intel/fs: Implement nir_intrinsic_global_atomic_*
[mesa.git] / src / intel / compiler / brw_schedule_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33
34 using namespace brw;
35
36 /** @file brw_fs_schedule_instructions.cpp
37 *
38 * List scheduling of FS instructions.
39 *
40 * The basic model of the list scheduler is to take a basic block,
41 * compute a DAG of the dependencies (RAW ordering with latency, WAW
42 * ordering with latency, WAR ordering), and make a list of the DAG heads.
43 * Heuristically pick a DAG head, then put all the children that are
44 * now DAG heads into the list of things to schedule.
45 *
46 * The heuristic is the important part. We're trying to be cheap,
47 * since actually computing the optimal scheduling is NP complete.
48 * What we do is track a "current clock". When we schedule a node, we
49 * update the earliest-unblocked clock time of its children, and
50 * increment the clock. Then, when trying to schedule, we just pick
51 * the earliest-unblocked instruction to schedule.
52 *
53 * Note that often there will be many things which could execute
54 * immediately, and there are a range of heuristic options to choose
55 * from in picking among those.
56 */
57
58 static bool debug = false;
59
60 class instruction_scheduler;
61
62 class schedule_node : public exec_node
63 {
64 public:
65 schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66 void set_latency_gen4();
67 void set_latency_gen7(bool is_haswell);
68
69 backend_instruction *inst;
70 schedule_node **children;
71 int *child_latency;
72 int child_count;
73 int parent_count;
74 int child_array_size;
75 int unblocked_time;
76 int latency;
77
78 /**
79 * Which iteration of pushing groups of children onto the candidates list
80 * this node was a part of.
81 */
82 unsigned cand_generation;
83
84 /**
85 * This is the sum of the instruction's latency plus the maximum delay of
86 * its children, or just the issue_time if it's a leaf node.
87 */
88 int delay;
89
90 /**
91 * Preferred exit node among the (direct or indirect) successors of this
92 * node. Among the scheduler nodes blocked by this node, this will be the
93 * one that may cause earliest program termination, or NULL if none of the
94 * successors is an exit node.
95 */
96 schedule_node *exit;
97 };
98
99 /**
100 * Lower bound of the scheduling time after which one of the instructions
101 * blocked by this node may lead to program termination.
102 *
103 * exit_unblocked_time() determines a strict partial ordering relation '«' on
104 * the set of scheduler nodes as follows:
105 *
106 * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107 *
108 * which can be used to heuristically order nodes according to how early they
109 * can unblock an exit node and lead to program termination.
110 */
111 static inline int
112 exit_unblocked_time(const schedule_node *n)
113 {
114 return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116
117 void
118 schedule_node::set_latency_gen4()
119 {
120 int chans = 8;
121 int math_latency = 22;
122
123 switch (inst->opcode) {
124 case SHADER_OPCODE_RCP:
125 this->latency = 1 * chans * math_latency;
126 break;
127 case SHADER_OPCODE_RSQ:
128 this->latency = 2 * chans * math_latency;
129 break;
130 case SHADER_OPCODE_INT_QUOTIENT:
131 case SHADER_OPCODE_SQRT:
132 case SHADER_OPCODE_LOG2:
133 /* full precision log. partial is 2. */
134 this->latency = 3 * chans * math_latency;
135 break;
136 case SHADER_OPCODE_INT_REMAINDER:
137 case SHADER_OPCODE_EXP2:
138 /* full precision. partial is 3, same throughput. */
139 this->latency = 4 * chans * math_latency;
140 break;
141 case SHADER_OPCODE_POW:
142 this->latency = 8 * chans * math_latency;
143 break;
144 case SHADER_OPCODE_SIN:
145 case SHADER_OPCODE_COS:
146 /* minimum latency, max is 12 rounds. */
147 this->latency = 5 * chans * math_latency;
148 break;
149 default:
150 this->latency = 2;
151 break;
152 }
153 }
154
155 void
156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158 switch (inst->opcode) {
159 case BRW_OPCODE_MAD:
160 /* 2 cycles
161 * (since the last two src operands are in different register banks):
162 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163 *
164 * 3 cycles on IVB, 4 on HSW
165 * (since the last two src operands are in the same register bank):
166 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167 *
168 * 18 cycles on IVB, 16 on HSW
169 * (since the last two src operands are in different register banks):
170 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171 * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
172 *
173 * 20 cycles on IVB, 18 on HSW
174 * (since the last two src operands are in the same register bank):
175 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
177 */
178
179 /* Our register allocator doesn't know about register banks, so use the
180 * higher latency.
181 */
182 latency = is_haswell ? 16 : 18;
183 break;
184
185 case BRW_OPCODE_LRP:
186 /* 2 cycles
187 * (since the last two src operands are in different register banks):
188 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189 *
190 * 3 cycles on IVB, 4 on HSW
191 * (since the last two src operands are in the same register bank):
192 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193 *
194 * 16 cycles on IVB, 14 on HSW
195 * (since the last two src operands are in different register banks):
196 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
198 *
199 * 16 cycles
200 * (since the last two src operands are in the same register bank):
201 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
203 */
204
205 /* Our register allocator doesn't know about register banks, so use the
206 * higher latency.
207 */
208 latency = 14;
209 break;
210
211 case SHADER_OPCODE_RCP:
212 case SHADER_OPCODE_RSQ:
213 case SHADER_OPCODE_SQRT:
214 case SHADER_OPCODE_LOG2:
215 case SHADER_OPCODE_EXP2:
216 case SHADER_OPCODE_SIN:
217 case SHADER_OPCODE_COS:
218 /* 2 cycles:
219 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
220 *
221 * 18 cycles:
222 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
223 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
224 *
225 * Same for exp2, log2, rsq, sqrt, sin, cos.
226 */
227 latency = is_haswell ? 14 : 16;
228 break;
229
230 case SHADER_OPCODE_POW:
231 /* 2 cycles:
232 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
233 *
234 * 26 cycles:
235 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
236 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
237 */
238 latency = is_haswell ? 22 : 24;
239 break;
240
241 case SHADER_OPCODE_TEX:
242 case SHADER_OPCODE_TXD:
243 case SHADER_OPCODE_TXF:
244 case SHADER_OPCODE_TXF_LZ:
245 case SHADER_OPCODE_TXL:
246 case SHADER_OPCODE_TXL_LZ:
247 /* 18 cycles:
248 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
249 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
250 * send(8) g4<1>UW g114<8,8,1>F
251 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
252 *
253 * 697 +/-49 cycles (min 610, n=26):
254 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
255 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
256 * send(8) g4<1>UW g114<8,8,1>F
257 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
258 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
259 *
260 * So the latency on our first texture load of the batchbuffer takes
261 * ~700 cycles, since the caches are cold at that point.
