5c032c0c822e56fc334d184a8e528ab20edd0f08
[mesa.git] / src / intel / compiler / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_vec4_vs.h"
31 #include "brw_dead_control_flow.h"
32 #include "common/gen_debug.h"
33 #include "program/prog_parameter.h"
34
35 #define MAX_INSTRUCTION (1 << 30)
36
37 using namespace brw;
38
39 namespace brw {
40
41 void
42 src_reg::init()
43 {
44 memset(this, 0, sizeof(*this));
45
46 this->file = BAD_FILE;
47 }
48
49 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50 {
51 init();
52
53 this->file = file;
54 this->nr = nr;
55 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56 this->swizzle = brw_swizzle_for_size(type->vector_elements);
57 else
58 this->swizzle = BRW_SWIZZLE_XYZW;
59 if (type)
60 this->type = brw_type_for_base_type(type);
61 }
62
63 /** Generic unset register constructor. */
64 src_reg::src_reg()
65 {
66 init();
67 }
68
69 src_reg::src_reg(struct ::brw_reg reg) :
70 backend_reg(reg)
71 {
72 this->offset = 0;
73 this->reladdr = NULL;
74 }
75
76 src_reg::src_reg(const dst_reg &reg) :
77 backend_reg(reg)
78 {
79 this->reladdr = reg.reladdr;
80 this->swizzle = brw_swizzle_for_mask(reg.writemask);
81 }
82
83 void
84 dst_reg::init()
85 {
86 memset(this, 0, sizeof(*this));
87 this->file = BAD_FILE;
88 this->writemask = WRITEMASK_XYZW;
89 }
90
91 dst_reg::dst_reg()
92 {
93 init();
94 }
95
96 dst_reg::dst_reg(enum brw_reg_file file, int nr)
97 {
98 init();
99
100 this->file = file;
101 this->nr = nr;
102 }
103
104 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
105 unsigned writemask)
106 {
107 init();
108
109 this->file = file;
110 this->nr = nr;
111 this->type = brw_type_for_base_type(type);
112 this->writemask = writemask;
113 }
114
115 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
116 unsigned writemask)
117 {
118 init();
119
120 this->file = file;
121 this->nr = nr;
122 this->type = type;
123 this->writemask = writemask;
124 }
125
126 dst_reg::dst_reg(struct ::brw_reg reg) :
127 backend_reg(reg)
128 {
129 this->offset = 0;
130 this->reladdr = NULL;
131 }
132
133 dst_reg::dst_reg(const src_reg &reg) :
134 backend_reg(reg)
135 {
136 this->writemask = brw_mask_for_swizzle(reg.swizzle);
137 this->reladdr = reg.reladdr;
138 }
139
140 bool
141 dst_reg::equals(const dst_reg &r) const
142 {
143 return (this->backend_reg::equals(r) &&
144 (reladdr == r.reladdr ||
145 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
146 }
147
148 bool
149 vec4_instruction::is_send_from_grf()
150 {
151 switch (opcode) {
152 case SHADER_OPCODE_SHADER_TIME_ADD:
153 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
154 case SHADER_OPCODE_UNTYPED_ATOMIC:
155 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
156 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
157 case SHADER_OPCODE_TYPED_ATOMIC:
158 case SHADER_OPCODE_TYPED_SURFACE_READ:
159 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
160 case VEC4_OPCODE_URB_READ:
161 case TCS_OPCODE_URB_WRITE:
162 case TCS_OPCODE_RELEASE_INPUT:
163 case SHADER_OPCODE_BARRIER:
164 return true;
165 default:
166 return false;
167 }
168 }
169
170 /**
171 * Returns true if this instruction's sources and destinations cannot
172 * safely be the same register.
173 *
174 * In most cases, a register can be written over safely by the same
175 * instruction that is its last use. For a single instruction, the
176 * sources are dereferenced before writing of the destination starts
177 * (naturally).
178 *
179 * However, there are a few cases where this can be problematic:
180 *
181 * - Virtual opcodes that translate to multiple instructions in the
182 * code generator: if src == dst and one instruction writes the
183 * destination before a later instruction reads the source, then
184 * src will have been clobbered.
185 *
186 * The register allocator uses this information to set up conflicts between
187 * GRF sources and the destination.
188 */
189 bool
190 vec4_instruction::has_source_and_destination_hazard() const
191 {
192 switch (opcode) {
193 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
194 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
195 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
196 return true;
197 default:
198 /* 8-wide compressed DF operations are executed as two 4-wide operations,
199 * so we have a src/dst hazard if the first half of the instruction
200 * overwrites the source of the second half. Prevent this by marking
201 * compressed instructions as having src/dst hazards, so the register
202 * allocator assigns safe register regions for dst and srcs.
203 */
204 return size_written > REG_SIZE;
205 }
206 }
207
208 unsigned
209 vec4_instruction::size_read(unsigned arg) const
210 {
211 switch (opcode) {
212 case SHADER_OPCODE_SHADER_TIME_ADD:
213 case SHADER_OPCODE_UNTYPED_ATOMIC:
214 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
215 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
216 case SHADER_OPCODE_TYPED_ATOMIC:
217 case SHADER_OPCODE_TYPED_SURFACE_READ:
218 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
219 case TCS_OPCODE_URB_WRITE:
220 if (arg == 0)
221 return mlen * REG_SIZE;
222 break;
223 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
224 if (arg == 1)
225 return mlen * REG_SIZE;
226 break;
227 default:
228 break;
229 }
230
231 switch (src[arg].file) {
232 case BAD_FILE:
233 return 0;
234 case IMM:
235 case UNIFORM:
236 return 4 * type_sz(src[arg].type);
237 default:
238 /* XXX - Represent actual vertical stride. */
239 return exec_size * type_sz(src[arg].type);
240 }
241 }
242
243 bool
244 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
245 {
246 if (devinfo->gen == 6 && is_math())
247 return false;
248
249 if (is_send_from_grf())
250 return false;
251
252 if (!backend_instruction::can_do_source_mods())
253 return false;
254
255 return true;
256 }
257
258 bool
259 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
260 {
261 switch (opcode) {
262 case SHADER_OPCODE_GEN4_SCRATCH_READ:
263 case VEC4_OPCODE_DOUBLE_TO_F32:
264 case VEC4_OPCODE_DOUBLE_TO_D32:
265 case VEC4_OPCODE_DOUBLE_TO_U32:
266 case VEC4_OPCODE_TO_DOUBLE:
267 case VEC4_OPCODE_PICK_LOW_32BIT:
268 case VEC4_OPCODE_PICK_HIGH_32BIT:
269 case VEC4_OPCODE_SET_LOW_32BIT:
270 case VEC4_OPCODE_SET_HIGH_32BIT:
271 case VS_OPCODE_PULL_CONSTANT_LOAD:
272 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
273 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
274 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
275 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
276 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
277 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
278 case VEC4_OPCODE_URB_READ:
279 case SHADER_OPCODE_MOV_INDIRECT:
280 return false;
281 default:
282 /* The MATH instruction on Gen6 only executes in align1 mode, which does
283 * not support writemasking.
284 */
285 if (devinfo->gen == 6 && is_math())
286 return false;
287
288 if (is_tex())
289 return false;
290
291 return true;
292 }
293 }
294
295 bool
296 vec4_instruction::can_change_types() const
297 {
298 return dst.type == src[0].type &&
299 !src[0].abs && !src[0].negate && !saturate &&
300 (opcode == BRW_OPCODE_MOV ||
301 (opcode == BRW_OPCODE_SEL &&
302 dst.type == src[1].type &&
303 predicate != BRW_PREDICATE_NONE &&
304 !src[1].abs && !src[1].negate));
305 }
306
307 /**
308 * Returns how many MRFs an opcode will write over.
309 *
310 * Note that this is not the 0 or 1 implied writes in an actual gen
311 * instruction -- the generate_* functions generate additional MOVs
312 * for setup.
313 */
314 int
315 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
316 {
317 if (inst->mlen == 0 || inst->is_send_from_grf())
318 return 0;
319
320 switch (inst->opcode) {
321 case SHADER_OPCODE_RCP:
322 case SHADER_OPCODE_RSQ:
323 case SHADER_OPCODE_SQRT:
324 case SHADER_OPCODE_EXP2:
325 case SHADER_OPCODE_LOG2:
326 case SHADER_OPCODE_SIN:
327 case SHADER_OPCODE_COS:
328 return 1;
329 case SHADER_OPCODE_INT_QUOTIENT:
330 case SHADER_OPCODE_INT_REMAINDER:
331 case SHADER_OPCODE_POW:
332 case TCS_OPCODE_THREAD_END:
333 return 2;
334 case VS_OPCODE_URB_WRITE:
335 return 1;
336 case VS_OPCODE_PULL_CONSTANT_LOAD:
337 return 2;
338 case SHADER_OPCODE_GEN4_SCRATCH_READ:
339 return 2;
340 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
341 return 3;
342 case GS_OPCODE_URB_WRITE:
343 case GS_OPCODE_URB_WRITE_ALLOCATE:
344 case GS_OPCODE_THREAD_END:
345 return 0;
346 case GS_OPCODE_FF_SYNC:
347 return 1;
348 case TCS_OPCODE_URB_WRITE:
349 return 0;
350 case SHADER_OPCODE_SHADER_TIME_ADD:
351 return 0;
352 case SHADER_OPCODE_TEX:
353 case SHADER_OPCODE_TXL:
354 case SHADER_OPCODE_TXD:
355 case SHADER_OPCODE_TXF:
356 case SHADER_OPCODE_TXF_CMS:
357 case SHADER_OPCODE_TXF_CMS_W:
358 case SHADER_OPCODE_TXF_MCS:
359 case SHADER_OPCODE_TXS:
360 case SHADER_OPCODE_TG4:
361 case SHADER_OPCODE_TG4_OFFSET:
362 case SHADER_OPCODE_SAMPLEINFO:
363 case VS_OPCODE_GET_BUFFER_SIZE:
364 return inst->header_size;
365 default:
366 unreachable("not reached");
367 }
368 }
369
370 bool
371 src_reg::equals(const src_reg &r) const
372 {
373 return (this->backend_reg::equals(r) &&
374 !reladdr && !r.reladdr);
375 }
376
377 bool
378 vec4_visitor::opt_vector_float()
379 {
380 bool progress = false;
381
382 foreach_block(block, cfg) {
383 int last_reg = -1, last_offset = -1;
384 enum brw_reg_file last_reg_file = BAD_FILE;
385
386 uint8_t imm[4] = { 0 };
387 int inst_count = 0;
388 vec4_instruction *imm_inst[4];
389 unsigned writemask = 0;
390 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
391
392 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
393 int vf = -1;
394 enum brw_reg_type need_type;
395
396 /* Look for unconditional MOVs from an immediate with a partial
397 * writemask. Skip type-conversion MOVs other than integer 0,
398 * where the type doesn't matter. See if the immediate can be
399 * represented as a VF.
