_exits();
1703
1704 schedule_instructions(block);
1705 }
1706
1707 if (debug && !post_reg_alloc) {
1708 fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1709 post_reg_alloc);
1710 bs->dump_instructions();
1711 }
1712
1713 cfg->cycle_count = get_cycle_count(cfg);
1714 }
1715
1716 void
1717 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1718 {
1719 if (mode != SCHEDULE_POST)
1720 calculate_live_intervals();
1721
1722 int grf_count;
1723 if (mode == SCHEDULE_POST)
1724 grf_count = grf_used;
1725 else
1726 grf_count = alloc.count;
1727
1728 fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1729 cfg->num_blocks, mode);
1730 sched.run(cfg);
1731
1732 invalidate_live_intervals();
1733 }
1734
1735 void
1736 vec4_visitor::opt_schedule_instructions()
1737 {
1738 vec4_instruction_scheduler sched(this, prog_data->total_grf);
1739 sched.run(cfg);
1740
1741 invalidate_live_intervals();
1742 }