262 *
263 * 840 +/- 92 cycles (min 720, n=25):
264 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
265 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
266 * send(8) g4<1>UW g114<8,8,1>F
267 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
268 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
269 * send(8) g4<1>UW g114<8,8,1>F
270 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
271 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
272 *
273 * On the second load, it takes just an extra ~140 cycles, and after
274 * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275 *
276 * 683 +/- 49 cycles (min = 602, n=47):
277 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
278 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
279 * send(8) g4<1>UW g114<8,8,1>F
280 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
281 * send(8) g50<1>UW g114<8,8,1>F
282 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
283 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
284 *
285 * The unit appears to be pipelined, since this matches up with the
286 * cache-cold case, despite there being two loads here. If you replace
287 * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288 *
289 * So, take some number between the cache-hot 140 cycles and the
290 * cache-cold 700 cycles. No particular tuning was done on this.
291 *
292 * I haven't done significant testing of the non-TEX opcodes. TXL at
293 * least looked about the same as TEX.
294 */
295 latency = 200;
296 break;
297
298 case SHADER_OPCODE_TXS:
299 /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300 * cycles (n=15):
301 * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
302 * send(8) g6<1>UW g114<8,8,1>F
303 * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
304 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
305 *
306 *
307 * Two loads was 535 +/- 30 cycles (n=19):
308 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
309 * send(16) g6<1>UW g114<8,8,1>F
310 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
311 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
312 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
313 * send(16) g8<1>UW g114<8,8,1>F
314 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
315 * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
316 * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
317 *
318 * Since the only caches that should matter are just the
319 * instruction/state cache containing the surface state, assume that we
320 * always have hot caches.
321 */
322 latency = 100;
323 break;
324
325 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
327 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
328 case VS_OPCODE_PULL_CONSTANT_LOAD:
329 /* testing using varying-index pull constants:
330 *
331 * 16 cycles:
332 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
333 * send(8) g4<1>F g4<8,8,1>D
334 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
335 *
336 * ~480 cycles:
337 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
338 * send(8) g4<1>F g4<8,8,1>D
339 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
340 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
341 *
342 * ~620 cycles:
343 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
344 * send(8) g4<1>F g4<8,8,1>D
345 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
346 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
347 * send(8) g4<1>F g4<8,8,1>D
348 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
349 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
350 *
351 * So, if it's cache-hot, it's about 140. If it's cache cold, it's
352 * about 460. We expect to mostly be cache hot, so pick something more
353 * in that direction.
354 */
355 latency = 200;
356 break;
357
358 case SHADER_OPCODE_GEN7_SCRATCH_READ:
359 /* Testing a load from offset 0, that had been previously written:
360 *
361 * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
362 * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
363 *
364 * The cycles spent seemed to be grouped around 40-50 (as low as 38),
365 * then around 140. Presumably this is cache hit vs miss.
366 */
367 latency = 50;
368 break;
369
370 case SHADER_OPCODE_UNTYPED_ATOMIC:
371 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT:
372 case SHADER_OPCODE_TYPED_ATOMIC:
373 /* Test code:
374 * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
375 * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
376 * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
377 * send(8) g4<1>ud g112<8,8,1>ud
378 * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
379 *
380 * Running it 100 times as fragment shader on a 128x128 quad
381 * gives an average latency of 13867 cycles per atomic op,
382 * standard deviation 3%. Note that this is a rather
383 * pessimistic estimate, the actual latency in cases with few
384 * collisions between threads and favorable pipelining has been
385 * seen to be reduced by a factor of 100.
386 */
387 latency = 14000;
388 break;
389
390 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
391 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
392 case SHADER_OPCODE_TYPED_SURFACE_READ:
393 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
394 /* Test code:
395 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
396 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
397 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
398 * send(8) g4<1>UD g112<8,8,1>UD
399 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
400 * .
401 * . [repeats 8 times]
402 * .
403 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
404 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
405 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
406 * send(8) g4<1>UD g112<8,8,1>UD
407 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
408 *
409 * Running it 100 times as fragment shader on a 128x128 quad
410 * gives an average latency of 583 cycles per surface read,
411 * standard deviation 0.9%.
412 */
413 latency = is_haswell ? 300 : 600;
414 break;
415
416 case SHADER_OPCODE_SEND:
417 switch (inst->sfid) {
418 case BRW_SFID_SAMPLER: {
419 unsigned msg_type = (inst->desc >> 12) & 0x1f;
420 switch (msg_type) {
421 case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
422 case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
423 /* See also SHADER_OPCODE_TXS */
424 latency = 100;
425 break;
426
427 default:
428 /* See also SHADER_OPCODE_TEX */
429 latency = 200;
430 break;
431 }
432 break;
433 }
434
435 case GEN6_SFID_DATAPORT_RENDER_CACHE:
436 switch ((inst->desc >> 14) & 0x1f) {
437 case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
438 case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
439 /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
440 assert(!is_haswell);
441 latency = 600;
442 break;
443
444 case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
445 /* See also SHADER_OPCODE_TYPED_ATOMIC */
446 assert(!is_haswell);
447 latency = 14000;
448 break;
449
450 default:
451 unreachable("Unknown render cache message");
452 }
453 break;
454
455 case GEN7_SFID_DATAPORT_DATA_CACHE:
456 switch ((inst->desc >> 14) & 0x1f) {
457 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
458 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
459 /* We have no data for this but assume it's roughly the same as
460 * untyped surface read/write.