400 */
401 if (inst->opcode == BRW_OPCODE_MOV &&
402 inst->src[0].file == IMM &&
403 inst->predicate == BRW_PREDICATE_NONE &&
404 inst->dst.writemask != WRITEMASK_XYZW &&
405 type_sz(inst->src[0].type) < 8 &&
406 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
407
408 vf = brw_float_to_vf(inst->src[0].d);
409 need_type = BRW_REGISTER_TYPE_D;
410
411 if (vf == -1) {
412 vf = brw_float_to_vf(inst->src[0].f);
413 need_type = BRW_REGISTER_TYPE_F;
414 }
415 } else {
416 last_reg = -1;
417 }
418
419 /* If this wasn't a MOV, or the destination register doesn't match,
420 * or we have to switch destination types, then this breaks our
421 * sequence. Combine anything we've accumulated so far.
422 */
423 if (last_reg != inst->dst.nr ||
424 last_offset != inst->dst.offset ||
425 last_reg_file != inst->dst.file ||
426 (vf > 0 && dest_type != need_type)) {
427
428 if (inst_count > 1) {
429 unsigned vf;
430 memcpy(&vf, imm, sizeof(vf));
431 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
432 mov->dst.type = dest_type;
433 mov->dst.writemask = writemask;
434 inst->insert_before(block, mov);
435
436 for (int i = 0; i < inst_count; i++) {
437 imm_inst[i]->remove(block);
438 }
439
440 progress = true;
441 }
442
443 inst_count = 0;
444 last_reg = -1;
445 writemask = 0;
446 dest_type = BRW_REGISTER_TYPE_F;
447
448 for (int i = 0; i < 4; i++) {
449 imm[i] = 0;
450 }
451 }
452
453 /* Record this instruction's value (if it was representable). */
454 if (vf != -1) {
455 if ((inst->dst.writemask & WRITEMASK_X) != 0)
456 imm[0] = vf;
457 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
458 imm[1] = vf;
459 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
460 imm[2] = vf;
461 if ((inst->dst.writemask & WRITEMASK_W) != 0)
462 imm[3] = vf;
463
464 writemask |= inst->dst.writemask;
465 imm_inst[inst_count++] = inst;
466
467 last_reg = inst->dst.nr;
468 last_offset = inst->dst.offset;
469 last_reg_file = inst->dst.file;
470 if (vf > 0)
471 dest_type = need_type;
472 }
473 }
474 }
475
476 if (progress)
477 invalidate_live_intervals();
478
479 return progress;
480 }
481
482 /* Replaces unused channels of a swizzle with channels that are used.
483 *
484 * For instance, this pass transforms
485 *
486 * mov vgrf4.yz, vgrf5.wxzy
487 *
488 * into
489 *
490 * mov vgrf4.yz, vgrf5.xxzx
491 *
492 * This eliminates false uses of some channels, letting dead code elimination
493 * remove the instructions that wrote them.
494 */
495 bool
496 vec4_visitor::opt_reduce_swizzle()
497 {
498 bool progress = false;
499
500 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
501 if (inst->dst.file == BAD_FILE ||
502 inst->dst.file == ARF ||
503 inst->dst.file == FIXED_GRF ||
504 inst->is_send_from_grf())
505 continue;
506
507 unsigned swizzle;
508
509 /* Determine which channels of the sources are read. */
510 switch (inst->opcode) {
511 case VEC4_OPCODE_PACK_BYTES:
512 case BRW_OPCODE_DP4:
513 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
514 * but all four of src1.
515 */
516 swizzle = brw_swizzle_for_size(4);
517 break;
518 case BRW_OPCODE_DP3:
519 swizzle = brw_swizzle_for_size(3);
520 break;
521 case BRW_OPCODE_DP2:
522 swizzle = brw_swizzle_for_size(2);
523 break;
524
525 case VEC4_OPCODE_TO_DOUBLE:
526 case VEC4_OPCODE_DOUBLE_TO_F32:
527 case VEC4_OPCODE_DOUBLE_TO_D32:
528 case VEC4_OPCODE_DOUBLE_TO_U32:
529 case VEC4_OPCODE_PICK_LOW_32BIT:
530 case VEC4_OPCODE_PICK_HIGH_32BIT:
531 case VEC4_OPCODE_SET_LOW_32BIT:
532 case VEC4_OPCODE_SET_HIGH_32BIT:
533 swizzle = brw_swizzle_for_size(4);
534 break;
535
536 default:
537 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
538 break;
539 }
540
541 /* Update sources' swizzles. */
542 for (int i = 0; i < 3; i++) {
543 if (inst->src[i].file != VGRF &&
544 inst->src[i].file != ATTR &&
545 inst->src[i].file != UNIFORM)
546 continue;
547
548 const unsigned new_swizzle =
549 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
550 if (inst->src[i].swizzle != new_swizzle) {
551 inst->src[i].swizzle = new_swizzle;
552 progress = true;
553 }
554 }
555 }
556
557 if (progress)
558 invalidate_live_intervals();
559
560 return progress;
561 }
562
563 void
564 vec4_visitor::split_uniform_registers()
565 {
566 /* Prior to this, uniforms have been in an array sized according to
567 * the number of vector uniforms present, sparsely filled (so an
568 * aggregate results in reg indices being skipped over). Now we're
569 * going to cut those aggregates up so each .nr index is one
570 * vector. The goal is to make elimination of unused uniform
571 * components easier later.
572 */
573 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
574 for (int i = 0 ; i < 3; i++) {
575 if (inst->src[i].file != UNIFORM)
576 continue;
577
578 assert(!inst->src[i].reladdr);
579
580 inst->src[i].nr += inst->src[i].offset / 16;
581 inst->src[i].offset %= 16;
582 }
583 }
584 }
585
586 void
587 vec4_visitor::pack_uniform_registers()
588 {
589 uint8_t chans_used[this->uniforms];
590 int new_loc[this->uniforms];
591 int new_chan[this->uniforms];
592
593 memset(chans_used, 0, sizeof(chans_used));
594 memset(new_loc, 0, sizeof(new_loc));
595 memset(new_chan, 0, sizeof(new_chan));
596
597 /* Find which uniform vectors are actually used by the program. We
598 * expect unused vector elements when we've moved array access out
599 * to pull constants, and from some GLSL code generators like wine.
600 */
601 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
602 unsigned readmask;
603 switch (inst->opcode) {
604 case VEC4_OPCODE_PACK_BYTES:
605 case BRW_OPCODE_DP4:
606 case BRW_OPCODE_DPH:
607 readmask = 0xf;
608 break;
609 case BRW_OPCODE_DP3:
610 readmask = 0x7;
611 break;
612 case BRW_OPCODE_DP2:
613 readmask = 0x3;
614 break;
615 default:
616 readmask = inst->dst.writemask;
617 break;
618 }
619
620 for (int i = 0 ; i < 3; i++) {
621 if (inst->src[i].file != UNIFORM)
622 continue;
623
624 assert(type_sz(inst->src[i].type) % 4 == 0);
625 unsigned channel_size = type_sz(inst->src[i].type) / 4;
626
627 int reg = inst->src[i].nr;
628 for (int c = 0; c < 4; c++) {
629 if (!(readmask & (1 << c)))
630 continue;
631
632 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
633 unsigned used = MAX2(chans_used[reg], channel * channel_size);
634 if (used <= 4)
635 chans_used[reg] = used;
636 else
637 chans_used[reg + 1] = used - 4;
638 }
639 }
640
641 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
642 inst->src[0].file == UNIFORM) {
643 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
644 assert(inst->src[0].subnr == 0);
645
646 unsigned bytes_read = inst->src[2].ud;
647 assert(bytes_read % 4 == 0);
648 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
649
650 /* We just mark every register touched by a MOV_INDIRECT as being
651 * fully used. This ensures that it doesn't broken up piecewise by
652 * the next part of our packing algorithm.
653 */
654 int reg = inst->src[0].nr;
655 for (unsigned i = 0; i < vec4s_read; i++)
656 chans_used[reg + i] = 4;
657 }
658 }
659
660 int new_uniform_count = 0;
661
662 /* Now, figure out a packing of the live uniform vectors into our
663 * push constants.
664 */
665 for (int src = 0; src < uniforms; src++) {
666 int size = chans_used[src];
667
668 if (size == 0)
669 continue;
670
671 int dst;
672 /* Find the lowest place we can slot this uniform in. */
673 for (dst = 0; dst < src; dst++) {
674 if (chans_used[dst] + size <= 4)
675 break;
676 }
677
678 if (src == dst) {
679 new_loc[src] = dst;
680 new_chan[src] = 0;
681 } else {
682 new_loc[src] = dst;
683 new_chan[src] = chans_used[dst];
684
685 /* Move the references to the data */
686 for (int j = 0; j < size; j++) {
687 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
688 stage_prog_data->param[src * 4 + j];
689 }
690
691 chans_used[dst] += size;
692 chans_used[src] = 0;
693 }
694
695 new_uniform_count = MAX2(new_uniform_count, dst + 1);
696 }
697
698 this->uniforms = new_uniform_count;
699
700 /* Now, update the instructions for our repacked uniforms. */
701 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
702 for (int i = 0 ; i < 3; i++) {
703 int src = inst->src[i].nr;
704
705 if (inst->src[i].file != UNIFORM)
706 continue;
707
708 inst->src[i].nr = new_loc[src];
709 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
710 new_chan[src], new_chan[src]);
711 }
712 }
713 }
714
715 /**
716 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
717 *
718 * While GLSL IR also performs this optimization, we end up with it in
719 * our instruction stream for a couple of reasons. One is that we
720 * sometimes generate silly instructions, for example in array access
721 * where we'll generate "ADD offset, index, base" even if base is 0.
722 * The other is that GLSL IR's constant propagation doesn't track the
723 * components of aggregates, so some VS patterns (initialize matrix to
724 * 0, accumulate in vertex blending factors) end up breaking down to
725 * instructions involving 0.
