intel: Don't propagate conditional modifiers if a UD source is negated
[mesa.git] / src / intel / compiler / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_vec4_vs.h"
31 #include "brw_dead_control_flow.h"
32 #include "common/gen_debug.h"
33 #include "program/prog_parameter.h"
34 #include "util/u_math.h"
35
36 #define MAX_INSTRUCTION (1 << 30)
37
38 using namespace brw;
39
40 namespace brw {
41
42 void
43 src_reg::init()
44 {
45 memset((void*)this, 0, sizeof(*this));
46 this->file = BAD_FILE;
47 this->type = BRW_REGISTER_TYPE_UD;
48 }
49
50 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
51 {
52 init();
53
54 this->file = file;
55 this->nr = nr;
56 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
57 this->swizzle = brw_swizzle_for_size(type->vector_elements);
58 else
59 this->swizzle = BRW_SWIZZLE_XYZW;
60 if (type)
61 this->type = brw_type_for_base_type(type);
62 }
63
64 /** Generic unset register constructor. */
65 src_reg::src_reg()
66 {
67 init();
68 }
69
70 src_reg::src_reg(struct ::brw_reg reg) :
71 backend_reg(reg)
72 {
73 this->offset = 0;
74 this->reladdr = NULL;
75 }
76
77 src_reg::src_reg(const dst_reg &reg) :
78 backend_reg(reg)
79 {
80 this->reladdr = reg.reladdr;
81 this->swizzle = brw_swizzle_for_mask(reg.writemask);
82 }
83
84 void
85 dst_reg::init()
86 {
87 memset((void*)this, 0, sizeof(*this));
88 this->file = BAD_FILE;
89 this->type = BRW_REGISTER_TYPE_UD;
90 this->writemask = WRITEMASK_XYZW;
91 }
92
93 dst_reg::dst_reg()
94 {
95 init();
96 }
97
98 dst_reg::dst_reg(enum brw_reg_file file, int nr)
99 {
100 init();
101
102 this->file = file;
103 this->nr = nr;
104 }
105
106 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
107 unsigned writemask)
108 {
109 init();
110
111 this->file = file;
112 this->nr = nr;
113 this->type = brw_type_for_base_type(type);
114 this->writemask = writemask;
115 }
116
117 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
118 unsigned writemask)
119 {
120 init();
121
122 this->file = file;
123 this->nr = nr;
124 this->type = type;
125 this->writemask = writemask;
126 }
127
128 dst_reg::dst_reg(struct ::brw_reg reg) :
129 backend_reg(reg)
130 {
131 this->offset = 0;
132 this->reladdr = NULL;
133 }
134
135 dst_reg::dst_reg(const src_reg &reg) :
136 backend_reg(reg)
137 {
138 this->writemask = brw_mask_for_swizzle(reg.swizzle);
139 this->reladdr = reg.reladdr;
140 }
141
142 bool
143 dst_reg::equals(const dst_reg &r) const
144 {
145 return (this->backend_reg::equals(r) &&
146 (reladdr == r.reladdr ||
147 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
148 }
149
150 bool
151 vec4_instruction::is_send_from_grf()
152 {
153 switch (opcode) {
154 case SHADER_OPCODE_SHADER_TIME_ADD:
155 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
156 case SHADER_OPCODE_UNTYPED_ATOMIC:
157 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
158 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
159 case SHADER_OPCODE_TYPED_ATOMIC:
160 case SHADER_OPCODE_TYPED_SURFACE_READ:
161 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
162 case VEC4_OPCODE_URB_READ:
163 case TCS_OPCODE_URB_WRITE:
164 case TCS_OPCODE_RELEASE_INPUT:
165 case SHADER_OPCODE_BARRIER:
166 return true;
167 default:
168 return false;
169 }
170 }
171
172 /**
173 * Returns true if this instruction's sources and destinations cannot
174 * safely be the same register.
175 *
176 * In most cases, a register can be written over safely by the same
177 * instruction that is its last use. For a single instruction, the
178 * sources are dereferenced before writing of the destination starts
179 * (naturally).
180 *
181 * However, there are a few cases where this can be problematic:
182 *
183 * - Virtual opcodes that translate to multiple instructions in the
184 * code generator: if src == dst and one instruction writes the
185 * destination before a later instruction reads the source, then
186 * src will have been clobbered.
187 *
188 * The register allocator uses this information to set up conflicts between
189 * GRF sources and the destination.
190 */
191 bool
192 vec4_instruction::has_source_and_destination_hazard() const
193 {
194 switch (opcode) {
195 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
196 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
197 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
198 return true;
199 default:
200 /* 8-wide compressed DF operations are executed as two 4-wide operations,
201 * so we have a src/dst hazard if the first half of the instruction
202 * overwrites the source of the second half. Prevent this by marking
203 * compressed instructions as having src/dst hazards, so the register
204 * allocator assigns safe register regions for dst and srcs.
205 */
206 return size_written > REG_SIZE;
207 }
208 }
209
210 unsigned
211 vec4_instruction::size_read(unsigned arg) const
212 {
213 switch (opcode) {
214 case SHADER_OPCODE_SHADER_TIME_ADD:
215 case SHADER_OPCODE_UNTYPED_ATOMIC:
216 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
217 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
218 case SHADER_OPCODE_TYPED_ATOMIC:
219 case SHADER_OPCODE_TYPED_SURFACE_READ:
220 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
221 case TCS_OPCODE_URB_WRITE:
222 if (arg == 0)
223 return mlen * REG_SIZE;
224 break;
225 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
226 if (arg == 1)
227 return mlen * REG_SIZE;
228 break;
229 default:
230 break;
231 }
232
233 switch (src[arg].file) {
234 case BAD_FILE:
235 return 0;
236 case IMM:
237 case UNIFORM:
238 return 4 * type_sz(src[arg].type);
239 default:
240 /* XXX - Represent actual vertical stride. */
241 return exec_size * type_sz(src[arg].type);
242 }
243 }
244
245 bool
246 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
247 {
248 if (devinfo->gen == 6 && is_math())
249 return false;
250
251 if (is_send_from_grf())
252 return false;
253
254 if (!backend_instruction::can_do_source_mods())
255 return false;
256
257 return true;
258 }
259
260 bool
261 vec4_instruction::can_do_cmod()
262 {
263 if (!backend_instruction::can_do_cmod())
264 return false;
265
266 /* The accumulator result appears to get used for the conditional modifier
267 * generation. When negating a UD value, there is a 33rd bit generated for
268 * the sign in the accumulator value, so now you can't check, for example,
269 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
270 */
271 for (unsigned i = 0; i < 3; i++) {
272 if (src[i].file != BAD_FILE &&
273 type_is_unsigned_int(src[i].type) && src[i].negate)
274 return false;
275 }
276
277 return true;
278 }
279
280 bool
281 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
282 {
283 switch (opcode) {
284 case SHADER_OPCODE_GEN4_SCRATCH_READ:
285 case VEC4_OPCODE_DOUBLE_TO_F32:
286 case VEC4_OPCODE_DOUBLE_TO_D32:
287 case VEC4_OPCODE_DOUBLE_TO_U32:
288 case VEC4_OPCODE_TO_DOUBLE:
289 case VEC4_OPCODE_PICK_LOW_32BIT:
290 case VEC4_OPCODE_PICK_HIGH_32BIT:
291 case VEC4_OPCODE_SET_LOW_32BIT:
292 case VEC4_OPCODE_SET_HIGH_32BIT:
293 case VS_OPCODE_PULL_CONSTANT_LOAD:
294 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
295 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
296 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
297 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
298 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
299 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
300 case VEC4_OPCODE_URB_READ:
301 case SHADER_OPCODE_MOV_INDIRECT:
302 return false;
303 default:
304 /* The MATH instruction on Gen6 only executes in align1 mode, which does
305 * not support writemasking.
306 */
307 if (devinfo->gen == 6 && is_math())
308 return false;
309
310 if (is_tex())
311 return false;
312
313 return true;
314 }
315 }
316
317 bool
318 vec4_instruction::can_change_types() const
319 {
320 return dst.type == src[0].type &&
321 !src[0].abs && !src[0].negate && !saturate &&
322 (opcode == BRW_OPCODE_MOV ||
323 (opcode == BRW_OPCODE_SEL &&
324 dst.type == src[1].type &&
325 predicate != BRW_PREDICATE_NONE &&
326 !src[1].abs && !src[1].negate));
327 }
328
329 /**
330 * Returns how many MRFs an opcode will write over.
331 *
332 * Note that this is not the 0 or 1 implied writes in an actual gen
333 * instruction -- the generate_* functions generate additional MOVs
334 * for setup.