461 */
462 latency = 300;
463 break;
464
465 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
466 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
467 /* See also SHADER_OPCODE_UNTYPED_SURFACE_READ */
468 assert(!is_haswell);
469 latency = 600;
470 break;
471
472 case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
473 /* See also SHADER_OPCODE_UNTYPED_ATOMIC */
474 assert(!is_haswell);
475 latency = 14000;
476 break;
477
478 default:
479 unreachable("Unknown data cache message");
480 }
481 break;
482
483 case HSW_SFID_DATAPORT_DATA_CACHE_1:
484 switch ((inst->desc >> 14) & 0x1f) {
485 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
486 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
487 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
488 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
489 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
490 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
491 case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
492 case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
493 /* See also SHADER_OPCODE_UNTYPED_SURFACE_READ */
494 latency = 300;
495 break;
496
497 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
498 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
499 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
500 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
501 case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
502 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
503 case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
504 /* See also SHADER_OPCODE_UNTYPED_ATOMIC */
505 latency = 14000;
506 break;
507
508 default:
509 unreachable("Unknown data cache message");
510 }
511 break;
512
513 default:
514 unreachable("Unknown SFID");
515 }
516 break;
517
518 default:
519 /* 2 cycles:
520 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
521 *
522 * 16 cycles:
523 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
524 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
525 */
526 latency = 14;
527 break;
528 }
529 }
530
531 class instruction_scheduler {
532 public:
533 instruction_scheduler(backend_shader *s, int grf_count,
534 unsigned hw_reg_count, int block_count,
535 instruction_scheduler_mode mode)
536 {
537 this->bs = s;
538 this->mem_ctx = ralloc_context(NULL);
539 this->grf_count = grf_count;
540 this->hw_reg_count = hw_reg_count;
541 this->instructions.make_empty();
542 this->instructions_to_schedule = 0;
543 this->post_reg_alloc = (mode == SCHEDULE_POST);
544 this->mode = mode;
545 if (!post_reg_alloc) {
546 this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
547
548 this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
549 for (int i = 0; i < block_count; i++)
550 this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
551 BITSET_WORDS(grf_count));
552
553 this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
554 for (int i = 0; i < block_count; i++)
555 this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
556 BITSET_WORDS(grf_count));
557
558 this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
559 for (int i = 0; i < block_count; i++)
560 this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
561 BITSET_WORDS(hw_reg_count));
562
563 this->written = rzalloc_array(mem_ctx, bool, grf_count);
564
565 this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
566
567 this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
568 } else {
569 this->reg_pressure_in = NULL;
570 this->livein = NULL;
571 this->liveout = NULL;
572 this->hw_liveout = NULL;
573 this->written = NULL;
574 this->reads_remaining = NULL;
575 this->hw_reads_remaining = NULL;
576 }
577 }
578
579 ~instruction_scheduler()
580 {
581 ralloc_free(this->mem_ctx);
582 }
583 void add_barrier_deps(schedule_node *n);
584 void add_dep(schedule_node *before, schedule_node *after, int latency);
585 void add_dep(schedule_node *before, schedule_node *after);
586
587 void run(cfg_t *cfg);
588 void add_insts_from_block(bblock_t *block);
589 void compute_delays();
590 void compute_exits();
591 virtual void calculate_deps() = 0;
592 virtual schedule_node *choose_instruction_to_schedule() = 0;
593
594 /**
595 * Returns how many cycles it takes the instruction to issue.
596 *
597 * Instructions in gen hardware are handled one simd4 vector at a time,
598 * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
599 * cycles to dispatch and SIMD16 (compressed) instructions take 4.
600 */
601 virtual int issue_time(backend_instruction *inst) = 0;
602
603 virtual void count_reads_remaining(backend_instruction *inst) = 0;
604 virtual void setup_liveness(cfg_t *cfg) = 0;
605 virtual void update_register_pressure(backend_instruction *inst) = 0;
606 virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
607
608 void schedule_instructions(bblock_t *block);
609
610 void *mem_ctx;
611
612 bool post_reg_alloc;
613 int instructions_to_schedule;
614 int grf_count;
615 unsigned hw_reg_count;
616 int reg_pressure;
617 int block_idx;
618 exec_list instructions;
619 backend_shader *bs;
620
621 instruction_scheduler_mode mode;
622
623 /*
624 * The register pressure at the beginning of each basic block.
625 */
626
627 int *reg_pressure_in;
628
629 /*
630 * The virtual GRF's whose range overlaps the beginning of each basic block.
631 */
632
633 BITSET_WORD **livein;
634
635 /*
636 * The virtual GRF's whose range overlaps the end of each basic block.
637 */
638
639 BITSET_WORD **liveout;
640
641 /*
642 * The hardware GRF's whose range overlaps the end of each basic block.
643 */
644
645 BITSET_WORD **hw_liveout;
646
647 /*
648 * Whether we've scheduled a write for this virtual GRF yet.
649 */
650
651 bool *written;
652
653 /*
654 * How many reads we haven't scheduled for this virtual GRF yet.
655 */
656
657 int *reads_remaining;
658
659 /*
660 * How many reads we haven't scheduled for this hardware GRF yet.
661 */
662
663 int *hw_reads_remaining;
664 };
665
666 class fs_instruction_scheduler : public instruction_scheduler
667 {
668 public:
669 fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
670 int block_count,
671 instruction_scheduler_mode mode);
672 void calculate_deps();
673 bool is_compressed(fs_inst *inst);
674 schedule_node *choose_instruction_to_schedule();
675 int issue_time(backend_instruction *inst);
676 fs_visitor *v;
677
678 void count_reads_remaining(backend_instruction *inst);
679 void setup_liveness(cfg_t *cfg);
680 void update_register_pressure(backend_instruction *inst);
681 int get_register_pressure_benefit(backend_instruction *inst);
682 };
683
684 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
685 int grf_count, int hw_reg_count,
686 int block_count,
687 instruction_scheduler_mode mode)
688 : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
689 v(v)
690 {
691 }
692
693 static bool
694 is_src_duplicate(fs_inst *inst, int src)
695 {
696 for (int i = 0; i < src; i++)
697 if (inst->src[i].equals(inst->src[src]))
698 return true;
699
700 return false;
701 }
702
703 void
704 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
705 {
706 fs_inst *inst = (fs_inst *)be;
707
708 if (!reads_remaining)
709 return;
710
711 for (int i = 0; i < inst->sources; i++) {
712 if (is_src_duplicate(inst, i))
713 continue;
714
715 if (inst->src[i].file == VGRF) {
716 reads_remaining[inst->src[i].nr]++;
717 } else if (inst->src[i].file == FIXED_GRF) {
718 if (inst->src[i].nr >= hw_reg_count)
719 continue;
720
721 for (unsigned j = 0; j < regs_read(inst, i); j++)
722 hw_reads_remaining[inst->src[i].nr + j]++;
723 }
724 }
725 }
726
727 void
728 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
729 {
730 /* First, compute liveness on a per-GRF level using the in/out sets from
731 * liveness calculation.
732 */
733 for (int block = 0; block < cfg->num_blocks; block++) {
734 for (int i = 0; i < v->live_intervals->num_vars; i++) {
735 if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
736 int vgrf = v->live_intervals->vgrf_from_var[i];
737 if (!BITSET_TEST(livein[block], vgrf)) {
738 reg_pressure_in[block] += v->alloc.sizes[vgrf];
739 BITSET_SET(livein[block], vgrf);
740 }
741 }
742
743 if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
744 BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
745 }
746 }
747
748 /* Now, extend the live in/live out sets for when a range crosses a block
749 * boundary, which matches what our register allocator/interference code
750 * does to account for force_writemask_all and incompatible exec_mask's.