726 */
727 bool
728 vec4_visitor::opt_algebraic()
729 {
730 bool progress = false;
731
732 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
733 switch (inst->opcode) {
734 case BRW_OPCODE_MOV:
735 if (inst->src[0].file != IMM)
736 break;
737
738 if (inst->saturate) {
739 if (inst->dst.type != inst->src[0].type)
740 assert(!"unimplemented: saturate mixed types");
741
742 if (brw_saturate_immediate(inst->dst.type,
743 &inst->src[0].as_brw_reg())) {
744 inst->saturate = false;
745 progress = true;
746 }
747 }
748 break;
749
750 case VEC4_OPCODE_UNPACK_UNIFORM:
751 if (inst->src[0].file != UNIFORM) {
752 inst->opcode = BRW_OPCODE_MOV;
753 progress = true;
754 }
755 break;
756
757 case BRW_OPCODE_ADD:
758 if (inst->src[1].is_zero()) {
759 inst->opcode = BRW_OPCODE_MOV;
760 inst->src[1] = src_reg();
761 progress = true;
762 }
763 break;
764
765 case BRW_OPCODE_MUL:
766 if (inst->src[1].is_zero()) {
767 inst->opcode = BRW_OPCODE_MOV;
768 switch (inst->src[0].type) {
769 case BRW_REGISTER_TYPE_F:
770 inst->src[0] = brw_imm_f(0.0f);
771 break;
772 case BRW_REGISTER_TYPE_D:
773 inst->src[0] = brw_imm_d(0);
774 break;
775 case BRW_REGISTER_TYPE_UD:
776 inst->src[0] = brw_imm_ud(0u);
777 break;
778 default:
779 unreachable("not reached");
780 }
781 inst->src[1] = src_reg();
782 progress = true;
783 } else if (inst->src[1].is_one()) {
784 inst->opcode = BRW_OPCODE_MOV;
785 inst->src[1] = src_reg();
786 progress = true;
787 } else if (inst->src[1].is_negative_one()) {
788 inst->opcode = BRW_OPCODE_MOV;
789 inst->src[0].negate = !inst->src[0].negate;
790 inst->src[1] = src_reg();
791 progress = true;
792 }
793 break;
794 case BRW_OPCODE_CMP:
795 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
796 inst->src[0].abs &&
797 inst->src[0].negate &&
798 inst->src[1].is_zero()) {
799 inst->src[0].abs = false;
800 inst->src[0].negate = false;
801 inst->conditional_mod = BRW_CONDITIONAL_Z;
802 progress = true;
803 break;
804 }
805 break;
806 case SHADER_OPCODE_BROADCAST:
807 if (is_uniform(inst->src[0]) ||
808 inst->src[1].is_zero()) {
809 inst->opcode = BRW_OPCODE_MOV;
810 inst->src[1] = src_reg();
811 inst->force_writemask_all = true;
812 progress = true;
813 }
814 break;
815
816 default:
817 break;
818 }
819 }
820
821 if (progress)
822 invalidate_live_intervals();
823
824 return progress;
825 }
826
827 /**
828 * Only a limited number of hardware registers may be used for push
829 * constants, so this turns access to the overflowed constants into
830 * pull constants.
831 */
832 void
833 vec4_visitor::move_push_constants_to_pull_constants()
834 {
835 int pull_constant_loc[this->uniforms];
836
837 /* Only allow 32 registers (256 uniform components) as push constants,
838 * which is the limit on gen6.
839 *
840 * If changing this value, note the limitation about total_regs in
841 * brw_curbe.c.
842 */
843 int max_uniform_components = 32 * 8;
844 if (this->uniforms * 4 <= max_uniform_components)
845 return;
846
847 /* Make some sort of choice as to which uniforms get sent to pull
848 * constants. We could potentially do something clever here like
849 * look for the most infrequently used uniform vec4s, but leave
850 * that for later.
851 */
852 for (int i = 0; i < this->uniforms * 4; i += 4) {
853 pull_constant_loc[i / 4] = -1;
854
855 if (i >= max_uniform_components) {
856 const gl_constant_value **values = &stage_prog_data->param[i];
857
858 /* Try to find an existing copy of this uniform in the pull
859 * constants if it was part of an array access already.
860 */
861 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
862 int matches;
863
864 for (matches = 0; matches < 4; matches++) {
865 if (stage_prog_data->pull_param[j + matches] != values[matches])
866 break;
867 }
868
869 if (matches == 4) {
870 pull_constant_loc[i / 4] = j / 4;
871 break;
872 }
873 }
874
875 if (pull_constant_loc[i / 4] == -1) {
876 assert(stage_prog_data->nr_pull_params % 4 == 0);
877 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
878
879 for (int j = 0; j < 4; j++) {
880 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
881 values[j];
882 }
883 }
884 }
885 }
886
887 /* Now actually rewrite usage of the things we've moved to pull
888 * constants.
889 */
890 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
891 for (int i = 0 ; i < 3; i++) {
892 if (inst->src[i].file != UNIFORM ||
893 pull_constant_loc[inst->src[i].nr] == -1)
894 continue;
895
896 int uniform = inst->src[i].nr;
897
898 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
899 glsl_type::dvec4_type : glsl_type::vec4_type;
900 dst_reg temp = dst_reg(this, temp_type);
901
902 emit_pull_constant_load(block, inst, temp, inst->src[i],
903 pull_constant_loc[uniform], src_reg());
904
905 inst->src[i].file = temp.file;
906 inst->src[i].nr = temp.nr;
907 inst->src[i].offset %= 16;
908 inst->src[i].reladdr = NULL;
909 }
910 }
911
912 /* Repack push constants to remove the now-unused ones. */
913 pack_uniform_registers();
914 }
915
916 /* Conditions for which we want to avoid setting the dependency control bits */
917 bool
918 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
919 {
920 #define IS_DWORD(reg) \
921 (reg.type == BRW_REGISTER_TYPE_UD || \
922 reg.type == BRW_REGISTER_TYPE_D)
923
924 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
925
926 /* From the Cherryview and Broadwell PRMs:
927 *
928 * "When source or destination datatype is 64b or operation is integer DWord
929 * multiply, DepCtrl must not be used."
930 *
931 * SKL PRMs don't include this restriction, however, gen7 seems to be
932 * affected, at least by the 64b restriction, since DepCtrl with double
933 * precision instructions seems to produce GPU hangs in some cases.
934 */
935 if (devinfo->gen == 8 || devinfo->is_broxton) {
936 if (inst->opcode == BRW_OPCODE_MUL &&
937 IS_DWORD(inst->src[0]) &&
938 IS_DWORD(inst->src[1]))
939 return true;
940 }
941
942 if (devinfo->gen >= 7 && devinfo->gen <= 8) {
943 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
944 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
945 return true;
946 }
947
948 #undef IS_64BIT
949 #undef IS_DWORD
950
951 if (devinfo->gen >= 8) {
952 if (inst->opcode == BRW_OPCODE_F32TO16)
953 return true;
954 }
955
956 /*
957 * mlen:
958 * In the presence of send messages, totally interrupt dependency
959 * control. They're long enough that the chance of dependency
960 * control around them just doesn't matter.
961 *
962 * predicate:
963 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
964 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
965 * completes the scoreboard clear must have a non-zero execution mask. This
966 * means, if any kind of predication can change the execution mask or channel
967 * enable of the last instruction, the optimization must be avoided. This is
968 * to avoid instructions being shot down the pipeline when no writes are
969 * required.
970 *
971 * math:
972 * Dependency control does not work well over math instructions.
973 * NB: Discovered empirically
974 */
975 return (inst->mlen || inst->predicate || inst->is_math());
976 }
977
978 /**
979 * Sets the dependency control fields on instructions after register
980 * allocation and before the generator is run.
981 *
982 * When you have a sequence of instructions like:
983 *
984 * DP4 temp.x vertex uniform[0]
985 * DP4 temp.y vertex uniform[0]
986 * DP4 temp.z vertex uniform[0]
987 * DP4 temp.w vertex uniform[0]
988 *
989 * The hardware doesn't know that it can actually run the later instructions
990 * while the previous ones are in flight, producing stalls. However, we have
991 * manual fields we can set in the instructions that let it do so.
992 */
993 void
994 vec4_visitor::opt_set_dependency_control()
995 {
996 vec4_instruction *last_grf_write[BRW_MAX_GRF];
997 uint8_t grf_channels_written[BRW_MAX_GRF];
998 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
999 uint8_t mrf_channels_written[BRW_MAX_GRF];
1000
1001 assert(prog_data->total_grf ||
1002 !"Must be called after register allocation");
1003
1004 foreach_block (block, cfg) {
1005 memset(last_grf_write, 0, sizeof(last_grf_write));
1006 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1007
1008 foreach_inst_in_block (vec4_instruction, inst, block) {
1009 /* If we read from a register that we were doing dependency control
1010 * on, don't do dependency control across the read.
1011 */
1012 for (int i = 0; i < 3; i++) {
1013 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1014 if (inst->src[i].file == VGRF) {
1015 last_grf_write[reg] = NULL;
1016 } else if (inst->src[i].file == FIXED_GRF) {
1017 memset(last_grf_write, 0, sizeof(last_grf_write));
1018 break;
1019 }
1020 assert(inst->src[i].file != MRF);
1021 }
1022
1023 if (is_dep_ctrl_unsafe(inst)) {
1024 memset(last_grf_write, 0, sizeof(last_grf_write));
1025 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1026 continue;
1027 }
1028
1029 /* Now, see if we can do dependency control for this instruction
1030 * against a previous one writing to its destination.
1031 */
1032 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1033 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1034 if (last_grf_write[reg] &&
1035 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1036 !(inst->dst.writemask & grf_channels_written[reg])) {
1037 last_grf_write[reg]->no_dd_clear = true;
1038 inst->no_dd_check = true;
1039 } else {
1040 grf_channels_written[reg] = 0;
1041 }
1042
1043 last_grf_write[reg] = inst;
1044 grf_channels_written[reg] |= inst->dst.writemask;
1045 } else if (inst->dst.file == MRF) {
1046 if (last_mrf_write[reg] &&
1047 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1048 !(inst->dst.writemask & mrf_channels_written[reg])) {
1049 last_mrf_write[reg]->no_dd_clear = true;
1050 inst->no_dd_check = true;
1051 } else {
1052 mrf_channels_written[reg] = 0;
1053 }
1054
1055 last_mrf_write[reg] = inst;
1056 mrf_channels_written[reg] |= inst->dst.writemask;
1057 }
1058 }
1059 }
1060 }
1061
1062 bool
1063 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1064 int dst_writemask,
1065 int swizzle,
1066 int swizzle_mask)
1067 {
1068 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1069 * are not allowed.
1070 */
1071 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1072 return false;
1073
1074 /* We can't swizzle implicit accumulator access. We'd have to
1075 * reswizzle the producer of the accumulator value in addition
1076 * to the consumer (i.e. both MUL and MACH). Just skip this.
1077 */
1078 if (reads_accumulator_implicitly())
1079 return false;
1080
1081 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1082 return false;
1083
1084 /* If this instruction sets anything not referenced by swizzle, then we'd
1085 * totally break it when we reswizzle.