335 */
336 int
337 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
338 {
339 if (inst->mlen == 0 || inst->is_send_from_grf())
340 return 0;
341
342 switch (inst->opcode) {
343 case SHADER_OPCODE_RCP:
344 case SHADER_OPCODE_RSQ:
345 case SHADER_OPCODE_SQRT:
346 case SHADER_OPCODE_EXP2:
347 case SHADER_OPCODE_LOG2:
348 case SHADER_OPCODE_SIN:
349 case SHADER_OPCODE_COS:
350 return 1;
351 case SHADER_OPCODE_INT_QUOTIENT:
352 case SHADER_OPCODE_INT_REMAINDER:
353 case SHADER_OPCODE_POW:
354 case TCS_OPCODE_THREAD_END:
355 return 2;
356 case VS_OPCODE_URB_WRITE:
357 return 1;
358 case VS_OPCODE_PULL_CONSTANT_LOAD:
359 return 2;
360 case SHADER_OPCODE_GEN4_SCRATCH_READ:
361 return 2;
362 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
363 return 3;
364 case GS_OPCODE_URB_WRITE:
365 case GS_OPCODE_URB_WRITE_ALLOCATE:
366 case GS_OPCODE_THREAD_END:
367 return 0;
368 case GS_OPCODE_FF_SYNC:
369 return 1;
370 case TCS_OPCODE_URB_WRITE:
371 return 0;
372 case SHADER_OPCODE_SHADER_TIME_ADD:
373 return 0;
374 case SHADER_OPCODE_TEX:
375 case SHADER_OPCODE_TXL:
376 case SHADER_OPCODE_TXD:
377 case SHADER_OPCODE_TXF:
378 case SHADER_OPCODE_TXF_CMS:
379 case SHADER_OPCODE_TXF_CMS_W:
380 case SHADER_OPCODE_TXF_MCS:
381 case SHADER_OPCODE_TXS:
382 case SHADER_OPCODE_TG4:
383 case SHADER_OPCODE_TG4_OFFSET:
384 case SHADER_OPCODE_SAMPLEINFO:
385 case SHADER_OPCODE_GET_BUFFER_SIZE:
386 return inst->header_size;
387 default:
388 unreachable("not reached");
389 }
390 }
391
392 bool
393 src_reg::equals(const src_reg &r) const
394 {
395 return (this->backend_reg::equals(r) &&
396 !reladdr && !r.reladdr);
397 }
398
399 bool
400 src_reg::negative_equals(const src_reg &r) const
401 {
402 return this->backend_reg::negative_equals(r) &&
403 !reladdr && !r.reladdr;
404 }
405
406 bool
407 vec4_visitor::opt_vector_float()
408 {
409 bool progress = false;
410
411 foreach_block(block, cfg) {
412 int last_reg = -1, last_offset = -1;
413 enum brw_reg_file last_reg_file = BAD_FILE;
414
415 uint8_t imm[4] = { 0 };
416 int inst_count = 0;
417 vec4_instruction *imm_inst[4];
418 unsigned writemask = 0;
419 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
420
421 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
422 int vf = -1;
423 enum brw_reg_type need_type;
424
425 /* Look for unconditional MOVs from an immediate with a partial
426 * writemask. Skip type-conversion MOVs other than integer 0,
427 * where the type doesn't matter. See if the immediate can be
428 * represented as a VF.
429 */
430 if (inst->opcode == BRW_OPCODE_MOV &&
431 inst->src[0].file == IMM &&
432 inst->predicate == BRW_PREDICATE_NONE &&
433 inst->dst.writemask != WRITEMASK_XYZW &&
434 type_sz(inst->src[0].type) < 8 &&
435 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
436
437 vf = brw_float_to_vf(inst->src[0].d);
438 need_type = BRW_REGISTER_TYPE_D;
439
440 if (vf == -1) {
441 vf = brw_float_to_vf(inst->src[0].f);
442 need_type = BRW_REGISTER_TYPE_F;
443 }
444 } else {
445 last_reg = -1;
446 }
447
448 /* If this wasn't a MOV, or the destination register doesn't match,
449 * or we have to switch destination types, then this breaks our
450 * sequence. Combine anything we've accumulated so far.
451 */
452 if (last_reg != inst->dst.nr ||
453 last_offset != inst->dst.offset ||
454 last_reg_file != inst->dst.file ||
455 (vf > 0 && dest_type != need_type)) {
456
457 if (inst_count > 1) {
458 unsigned vf;
459 memcpy(&vf, imm, sizeof(vf));
460 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
461 mov->dst.type = dest_type;
462 mov->dst.writemask = writemask;
463 inst->insert_before(block, mov);
464
465 for (int i = 0; i < inst_count; i++) {
466 imm_inst[i]->remove(block);
467 }
468
469 progress = true;
470 }
471
472 inst_count = 0;
473 last_reg = -1;
474 writemask = 0;
475 dest_type = BRW_REGISTER_TYPE_F;
476
477 for (int i = 0; i < 4; i++) {
478 imm[i] = 0;
479 }
480 }
481
482 /* Record this instruction's value (if it was representable). */
483 if (vf != -1) {
484 if ((inst->dst.writemask & WRITEMASK_X) != 0)
485 imm[0] = vf;
486 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
487 imm[1] = vf;
488 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
489 imm[2] = vf;
490 if ((inst->dst.writemask & WRITEMASK_W) != 0)
491 imm[3] = vf;
492
493 writemask |= inst->dst.writemask;
494 imm_inst[inst_count++] = inst;
495
496 last_reg = inst->dst.nr;
497 last_offset = inst->dst.offset;
498 last_reg_file = inst->dst.file;
499 if (vf > 0)
500 dest_type = need_type;
501 }
502 }
503 }
504
505 if (progress)
506 invalidate_live_intervals();
507
508 return progress;
509 }
510
511 /* Replaces unused channels of a swizzle with channels that are used.
512 *
513 * For instance, this pass transforms
514 *
515 * mov vgrf4.yz, vgrf5.wxzy
516 *
517 * into
518 *
519 * mov vgrf4.yz, vgrf5.xxzx
520 *
521 * This eliminates false uses of some channels, letting dead code elimination
522 * remove the instructions that wrote them.
523 */
524 bool
525 vec4_visitor::opt_reduce_swizzle()
526 {
527 bool progress = false;
528
529 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
530 if (inst->dst.file == BAD_FILE ||
531 inst->dst.file == ARF ||
532 inst->dst.file == FIXED_GRF ||
533 inst->is_send_from_grf())
534 continue;
535
536 unsigned swizzle;
537
538 /* Determine which channels of the sources are read. */
539 switch (inst->opcode) {
540 case VEC4_OPCODE_PACK_BYTES:
541 case BRW_OPCODE_DP4:
542 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
543 * but all four of src1.
544 */
545 swizzle = brw_swizzle_for_size(4);
546 break;
547 case BRW_OPCODE_DP3:
548 swizzle = brw_swizzle_for_size(3);
549 break;
550 case BRW_OPCODE_DP2:
551 swizzle = brw_swizzle_for_size(2);
552 break;
553
554 case VEC4_OPCODE_TO_DOUBLE:
555 case VEC4_OPCODE_DOUBLE_TO_F32:
556 case VEC4_OPCODE_DOUBLE_TO_D32:
557 case VEC4_OPCODE_DOUBLE_TO_U32:
558 case VEC4_OPCODE_PICK_LOW_32BIT:
559 case VEC4_OPCODE_PICK_HIGH_32BIT:
560 case VEC4_OPCODE_SET_LOW_32BIT:
561 case VEC4_OPCODE_SET_HIGH_32BIT:
562 swizzle = brw_swizzle_for_size(4);
563 break;
564
565 default:
566 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
567 break;
568 }
569
570 /* Update sources' swizzles. */
571 for (int i = 0; i < 3; i++) {
572 if (inst->src[i].file != VGRF &&
573 inst->src[i].file != ATTR &&
574 inst->src[i].file != UNIFORM)
575 continue;
576
577 const unsigned new_swizzle =
578 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
579 if (inst->src[i].swizzle != new_swizzle) {
580 inst->src[i].swizzle = new_swizzle;
581 progress = true;
582 }
583 }
584 }
585
586 if (progress)
587 invalidate_live_intervals();
588
589 return progress;
590 }
591
592 void
593 vec4_visitor::split_uniform_registers()
594 {
595 /* Prior to this, uniforms have been in an array sized according to
596 * the number of vector uniforms present, sparsely filled (so an
597 * aggregate results in reg indices being skipped over). Now we're
598 * going to cut those aggregates up so each .nr index is one
599 * vector. The goal is to make elimination of unused uniform
600 * components easier later.