751 */
752 for (int block = 0; block < cfg->num_blocks - 1; block++) {
753 for (int i = 0; i < grf_count; i++) {
754 if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
755 v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
756 if (!BITSET_TEST(livein[block + 1], i)) {
757 reg_pressure_in[block + 1] += v->alloc.sizes[i];
758 BITSET_SET(livein[block + 1], i);
759 }
760
761 BITSET_SET(liveout[block], i);
762 }
763 }
764 }
765
766 int payload_last_use_ip[hw_reg_count];
767 v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
768
769 for (unsigned i = 0; i < hw_reg_count; i++) {
770 if (payload_last_use_ip[i] == -1)
771 continue;
772
773 for (int block = 0; block < cfg->num_blocks; block++) {
774 if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
775 reg_pressure_in[block]++;
776
777 if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
778 BITSET_SET(hw_liveout[block], i);
779 }
780 }
781 }
782
783 void
784 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
785 {
786 fs_inst *inst = (fs_inst *)be;
787
788 if (!reads_remaining)
789 return;
790
791 if (inst->dst.file == VGRF) {
792 written[inst->dst.nr] = true;
793 }
794
795 for (int i = 0; i < inst->sources; i++) {
796 if (is_src_duplicate(inst, i))
797 continue;
798
799 if (inst->src[i].file == VGRF) {
800 reads_remaining[inst->src[i].nr]--;
801 } else if (inst->src[i].file == FIXED_GRF &&
802 inst->src[i].nr < hw_reg_count) {
803 for (unsigned off = 0; off < regs_read(inst, i); off++)
804 hw_reads_remaining[inst->src[i].nr + off]--;
805 }
806 }
807 }
808
809 int
810 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
811 {
812 fs_inst *inst = (fs_inst *)be;
813 int benefit = 0;
814
815 if (inst->dst.file == VGRF) {
816 if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
817 !written[inst->dst.nr])
818 benefit -= v->alloc.sizes[inst->dst.nr];
819 }
820
821 for (int i = 0; i < inst->sources; i++) {
822 if (is_src_duplicate(inst, i))
823 continue;
824
825 if (inst->src[i].file == VGRF &&
826 !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
827 reads_remaining[inst->src[i].nr] == 1)
828 benefit += v->alloc.sizes[inst->src[i].nr];
829
830 if (inst->src[i].file == FIXED_GRF &&
831 inst->src[i].nr < hw_reg_count) {
832 for (unsigned off = 0; off < regs_read(inst, i); off++) {
833 int reg = inst->src[i].nr + off;
834 if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
835 hw_reads_remaining[reg] == 1) {
836 benefit++;
837 }
838 }
839 }
840 }
841
842 return benefit;
843 }
844
845 class vec4_instruction_scheduler : public instruction_scheduler
846 {
847 public:
848 vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
849 void calculate_deps();
850 schedule_node *choose_instruction_to_schedule();
851 int issue_time(backend_instruction *inst);
852 vec4_visitor *v;
853
854 void count_reads_remaining(backend_instruction *inst);
855 void setup_liveness(cfg_t *cfg);
856 void update_register_pressure(backend_instruction *inst);
857 int get_register_pressure_benefit(backend_instruction *inst);
858 };
859
860 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
861 int grf_count)
862 : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
863 v(v)
864 {
865 }
866
867 void
868 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
869 {
870 }
871
872 void
873 vec4_instruction_scheduler::setup_liveness(cfg_t *)
874 {
875 }
876
877 void
878 vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
879 {
880 }
881
882 int
883 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
884 {
885 return 0;
886 }
887
888 schedule_node::schedule_node(backend_instruction *inst,
889 instruction_scheduler *sched)
890 {
891 const struct gen_device_info *devinfo = sched->bs->devinfo;
892
893 this->inst = inst;
894 this->child_array_size = 0;
895 this->children = NULL;
896 this->child_latency = NULL;
897 this->child_count = 0;
898 this->parent_count = 0;
899 this->unblocked_time = 0;
900 this->cand_generation = 0;
901 this->delay = 0;
902 this->exit = NULL;
903
904 /* We can't measure Gen6 timings directly but expect them to be much
905 * closer to Gen7 than Gen4.
906 */
907 if (!sched->post_reg_alloc)
908 this->latency = 1;
909 else if (devinfo->gen >= 6)
910 set_latency_gen7(devinfo->is_haswell);
911 else
912 set_latency_gen4();
913 }
914
915 void
916 instruction_scheduler::add_insts_from_block(bblock_t *block)
917 {
918 foreach_inst_in_block(backend_instruction, inst, block) {
919 schedule_node *n = new(mem_ctx) schedule_node(inst, this);
920
921 instructions.push_tail(n);
922 }
923
924 this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
925 }
926
927 /** Computation of the delay member of each node. */
928 void
929 instruction_scheduler::compute_delays()
930 {
931 foreach_in_list_reverse(schedule_node, n, &instructions) {
932 if (!n->child_count) {
933 n->delay = issue_time(n->inst);
934 } else {
935 for (int i = 0; i < n->child_count; i++) {
936 assert(n->children[i]->delay);
937 n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
938 }
939 }
940 }
941 }
942
943 void
944 instruction_scheduler::compute_exits()
945 {
946 /* Calculate a lower bound of the scheduling time of each node in the
947 * graph. This is analogous to the node's critical path but calculated
948 * from the top instead of from the bottom of the block.
949 */
950 foreach_in_list(schedule_node, n, &instructions) {
951 for (int i = 0; i < n->child_count; i++) {
952 n->children[i]->unblocked_time =
953 MAX2(n->children[i]->unblocked_time,
954 n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
955 }
956 }
957
958 /* Calculate the exit of each node by induction based on the exit nodes of
959 * its children. The preferred exit of a node is the one among the exit
960 * nodes of its children which can be unblocked first according to the
961 * optimistic unblocked time estimate calculated above.
962 */
963 foreach_in_list_reverse(schedule_node, n, &instructions) {
964 n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
965
966 for (int i = 0; i < n->child_count; i++) {
967 if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
968 n->exit = n->children[i]->exit;
969 }
970 }
971 }
972
973 /**
974 * Add a dependency between two instruction nodes.
975 *
976 * The @after node will be scheduled after @before. We will try to
977 * schedule it @latency cycles after @before, but no guarantees there.
978 */
979 void
980 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
981 int latency)
982 {
983 if (!before || !after)
984 return;
985
986 assert(before != after);
987
988 for (int i = 0; i < before->child_count; i++) {
989 if (before->children[i] == after) {
990 before->child_latency[i] = MAX2(before->child_latency[i], latency);
991 return;
992 }
993 }
994
995 if (before->child_array_size <= before->child_count) {
996 if (before->child_array_size < 16)
997 before->child_array_size = 16;
998 else
999 before->child_array_size *= 2;
1000
1001 before->children = reralloc(mem_ctx, before->children,
1002 schedule_node *,
1003 before->child_array_size);
1004 before->child_latency = reralloc(mem_ctx, before->child_latency,
1005 int, before->child_array_size);
1006 }
1007
1008 before->children[before->child_count] = after;
1009 before->child_latency[before->child_count] = latency;
1010 before->child_count++;
1011 after->parent_count++;
1012 }
1013
1014 void
1015 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1016 {
1017 if (!before)
1018 return;
1019
1020 add_dep(before, after, before->latency);
1021 }
1022
1023 static bool
1024 is_scheduling_barrier(const backend_instruction *inst)
1025 {
1026 return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
1027 inst->is_control_flow() ||
1028 inst->has_side_effects();
1029 }
1030
1031 /**
1032 * Sometimes we really want this node to execute after everything that
1033 * was before it and before everything that followed it. This adds
1034 * the deps to do so.