1086 */
1087 if (dst.writemask & ~swizzle_mask)
1088 return false;
1089
1090 if (mlen > 0)
1091 return false;
1092
1093 for (int i = 0; i < 3; i++) {
1094 if (src[i].is_accumulator())
1095 return false;
1096 }
1097
1098 return true;
1099 }
1100
1101 /**
1102 * For any channels in the swizzle's source that were populated by this
1103 * instruction, rewrite the instruction to put the appropriate result directly
1104 * in those channels.
1105 *
1106 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1107 */
1108 void
1109 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1110 {
1111 /* Destination write mask doesn't correspond to source swizzle for the dot
1112 * product and pack_bytes instructions.
1113 */
1114 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1115 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1116 opcode != VEC4_OPCODE_PACK_BYTES) {
1117 for (int i = 0; i < 3; i++) {
1118 if (src[i].file == BAD_FILE || src[i].file == IMM)
1119 continue;
1120
1121 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1122 }
1123 }
1124
1125 /* Apply the specified swizzle and writemask to the original mask of
1126 * written components.
1127 */
1128 dst.writemask = dst_writemask &
1129 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1130 }
1131
1132 /*
1133 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1134 * just written and then MOVed into another reg and making the original write
1135 * of the GRF write directly to the final destination instead.
1136 */
1137 bool
1138 vec4_visitor::opt_register_coalesce()
1139 {
1140 bool progress = false;
1141 int next_ip = 0;
1142
1143 calculate_live_intervals();
1144
1145 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1146 int ip = next_ip;
1147 next_ip++;
1148
1149 if (inst->opcode != BRW_OPCODE_MOV ||
1150 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1151 inst->predicate ||
1152 inst->src[0].file != VGRF ||
1153 inst->dst.type != inst->src[0].type ||
1154 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1155 continue;
1156
1157 /* Remove no-op MOVs */
1158 if (inst->dst.file == inst->src[0].file &&
1159 inst->dst.nr == inst->src[0].nr &&
1160 inst->dst.offset == inst->src[0].offset) {
1161 bool is_nop_mov = true;
1162
1163 for (unsigned c = 0; c < 4; c++) {
1164 if ((inst->dst.writemask & (1 << c)) == 0)
1165 continue;
1166
1167 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1168 is_nop_mov = false;
1169 break;
1170 }
1171 }
1172
1173 if (is_nop_mov) {
1174 inst->remove(block);
1175 progress = true;
1176 continue;
1177 }
1178 }
1179
1180 bool to_mrf = (inst->dst.file == MRF);
1181
1182 /* Can't coalesce this GRF if someone else was going to
1183 * read it later.
1184 */
1185 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1186 continue;
1187
1188 /* We need to check interference with the final destination between this
1189 * instruction and the earliest instruction involved in writing the GRF
1190 * we're eliminating. To do that, keep track of which of our source
1191 * channels we've seen initialized.
1192 */
1193 const unsigned chans_needed =
1194 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1195 inst->dst.writemask);
1196 unsigned chans_remaining = chans_needed;
1197
1198 /* Now walk up the instruction stream trying to see if we can rewrite
1199 * everything writing to the temporary to write into the destination
1200 * instead.
1201 */
1202 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1203 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1204 inst) {
1205 _scan_inst = scan_inst;
1206
1207 if (regions_overlap(inst->src[0], inst->size_read(0),
1208 scan_inst->dst, scan_inst->size_written)) {
1209 /* Found something writing to the reg we want to coalesce away. */
1210 if (to_mrf) {
1211 /* SEND instructions can't have MRF as a destination. */
1212 if (scan_inst->mlen)
1213 break;
1214
1215 if (devinfo->gen == 6) {
1216 /* gen6 math instructions must have the destination be
1217 * VGRF, so no compute-to-MRF for them.
1218 */
1219 if (scan_inst->is_math()) {
1220 break;
1221 }
1222 }
1223 }
1224
1225 /* This doesn't handle saturation on the instruction we
1226 * want to coalesce away if the register types do not match.
1227 * But if scan_inst is a non type-converting 'mov', we can fix
1228 * the types later.
1229 */
1230 if (inst->saturate &&
1231 inst->dst.type != scan_inst->dst.type &&
1232 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1233 scan_inst->dst.type == scan_inst->src[0].type))
1234 break;
1235
1236 /* Only allow coalescing between registers of the same type size.
1237 * Otherwise we would need to make the pass aware of the fact that
1238 * channel sizes are different for single and double precision.
1239 */
1240 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1241 break;
1242
1243 /* Check that scan_inst writes the same amount of data as the
1244 * instruction, otherwise coalescing would lead to writing a
1245 * different (larger or smaller) region of the destination
1246 */
1247 if (scan_inst->size_written != inst->size_written)
1248 break;
1249
1250 /* If we can't handle the swizzle, bail. */
1251 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1252 inst->src[0].swizzle,
1253 chans_needed)) {
1254 break;
1255 }
1256
1257 /* This only handles coalescing writes of 8 channels (1 register
1258 * for single-precision and 2 registers for double-precision)
1259 * starting at the source offset of the copy instruction.
1260 */
1261 if (DIV_ROUND_UP(scan_inst->size_written,
1262 type_sz(scan_inst->dst.type)) > 8 ||
1263 scan_inst->dst.offset != inst->src[0].offset)
1264 break;
1265
1266 /* Mark which channels we found unconditional writes for. */
1267 if (!scan_inst->predicate)
1268 chans_remaining &= ~scan_inst->dst.writemask;
1269
1270 if (chans_remaining == 0)
1271 break;
1272 }
1273
1274 /* You can't read from an MRF, so if someone else reads our MRF's
1275 * source GRF that we wanted to rewrite, that stops us. If it's a
1276 * GRF we're trying to coalesce to, we don't actually handle
1277 * rewriting sources so bail in that case as well.
1278 */
1279 bool interfered = false;
1280 for (int i = 0; i < 3; i++) {
1281 if (regions_overlap(inst->src[0], inst->size_read(0),
1282 scan_inst->src[i], scan_inst->size_read(i)))
1283 interfered = true;
1284 }
1285 if (interfered)
1286 break;
1287
1288 /* If somebody else writes the same channels of our destination here,
1289 * we can't coalesce before that.
1290 */
1291 if (regions_overlap(inst->dst, inst->size_written,
1292 scan_inst->dst, scan_inst->size_written) &&
1293 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1294 break;
1295 }
1296
1297 /* Check for reads of the register we're trying to coalesce into. We
1298 * can't go rewriting instructions above that to put some other value
1299 * in the register instead.
1300 */
1301 if (to_mrf && scan_inst->mlen > 0) {
1302 if (inst->dst.nr >= scan_inst->base_mrf &&
1303 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
1304 break;
1305 }
1306 } else {
1307 for (int i = 0; i < 3; i++) {
1308 if (regions_overlap(inst->dst, inst->size_written,
1309 scan_inst->src[i], scan_inst->size_read(i)))
1310 interfered = true;
1311 }
1312 if (interfered)
1313 break;
1314 }
1315 }
1316
1317 if (chans_remaining == 0) {
1318 /* If we've made it here, we have an MOV we want to coalesce out, and
1319 * a scan_inst pointing to the earliest instruction involved in
1320 * computing the value. Now go rewrite the instruction stream
1321 * between the two.
1322 */
1323 vec4_instruction *scan_inst = _scan_inst;
1324 while (scan_inst != inst) {
1325 if (scan_inst->dst.file == VGRF &&
1326 scan_inst->dst.nr == inst->src[0].nr &&
1327 scan_inst->dst.offset == inst->src[0].offset) {
1328 scan_inst->reswizzle(inst->dst.writemask,
1329 inst->src[0].swizzle);
1330 scan_inst->dst.file = inst->dst.file;
1331 scan_inst->dst.nr = inst->dst.nr;
1332 scan_inst->dst.offset = inst->dst.offset;
1333 if (inst->saturate &&
1334 inst->dst.type != scan_inst->dst.type) {
1335 /* If we have reached this point, scan_inst is a non
1336 * type-converting 'mov' and we can modify its register types
1337 * to match the ones in inst. Otherwise, we could have an
1338 * incorrect saturation result.
1339 */
1340 scan_inst->dst.type = inst->dst.type;
1341 scan_inst->src[0].type = inst->src[0].type;
1342 }
1343 scan_inst->saturate |= inst->saturate;
1344 }
1345 scan_inst = (vec4_instruction *)scan_inst->next;
1346 }
1347 inst->remove(block);
1348 progress = true;
1349 }
1350 }
1351
1352 if (progress)
1353 invalidate_live_intervals();
1354
1355 return progress;
1356 }
1357
1358 /**
1359 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1360 * flow. We could probably do better here with some form of divergence
1361 * analysis.
1362 */
1363 bool
1364 vec4_visitor::eliminate_find_live_channel()
1365 {
1366 bool progress = false;
1367 unsigned depth = 0;
1368
1369 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1370 /* The optimization below assumes that channel zero is live on thread
1371 * dispatch, which may not be the case if the fixed function dispatches
1372 * threads sparsely.
1373 */
1374 return false;
1375 }
1376
1377 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1378 switch (inst->opcode) {
1379 case BRW_OPCODE_IF:
1380 case BRW_OPCODE_DO:
1381 depth++;
1382 break;
1383
1384 case BRW_OPCODE_ENDIF:
1385 case BRW_OPCODE_WHILE:
1386 depth--;
1387 break;
1388
1389 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1390 if (depth == 0) {
1391 inst->opcode = BRW_OPCODE_MOV;
1392 inst->src[0] = brw_imm_d(0);
1393 inst->force_writemask_all = true;
1394 progress = true;
1395 }
1396 break;
1397
1398 default:
1399 break;
1400 }
1401 }
1402
1403 return progress;
1404 }
1405
1406 /**
1407 * Splits virtual GRFs requesting more than one contiguous physical register.
1408 *
1409 * We initially create large virtual GRFs for temporary structures, arrays,
1410 * and matrices, so that the visitor functions can add offsets to work their
1411 * way down to the actual member being accessed. But when it comes to
1412 * optimization, we'd like to treat each register as individual storage if
1413 * possible.
1414 *
1415 * So far, the only thing that might prevent splitting is a send message from
1416 * a GRF on IVB.
1417 */
1418 void
1419 vec4_visitor::split_virtual_grfs()
1420 {
1421 int num_vars = this->alloc.count;
1422 int new_virtual_grf[num_vars];
1423 bool split_grf[num_vars];
1424
1425 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1426
1427 /* Try to split anything > 0 sized. */
1428 for (int i = 0; i < num_vars; i++) {
1429 split_grf[i] = this->alloc.sizes[i] != 1;
1430 }
1431
1432 /* Check that the instructions are compatible with the registers we're trying
1433 * to split.