601 */
602 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
603 for (int i = 0 ; i < 3; i++) {
604 if (inst->src[i].file != UNIFORM)
605 continue;
606
607 assert(!inst->src[i].reladdr);
608
609 inst->src[i].nr += inst->src[i].offset / 16;
610 inst->src[i].offset %= 16;
611 }
612 }
613 }
614
615 /* This function returns the register number where we placed the uniform */
616 static int
617 set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
618 const int src, const int size, const int channel_size,
619 int *new_loc, int *new_chan,
620 int *new_chans_used)
621 {
622 int dst;
623 /* Find the lowest place we can slot this uniform in. */
624 for (dst = 0; dst < nr_uniforms; dst++) {
625 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
626 break;
627 }
628
629 assert(dst < nr_uniforms);
630
631 new_loc[src] = dst;
632 new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
633 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
634
635 *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
636 return dst;
637 }
638
639 void
640 vec4_visitor::pack_uniform_registers()
641 {
642 uint8_t chans_used[this->uniforms];
643 int new_loc[this->uniforms];
644 int new_chan[this->uniforms];
645 bool is_aligned_to_dvec4[this->uniforms];
646 int new_chans_used[this->uniforms];
647 int channel_sizes[this->uniforms];
648
649 memset(chans_used, 0, sizeof(chans_used));
650 memset(new_loc, 0, sizeof(new_loc));
651 memset(new_chan, 0, sizeof(new_chan));
652 memset(new_chans_used, 0, sizeof(new_chans_used));
653 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
654 memset(channel_sizes, 0, sizeof(channel_sizes));
655
656 /* Find which uniform vectors are actually used by the program. We
657 * expect unused vector elements when we've moved array access out
658 * to pull constants, and from some GLSL code generators like wine.
659 */
660 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
661 unsigned readmask;
662 switch (inst->opcode) {
663 case VEC4_OPCODE_PACK_BYTES:
664 case BRW_OPCODE_DP4:
665 case BRW_OPCODE_DPH:
666 readmask = 0xf;
667 break;
668 case BRW_OPCODE_DP3:
669 readmask = 0x7;
670 break;
671 case BRW_OPCODE_DP2:
672 readmask = 0x3;
673 break;
674 default:
675 readmask = inst->dst.writemask;
676 break;
677 }
678
679 for (int i = 0 ; i < 3; i++) {
680 if (inst->src[i].file != UNIFORM)
681 continue;
682
683 assert(type_sz(inst->src[i].type) % 4 == 0);
684 int channel_size = type_sz(inst->src[i].type) / 4;
685
686 int reg = inst->src[i].nr;
687 for (int c = 0; c < 4; c++) {
688 if (!(readmask & (1 << c)))
689 continue;
690
691 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
692 unsigned used = MAX2(chans_used[reg], channel * channel_size);
693 if (used <= 4) {
694 chans_used[reg] = used;
695 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
696 } else {
697 is_aligned_to_dvec4[reg] = true;
698 is_aligned_to_dvec4[reg + 1] = true;
699 chans_used[reg + 1] = used - 4;
700 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
701 }
702 }
703 }
704
705 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
706 inst->src[0].file == UNIFORM) {
707 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
708 assert(inst->src[0].subnr == 0);
709
710 unsigned bytes_read = inst->src[2].ud;
711 assert(bytes_read % 4 == 0);
712 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
713
714 /* We just mark every register touched by a MOV_INDIRECT as being
715 * fully used. This ensures that it doesn't broken up piecewise by
716 * the next part of our packing algorithm.
717 */
718 int reg = inst->src[0].nr;
719 int channel_size = type_sz(inst->src[0].type) / 4;
720 for (unsigned i = 0; i < vec4s_read; i++) {
721 chans_used[reg + i] = 4;
722 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
723 }
724 }
725 }
726
727 int new_uniform_count = 0;
728
729 /* As the uniforms are going to be reordered, take the data from a temporary
730 * copy of the original param[].
731 */
732 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
733 memcpy(param, stage_prog_data->param,
734 sizeof(uint32_t) * stage_prog_data->nr_params);
735
736 /* Now, figure out a packing of the live uniform vectors into our
737 * push constants. Start with dvec{3,4} because they are aligned to
738 * dvec4 size (2 vec4).
739 */
740 for (int src = 0; src < uniforms; src++) {
741 int size = chans_used[src];
742
743 if (size == 0 || !is_aligned_to_dvec4[src])
744 continue;
745
746 /* dvec3 are aligned to dvec4 size, apply the alignment of the size
747 * to 4 to avoid moving last component of a dvec3 to the available
748 * location at the end of a previous dvec3. These available locations
749 * could be filled by smaller variables in next loop.
750 */
751 size = ALIGN(size, 4);
752 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
753 src, size, channel_sizes[src],
754 new_loc, new_chan,
755 new_chans_used);
756 /* Move the references to the data */
757 for (int j = 0; j < size; j++) {
758 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
759 param[src * 4 + j];
760 }
761 }
762
763 /* Continue with the rest of data, which is aligned to vec4. */
764 for (int src = 0; src < uniforms; src++) {
765 int size = chans_used[src];
766
767 if (size == 0 || is_aligned_to_dvec4[src])
768 continue;
769
770 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
771 src, size, channel_sizes[src],
772 new_loc, new_chan,
773 new_chans_used);
774 /* Move the references to the data */
775 for (int j = 0; j < size; j++) {
776 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
777 param[src * 4 + j];
778 }
779 }
780
781 ralloc_free(param);
782 this->uniforms = new_uniform_count;
783
784 /* Now, update the instructions for our repacked uniforms. */
785 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
786 for (int i = 0 ; i < 3; i++) {
787 int src = inst->src[i].nr;
788
789 if (inst->src[i].file != UNIFORM)
790 continue;
791
792 int chan = new_chan[src] / channel_sizes[src];
793 inst->src[i].nr = new_loc[src];
794 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
795 }
796 }
797 }
798
799 /**
800 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
801 *
802 * While GLSL IR also performs this optimization, we end up with it in
803 * our instruction stream for a couple of reasons. One is that we
804 * sometimes generate silly instructions, for example in array access
805 * where we'll generate "ADD offset, index, base" even if base is 0.
806 * The other is that GLSL IR's constant propagation doesn't track the
807 * components of aggregates, so some VS patterns (initialize matrix to
808 * 0, accumulate in vertex blending factors) end up breaking down to
809 * instructions involving 0.
810 */
811 bool
812 vec4_visitor::opt_algebraic()
813 {
814 bool progress = false;
815
816 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
817 switch (inst->opcode) {
818 case BRW_OPCODE_MOV:
819 if (inst->src[0].file != IMM)
820 break;
821
822 if (inst->saturate) {
823 /* Full mixed-type saturates don't happen. However, we can end up
824 * with things like:
825 *
826 * mov.sat(8) g21<1>DF -1F
827 *
828 * Other mixed-size-but-same-base-type cases may also be possible.
829 */
830 if (inst->dst.type != inst->src[0].type &&
831 inst->dst.type != BRW_REGISTER_TYPE_DF &&
832 inst->src[0].type != BRW_REGISTER_TYPE_F)
833 assert(!"unimplemented: saturate mixed types");
834
835 if (brw_saturate_immediate(inst->src[0].type,
836 &inst->src[0].as_brw_reg())) {
837 inst->saturate = false;
838 progress = true;
839 }
840 }
841 break;
842
843 case BRW_OPCODE_OR:
844 if (inst->src[1].is_zero()) {
845 inst->opcode = BRW_OPCODE_MOV;
846 inst->src[1] = src_reg();
847 progress = true;
848 }
849 break;
850
851 case VEC4_OPCODE_UNPACK_UNIFORM:
852 if (inst->src[0].file != UNIFORM) {
853 inst->opcode = BRW_OPCODE_MOV;
854 progress = true;
855 }
856 break;
857
858 case BRW_OPCODE_ADD:
859 if (inst->src[1].is_zero()) {
860 inst->opcode = BRW_OPCODE_MOV;
861 inst->src[1] = src_reg();
862 progress = true;
863 }
864 break;
865
866 case BRW_OPCODE_MUL:
867 if (inst->src[1].is_zero()) {
868 inst->opcode = BRW_OPCODE_MOV;
869 switch (inst->src[0].type) {
870 case BRW_REGISTER_TYPE_F:
871 inst->src[0] = brw_imm_f(0.0f);
872 break;
873 case BRW_REGISTER_TYPE_D:
874 inst->src[0] = brw_imm_d(0);
875 break;
876 case BRW_REGISTER_TYPE_UD:
877 inst->src[0] = brw_imm_ud(0u);
878 break;
879 default:
880 unreachable("not reached");
881 }
882 inst->src[1] = src_reg();
883 progress = true;
884 } else if (inst->src[1].is_one()) {
885 inst->opcode = BRW_OPCODE_MOV;
886 inst->src[1] = src_reg();
887 progress = true;
888 } else if (inst->src[1].is_negative_one()) {
889 inst->opcode = BRW_OPCODE_MOV;
890 inst->src[0].negate = !inst->src[0].negate;
891 inst->src[1] = src_reg();
892 progress = true;
893 }
894 break;
895 case BRW_OPCODE_CMP:
896 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
897 inst->src[0].abs &&
898 inst->src[0].negate &&
899 inst->src[1].is_zero()) {
900 inst->src[0].abs = false;
901 inst->src[0].negate = false;
902 inst->conditional_mod = BRW_CONDITIONAL_Z;
903 progress = true;
904 break;
905 }
906 break;
907 case SHADER_OPCODE_BROADCAST:
908 if (is_uniform(inst->src[0]) ||
909 inst->src[1].is_zero()) {
910 inst->opcode = BRW_OPCODE_MOV;
911 inst->src[1] = src_reg();
912 inst->force_writemask_all = true;
913 progress = true;
914 }
915 break;
916
917 default:
918 break;
919 }
920 }
921
922 if (progress)
923 invalidate_live_intervals();
924
925 return progress;
926 }
927
928 /**
929 * Only a limited number of hardware registers may be used for push
930 * constants, so this turns access to the overflowed constants into
931 * pull constants.