1035 */
1036 void
1037 instruction_scheduler::add_barrier_deps(schedule_node *n)
1038 {
1039 schedule_node *prev = (schedule_node *)n->prev;
1040 schedule_node *next = (schedule_node *)n->next;
1041
1042 if (prev) {
1043 while (!prev->is_head_sentinel()) {
1044 add_dep(prev, n, 0);
1045 if (is_scheduling_barrier(prev->inst))
1046 break;
1047 prev = (schedule_node *)prev->prev;
1048 }
1049 }
1050
1051 if (next) {
1052 while (!next->is_tail_sentinel()) {
1053 add_dep(n, next, 0);
1054 if (is_scheduling_barrier(next->inst))
1055 break;
1056 next = (schedule_node *)next->next;
1057 }
1058 }
1059 }
1060
1061 /* instruction scheduling needs to be aware of when an MRF write
1062 * actually writes 2 MRFs.
1063 */
1064 bool
1065 fs_instruction_scheduler::is_compressed(fs_inst *inst)
1066 {
1067 return inst->exec_size == 16;
1068 }
1069
1070 void
1071 fs_instruction_scheduler::calculate_deps()
1072 {
1073 /* Pre-register-allocation, this tracks the last write per VGRF offset.
1074 * After register allocation, reg_offsets are gone and we track individual
1075 * GRF registers.
1076 */
1077 schedule_node **last_grf_write;
1078 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1079 schedule_node *last_conditional_mod[8] = {};
1080 schedule_node *last_accumulator_write = NULL;
1081 /* Fixed HW registers are assumed to be separate from the virtual
1082 * GRFs, so they can be tracked separately. We don't really write
1083 * to fixed GRFs much, so don't bother tracking them on a more
1084 * granular level.
1085 */
1086 schedule_node *last_fixed_grf_write = NULL;
1087
1088 last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
1089 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1090
1091 /* top-to-bottom dependencies: RAW and WAW. */
1092 foreach_in_list(schedule_node, n, &instructions) {
1093 fs_inst *inst = (fs_inst *)n->inst;
1094
1095 if (is_scheduling_barrier(inst))
1096 add_barrier_deps(n);
1097
1098 /* read-after-write deps. */
1099 for (int i = 0; i < inst->sources; i++) {
1100 if (inst->src[i].file == VGRF) {
1101 if (post_reg_alloc) {
1102 for (unsigned r = 0; r < regs_read(inst, i); r++)
1103 add_dep(last_grf_write[inst->src[i].nr + r], n);
1104 } else {
1105 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1106 add_dep(last_grf_write[inst->src[i].nr * 16 +
1107 inst->src[i].offset / REG_SIZE + r], n);
1108 }
1109 }
1110 } else if (inst->src[i].file == FIXED_GRF) {
1111 if (post_reg_alloc) {
1112 for (unsigned r = 0; r < regs_read(inst, i); r++)
1113 add_dep(last_grf_write[inst->src[i].nr + r], n);
1114 } else {
1115 add_dep(last_fixed_grf_write, n);
1116 }
1117 } else if (inst->src[i].is_accumulator()) {
1118 add_dep(last_accumulator_write, n);
1119 } else if (inst->src[i].file == ARF) {
1120 add_barrier_deps(n);
1121 }
1122 }
1123
1124 if (inst->base_mrf != -1) {
1125 for (int i = 0; i < inst->mlen; i++) {
1126 /* It looks like the MRF regs are released in the send
1127 * instruction once it's sent, not when the result comes
1128 * back.
1129 */
1130 add_dep(last_mrf_write[inst->base_mrf + i], n);
1131 }
1132 }
1133
1134 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1135 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1136
1137 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1138 if (mask & (1 << i))
1139 add_dep(last_conditional_mod[i], n);
1140 }
1141 }
1142
1143 if (inst->reads_accumulator_implicitly()) {
1144 add_dep(last_accumulator_write, n);
1145 }
1146
1147 /* write-after-write deps. */
1148 if (inst->dst.file == VGRF) {
1149 if (post_reg_alloc) {
1150 for (unsigned r = 0; r < regs_written(inst); r++) {
1151 add_dep(last_grf_write[inst->dst.nr + r], n);
1152 last_grf_write[inst->dst.nr + r] = n;
1153 }
1154 } else {
1155 for (unsigned r = 0; r < regs_written(inst); r++) {
1156 add_dep(last_grf_write[inst->dst.nr * 16 +
1157 inst->dst.offset / REG_SIZE + r], n);
1158 last_grf_write[inst->dst.nr * 16 +
1159 inst->dst.offset / REG_SIZE + r] = n;
1160 }
1161 }
1162 } else if (inst->dst.file == MRF) {
1163 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1164
1165 add_dep(last_mrf_write[reg], n);
1166 last_mrf_write[reg] = n;
1167 if (is_compressed(inst)) {
1168 if (inst->dst.nr & BRW_MRF_COMPR4)
1169 reg += 4;
1170 else
1171 reg++;
1172 add_dep(last_mrf_write[reg], n);
1173 last_mrf_write[reg] = n;
1174 }
1175 } else if (inst->dst.file == FIXED_GRF) {
1176 if (post_reg_alloc) {
1177 for (unsigned r = 0; r < regs_written(inst); r++)
1178 last_grf_write[inst->dst.nr + r] = n;
1179 } else {
1180 last_fixed_grf_write = n;
1181 }
1182 } else if (inst->dst.is_accumulator()) {
1183 add_dep(last_accumulator_write, n);
1184 last_accumulator_write = n;
1185 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1186 add_barrier_deps(n);
1187 }
1188
1189 if (inst->mlen > 0 && inst->base_mrf != -1) {
1190 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1191 add_dep(last_mrf_write[inst->base_mrf + i], n);
1192 last_mrf_write[inst->base_mrf + i] = n;
1193 }
1194 }
1195
1196 if (const unsigned mask = inst->flags_written()) {
1197 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1198
1199 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1200 if (mask & (1 << i)) {
1201 add_dep(last_conditional_mod[i], n, 0);
1202 last_conditional_mod[i] = n;
1203 }
1204 }
1205 }
1206
1207 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1208 !inst->dst.is_accumulator()) {
1209 add_dep(last_accumulator_write, n);
1210 last_accumulator_write = n;
1211 }
1212 }
1213
1214 /* bottom-to-top dependencies: WAR */
1215 memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
1216 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1217 memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1218 last_accumulator_write = NULL;
1219 last_fixed_grf_write = NULL;
1220
1221 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1222 fs_inst *inst = (fs_inst *)n->inst;
1223
1224 /* write-after-read deps. */
1225 for (int i = 0; i < inst->sources; i++) {
1226 if (inst->src[i].file == VGRF) {
1227 if (post_reg_alloc) {
1228 for (unsigned r = 0; r < regs_read(inst, i); r++)
1229 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1230 } else {
1231 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1232 add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1233 inst->src[i].offset / REG_SIZE + r], 0);
1234 }
1235 }
1236 } else if (inst->src[i].file == FIXED_GRF) {
1237 if (post_reg_alloc) {
1238 for (unsigned r = 0; r < regs_read(inst, i); r++)
1239 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1240 } else {
1241 add_dep(n, last_fixed_grf_write, 0);
1242 }
1243 } else if (inst->src[i].is_accumulator()) {
1244 add_dep(n, last_accumulator_write, 0);
1245 } else if (inst->src[i].file == ARF) {
1246 add_barrier_deps(n);
1247 }
1248 }
1249
1250 if (inst->base_mrf != -1) {
1251 for (int i = 0; i < inst->mlen; i++) {
1252 /* It looks like the MRF regs are released in the send
1253 * instruction once it's sent, not when the result comes
1254 * back.