1434 */
1435 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1436 if (inst->dst.file == VGRF && regs_written(inst) > 1)
1437 split_grf[inst->dst.nr] = false;
1438
1439 for (int i = 0; i < 3; i++) {
1440 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1441 split_grf[inst->src[i].nr] = false;
1442 }
1443 }
1444
1445 /* Allocate new space for split regs. Note that the virtual
1446 * numbers will be contiguous.
1447 */
1448 for (int i = 0; i < num_vars; i++) {
1449 if (!split_grf[i])
1450 continue;
1451
1452 new_virtual_grf[i] = alloc.allocate(1);
1453 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1454 unsigned reg = alloc.allocate(1);
1455 assert(reg == new_virtual_grf[i] + j - 1);
1456 (void) reg;
1457 }
1458 this->alloc.sizes[i] = 1;
1459 }
1460
1461 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1462 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1463 inst->dst.offset / REG_SIZE != 0) {
1464 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1465 inst->dst.offset / REG_SIZE - 1);
1466 inst->dst.offset %= REG_SIZE;
1467 }
1468 for (int i = 0; i < 3; i++) {
1469 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1470 inst->src[i].offset / REG_SIZE != 0) {
1471 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1472 inst->src[i].offset / REG_SIZE - 1);
1473 inst->src[i].offset %= REG_SIZE;
1474 }
1475 }
1476 }
1477 invalidate_live_intervals();
1478 }
1479
1480 void
1481 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1482 {
1483 dump_instruction(be_inst, stderr);
1484 }
1485
1486 void
1487 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1488 {
1489 vec4_instruction *inst = (vec4_instruction *)be_inst;
1490
1491 if (inst->predicate) {
1492 fprintf(file, "(%cf0.%d%s) ",
1493 inst->predicate_inverse ? '-' : '+',
1494 inst->flag_subreg,
1495 pred_ctrl_align16[inst->predicate]);
1496 }
1497
1498 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1499 inst->exec_size);
1500 if (inst->saturate)
1501 fprintf(file, ".sat");
1502 if (inst->conditional_mod) {
1503 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1504 if (!inst->predicate &&
1505 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1506 inst->opcode != BRW_OPCODE_IF &&
1507 inst->opcode != BRW_OPCODE_WHILE))) {
1508 fprintf(file, ".f0.%d", inst->flag_subreg);
1509 }
1510 }
1511 fprintf(file, " ");
1512
1513 switch (inst->dst.file) {
1514 case VGRF:
1515 fprintf(file, "vgrf%d", inst->dst.nr);
1516 break;
1517 case FIXED_GRF:
1518 fprintf(file, "g%d", inst->dst.nr);
1519 break;
1520 case MRF:
1521 fprintf(file, "m%d", inst->dst.nr);
1522 break;
1523 case ARF:
1524 switch (inst->dst.nr) {
1525 case BRW_ARF_NULL:
1526 fprintf(file, "null");
1527 break;
1528 case BRW_ARF_ADDRESS:
1529 fprintf(file, "a0.%d", inst->dst.subnr);
1530 break;
1531 case BRW_ARF_ACCUMULATOR:
1532 fprintf(file, "acc%d", inst->dst.subnr);
1533 break;
1534 case BRW_ARF_FLAG:
1535 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1536 break;
1537 default:
1538 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1539 break;
1540 }
1541 break;
1542 case BAD_FILE:
1543 fprintf(file, "(null)");
1544 break;
1545 case IMM:
1546 case ATTR:
1547 case UNIFORM:
1548 unreachable("not reached");
1549 }
1550 if (inst->dst.offset ||
1551 (inst->dst.file == VGRF &&
1552 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1553 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1554 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1555 inst->dst.offset % reg_size);
1556 }
1557 if (inst->dst.writemask != WRITEMASK_XYZW) {
1558 fprintf(file, ".");
1559 if (inst->dst.writemask & 1)
1560 fprintf(file, "x");
1561 if (inst->dst.writemask & 2)
1562 fprintf(file, "y");
1563 if (inst->dst.writemask & 4)
1564 fprintf(file, "z");
1565 if (inst->dst.writemask & 8)
1566 fprintf(file, "w");
1567 }
1568 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1569
1570 if (inst->src[0].file != BAD_FILE)
1571 fprintf(file, ", ");
1572
1573 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1574 if (inst->src[i].negate)
1575 fprintf(file, "-");
1576 if (inst->src[i].abs)
1577 fprintf(file, "|");
1578 switch (inst->src[i].file) {
1579 case VGRF:
1580 fprintf(file, "vgrf%d", inst->src[i].nr);
1581 break;
1582 case FIXED_GRF:
1583 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1584 break;
1585 case ATTR:
1586 fprintf(file, "attr%d", inst->src[i].nr);
1587 break;
1588 case UNIFORM:
1589 fprintf(file, "u%d", inst->src[i].nr);
1590 break;
1591 case IMM:
1592 switch (inst->src[i].type) {
1593 case BRW_REGISTER_TYPE_F:
1594 fprintf(file, "%fF", inst->src[i].f);
1595 break;
1596 case BRW_REGISTER_TYPE_DF:
1597 fprintf(file, "%fDF", inst->src[i].df);
1598 break;
1599 case BRW_REGISTER_TYPE_D:
1600 fprintf(file, "%dD", inst->src[i].d);
1601 break;
1602 case BRW_REGISTER_TYPE_UD:
1603 fprintf(file, "%uU", inst->src[i].ud);
1604 break;
1605 case BRW_REGISTER_TYPE_VF:
1606 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1607 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1608 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1609 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1610 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1611 break;
1612 default:
1613 fprintf(file, "???");
1614 break;
1615 }
1616 break;
1617 case ARF:
1618 switch (inst->src[i].nr) {
1619 case BRW_ARF_NULL:
1620 fprintf(file, "null");
1621 break;
1622 case BRW_ARF_ADDRESS:
1623 fprintf(file, "a0.%d", inst->src[i].subnr);
1624 break;
1625 case BRW_ARF_ACCUMULATOR:
1626 fprintf(file, "acc%d", inst->src[i].subnr);
1627 break;
1628 case BRW_ARF_FLAG:
1629 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1630 break;
1631 default:
1632 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1633 break;
1634 }
1635 break;
1636 case BAD_FILE:
1637 fprintf(file, "(null)");
1638 break;
1639 case MRF:
1640 unreachable("not reached");
1641 }
1642
1643 if (inst->src[i].offset ||
1644 (inst->src[i].file == VGRF &&
1645 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1646 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1647 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1648 inst->src[i].offset % reg_size);
1649 }
1650
1651 if (inst->src[i].file != IMM) {
1652 static const char *chans[4] = {"x", "y", "z", "w"};
1653 fprintf(file, ".");
1654 for (int c = 0; c < 4; c++) {
1655 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1656 }
1657 }
1658
1659 if (inst->src[i].abs)
1660 fprintf(file, "|");
1661
1662 if (inst->src[i].file != IMM) {
1663 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1664 }
1665
1666 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1667 fprintf(file, ", ");
1668 }
1669
1670 if (inst->force_writemask_all)
1671 fprintf(file, " NoMask");
1672
1673 if (inst->exec_size != 8)
1674 fprintf(file, " group%d", inst->group);
1675
1676 fprintf(file, "\n");
1677 }
1678
1679
1680 int
1681 vec4_vs_visitor::setup_attributes(int payload_reg)
1682 {
1683 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1684 for (int i = 0; i < 3; i++) {
1685 if (inst->src[i].file == ATTR) {
1686 assert(inst->src[i].offset % REG_SIZE == 0);
1687 int grf = payload_reg + inst->src[i].nr +
1688 inst->src[i].offset / REG_SIZE;
1689
1690 struct brw_reg reg = brw_vec8_grf(grf, 0);
1691 reg.swizzle = inst->src[i].swizzle;
1692 reg.type = inst->src[i].type;
1693 reg.abs = inst->src[i].abs;
1694 reg.negate = inst->src[i].negate;
1695 inst->src[i] = reg;
1696 }
1697 }
1698 }
1699
1700 return payload_reg + vs_prog_data->nr_attribute_slots;
1701 }
1702
1703 int
1704 vec4_visitor::setup_uniforms(int reg)
1705 {
1706 prog_data->base.dispatch_grf_start_reg = reg;
1707
1708 /* The pre-gen6 VS requires that some push constants get loaded no
1709 * matter what, or the GPU would hang.
1710 */
1711 if (devinfo->gen < 6 && this->uniforms == 0) {
1712 stage_prog_data->param =
1713 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1714 for (unsigned int i = 0; i < 4; i++) {
1715 unsigned int slot = this->uniforms * 4 + i;
1716 static gl_constant_value zero = { 0.0 };
1717 stage_prog_data->param[slot] = &zero;
1718 }
1719
1720 this->uniforms++;
1721 reg++;
1722 } else {
1723 reg += ALIGN(uniforms, 2) / 2;
1724 }
1725
1726 stage_prog_data->nr_params = this->uniforms * 4;
1727
1728 prog_data->base.curb_read_length =
1729 reg - prog_data->base.dispatch_grf_start_reg;
1730
1731 return reg;
1732 }
1733
1734 void
1735 vec4_vs_visitor::setup_payload(void)
1736 {
1737 int reg = 0;
1738
1739 /* The payload always contains important data in g0, which contains
1740 * the URB handles that are passed on to the URB write at the end
1741 * of the thread. So, we always start push constants at g1.
1742 */
1743 reg++;
1744
1745 reg = setup_uniforms(reg);
1746
1747 reg = setup_attributes(reg);
1748
1749 this->first_non_payload_grf = reg;
1750 }
1751
1752 bool
1753 vec4_visitor::lower_minmax()
1754 {
1755 assert(devinfo->gen < 6);
1756
1757 bool progress = false;
1758
1759 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1760 const vec4_builder ibld(this, block, inst);
1761
1762 if (inst->opcode == BRW_OPCODE_SEL &&
1763 inst->predicate == BRW_PREDICATE_NONE) {
1764 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1765 * the original SEL.L/GE instruction
1766 */
1767 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1768 inst->conditional_mod);
1769 inst->predicate = BRW_PREDICATE_NORMAL;
1770 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1771
1772 progress = true;
1773 }
1774 }
1775
1776 if (progress)
1777 invalidate_live_intervals();
1778
1779 return progress;
1780 }
1781
1782 src_reg
1783 vec4_visitor::get_timestamp()
1784 {
1785 assert(devinfo->gen >= 7);
1786
1787 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1788 BRW_ARF_TIMESTAMP,
1789 0,
1790 0,
1791 0,
1792 BRW_REGISTER_TYPE_UD,
1793 BRW_VERTICAL_STRIDE_0,
1794 BRW_WIDTH_4,
1795 BRW_HORIZONTAL_STRIDE_4,
1796 BRW_SWIZZLE_XYZW,
1797 WRITEMASK_XYZW));
1798
1799 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1800
1801 vec4_instruction *mov = emit(MOV(dst, ts));
1802 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1803 * even if it's not enabled in the dispatch.