932 */
933 void
934 vec4_visitor::move_push_constants_to_pull_constants()
935 {
936 int pull_constant_loc[this->uniforms];
937
938 /* Only allow 32 registers (256 uniform components) as push constants,
939 * which is the limit on gen6.
940 *
941 * If changing this value, note the limitation about total_regs in
942 * brw_curbe.c.
943 */
944 int max_uniform_components = 32 * 8;
945 if (this->uniforms * 4 <= max_uniform_components)
946 return;
947
948 /* Make some sort of choice as to which uniforms get sent to pull
949 * constants. We could potentially do something clever here like
950 * look for the most infrequently used uniform vec4s, but leave
951 * that for later.
952 */
953 for (int i = 0; i < this->uniforms * 4; i += 4) {
954 pull_constant_loc[i / 4] = -1;
955
956 if (i >= max_uniform_components) {
957 uint32_t *values = &stage_prog_data->param[i];
958
959 /* Try to find an existing copy of this uniform in the pull
960 * constants if it was part of an array access already.
961 */
962 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
963 int matches;
964
965 for (matches = 0; matches < 4; matches++) {
966 if (stage_prog_data->pull_param[j + matches] != values[matches])
967 break;
968 }
969
970 if (matches == 4) {
971 pull_constant_loc[i / 4] = j / 4;
972 break;
973 }
974 }
975
976 if (pull_constant_loc[i / 4] == -1) {
977 assert(stage_prog_data->nr_pull_params % 4 == 0);
978 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
979
980 for (int j = 0; j < 4; j++) {
981 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
982 values[j];
983 }
984 }
985 }
986 }
987
988 /* Now actually rewrite usage of the things we've moved to pull
989 * constants.
990 */
991 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
992 for (int i = 0 ; i < 3; i++) {
993 if (inst->src[i].file != UNIFORM ||
994 pull_constant_loc[inst->src[i].nr] == -1)
995 continue;
996
997 int uniform = inst->src[i].nr;
998
999 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
1000 glsl_type::dvec4_type : glsl_type::vec4_type;
1001 dst_reg temp = dst_reg(this, temp_type);
1002
1003 emit_pull_constant_load(block, inst, temp, inst->src[i],
1004 pull_constant_loc[uniform], src_reg());
1005
1006 inst->src[i].file = temp.file;
1007 inst->src[i].nr = temp.nr;
1008 inst->src[i].offset %= 16;
1009 inst->src[i].reladdr = NULL;
1010 }
1011 }
1012
1013 /* Repack push constants to remove the now-unused ones. */
1014 pack_uniform_registers();
1015 }
1016
1017 /* Conditions for which we want to avoid setting the dependency control bits */
1018 bool
1019 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1020 {
1021 #define IS_DWORD(reg) \
1022 (reg.type == BRW_REGISTER_TYPE_UD || \
1023 reg.type == BRW_REGISTER_TYPE_D)
1024
1025 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1026
1027 /* From the Cherryview and Broadwell PRMs:
1028 *
1029 * "When source or destination datatype is 64b or operation is integer DWord
1030 * multiply, DepCtrl must not be used."
1031 *
1032 * SKL PRMs don't include this restriction, however, gen7 seems to be
1033 * affected, at least by the 64b restriction, since DepCtrl with double
1034 * precision instructions seems to produce GPU hangs in some cases.
1035 */
1036 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) {
1037 if (inst->opcode == BRW_OPCODE_MUL &&
1038 IS_DWORD(inst->src[0]) &&
1039 IS_DWORD(inst->src[1]))
1040 return true;
1041 }
1042
1043 if (devinfo->gen >= 7 && devinfo->gen <= 8) {
1044 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1045 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1046 return true;
1047 }
1048
1049 #undef IS_64BIT
1050 #undef IS_DWORD
1051
1052 if (devinfo->gen >= 8) {
1053 if (inst->opcode == BRW_OPCODE_F32TO16)
1054 return true;
1055 }
1056
1057 /*
1058 * mlen:
1059 * In the presence of send messages, totally interrupt dependency
1060 * control. They're long enough that the chance of dependency
1061 * control around them just doesn't matter.
1062 *
1063 * predicate:
1064 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1065 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1066 * completes the scoreboard clear must have a non-zero execution mask. This
1067 * means, if any kind of predication can change the execution mask or channel
1068 * enable of the last instruction, the optimization must be avoided. This is
1069 * to avoid instructions being shot down the pipeline when no writes are
1070 * required.
1071 *
1072 * math:
1073 * Dependency control does not work well over math instructions.
1074 * NB: Discovered empirically
1075 */
1076 return (inst->mlen || inst->predicate || inst->is_math());
1077 }
1078
1079 /**
1080 * Sets the dependency control fields on instructions after register
1081 * allocation and before the generator is run.
1082 *
1083 * When you have a sequence of instructions like:
1084 *
1085 * DP4 temp.x vertex uniform[0]
1086 * DP4 temp.y vertex uniform[0]
1087 * DP4 temp.z vertex uniform[0]
1088 * DP4 temp.w vertex uniform[0]
1089 *
1090 * The hardware doesn't know that it can actually run the later instructions
1091 * while the previous ones are in flight, producing stalls. However, we have
1092 * manual fields we can set in the instructions that let it do so.
1093 */
1094 void
1095 vec4_visitor::opt_set_dependency_control()
1096 {
1097 vec4_instruction *last_grf_write[BRW_MAX_GRF];
1098 uint8_t grf_channels_written[BRW_MAX_GRF];
1099 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1100 uint8_t mrf_channels_written[BRW_MAX_GRF];
1101
1102 assert(prog_data->total_grf ||
1103 !"Must be called after register allocation");
1104
1105 foreach_block (block, cfg) {
1106 memset(last_grf_write, 0, sizeof(last_grf_write));
1107 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1108
1109 foreach_inst_in_block (vec4_instruction, inst, block) {
1110 /* If we read from a register that we were doing dependency control
1111 * on, don't do dependency control across the read.
1112 */
1113 for (int i = 0; i < 3; i++) {
1114 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1115 if (inst->src[i].file == VGRF) {
1116 last_grf_write[reg] = NULL;
1117 } else if (inst->src[i].file == FIXED_GRF) {
1118 memset(last_grf_write, 0, sizeof(last_grf_write));
1119 break;
1120 }
1121 assert(inst->src[i].file != MRF);
1122 }
1123
1124 if (is_dep_ctrl_unsafe(inst)) {
1125 memset(last_grf_write, 0, sizeof(last_grf_write));
1126 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1127 continue;
1128 }
1129
1130 /* Now, see if we can do dependency control for this instruction
1131 * against a previous one writing to its destination.
1132 */
1133 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1134 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1135 if (last_grf_write[reg] &&
1136 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1137 !(inst->dst.writemask & grf_channels_written[reg])) {
1138 last_grf_write[reg]->no_dd_clear = true;
1139 inst->no_dd_check = true;
1140 } else {
1141 grf_channels_written[reg] = 0;
1142 }
1143
1144 last_grf_write[reg] = inst;
1145 grf_channels_written[reg] |= inst->dst.writemask;
1146 } else if (inst->dst.file == MRF) {
1147 if (last_mrf_write[reg] &&
1148 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1149 !(inst->dst.writemask & mrf_channels_written[reg])) {
1150 last_mrf_write[reg]->no_dd_clear = true;
1151 inst->no_dd_check = true;
1152 } else {
1153 mrf_channels_written[reg] = 0;
1154 }
1155
1156 last_mrf_write[reg] = inst;
1157 mrf_channels_written[reg] |= inst->dst.writemask;
1158 }
1159 }
1160 }
1161 }
1162
1163 bool
1164 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1165 int dst_writemask,
1166 int swizzle,
1167 int swizzle_mask)
1168 {
1169 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1170 * are not allowed.