1255 */
1256 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1257 }
1258 }
1259
1260 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1261 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1262
1263 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1264 if (mask & (1 << i))
1265 add_dep(n, last_conditional_mod[i]);
1266 }
1267 }
1268
1269 if (inst->reads_accumulator_implicitly()) {
1270 add_dep(n, last_accumulator_write);
1271 }
1272
1273 /* Update the things this instruction wrote, so earlier reads
1274 * can mark this as WAR dependency.
1275 */
1276 if (inst->dst.file == VGRF) {
1277 if (post_reg_alloc) {
1278 for (unsigned r = 0; r < regs_written(inst); r++)
1279 last_grf_write[inst->dst.nr + r] = n;
1280 } else {
1281 for (unsigned r = 0; r < regs_written(inst); r++) {
1282 last_grf_write[inst->dst.nr * 16 +
1283 inst->dst.offset / REG_SIZE + r] = n;
1284 }
1285 }
1286 } else if (inst->dst.file == MRF) {
1287 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1288
1289 last_mrf_write[reg] = n;
1290
1291 if (is_compressed(inst)) {
1292 if (inst->dst.nr & BRW_MRF_COMPR4)
1293 reg += 4;
1294 else
1295 reg++;
1296
1297 last_mrf_write[reg] = n;
1298 }
1299 } else if (inst->dst.file == FIXED_GRF) {
1300 if (post_reg_alloc) {
1301 for (unsigned r = 0; r < regs_written(inst); r++)
1302 last_grf_write[inst->dst.nr + r] = n;
1303 } else {
1304 last_fixed_grf_write = n;
1305 }
1306 } else if (inst->dst.is_accumulator()) {
1307 last_accumulator_write = n;
1308 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1309 add_barrier_deps(n);
1310 }
1311
1312 if (inst->mlen > 0 && inst->base_mrf != -1) {
1313 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1314 last_mrf_write[inst->base_mrf + i] = n;
1315 }
1316 }
1317
1318 if (const unsigned mask = inst->flags_written()) {
1319 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1320
1321 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1322 if (mask & (1 << i))
1323 last_conditional_mod[i] = n;
1324 }
1325 }
1326
1327 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1328 last_accumulator_write = n;
1329 }
1330 }
1331
1332 free(last_grf_write);
1333 }
1334
1335 void
1336 vec4_instruction_scheduler::calculate_deps()
1337 {
1338 schedule_node *last_grf_write[grf_count];
1339 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1340 schedule_node *last_conditional_mod = NULL;
1341 schedule_node *last_accumulator_write = NULL;
1342 /* Fixed HW registers are assumed to be separate from the virtual
1343 * GRFs, so they can be tracked separately. We don't really write
1344 * to fixed GRFs much, so don't bother tracking them on a more
1345 * granular level.
1346 */
1347 schedule_node *last_fixed_grf_write = NULL;
1348
1349 memset(last_grf_write, 0, sizeof(last_grf_write));
1350 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1351
1352 /* top-to-bottom dependencies: RAW and WAW. */
1353 foreach_in_list(schedule_node, n, &instructions) {
1354 vec4_instruction *inst = (vec4_instruction *)n->inst;
1355
1356 if (is_scheduling_barrier(inst))
1357 add_barrier_deps(n);
1358
1359 /* read-after-write deps. */
1360 for (int i = 0; i < 3; i++) {
1361 if (inst->src[i].file == VGRF) {
1362 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1363 add_dep(last_grf_write[inst->src[i].nr + j], n);
1364 } else if (inst->src[i].file == FIXED_GRF) {
1365 add_dep(last_fixed_grf_write, n);
1366 } else if (inst->src[i].is_accumulator()) {
1367 assert(last_accumulator_write);
1368 add_dep(last_accumulator_write, n);
1369 } else if (inst->src[i].file == ARF) {
1370 add_barrier_deps(n);
1371 }
1372 }
1373
1374 if (inst->reads_g0_implicitly())
1375 add_dep(last_fixed_grf_write, n);
1376
1377 if (!inst->is_send_from_grf()) {
1378 for (int i = 0; i < inst->mlen; i++) {
1379 /* It looks like the MRF regs are released in the send
1380 * instruction once it's sent, not when the result comes
1381 * back.