1804 */
1805 mov->force_writemask_all = true;
1806
1807 return src_reg(dst);
1808 }
1809
1810 void
1811 vec4_visitor::emit_shader_time_begin()
1812 {
1813 current_annotation = "shader time start";
1814 shader_start_time = get_timestamp();
1815 }
1816
1817 void
1818 vec4_visitor::emit_shader_time_end()
1819 {
1820 current_annotation = "shader time end";
1821 src_reg shader_end_time = get_timestamp();
1822
1823
1824 /* Check that there weren't any timestamp reset events (assuming these
1825 * were the only two timestamp reads that happened).
1826 */
1827 src_reg reset_end = shader_end_time;
1828 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1829 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1830 test->conditional_mod = BRW_CONDITIONAL_Z;
1831
1832 emit(IF(BRW_PREDICATE_NORMAL));
1833
1834 /* Take the current timestamp and get the delta. */
1835 shader_start_time.negate = true;
1836 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1837 emit(ADD(diff, shader_start_time, shader_end_time));
1838
1839 /* If there were no instructions between the two timestamp gets, the diff
1840 * is 2 cycles. Remove that overhead, so I can forget about that when
1841 * trying to determine the time taken for single instructions.
1842 */
1843 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1844
1845 emit_shader_time_write(0, src_reg(diff));
1846 emit_shader_time_write(1, brw_imm_ud(1u));
1847 emit(BRW_OPCODE_ELSE);
1848 emit_shader_time_write(2, brw_imm_ud(1u));
1849 emit(BRW_OPCODE_ENDIF);
1850 }
1851
1852 void
1853 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1854 {
1855 dst_reg dst =
1856 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1857
1858 dst_reg offset = dst;
1859 dst_reg time = dst;
1860 time.offset += REG_SIZE;
1861
1862 offset.type = BRW_REGISTER_TYPE_UD;
1863 int index = shader_time_index * 3 + shader_time_subindex;
1864 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1865
1866 time.type = BRW_REGISTER_TYPE_UD;
1867 emit(MOV(time, value));
1868
1869 vec4_instruction *inst =
1870 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1871 inst->mlen = 2;
1872 }
1873
1874 static bool
1875 is_align1_df(vec4_instruction *inst)
1876 {
1877 switch (inst->opcode) {
1878 case VEC4_OPCODE_DOUBLE_TO_F32:
1879 case VEC4_OPCODE_DOUBLE_TO_D32:
1880 case VEC4_OPCODE_DOUBLE_TO_U32:
1881 case VEC4_OPCODE_TO_DOUBLE:
1882 case VEC4_OPCODE_PICK_LOW_32BIT:
1883 case VEC4_OPCODE_PICK_HIGH_32BIT:
1884 case VEC4_OPCODE_SET_LOW_32BIT:
1885 case VEC4_OPCODE_SET_HIGH_32BIT:
1886 return true;
1887 default:
1888 return false;
1889 }
1890 }
1891
1892 void
1893 vec4_visitor::convert_to_hw_regs()
1894 {
1895 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1896 for (int i = 0; i < 3; i++) {
1897 struct src_reg &src = inst->src[i];
1898 struct brw_reg reg;
1899 switch (src.file) {
1900 case VGRF: {
1901 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
1902 reg.type = src.type;
1903 reg.abs = src.abs;
1904 reg.negate = src.negate;
1905 break;
1906 }
1907
1908 case UNIFORM: {
1909 reg = stride(byte_offset(brw_vec4_grf(
1910 prog_data->base.dispatch_grf_start_reg +
1911 src.nr / 2, src.nr % 2 * 4),
1912 src.offset),
1913 0, 4, 1);
1914 reg.type = src.type;
1915 reg.abs = src.abs;
1916 reg.negate = src.negate;
1917
1918 /* This should have been moved to pull constants. */
1919 assert(!src.reladdr);
1920 break;
1921 }
1922
1923 case FIXED_GRF:
1924 if (type_sz(src.type) == 8) {
1925 reg = src.as_brw_reg();
1926 break;
1927 }
1928 /* fallthrough */
1929 case ARF:
1930 case IMM:
1931 continue;
1932
1933 case BAD_FILE:
1934 /* Probably unused. */
1935 reg = brw_null_reg();
1936 reg = retype(reg, src.type);
1937 break;
1938
1939 case MRF:
1940 case ATTR:
1941 unreachable("not reached");
1942 }
1943
1944 apply_logical_swizzle(&reg, inst, i);
1945 src = reg;
1946
1947 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
1948 * Parameters":
1949 *
1950 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
1951 * to Width * HorzStride."
1952 *
1953 * We can break this rule with DF sources on DF align1
1954 * instructions, because the exec_size would be 4 and width is 4.
1955 * As we know we are not accessing to next GRF, it is safe to
1956 * set vstride to the formula given by the rule itself.
1957 */
1958 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
1959 src.vstride = src.width + src.hstride;
1960 }
1961
1962 if (inst->is_3src(devinfo)) {
1963 /* 3-src instructions with scalar sources support arbitrary subnr,
1964 * but don't actually use swizzles. Convert swizzle into subnr.
1965 * Skip this for double-precision instructions: RepCtrl=1 is not
1966 * allowed for them and needs special handling.
1967 */
1968 for (int i = 0; i < 3; i++) {
1969 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
1970 type_sz(inst->src[i].type) < 8) {
1971 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
1972 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
1973 }
1974 }
1975 }
1976
1977 dst_reg &dst = inst->dst;
1978 struct brw_reg reg;
1979
1980 switch (inst->dst.file) {
1981 case VGRF:
1982 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
1983 reg.type = dst.type;
1984 reg.writemask = dst.writemask;
1985 break;
1986
1987 case MRF:
1988 reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
1989 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
1990 reg.type = dst.type;
1991 reg.writemask = dst.writemask;
1992 break;
1993
1994 case ARF:
1995 case FIXED_GRF:
1996 reg = dst.as_brw_reg();
1997 break;
1998
1999 case BAD_FILE:
2000 reg = brw_null_reg();
2001 reg = retype(reg, dst.type);
2002 break;
2003
2004 case IMM:
2005 case ATTR:
2006 case UNIFORM:
2007 unreachable("not reached");
2008 }
2009
2010 dst = reg;
2011 }
2012 }
2013
2014 static bool
2015 stage_uses_interleaved_attributes(unsigned stage,
2016 enum shader_dispatch_mode dispatch_mode)
2017 {
2018 switch (stage) {
2019 case MESA_SHADER_TESS_EVAL:
2020 return true;
2021 case MESA_SHADER_GEOMETRY:
2022 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2023 default:
2024 return false;
2025 }
2026 }
2027
2028 /**
2029 * Get the closest native SIMD width supported by the hardware for instruction
2030 * \p inst. The instruction will be left untouched by
2031 * vec4_visitor::lower_simd_width() if the returned value matches the
2032 * instruction's original execution size.
2033 */
2034 static unsigned
2035 get_lowered_simd_width(const struct gen_device_info *devinfo,
2036 enum shader_dispatch_mode dispatch_mode,
2037 unsigned stage, const vec4_instruction *inst)
2038 {
2039 /* Do not split some instructions that require special handling */
2040 switch (inst->opcode) {
2041 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2042 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2043 return inst->exec_size;
2044 default:
2045 break;
2046 }
2047
2048 unsigned lowered_width = MIN2(16, inst->exec_size);
2049
2050 /* We need to split some cases of double-precision instructions that write
2051 * 2 registers. We only need to care about this in gen7 because that is the
2052 * only hardware that implements fp64 in Align16.
2053 */
2054 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2055 /* Align16 8-wide double-precision SEL does not work well. Verified
2056 * empirically.
2057 */
2058 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2059 lowered_width = MIN2(lowered_width, 4);
2060
2061 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2062 * Register Addressing:
2063 *
2064 * "When destination spans two registers, the source MUST span two
2065 * registers."
2066 */
2067 for (unsigned i = 0; i < 3; i++) {
2068 if (inst->src[i].file == BAD_FILE)
2069 continue;
2070 if (inst->size_read(i) <= REG_SIZE)
2071 lowered_width = MIN2(lowered_width, 4);
2072
2073 /* Interleaved attribute setups use a vertical stride of 0, which
2074 * makes them hit the associated instruction decompression bug in gen7.
2075 * Split them to prevent this.
2076 */
2077 if (inst->src[i].file == ATTR &&
2078 stage_uses_interleaved_attributes(stage, dispatch_mode))
2079 lowered_width = MIN2(lowered_width, 4);
2080 }
2081 }
2082
2083 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2084 * it doesn't support compression in Align16 mode, no matter if it has
2085 * force_writemask_all enabled or disabled (the latter is affected by the
2086 * compressed instruction bug in gen7, which is another reason to enforce
2087 * this limit).
2088 */
2089 if (devinfo->gen == 7 && !devinfo->is_haswell &&
2090 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2091 lowered_width = MIN2(lowered_width, 4);
2092
2093 return lowered_width;
2094 }
2095
2096 static bool
2097 dst_src_regions_overlap(vec4_instruction *inst)
2098 {
2099 if (inst->size_written == 0)
2100 return false;
2101
2102 unsigned dst_start = inst->dst.offset;
2103 unsigned dst_end = dst_start + inst->size_written - 1;
2104 for (int i = 0; i < 3; i++) {
2105 if (inst->src[i].file == BAD_FILE)
2106 continue;
2107
2108 if (inst->dst.file != inst->src[i].file ||
2109 inst->dst.nr != inst->src[i].nr)
2110 continue;
2111
2112 unsigned src_start = inst->src[i].offset;
2113 unsigned src_end = src_start + inst->size_read(i) - 1;
2114
2115 if ((dst_start >= src_start && dst_start <= src_end) ||
2116 (dst_end >= src_start && dst_end <= src_end) ||
2117 (dst_start <= src_start && dst_end >= src_end)) {
2118 return true;
2119 }
2120 }
2121
2122 return false;
2123 }
2124
2125 bool
2126 vec4_visitor::lower_simd_width()
2127 {
2128 bool progress = false;
2129
2130 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2131 const unsigned lowered_width =
2132 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2133 assert(lowered_width <= inst->exec_size);
2134 if (lowered_width == inst->exec_size)
2135 continue;
2136
2137 /* We need to deal with source / destination overlaps when splitting.