1171 */
1172 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1173 return false;
1174
1175 /* We can't swizzle implicit accumulator access. We'd have to
1176 * reswizzle the producer of the accumulator value in addition
1177 * to the consumer (i.e. both MUL and MACH). Just skip this.
1178 */
1179 if (reads_accumulator_implicitly())
1180 return false;
1181
1182 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1183 return false;
1184
1185 /* If this instruction sets anything not referenced by swizzle, then we'd
1186 * totally break it when we reswizzle.
1187 */
1188 if (dst.writemask & ~swizzle_mask)
1189 return false;
1190
1191 if (mlen > 0)
1192 return false;
1193
1194 for (int i = 0; i < 3; i++) {
1195 if (src[i].is_accumulator())
1196 return false;
1197 }
1198
1199 return true;
1200 }
1201
1202 /**
1203 * For any channels in the swizzle's source that were populated by this
1204 * instruction, rewrite the instruction to put the appropriate result directly
1205 * in those channels.
1206 *
1207 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1208 */
1209 void
1210 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1211 {
1212 /* Destination write mask doesn't correspond to source swizzle for the dot
1213 * product and pack_bytes instructions.
1214 */
1215 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1216 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1217 opcode != VEC4_OPCODE_PACK_BYTES) {
1218 for (int i = 0; i < 3; i++) {
1219 if (src[i].file == BAD_FILE || src[i].file == IMM)
1220 continue;
1221
1222 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1223 }
1224 }
1225
1226 /* Apply the specified swizzle and writemask to the original mask of
1227 * written components.
1228 */
1229 dst.writemask = dst_writemask &
1230 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1231 }
1232
1233 /*
1234 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1235 * just written and then MOVed into another reg and making the original write
1236 * of the GRF write directly to the final destination instead.
1237 */
1238 bool
1239 vec4_visitor::opt_register_coalesce()
1240 {
1241 bool progress = false;
1242 int next_ip = 0;
1243
1244 calculate_live_intervals();
1245
1246 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1247 int ip = next_ip;
1248 next_ip++;
1249
1250 if (inst->opcode != BRW_OPCODE_MOV ||
1251 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1252 inst->predicate ||
1253 inst->src[0].file != VGRF ||
1254 inst->dst.type != inst->src[0].type ||
1255 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1256 continue;
1257
1258 /* Remove no-op MOVs */
1259 if (inst->dst.file == inst->src[0].file &&
1260 inst->dst.nr == inst->src[0].nr &&
1261 inst->dst.offset == inst->src[0].offset) {
1262 bool is_nop_mov = true;
1263
1264 for (unsigned c = 0; c < 4; c++) {
1265 if ((inst->dst.writemask & (1 << c)) == 0)
1266 continue;
1267
1268 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1269 is_nop_mov = false;
1270 break;
1271 }
1272 }
1273
1274 if (is_nop_mov) {
1275 inst->remove(block);
1276 progress = true;
1277 continue;
1278 }
1279 }
1280
1281 bool to_mrf = (inst->dst.file == MRF);
1282
1283 /* Can't coalesce this GRF if someone else was going to
1284 * read it later.
1285 */
1286 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1287 continue;
1288
1289 /* We need to check interference with the final destination between this
1290 * instruction and the earliest instruction involved in writing the GRF
1291 * we're eliminating. To do that, keep track of which of our source
1292 * channels we've seen initialized.
1293 */
1294 const unsigned chans_needed =
1295 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1296 inst->dst.writemask);
1297 unsigned chans_remaining = chans_needed;
1298
1299 /* Now walk up the instruction stream trying to see if we can rewrite
1300 * everything writing to the temporary to write into the destination
1301 * instead.
1302 */
1303 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1304 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1305 inst) {
1306 _scan_inst = scan_inst;
1307
1308 if (regions_overlap(inst->src[0], inst->size_read(0),
1309 scan_inst->dst, scan_inst->size_written)) {
1310 /* Found something writing to the reg we want to coalesce away. */
1311 if (to_mrf) {
1312 /* SEND instructions can't have MRF as a destination. */
1313 if (scan_inst->mlen)
1314 break;
1315
1316 if (devinfo->gen == 6) {
1317 /* gen6 math instructions must have the destination be
1318 * VGRF, so no compute-to-MRF for them.
1319 */
1320 if (scan_inst->is_math()) {
1321 break;
1322 }
1323 }
1324 }
1325
1326 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1327 * instructions, and this optimization pass is not capable of
1328 * handling that. Bail on these instructions and hope that some
1329 * later optimization pass can do the right thing after they are
1330 * expanded.
1331 */
1332 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1333 break;
1334
1335 /* This doesn't handle saturation on the instruction we
1336 * want to coalesce away if the register types do not match.
1337 * But if scan_inst is a non type-converting 'mov', we can fix
1338 * the types later.
1339 */
1340 if (inst->saturate &&
1341 inst->dst.type != scan_inst->dst.type &&
1342 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1343 scan_inst->dst.type == scan_inst->src[0].type))
1344 break;
1345
1346 /* Only allow coalescing between registers of the same type size.
1347 * Otherwise we would need to make the pass aware of the fact that
1348 * channel sizes are different for single and double precision.
1349 */
1350 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1351 break;
1352
1353 /* Check that scan_inst writes the same amount of data as the
1354 * instruction, otherwise coalescing would lead to writing a
1355 * different (larger or smaller) region of the destination
1356 */
1357 if (scan_inst->size_written != inst->size_written)
1358 break;
1359
1360 /* If we can't handle the swizzle, bail. */
1361 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1362 inst->src[0].swizzle,
1363 chans_needed)) {
1364 break;
1365 }
1366
1367 /* This only handles coalescing writes of 8 channels (1 register
1368 * for single-precision and 2 registers for double-precision)
1369 * starting at the source offset of the copy instruction.
1370 */
1371 if (DIV_ROUND_UP(scan_inst->size_written,
1372 type_sz(scan_inst->dst.type)) > 8 ||
1373 scan_inst->dst.offset != inst->src[0].offset)
1374 break;
1375
1376 /* Mark which channels we found unconditional writes for. */
1377 if (!scan_inst->predicate)
1378 chans_remaining &= ~scan_inst->dst.writemask;
1379
1380 if (chans_remaining == 0)
1381 break;
1382 }
1383
1384 /* You can't read from an MRF, so if someone else reads our MRF's
1385 * source GRF that we wanted to rewrite, that stops us. If it's a
1386 * GRF we're trying to coalesce to, we don't actually handle
1387 * rewriting sources so bail in that case as well.
1388 */
1389 bool interfered = false;
1390 for (int i = 0; i < 3; i++) {
1391 if (regions_overlap(inst->src[0], inst->size_read(0),
1392 scan_inst->src[i], scan_inst->size_read(i)))
1393 interfered = true;
1394 }
1395 if (interfered)
1396 break;
1397
1398 /* If somebody else writes the same channels of our destination here,
1399 * we can't coalesce before that.
1400 */
1401 if (regions_overlap(inst->dst, inst->size_written,
1402 scan_inst->dst, scan_inst->size_written) &&
1403 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1404 break;
1405 }
1406
1407 /* Check for reads of the register we're trying to coalesce into. We
1408 * can't go rewriting instructions above that to put some other value
1409 * in the register instead.
1410 */
1411 if (to_mrf && scan_inst->mlen > 0) {
1412 if (inst->dst.nr >= scan_inst->base_mrf &&
1413 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
1414 break;
1415 }
1416 } else {
1417 for (int i = 0; i < 3; i++) {
1418 if (regions_overlap(inst->dst, inst->size_written,
1419 scan_inst->src[i], scan_inst->size_read(i)))
1420 interfered = true;
1421 }
1422 if (interfered)
1423 break;
1424 }
1425 }
1426
1427 if (chans_remaining == 0) {
1428 /* If we've made it here, we have an MOV we want to coalesce out, and
1429 * a scan_inst pointing to the earliest instruction involved in
1430 * computing the value. Now go rewrite the instruction stream
1431 * between the two.
1432 */
1433 vec4_instruction *scan_inst = _scan_inst;
1434 while (scan_inst != inst) {
1435 if (scan_inst->dst.file == VGRF &&
1436 scan_inst->dst.nr == inst->src[0].nr &&
1437 scan_inst->dst.offset == inst->src[0].offset) {
1438 scan_inst->reswizzle(inst->dst.writemask,
1439 inst->src[0].swizzle);
1440 scan_inst->dst.file = inst->dst.file;
1441 scan_inst->dst.nr = inst->dst.nr;
1442 scan_inst->dst.offset = inst->dst.offset;
1443 if (inst->saturate &&
1444 inst->dst.type != scan_inst->dst.type) {
1445 /* If we have reached this point, scan_inst is a non
1446 * type-converting 'mov' and we can modify its register types
1447 * to match the ones in inst. Otherwise, we could have an
1448 * incorrect saturation result.