1382 */
1383 add_dep(last_mrf_write[inst->base_mrf + i], n);
1384 }
1385 }
1386
1387 if (inst->reads_flag()) {
1388 assert(last_conditional_mod);
1389 add_dep(last_conditional_mod, n);
1390 }
1391
1392 if (inst->reads_accumulator_implicitly()) {
1393 assert(last_accumulator_write);
1394 add_dep(last_accumulator_write, n);
1395 }
1396
1397 /* write-after-write deps. */
1398 if (inst->dst.file == VGRF) {
1399 for (unsigned j = 0; j < regs_written(inst); ++j) {
1400 add_dep(last_grf_write[inst->dst.nr + j], n);
1401 last_grf_write[inst->dst.nr + j] = n;
1402 }
1403 } else if (inst->dst.file == MRF) {
1404 add_dep(last_mrf_write[inst->dst.nr], n);
1405 last_mrf_write[inst->dst.nr] = n;
1406 } else if (inst->dst.file == FIXED_GRF) {
1407 last_fixed_grf_write = n;
1408 } else if (inst->dst.is_accumulator()) {
1409 add_dep(last_accumulator_write, n);
1410 last_accumulator_write = n;
1411 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1412 add_barrier_deps(n);
1413 }
1414
1415 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1416 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1417 add_dep(last_mrf_write[inst->base_mrf + i], n);
1418 last_mrf_write[inst->base_mrf + i] = n;
1419 }
1420 }
1421
1422 if (inst->writes_flag()) {
1423 add_dep(last_conditional_mod, n, 0);
1424 last_conditional_mod = n;
1425 }
1426
1427 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1428 !inst->dst.is_accumulator()) {
1429 add_dep(last_accumulator_write, n);
1430 last_accumulator_write = n;
1431 }
1432 }
1433
1434 /* bottom-to-top dependencies: WAR */
1435 memset(last_grf_write, 0, sizeof(last_grf_write));
1436 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1437 last_conditional_mod = NULL;
1438 last_accumulator_write = NULL;
1439 last_fixed_grf_write = NULL;
1440
1441 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1442 vec4_instruction *inst = (vec4_instruction *)n->inst;
1443
1444 /* write-after-read deps. */
1445 for (int i = 0; i < 3; i++) {
1446 if (inst->src[i].file == VGRF) {
1447 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1448 add_dep(n, last_grf_write[inst->src[i].nr + j]);
1449 } else if (inst->src[i].file == FIXED_GRF) {
1450 add_dep(n, last_fixed_grf_write);
1451 } else if (inst->src[i].is_accumulator()) {
1452 add_dep(n, last_accumulator_write);
1453 } else if (inst->src[i].file == ARF) {
1454 add_barrier_deps(n);
1455 }
1456 }
1457
1458 if (!inst->is_send_from_grf()) {
1459 for (int i = 0; i < inst->mlen; i++) {
1460 /* It looks like the MRF regs are released in the send
1461 * instruction once it's sent, not when the result comes
1462 * back.
1463 */
1464 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1465 }
1466 }
1467
1468 if (inst->reads_flag()) {
1469 add_dep(n, last_conditional_mod);
1470 }
1471
1472 if (inst->reads_accumulator_implicitly()) {
1473 add_dep(n, last_accumulator_write);
1474 }
1475
1476 /* Update the things this instruction wrote, so earlier reads
1477 * can mark this as WAR dependency.
1478 */
1479 if (inst->dst.file == VGRF) {
1480 for (unsigned j = 0; j < regs_written(inst); ++j)
1481 last_grf_write[inst->dst.nr + j] = n;
1482 } else if (inst->dst.file == MRF) {
1483 last_mrf_write[inst->dst.nr] = n;
1484 } else if (inst->dst.file == FIXED_GRF) {
1485 last_fixed_grf_write = n;
1486 } else if (inst->dst.is_accumulator()) {
1487 last_accumulator_write = n;
1488 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1489 add_barrier_deps(n);
1490 }
1491
1492 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1493 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1494 last_mrf_write[inst->base_mrf + i] = n;
1495 }
1496 }
1497
1498 if (inst->writes_flag()) {
1499 last_conditional_mod = n;
1500 }
1501
1502 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1503 last_accumulator_write = n;
1504 }
1505 }
1506 }
1507
1508 schedule_node *
1509 fs_instruction_scheduler::choose_instruction_to_schedule()
1510 {
1511 schedule_node *chosen = NULL;
1512
1513 if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1514 int chosen_time = 0;
1515
1516 /* Of the instructions ready to execute or the closest to being ready,
1517 * choose the one most likely to unblock an early program exit, or
1518 * otherwise the oldest one.
1519 */
1520 foreach_in_list(schedule_node, n, &instructions) {
1521 if (!chosen ||
1522 exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1523 (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1524 n->unblocked_time < chosen_time)) {
1525 chosen = n;
1526 chosen_time = n->unblocked_time;
1527 }
1528 }
1529 } else {
1530 /* Before register allocation, we don't care about the latencies of
1531 * instructions. All we care about is reducing live intervals of
1532 * variables so that we can avoid register spilling, or get SIMD16
1533 * shaders which naturally do a better job of hiding instruction
1534 * latency.
1535 */
1536 foreach_in_list(schedule_node, n, &instructions) {
1537 fs_inst *inst = (fs_inst *)n->inst;
1538
1539 if (!chosen) {
1540 chosen = n;
1541 continue;
1542 }
1543
1544 /* Most important: If we can definitely reduce register pressure, do
1545 * so immediately.
1546 */
1547 int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1548 int chosen_register_pressure_benefit =
1549 get_register_pressure_benefit(chosen->inst);
1550
1551 if (register_pressure_benefit > 0 &&
1552 register_pressure_benefit > chosen_register_pressure_benefit) {
1553 chosen = n;
1554 continue;
1555 } else if (chosen_register_pressure_benefit > 0 &&
1556 (register_pressure_benefit <
1557 chosen_register_pressure_benefit)) {
1558 continue;
1559 }
1560
1561 if (mode == SCHEDULE_PRE_LIFO) {
1562 /* Prefer instructions that recently became available for
1563 * scheduling. These are the things that are most likely to
1564 * (eventually) make a variable dead and reduce register pressure.
1565 * Typical register pressure estimates don't work for us because
1566 * most of our pressure comes from texturing, where no single
1567 * instruction to schedule will make a vec4 value dead.
1568 */
1569 if (n->cand_generation > chosen->cand_generation) {
1570 chosen = n;
1571 continue;
1572 } else if (n->cand_generation < chosen->cand_generation) {
1573 continue;
1574 }
1575
1576 /* On MRF-using chips, prefer non-SEND instructions. If we don't
1577 * do this, then because we prefer instructions that just became
1578 * candidates, we'll end up in a pattern of scheduling a SEND,
1579 * then the MRFs for the next SEND, then the next SEND, then the
1580 * MRFs, etc., without ever consuming the results of a send.
1581 */
1582 if (v->devinfo->gen < 7) {
1583 fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1584
1585 /* We use size_written > 4 * exec_size as our test for the kind
1586 * of send instruction to avoid -- only sends generate many
1587 * regs, and a single-result send is probably actually reducing
1588 * register pressure.
1589 */
1590 if (inst->size_written <= 4 * inst->exec_size &&
1591 chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1592 chosen = n;
1593 continue;
1594 } else if (inst->size_written > chosen_inst->size_written) {
1595 continue;
1596 }
1597 }
1598 }
1599
1600 /* For instructions pushed on the cands list at the same time, prefer
1601 * the one with the highest delay to the end of the program. This is
1602 * most likely to have its values able to be consumed first (such as
1603 * for a large tree of lowered ubo loads, which appear reversed in
1604 * the instruction stream with respect to when they can be consumed).
1605 */
1606 if (n->delay > chosen->delay) {
1607 chosen = n;
1608 continue;
1609 } else if (n->delay < chosen->delay) {
1610 continue;
1611 }
1612
1613 /* Prefer the node most likely to unblock an early program exit.
1614 */
1615 if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1616 chosen = n;
1617 continue;
1618 } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1619 continue;
1620 }
1621
1622 /* If all other metrics are equal, we prefer the first instruction in
1623 * the list (program execution).