2138 * The hardware supports reading from and writing to the same register
2139 * in the same instruction, but we need to be careful that each split
2140 * instruction we produce does not corrupt the source of the next.
2141 *
2142 * The easiest way to handle this is to make the split instructions write
2143 * to temporaries if there is an src/dst overlap and then move from the
2144 * temporaries to the original destination. We also need to consider
2145 * instructions that do partial writes via align1 opcodes, in which case
2146 * we need to make sure that the we initialize the temporary with the
2147 * value of the instruction's dst.
2148 */
2149 bool needs_temp = dst_src_regions_overlap(inst);
2150 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
2151 unsigned channel_offset = lowered_width * n;
2152
2153 unsigned size_written = lowered_width * type_sz(inst->dst.type);
2154
2155 /* Create the split instruction from the original so that we copy all
2156 * relevant instruction fields, then set the width and calculate the
2157 * new dst/src regions.
2158 */
2159 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2160 linst->exec_size = lowered_width;
2161 linst->group = channel_offset;
2162 linst->size_written = size_written;
2163
2164 /* Compute split dst region */
2165 dst_reg dst;
2166 if (needs_temp) {
2167 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2168 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2169 inst->dst.type);
2170 if (inst->is_align1_partial_write()) {
2171 vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2172 copy->exec_size = lowered_width;
2173 copy->group = channel_offset;
2174 copy->size_written = size_written;
2175 inst->insert_before(block, copy);
2176 }
2177 } else {
2178 dst = horiz_offset(inst->dst, channel_offset);
2179 }
2180 linst->dst = dst;
2181
2182 /* Compute split source regions */
2183 for (int i = 0; i < 3; i++) {
2184 if (linst->src[i].file == BAD_FILE)
2185 continue;
2186
2187 if (!is_uniform(linst->src[i]))
2188 linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2189 }
2190
2191 inst->insert_before(block, linst);
2192
2193 /* If we used a temporary to store the result of the split
2194 * instruction, copy the result to the original destination
2195 */
2196 if (needs_temp) {
2197 vec4_instruction *mov =
2198 MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2199 mov->exec_size = lowered_width;
2200 mov->group = channel_offset;
2201 mov->size_written = size_written;
2202 mov->predicate = inst->predicate;
2203 inst->insert_before(block, mov);
2204 }
2205 }
2206
2207 inst->remove(block);
2208 progress = true;
2209 }
2210
2211 if (progress)
2212 invalidate_live_intervals();
2213
2214 return progress;
2215 }
2216
2217 static brw_predicate
2218 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2219 {
2220 if (predicate != BRW_PREDICATE_NORMAL)
2221 return predicate;
2222
2223 switch (writemask) {
2224 case WRITEMASK_X:
2225 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2226 case WRITEMASK_Y:
2227 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2228 case WRITEMASK_Z:
2229 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2230 case WRITEMASK_W:
2231 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2232 default:
2233 unreachable("invalid writemask");
2234 }
2235 }
2236
2237 /* Gen7 has a hardware decompression bug that we can exploit to represent
2238 * handful of additional swizzles natively.
2239 */
2240 static bool
2241 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2242 {
2243 switch (inst->src[arg].swizzle) {
2244 case BRW_SWIZZLE_XXXX:
2245 case BRW_SWIZZLE_YYYY:
2246 case BRW_SWIZZLE_ZZZZ:
2247 case BRW_SWIZZLE_WWWW:
2248 case BRW_SWIZZLE_XYXY:
2249 case BRW_SWIZZLE_YXYX:
2250 case BRW_SWIZZLE_ZWZW:
2251 case BRW_SWIZZLE_WZWZ:
2252 return true;
2253 default:
2254 return false;
2255 }
2256 }
2257
2258 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2259 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2260 * but it also means that the swizzle we apply on the first two components of a
2261 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2262 * only some specific swizzle combinations can be natively supported.
2263 *
2264 * FIXME: we can go an step further and implement even more swizzle
2265 * variations using only partial scalarization.
2266 *
2267 * For more details see:
2268 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2269 */
2270 bool
2271 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2272 {
2273 const src_reg &src = inst->src[arg];
2274 assert(type_sz(src.type) == 8);
2275
2276 /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2277 * 64-bit regions it means that we cannot access components Z/W, so
2278 * return false for any such case. Interleaved attributes will also be
2279 * mapped to GRF registers with a vstride of 0, so apply the same
2280 * treatment.
2281 */
2282 if ((is_uniform(src) ||
2283 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2284 src.file == ATTR)) &&
2285 (brw_mask_for_swizzle(src.swizzle) & 12))
2286 return false;
2287
2288 switch (src.swizzle) {
2289 case BRW_SWIZZLE_XYZW:
2290 case BRW_SWIZZLE_XXZZ:
2291 case BRW_SWIZZLE_YYWW:
2292 case BRW_SWIZZLE_YXWZ:
2293 return true;
2294 default:
2295 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2296 }
2297 }
2298
2299 bool
2300 vec4_visitor::scalarize_df()
2301 {
2302 bool progress = false;
2303
2304 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2305 /* Skip DF instructions that operate in Align1 mode */
2306 if (is_align1_df(inst))
2307 continue;
2308
2309 /* Check if this is a double-precision instruction */
2310 bool is_double = type_sz(inst->dst.type) == 8;
2311 for (int arg = 0; !is_double && arg < 3; arg++) {
2312 is_double = inst->src[arg].file != BAD_FILE &&
2313 type_sz(inst->src[arg].type) == 8;
2314 }
2315
2316 if (!is_double)
2317 continue;
2318
2319 /* Skip the lowering for specific regioning scenarios that we can
2320 * support natively.
2321 */
2322 bool skip_lowering = true;
2323
2324 /* XY and ZW writemasks operate in 32-bit, which means that they don't
2325 * have a native 64-bit representation and they should always be split.
2326 */
2327 if (inst->dst.writemask == WRITEMASK_XY ||
2328 inst->dst.writemask == WRITEMASK_ZW) {
2329 skip_lowering = false;
2330 } else {
2331 for (unsigned i = 0; i < 3; i++) {
2332 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2333 continue;
2334 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2335 }
2336 }
2337
2338 if (skip_lowering)
2339 continue;
2340
2341 /* Generate scalar instructions for each enabled channel */
2342 for (unsigned chan = 0; chan < 4; chan++) {
2343 unsigned chan_mask = 1 << chan;
2344 if (!(inst->dst.writemask & chan_mask))
2345 continue;
2346
2347 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2348
2349 for (unsigned i = 0; i < 3; i++) {
2350 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2351 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2352 }
2353
2354 scalar_inst->dst.writemask = chan_mask;
2355
2356 if (inst->predicate != BRW_PREDICATE_NONE) {
2357 scalar_inst->predicate =
2358 scalarize_predicate(inst->predicate, chan_mask);
2359 }
2360
2361 inst->insert_before(block, scalar_inst);
2362 }
2363
2364 inst->remove(block);
2365 progress = true;
2366 }
2367
2368 if (progress)
2369 invalidate_live_intervals();
2370
2371 return progress;
2372 }
2373
2374 bool
2375 vec4_visitor::lower_64bit_mad_to_mul_add()
2376 {
2377 bool progress = false;
2378
2379 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2380 if (inst->opcode != BRW_OPCODE_MAD)
2381 continue;
2382
2383 if (type_sz(inst->dst.type) != 8)
2384 continue;
2385
2386 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2387
2388 /* Use the copy constructor so we copy all relevant instruction fields
2389 * from the original mad into the add and mul instructions
2390 */
2391 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2392 mul->opcode = BRW_OPCODE_MUL;
2393 mul->dst = mul_dst;
2394 mul->src[0] = inst->src[1];
2395 mul->src[1] = inst->src[2];
2396 mul->src[2].file = BAD_FILE;
2397
2398 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2399 add->opcode = BRW_OPCODE_ADD;
2400 add->src[0] = src_reg(mul_dst);
2401 add->src[1] = inst->src[0];
2402 add->src[2].file = BAD_FILE;
2403
2404 inst->insert_before(block, mul);
2405 inst->insert_before(block, add);
2406 inst->remove(block);
2407
2408 progress = true;
2409 }
2410
2411 if (progress)
2412 invalidate_live_intervals();
2413
2414 return progress;
2415 }
2416
2417 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2418 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2419 * to 32-bit swizzle channels in hardware registers.
2420 *
2421 * @inst and @arg identify the original vec4 IR source operand we need to
2422 * translate the swizzle for and @hw_reg is the hardware register where we
2423 * will write the hardware swizzle to use.
2424 *
2425 * This pass assumes that Align16/DF instructions have been fully scalarized
2426 * previously so there is just one 64-bit swizzle channel to deal with for any
2427 * given Vec4 IR source.
2428 */
2429 void
2430 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2431 vec4_instruction *inst, int arg)
2432 {
2433 src_reg reg = inst->src[arg];
2434
2435 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2436 return;
2437
2438 /* If this is not a 64-bit operand or this is a scalar instruction we don't
2439 * need to do anything about the swizzles.
2440 */
2441 if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2442 hw_reg->swizzle = reg.swizzle;
2443 return;
2444 }
2445
2446 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2447 assert(brw_is_single_value_swizzle(reg.swizzle) ||
2448 is_supported_64bit_region(inst, arg));
2449
2450 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2451 * HW can only do 32-bit swizzle channels.
2452 */
2453 hw_reg->width = BRW_WIDTH_2;
2454
2455 if (is_supported_64bit_region(inst, arg) &&
2456 !is_gen7_supported_64bit_swizzle(inst, arg)) {
2457 /* Supported 64-bit swizzles are those such that their first two
2458 * components, when expanded to 32-bit swizzles, match the semantics
2459 * of the original 64-bit swizzle with 2-wide row regioning.
2460 */
2461 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2462 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2463 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2464 swizzle1 * 2, swizzle1 * 2 + 1);
2465 } else {
2466 /* If we got here then we have one of the following:
2467 *
2468 * 1. An unsupported swizzle, which should be single-value thanks to the
2469 * scalarization pass.
2470 *
2471 * 2. A gen7 supported swizzle. These can be single-value or double-value
2472 * swizzles. If the latter, they are never cross-dvec2 channels. For
2473 * these we always need to activate the gen7 vstride=0 exploit.
2474 */
2475 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2476 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2477 assert((swizzle0 < 2) == (swizzle1 < 2));
2478
2479 /* To gain access to Z/W components we need to select the second half
2480 * of the register and then use a X/Y swizzle to select Z/W respectively.