1449 */
1450 scan_inst->dst.type = inst->dst.type;
1451 scan_inst->src[0].type = inst->src[0].type;
1452 }
1453 scan_inst->saturate |= inst->saturate;
1454 }
1455 scan_inst = (vec4_instruction *)scan_inst->next;
1456 }
1457 inst->remove(block);
1458 progress = true;
1459 }
1460 }
1461
1462 if (progress)
1463 invalidate_live_intervals();
1464
1465 return progress;
1466 }
1467
1468 /**
1469 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1470 * flow. We could probably do better here with some form of divergence
1471 * analysis.
1472 */
1473 bool
1474 vec4_visitor::eliminate_find_live_channel()
1475 {
1476 bool progress = false;
1477 unsigned depth = 0;
1478
1479 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1480 /* The optimization below assumes that channel zero is live on thread
1481 * dispatch, which may not be the case if the fixed function dispatches
1482 * threads sparsely.
1483 */
1484 return false;
1485 }
1486
1487 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1488 switch (inst->opcode) {
1489 case BRW_OPCODE_IF:
1490 case BRW_OPCODE_DO:
1491 depth++;
1492 break;
1493
1494 case BRW_OPCODE_ENDIF:
1495 case BRW_OPCODE_WHILE:
1496 depth--;
1497 break;
1498
1499 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1500 if (depth == 0) {
1501 inst->opcode = BRW_OPCODE_MOV;
1502 inst->src[0] = brw_imm_d(0);
1503 inst->force_writemask_all = true;
1504 progress = true;
1505 }
1506 break;
1507
1508 default:
1509 break;
1510 }
1511 }
1512
1513 return progress;
1514 }
1515
1516 /**
1517 * Splits virtual GRFs requesting more than one contiguous physical register.
1518 *
1519 * We initially create large virtual GRFs for temporary structures, arrays,
1520 * and matrices, so that the visitor functions can add offsets to work their
1521 * way down to the actual member being accessed. But when it comes to
1522 * optimization, we'd like to treat each register as individual storage if
1523 * possible.
1524 *
1525 * So far, the only thing that might prevent splitting is a send message from
1526 * a GRF on IVB.
1527 */
1528 void
1529 vec4_visitor::split_virtual_grfs()
1530 {
1531 int num_vars = this->alloc.count;
1532 int new_virtual_grf[num_vars];
1533 bool split_grf[num_vars];
1534
1535 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1536
1537 /* Try to split anything > 0 sized. */
1538 for (int i = 0; i < num_vars; i++) {
1539 split_grf[i] = this->alloc.sizes[i] != 1;
1540 }
1541
1542 /* Check that the instructions are compatible with the registers we're trying
1543 * to split.
1544 */
1545 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1546 if (inst->dst.file == VGRF && regs_written(inst) > 1)
1547 split_grf[inst->dst.nr] = false;
1548
1549 for (int i = 0; i < 3; i++) {
1550 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1551 split_grf[inst->src[i].nr] = false;
1552 }
1553 }
1554
1555 /* Allocate new space for split regs. Note that the virtual
1556 * numbers will be contiguous.
1557 */
1558 for (int i = 0; i < num_vars; i++) {
1559 if (!split_grf[i])
1560 continue;
1561
1562 new_virtual_grf[i] = alloc.allocate(1);
1563 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1564 unsigned reg = alloc.allocate(1);
1565 assert(reg == new_virtual_grf[i] + j - 1);
1566 (void) reg;
1567 }
1568 this->alloc.sizes[i] = 1;
1569 }
1570
1571 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1572 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1573 inst->dst.offset / REG_SIZE != 0) {
1574 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1575 inst->dst.offset / REG_SIZE - 1);
1576 inst->dst.offset %= REG_SIZE;
1577 }
1578 for (int i = 0; i < 3; i++) {
1579 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1580 inst->src[i].offset / REG_SIZE != 0) {
1581 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1582 inst->src[i].offset / REG_SIZE - 1);
1583 inst->src[i].offset %= REG_SIZE;
1584 }
1585 }
1586 }
1587 invalidate_live_intervals();
1588 }
1589
1590 void
1591 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1592 {
1593 dump_instruction(be_inst, stderr);
1594 }
1595
1596 void
1597 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1598 {
1599 vec4_instruction *inst = (vec4_instruction *)be_inst;
1600
1601 if (inst->predicate) {
1602 fprintf(file, "(%cf%d.%d%s) ",
1603 inst->predicate_inverse ? '-' : '+',
1604 inst->flag_subreg / 2,
1605 inst->flag_subreg % 2,
1606 pred_ctrl_align16[inst->predicate]);
1607 }
1608
1609 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1610 inst->exec_size);
1611 if (inst->saturate)
1612 fprintf(file, ".sat");
1613 if (inst->conditional_mod) {
1614 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1615 if (!inst->predicate &&
1616 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1617 inst->opcode != BRW_OPCODE_CSEL &&
1618 inst->opcode != BRW_OPCODE_IF &&
1619 inst->opcode != BRW_OPCODE_WHILE))) {
1620 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1621 }
1622 }
1623 fprintf(file, " ");
1624
1625 switch (inst->dst.file) {
1626 case VGRF:
1627 fprintf(file, "vgrf%d", inst->dst.nr);
1628 break;
1629 case FIXED_GRF:
1630 fprintf(file, "g%d", inst->dst.nr);
1631 break;
1632 case MRF:
1633 fprintf(file, "m%d", inst->dst.nr);
1634 break;
1635 case ARF:
1636 switch (inst->dst.nr) {
1637 case BRW_ARF_NULL:
1638 fprintf(file, "null");
1639 break;
1640 case BRW_ARF_ADDRESS:
1641 fprintf(file, "a0.%d", inst->dst.subnr);
1642 break;
1643 case BRW_ARF_ACCUMULATOR:
1644 fprintf(file, "acc%d", inst->dst.subnr);
1645 break;
1646 case BRW_ARF_FLAG:
1647 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1648 break;
1649 default:
1650 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1651 break;
1652 }
1653 break;
1654 case BAD_FILE:
1655 fprintf(file, "(null)");
1656 break;
1657 case IMM:
1658 case ATTR:
1659 case UNIFORM:
1660 unreachable("not reached");
1661 }
1662 if (inst->dst.offset ||
1663 (inst->dst.file == VGRF &&
1664 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1665 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1666 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1667 inst->dst.offset % reg_size);
1668 }
1669 if (inst->dst.writemask != WRITEMASK_XYZW) {
1670 fprintf(file, ".");
1671 if (inst->dst.writemask & 1)
1672 fprintf(file, "x");
1673 if (inst->dst.writemask & 2)
1674 fprintf(file, "y");
1675 if (inst->dst.writemask & 4)
1676 fprintf(file, "z");
1677 if (inst->dst.writemask & 8)
1678 fprintf(file, "w");
1679 }
1680 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1681
1682 if (inst->src[0].file != BAD_FILE)
1683 fprintf(file, ", ");
1684
1685 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1686 if (inst->src[i].negate)
1687 fprintf(file, "-");
1688 if (inst->src[i].abs)
1689 fprintf(file, "|");
1690 switch (inst->src[i].file) {
1691 case VGRF:
1692 fprintf(file, "vgrf%d", inst->src[i].nr);
1693 break;
1694 case FIXED_GRF:
1695 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1696 break;
1697 case ATTR:
1698 fprintf(file, "attr%d", inst->src[i].nr);
1699 break;
1700 case UNIFORM:
1701 fprintf(file, "u%d", inst->src[i].nr);
1702 break;
1703 case IMM:
1704 switch (inst->src[i].type) {
1705 case BRW_REGISTER_TYPE_F:
1706 fprintf(file, "%fF", inst->src[i].f);
1707 break;
1708 case BRW_REGISTER_TYPE_DF:
1709 fprintf(file, "%fDF", inst->src[i].df);
1710 break;
1711 case BRW_REGISTER_TYPE_D:
1712 fprintf(file, "%dD", inst->src[i].d);
1713 break;
1714 case BRW_REGISTER_TYPE_UD:
1715 fprintf(file, "%uU", inst->src[i].ud);
1716 break;
1717 case BRW_REGISTER_TYPE_VF:
1718 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1719 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1720 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1721 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1722 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1723 break;
1724 default:
1725 fprintf(file, "???");
1726 break;
1727 }
1728 break;
1729 case ARF:
1730 switch (inst->src[i].nr) {
1731 case BRW_ARF_NULL:
1732 fprintf(file, "null");
1733 break;
1734 case BRW_ARF_ADDRESS:
1735 fprintf(file, "a0.%d", inst->src[i].subnr);
1736 break;
1737 case BRW_ARF_ACCUMULATOR:
1738 fprintf(file, "acc%d", inst->src[i].subnr);
1739 break;
1740 case BRW_ARF_FLAG:
1741 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1742 break;
1743 default:
1744 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1745 break;
1746 }
1747 break;
1748 case BAD_FILE:
1749 fprintf(file, "(null)");
1750 break;
1751 case MRF:
1752 unreachable("not reached");
1753 }
1754
1755 if (inst->src[i].offset ||
1756 (inst->src[i].file == VGRF &&
1757 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1758 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1759 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1760 inst->src[i].offset % reg_size);
1761 }
1762
1763 if (inst->src[i].file != IMM) {
1764 static const char *chans[4] = {"x", "y", "z", "w"};
1765 fprintf(file, ".");
1766 for (int c = 0; c < 4; c++) {
1767 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1768 }
1769 }
1770
1771 if (inst->src[i].abs)
1772 fprintf(file, "|");
1773
1774 if (inst->src[i].file != IMM) {
1775 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1776 }
1777
1778 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1779 fprintf(file, ", ");
1780 }
1781
1782 if (inst->force_writemask_all)
1783 fprintf(file, " NoMask");
1784
1785 if (inst->exec_size != 8)
1786 fprintf(file, " group%d", inst->group);
1787
1788 fprintf(file, "\n");
1789 }
1790
1791
1792 int
1793 vec4_vs_visitor::setup_attributes(int payload_reg)
1794 {
1795 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1796 for (int i = 0; i < 3; i++) {
1797 if (inst->src[i].file == ATTR) {
1798 assert(inst->src[i].offset % REG_SIZE == 0);
1799 int grf = payload_reg + inst->src[i].nr +
1800 inst->src[i].offset / REG_SIZE;
1801
1802 struct brw_reg reg = brw_vec8_grf(grf, 0);
1803 reg.swizzle = inst->src[i].swizzle;
1804 reg.type = inst->src[i].type;
1805 reg.abs = inst->src[i].abs;
1806 reg.negate = inst->src[i].negate;
1807 inst->src[i] = reg;
1808 }
1809 }
1810 }
1811
1812 return payload_reg + vs_prog_data->nr_attribute_slots;
1813 }
1814
1815 int
1816 vec4_visitor::setup_uniforms(int reg)
1817 {
1818 prog_data->base.dispatch_grf_start_reg = reg;
1819
1820 /* The pre-gen6 VS requires that some push constants get loaded no
1821 * matter what, or the GPU would hang.