1624 */
1625 }
1626 }
1627
1628 return chosen;
1629 }
1630
1631 schedule_node *
1632 vec4_instruction_scheduler::choose_instruction_to_schedule()
1633 {
1634 schedule_node *chosen = NULL;
1635 int chosen_time = 0;
1636
1637 /* Of the instructions ready to execute or the closest to being ready,
1638 * choose the oldest one.
1639 */
1640 foreach_in_list(schedule_node, n, &instructions) {
1641 if (!chosen || n->unblocked_time < chosen_time) {
1642 chosen = n;
1643 chosen_time = n->unblocked_time;
1644 }
1645 }
1646
1647 return chosen;
1648 }
1649
1650 int
1651 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1652 {
1653 const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1654 if (is_compressed((fs_inst *)inst))
1655 return 4 + overhead;
1656 else
1657 return 2 + overhead;
1658 }
1659
1660 int
1661 vec4_instruction_scheduler::issue_time(backend_instruction *)
1662 {
1663 /* We always execute as two vec4s in parallel. */
1664 return 2;
1665 }
1666
1667 void
1668 instruction_scheduler::schedule_instructions(bblock_t *block)
1669 {
1670 const struct gen_device_info *devinfo = bs->devinfo;
1671 int time = 0;
1672 if (!post_reg_alloc)
1673 reg_pressure = reg_pressure_in[block->num];
1674 block_idx = block->num;
1675
1676 /* Remove non-DAG heads from the list. */
1677 foreach_in_list_safe(schedule_node, n, &instructions) {
1678 if (n->parent_count != 0)
1679 n->remove();
1680 }
1681
1682 unsigned cand_generation = 1;
1683 while (!instructions.is_empty()) {
1684 schedule_node *chosen = choose_instruction_to_schedule();
1685
1686 /* Schedule this instruction. */
1687 assert(chosen);
1688 chosen->remove();
1689 chosen->inst->exec_node::remove();
1690 block->instructions.push_tail(chosen->inst);
1691 instructions_to_schedule--;
1692
1693 if (!post_reg_alloc) {
1694 reg_pressure -= get_register_pressure_benefit(chosen->inst);
1695 update_register_pressure(chosen->inst);
1696 }
1697
1698 /* If we expected a delay for scheduling, then bump the clock to reflect
1699 * that. In reality, the hardware will switch to another hyperthread
1700 * and may not return to dispatching our thread for a while even after
1701 * we're unblocked. After this, we have the time when the chosen
1702 * instruction will start executing.
1703 */
1704 time = MAX2(time, chosen->unblocked_time);
1705
1706 /* Update the clock for how soon an instruction could start after the
1707 * chosen one.
1708 */
1709 time += issue_time(chosen->inst);
1710
1711 if (debug) {
1712 fprintf(stderr, "clock %4d, scheduled: ", time);
1713 bs->dump_instruction(chosen->inst);
1714 if (!post_reg_alloc)
1715 fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1716 }
1717
1718 /* Now that we've scheduled a new instruction, some of its
1719 * children can be promoted to the list of instructions ready to
1720 * be scheduled. Update the children's unblocked time for this
1721 * DAG edge as we do so.
1722 */
1723 for (int i = chosen->child_count - 1; i >= 0; i--) {
1724 schedule_node *child = chosen->children[i];
1725
1726 child->unblocked_time = MAX2(child->unblocked_time,
1727 time + chosen->child_latency[i]);
1728
1729 if (debug) {
1730 fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1731 bs->dump_instruction(child->inst);
1732 }
1733
1734 child->cand_generation = cand_generation;
1735 child->parent_count--;
1736 if (child->parent_count == 0) {
1737 if (debug) {
1738 fprintf(stderr, "\t\tnow available\n");
1739 }
1740 instructions.push_head(child);
1741 }
1742 }
1743 cand_generation++;
1744
1745 /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
1746 * but it's more limited pre-gen6, so if we send something off to it then
1747 * the next math instruction isn't going to make progress until the first
1748 * is done.
1749 */
1750 if (devinfo->gen < 6 && chosen->inst->is_math()) {
1751 foreach_in_list(schedule_node, n, &instructions) {
1752 if (n->inst->is_math())
1753 n->unblocked_time = MAX2(n->unblocked_time,
1754 time + chosen->latency);
1755 }
1756 }
1757 }
1758
1759 assert(instructions_to_schedule == 0);
1760
1761 block->cycle_count = time;
1762 }
1763
1764 static unsigned get_cycle_count(cfg_t *cfg)
1765 {
1766 unsigned count = 0, multiplier = 1;
1767 foreach_block(block, cfg) {
1768 if (block->start()->opcode == BRW_OPCODE_DO)
1769 multiplier *= 10; /* assume that loops execute ~10 times */
1770
1771 count += block->cycle_count * multiplier;
1772
1773 if (block->end()->opcode == BRW_OPCODE_WHILE)
1774 multiplier /= 10;
1775 }
1776
1777 return count;
1778 }
1779
1780 void
1781 instruction_scheduler::run(cfg_t *cfg)
1782 {
1783 if (debug && !post_reg_alloc) {
1784 fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1785 post_reg_alloc);
1786 bs->dump_instructions();
1787 }
1788
1789 if (!post_reg_alloc)
1790 setup_liveness(cfg);
1791
1792 foreach_block(block, cfg) {
1793 if (reads_remaining) {
1794 memset(reads_remaining, 0,
1795 grf_count * sizeof(*reads_remaining));
1796 memset(hw_reads_remaining, 0,
1797 hw_reg_count * sizeof(*hw_reads_remaining));
1798 memset(written, 0, grf_count * sizeof(*written));
1799
1800 foreach_inst_in_block(fs_inst, inst, block)
1801 count_reads_remaining(inst);
1802 }
1803
1804 add_insts_from_block(block);
1805
1806 calculate_deps();
1807
1808 compute_delays();
1809 compute_exits();
1810
1811 schedule_instructions(block);
1812 }
1813
1814 if (debug && !post_reg_alloc) {
1815 fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1816 post_reg_alloc);
1817 bs->dump_instructions();
1818 }
1819
1820 cfg->cycle_count = get_cycle_count(cfg);
1821 }
1822
1823 void
1824 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1825 {
1826 if (mode != SCHEDULE_POST)
1827 calculate_live_intervals();
1828
1829 int grf_count;
1830 if (mode == SCHEDULE_POST)
1831 grf_count = grf_used;
1832 else
1833 grf_count = alloc.count;
1834
1835 fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1836 cfg->num_blocks, mode);
1837 sched.run(cfg);
1838
1839 invalidate_live_intervals();
1840 }
1841
1842 void
1843 vec4_visitor::opt_schedule_instructions()
1844 {
1845 vec4_instruction_scheduler sched(this, prog_data->total_grf);
1846 sched.run(cfg);
1847
1848 invalidate_live_intervals();
1849 }