2481 */
2482 if (swizzle0 >= 2) {
2483 *hw_reg = suboffset(*hw_reg, 2);
2484 swizzle0 -= 2;
2485 swizzle1 -= 2;
2486 }
2487
2488 /* All gen7-specific supported swizzles require the vstride=0 exploit */
2489 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2490 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2491
2492 /* Any 64-bit source with an offset at 16B is intended to address the
2493 * second half of a register and needs a vertical stride of 0 so we:
2494 *
2495 * 1. Don't violate register region restrictions.
2496 * 2. Activate the gen7 instruction decompresion bug exploit when
2497 * execsize > 4
2498 */
2499 if (hw_reg->subnr % REG_SIZE == 16) {
2500 assert(devinfo->gen == 7);
2501 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2502 }
2503
2504 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2505 swizzle1 * 2, swizzle1 * 2 + 1);
2506 }
2507 }
2508
2509 bool
2510 vec4_visitor::run()
2511 {
2512 if (shader_time_index >= 0)
2513 emit_shader_time_begin();
2514
2515 emit_prolog();
2516
2517 emit_nir_code();
2518 if (failed)
2519 return false;
2520 base_ir = NULL;
2521
2522 emit_thread_end();
2523
2524 calculate_cfg();
2525
2526 /* Before any optimization, push array accesses out to scratch
2527 * space where we need them to be. This pass may allocate new
2528 * virtual GRFs, so we want to do it early. It also makes sure
2529 * that we have reladdr computations available for CSE, since we'll
2530 * often do repeated subexpressions for those.
2531 */
2532 move_grf_array_access_to_scratch();
2533 move_uniform_array_access_to_pull_constants();
2534
2535 pack_uniform_registers();
2536 move_push_constants_to_pull_constants();
2537 split_virtual_grfs();
2538
2539 #define OPT(pass, args...) ({ \
2540 pass_num++; \
2541 bool this_progress = pass(args); \
2542 \
2543 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
2544 char filename[64]; \
2545 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
2546 stage_abbrev, nir->info.name, iteration, pass_num); \
2547 \
2548 backend_shader::dump_instructions(filename); \
2549 } \
2550 \
2551 progress = progress || this_progress; \
2552 this_progress; \
2553 })
2554
2555
2556 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2557 char filename[64];
2558 snprintf(filename, 64, "%s-%s-00-00-start",
2559 stage_abbrev, nir->info.name);
2560
2561 backend_shader::dump_instructions(filename);
2562 }
2563
2564 bool progress;
2565 int iteration = 0;
2566 int pass_num = 0;
2567 do {
2568 progress = false;
2569 pass_num = 0;
2570 iteration++;
2571
2572 OPT(opt_predicated_break, this);
2573 OPT(opt_reduce_swizzle);
2574 OPT(dead_code_eliminate);
2575 OPT(dead_control_flow_eliminate, this);
2576 OPT(opt_copy_propagation);
2577 OPT(opt_cmod_propagation);
2578 OPT(opt_cse);
2579 OPT(opt_algebraic);
2580 OPT(opt_register_coalesce);
2581 OPT(eliminate_find_live_channel);
2582 } while (progress);
2583
2584 pass_num = 0;
2585
2586 if (OPT(opt_vector_float)) {
2587 OPT(opt_cse);
2588 OPT(opt_copy_propagation, false);
2589 OPT(opt_copy_propagation, true);
2590 OPT(dead_code_eliminate);
2591 }
2592
2593 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2594 OPT(opt_cmod_propagation);
2595 OPT(opt_cse);
2596 OPT(opt_copy_propagation);
2597 OPT(dead_code_eliminate);
2598 }
2599
2600 if (OPT(lower_simd_width)) {
2601 OPT(opt_copy_propagation);
2602 OPT(dead_code_eliminate);
2603 }
2604
2605 if (failed)
2606 return false;
2607
2608 OPT(lower_64bit_mad_to_mul_add);
2609
2610 /* Run this before payload setup because tesselation shaders
2611 * rely on it to prevent cross dvec2 regioning on DF attributes
2612 * that are setup so that XY are on the second half of register and
2613 * ZW are in the first half of the next.
2614 */
2615 OPT(scalarize_df);
2616
2617 setup_payload();
2618
2619 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2620 /* Debug of register spilling: Go spill everything. */
2621 const int grf_count = alloc.count;
2622 float spill_costs[alloc.count];
2623 bool no_spill[alloc.count];
2624 evaluate_spill_costs(spill_costs, no_spill);
2625 for (int i = 0; i < grf_count; i++) {
2626 if (no_spill[i])
2627 continue;
2628 spill_reg(i);
2629 }
2630
2631 /* We want to run this after spilling because 64-bit (un)spills need to
2632 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2633 * messages that can produce unsupported 64-bit swizzle regions.
2634 */
2635 OPT(scalarize_df);
2636 }
2637
2638 bool allocated_without_spills = reg_allocate();
2639
2640 if (!allocated_without_spills) {
2641 compiler->shader_perf_log(log_data,
2642 "%s shader triggered register spilling. "
2643 "Try reducing the number of live vec4 values "
2644 "to improve performance.\n",
2645 stage_name);
2646
2647 while (!reg_allocate()) {
2648 if (failed)
2649 return false;
2650 }
2651
2652 /* We want to run this after spilling because 64-bit (un)spills need to
2653 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2654 * messages that can produce unsupported 64-bit swizzle regions.
2655 */
2656 OPT(scalarize_df);
2657 }
2658
2659 opt_schedule_instructions();
2660
2661 opt_set_dependency_control();
2662
2663 convert_to_hw_regs();
2664
2665 if (last_scratch > 0) {
2666 prog_data->base.total_scratch =
2667 brw_get_scratch_size(last_scratch * REG_SIZE);
2668 }
2669
2670 return !failed;
2671 }
2672
2673 } /* namespace brw */
2674
2675 extern "C" {
2676
2677 /**
2678 * Compile a vertex shader.
2679 *
2680 * Returns the final assembly and the program's size.
2681 */
2682 const unsigned *
2683 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2684 void *mem_ctx,
2685 const struct brw_vs_prog_key *key,
2686 struct brw_vs_prog_data *prog_data,
2687 const nir_shader *src_shader,
2688 gl_clip_plane *clip_planes,
2689 bool use_legacy_snorm_formula,
2690 int shader_time_index,
2691 unsigned *final_assembly_size,
2692 char **error_str)
2693 {
2694 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2695 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
2696 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
2697
2698 const unsigned *assembly = NULL;
2699
2700 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2701 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2702 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done
2703 * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2704 * ensure that prog_data->inputs_read is accurate.
2705 *
2706 * In order to make late NIR passes aware of the change, we actually
2707 * whack shader->info.inputs_read instead. This is safe because we just
2708 * made a copy of the shader.
2709 */
2710 assert(!is_scalar);
2711 assert(key->copy_edgeflag);
2712 shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2713 }
2714
2715 prog_data->inputs_read = shader->info.inputs_read;
2716 prog_data->double_inputs_read = shader->info.double_inputs_read;
2717
2718 brw_nir_lower_vs_inputs(shader, use_legacy_snorm_formula,
2719 key->gl_attrib_wa_flags);
2720 brw_nir_lower_vue_outputs(shader, is_scalar);
2721 shader = brw_postprocess_nir(shader, compiler, is_scalar);
2722
2723 prog_data->base.clip_distance_mask =
2724 ((1 << shader->info.clip_distance_array_size) - 1);
2725 prog_data->base.cull_distance_mask =
2726 ((1 << shader->info.cull_distance_array_size) - 1) <<
2727 shader->info.clip_distance_array_size;
2728
2729 unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read);
2730
2731 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2732 * incoming vertex attribute. So, add an extra slot.
2733 */
2734 if (shader->info.system_values_read &
2735 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
2736 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2737 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2738 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2739 nr_attribute_slots++;
2740 }
2741
2742 if (shader->info.system_values_read &
2743 BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX))
2744 prog_data->uses_basevertex = true;
2745
2746 if (shader->info.system_values_read &
2747 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2748 prog_data->uses_baseinstance = true;
2749
2750 if (shader->info.system_values_read &
2751 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2752 prog_data->uses_vertexid = true;
2753
2754 if (shader->info.system_values_read &
2755 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2756 prog_data->uses_instanceid = true;
2757
2758 /* gl_DrawID has its very own vec4 */
2759 if (shader->info.system_values_read &
2760 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) {
2761 prog_data->uses_drawid = true;
2762 nr_attribute_slots++;
2763 }
2764
2765 unsigned nr_attributes = nr_attribute_slots -
2766 DIV_ROUND_UP(_mesa_bitcount_64(shader->info.double_inputs_read), 2);
2767
2768 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2769 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2770 * vec4 mode, the hardware appears to wedge unless we read something.
2771 */
2772 if (is_scalar)
2773 prog_data->base.urb_read_length =
2774 DIV_ROUND_UP(nr_attribute_slots, 2);
2775 else
2776 prog_data->base.urb_read_length =
2777 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2778
2779 prog_data->nr_attributes = nr_attributes;
2780 prog_data->nr_attribute_slots = nr_attribute_slots;
2781
2782 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2783 * (overwriting the original contents), we need to make sure the size is
2784 * the larger of the two.
2785 */
2786 const unsigned vue_entries =
2787 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2788
2789 if (compiler->devinfo->gen == 6)
2790 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2791 else
2792 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2793
2794 if (INTEL_DEBUG & DEBUG_VS) {
2795 fprintf(stderr, "VS Output ");
2796 brw_print_vue_map(stderr, &prog_data->base.vue_map);
2797 }
2798
2799 if (is_scalar) {
2800 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2801
2802 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2803 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2804 shader, 8, shader_time_index);
2805 if (!v.run_vs(clip_planes)) {
2806 if (error_str)
2807 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2808
2809 return NULL;
2810 }
2811
2812 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2813
2814 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
2815 &prog_data->base.base, v.promoted_constants,
2816 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2817 if (INTEL_DEBUG & DEBUG_VS) {
2818 const char *debug_name =
2819 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2820 shader->info.label ? shader->info.label :
2821 "unnamed",
2822 shader->info.name);
2823
2824 g.enable_debug(debug_name);
2825 }
2826 g.generate_code(v.cfg, 8);
2827 assembly = g.get_assembly(final_assembly_size);
2828 }
2829
2830 if (!assembly) {
2831 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2832
2833 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2834 shader, clip_planes, mem_ctx,
2835 shader_time_index, use_legacy_snorm_formula);
2836 if (!v.run()) {
2837 if (error_str)
2838 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2839
2840 return NULL;
2841 }
2842
2843 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
2844 shader, &prog_data->base, v.cfg,
2845 final_assembly_size);
2846 }
2847
2848 return assembly;
2849 }
2850
2851 } /* extern "C" */