1822 */
1823 if (devinfo->gen < 6 && this->uniforms == 0) {
1824 brw_stage_prog_data_add_params(stage_prog_data, 4);
1825 for (unsigned int i = 0; i < 4; i++) {
1826 unsigned int slot = this->uniforms * 4 + i;
1827 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1828 }
1829
1830 this->uniforms++;
1831 reg++;
1832 } else {
1833 reg += ALIGN(uniforms, 2) / 2;
1834 }
1835
1836 for (int i = 0; i < 4; i++)
1837 reg += stage_prog_data->ubo_ranges[i].length;
1838
1839 stage_prog_data->nr_params = this->uniforms * 4;
1840
1841 prog_data->base.curb_read_length =
1842 reg - prog_data->base.dispatch_grf_start_reg;
1843
1844 return reg;
1845 }
1846
1847 void
1848 vec4_vs_visitor::setup_payload(void)
1849 {
1850 int reg = 0;
1851
1852 /* The payload always contains important data in g0, which contains
1853 * the URB handles that are passed on to the URB write at the end
1854 * of the thread. So, we always start push constants at g1.
1855 */
1856 reg++;
1857
1858 reg = setup_uniforms(reg);
1859
1860 reg = setup_attributes(reg);
1861
1862 this->first_non_payload_grf = reg;
1863 }
1864
1865 bool
1866 vec4_visitor::lower_minmax()
1867 {
1868 assert(devinfo->gen < 6);
1869
1870 bool progress = false;
1871
1872 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1873 const vec4_builder ibld(this, block, inst);
1874
1875 if (inst->opcode == BRW_OPCODE_SEL &&
1876 inst->predicate == BRW_PREDICATE_NONE) {
1877 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1878 * the original SEL.L/GE instruction
1879 */
1880 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1881 inst->conditional_mod);
1882 inst->predicate = BRW_PREDICATE_NORMAL;
1883 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1884
1885 progress = true;
1886 }
1887 }
1888
1889 if (progress)
1890 invalidate_live_intervals();
1891
1892 return progress;
1893 }
1894
1895 src_reg
1896 vec4_visitor::get_timestamp()
1897 {
1898 assert(devinfo->gen >= 7);
1899
1900 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1901 BRW_ARF_TIMESTAMP,
1902 0,
1903 0,
1904 0,
1905 BRW_REGISTER_TYPE_UD,
1906 BRW_VERTICAL_STRIDE_0,
1907 BRW_WIDTH_4,
1908 BRW_HORIZONTAL_STRIDE_4,
1909 BRW_SWIZZLE_XYZW,
1910 WRITEMASK_XYZW));
1911
1912 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1913
1914 vec4_instruction *mov = emit(MOV(dst, ts));
1915 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1916 * even if it's not enabled in the dispatch.
1917 */
1918 mov->force_writemask_all = true;
1919
1920 return src_reg(dst);
1921 }
1922
1923 void
1924 vec4_visitor::emit_shader_time_begin()
1925 {
1926 current_annotation = "shader time start";
1927 shader_start_time = get_timestamp();
1928 }
1929
1930 void
1931 vec4_visitor::emit_shader_time_end()
1932 {
1933 current_annotation = "shader time end";
1934 src_reg shader_end_time = get_timestamp();
1935
1936
1937 /* Check that there weren't any timestamp reset events (assuming these
1938 * were the only two timestamp reads that happened).
1939 */
1940 src_reg reset_end = shader_end_time;
1941 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1942 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1943 test->conditional_mod = BRW_CONDITIONAL_Z;
1944
1945 emit(IF(BRW_PREDICATE_NORMAL));
1946
1947 /* Take the current timestamp and get the delta. */
1948 shader_start_time.negate = true;
1949 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1950 emit(ADD(diff, shader_start_time, shader_end_time));
1951
1952 /* If there were no instructions between the two timestamp gets, the diff
1953 * is 2 cycles. Remove that overhead, so I can forget about that when
1954 * trying to determine the time taken for single instructions.
1955 */
1956 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1957
1958 emit_shader_time_write(0, src_reg(diff));
1959 emit_shader_time_write(1, brw_imm_ud(1u));
1960 emit(BRW_OPCODE_ELSE);
1961 emit_shader_time_write(2, brw_imm_ud(1u));
1962 emit(BRW_OPCODE_ENDIF);
1963 }
1964
1965 void
1966 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1967 {
1968 dst_reg dst =
1969 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1970
1971 dst_reg offset = dst;
1972 dst_reg time = dst;
1973 time.offset += REG_SIZE;
1974
1975 offset.type = BRW_REGISTER_TYPE_UD;
1976 int index = shader_time_index * 3 + shader_time_subindex;
1977 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1978
1979 time.type = BRW_REGISTER_TYPE_UD;
1980 emit(MOV(time, value));
1981
1982 vec4_instruction *inst =
1983 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1984 inst->mlen = 2;
1985 }
1986
1987 static bool
1988 is_align1_df(vec4_instruction *inst)
1989 {
1990 switch (inst->opcode) {
1991 case VEC4_OPCODE_DOUBLE_TO_F32:
1992 case VEC4_OPCODE_DOUBLE_TO_D32:
1993 case VEC4_OPCODE_DOUBLE_TO_U32:
1994 case VEC4_OPCODE_TO_DOUBLE:
1995 case VEC4_OPCODE_PICK_LOW_32BIT:
1996 case VEC4_OPCODE_PICK_HIGH_32BIT:
1997 case VEC4_OPCODE_SET_LOW_32BIT:
1998 case VEC4_OPCODE_SET_HIGH_32BIT:
1999 return true;
2000 default:
2001 return false;
2002 }
2003 }
2004
2005 /**
2006 * Three source instruction must have a GRF/MRF destination register.
2007 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
2008 */
2009 void
2010 vec4_visitor::fixup_3src_null_dest()
2011 {
2012 bool progress = false;
2013
2014 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2015 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2016 const unsigned size_written = type_sz(inst->dst.type);
2017 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2018
2019 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2020 inst->dst.type);
2021 progress = true;
2022 }
2023 }
2024
2025 if (progress)
2026 invalidate_live_intervals();
2027 }
2028
2029 void
2030 vec4_visitor::convert_to_hw_regs()
2031 {
2032 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2033 for (int i = 0; i < 3; i++) {
2034 class src_reg &src = inst->src[i];
2035 struct brw_reg reg;
2036 switch (src.file) {
2037 case VGRF: {
2038 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2039 reg.type = src.type;
2040 reg.abs = src.abs;
2041 reg.negate = src.negate;
2042 break;
2043 }
2044
2045 case UNIFORM: {
2046 reg = stride(byte_offset(brw_vec4_grf(
2047 prog_data->base.dispatch_grf_start_reg +
2048 src.nr / 2, src.nr % 2 * 4),
2049 src.offset),
2050 0, 4, 1);
2051 reg.type = src.type;
2052 reg.abs = src.abs;
2053 reg.negate = src.negate;
2054
2055 /* This should have been moved to pull constants. */
2056 assert(!src.reladdr);
2057 break;
2058 }
2059
2060 case FIXED_GRF:
2061 if (type_sz(src.type) == 8) {
2062 reg = src.as_brw_reg();
2063 break;
2064 }
2065 /* fallthrough */
2066 case ARF:
2067 case IMM:
2068 continue;
2069
2070 case BAD_FILE:
2071 /* Probably unused. */
2072 reg = brw_null_reg();
2073 reg = retype(reg, src.type);
2074 break;
2075
2076 case MRF:
2077 case ATTR:
2078 unreachable("not reached");
2079 }
2080
2081 apply_logical_swizzle(&reg, inst, i);
2082 src = reg;
2083
2084 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2085 * Parameters":
2086 *
2087 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2088 * to Width * HorzStride."
2089 *
2090 * We can break this rule with DF sources on DF align1
2091 * instructions, because the exec_size would be 4 and width is 4.
2092 * As we know we are not accessing to next GRF, it is safe to
2093 * set vstride to the formula given by the rule itself.
2094 */
2095 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2096 src.vstride = src.width + src.hstride;
2097 }
2098
2099 if (inst->is_3src(devinfo)) {
2100 /* 3-src instructions with scalar sources support arbitrary subnr,
2101 * but don't actually use swizzles. Convert swizzle into subnr.
2102 * Skip this for double-precision instructions: RepCtrl=1 is not
2103 * allowed for them and needs special handling.
2104 */
2105 for (int i = 0; i < 3; i++) {
2106 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2107 type_sz(inst->src[i].type) < 8) {
2108 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2109 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2110 }
2111 }
2112 }
2113
2114 dst_reg &dst = inst->dst;
2115 struct brw_reg reg;
2116
2117 switch (inst->dst.file) {
2118 case VGRF:
2119 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2120 reg.type = dst.type;
2121 reg.writemask = dst.writemask;
2122 break;
2123
2124 case MRF:
2125 reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2126 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
2127 reg.type = dst.type;
2128 reg.writemask = dst.writemask;
2129 break;
2130
2131 case ARF:
2132 case FIXED_GRF:
2133 reg = dst.as_brw_reg();
2134 break;
2135
2136 case BAD_FILE:
2137 reg = brw_null_reg();
2138 reg = retype(reg, dst.type);
2139 break;
2140
2141 case IMM:
2142 case ATTR:
2143 case UNIFORM:
2144 unreachable("not reached");
2145 }
2146
2147 dst = reg;
2148 }
2149 }
2150
2151 static bool
2152 stage_uses_interleaved_attributes(unsigned stage,
2153 enum shader_dispatch_mode dispatch_mode)
2154 {
2155 switch (stage) {
2156 case MESA_SHADER_TESS_EVAL:
2157 return true;
2158 case MESA_SHADER_GEOMETRY:
2159 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2160 default:
2161 return false;
2162 }
2163 }
2164
2165 /**
2166 * Get the closest native SIMD width supported by the hardware for instruction
2167 * \p inst. The instruction will be left untouched by
2168 * vec4_visitor::lower_simd_width() if the returned value matches the
2169 * instruction's original execution size.
2170 */
2171 static unsigned
2172 get_lowered_simd_width(const struct gen_device_info *devinfo,
2173 enum shader_dispatch_mode dispatch_mode,
2174 unsigned stage, const vec4_instruction *inst)
2175 {
2176 /* Do not split some instructions that require special handling */
2177 switch (inst->opcode) {
2178 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2179 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2180 return inst->exec_size;
2181 default:
2182 break;
2183 }
2184
2185 unsigned lowered_width = MIN2(16, inst->exec_size);
2186
2187 /* We need to split some cases of double-precision instructions that write
2188 * 2 registers. We only need to care about this in gen7 because that is the
2189 * only hardware that implements fp64 in Align16.
2190 */
2191 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2192 /* Align16 8-wide double-precision SEL does not work well. Verified
2193 * empirically.
2194 */
2195 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2196 lowered_width = MIN2(lowered_width, 4);
2197
2198 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2199 * Register Addressing:
2200 *
2201 * "When destination spans two registers, the source MUST span two
2202 * registers."
2203 */
2204 for (unsigned i = 0; i < 3; i++) {
2205 if (inst->src[i].file == BAD_FILE)
2206 continue;
2207 if (inst->size_read(i) <= REG_SIZE)
2208 lowered_width = MIN2(lowered_width, 4);
2209
2210 /* Interleaved attribute setups use a vertical stride of 0, which
2211 * makes them hit the associated instruction decompression bug in gen7.
2212 * Split them to prevent this.
2213 */
2214 if (inst->src[i].file == ATTR &&
2215 stage_uses_interleaved_attributes(stage, dispatch_mode))
2216 lowered_width = MIN2(lowered_width, 4);
2217 }
2218 }
2219
2220 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2221 * it doesn't support compression in Align16 mode, no matter if it has
2222 * force_writemask_all enabled or disabled (the latter is affected by the
2223 * compressed instruction bug in gen7, which is another reason to enforce
2224 * this limit).
2225 */
2226 if (devinfo->gen == 7 && !devinfo->is_haswell &&
2227 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2228 lowered_width = MIN2(lowered_width, 4);
2229
2230 return lowered_width;
2231 }
2232
2233 static bool
2234 dst_src_regions_overlap(vec4_instruction *inst)
2235 {
2236 if (inst->size_written == 0)
2237 return false;
2238
2239 unsigned dst_start = inst->dst.offset;
2240 unsigned dst_end = dst_start + inst->size_written - 1;
2241 for (int i = 0; i < 3; i++) {
2242 if (inst->src[i].file == BAD_FILE)
2243 continue;
2244
2245 if (inst->dst.file != inst->src[i].file ||
2246 inst->dst.nr != inst->src[i].nr)
2247 continue;
2248
2249 unsigned src_start = inst->src[i].offset;
2250 unsigned src_end = src_start + inst->size_read(i) - 1;
2251
2252 if ((dst_start >= src_start && dst_start <= src_end) ||
2253 (dst_end >= src_start && dst_end <= src_end) ||
2254 (dst_start <= src_start && dst_end >= src_end)) {
2255 return true;
2256 }
2257 }
2258
2259 return false;
2260 }
2261
2262 bool
2263 vec4_visitor::lower_simd_width()
2264 {
2265 bool progress = false;
2266
2267 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2268 const unsigned lowered_width =
2269 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2270 assert(lowered_width <= inst->exec_size);
2271 if (lowered_width == inst->exec_size)
2272 continue;
2273
2274 /* We need to deal with source / destination overlaps when splitting.
2275 * The hardware supports reading from and writing to the same register
2276 * in the same instruction, but we need to be careful that each split
2277 * instruction we produce does not corrupt the source of the next.
2278 *
2279 * The easiest way to handle this is to make the split instructions write
2280 * to temporaries if there is an src/dst overlap and then move from the
2281 * temporaries to the original destination. We also need to consider
2282 * instructions that do partial writes via align1 opcodes, in which case
2283 * we need to make sure that the we initialize the temporary with the
2284 * value of the instruction's dst.
2285 */
2286 bool needs_temp = dst_src_regions_overlap(inst);
2287 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
2288 unsigned channel_offset = lowered_width * n;
2289
2290 unsigned size_written = lowered_width * type_sz(inst->dst.type);
2291
2292 /* Create the split instruction from the original so that we copy all
2293 * relevant instruction fields, then set the width and calculate the
2294 * new dst/src regions.
2295 */
2296 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2297 linst->exec_size = lowered_width;
2298 linst->group = channel_offset;
2299 linst->size_written = size_written;
2300
2301 /* Compute split dst region */
2302 dst_reg dst;
2303 if (needs_temp) {
2304 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2305 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2306 inst->dst.type);
2307 if (inst->is_align1_partial_write()) {
2308 vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2309 copy->exec_size = lowered_width;
2310 copy->group = channel_offset;
2311 copy->size_written = size_written;
2312 inst->insert_before(block, copy);
2313 }
2314 } else {
2315 dst = horiz_offset(inst->dst, channel_offset);
2316 }
2317 linst->dst = dst;
2318
2319 /* Compute split source regions */
2320 for (int i = 0; i < 3; i++) {
2321 if (linst->src[i].file == BAD_FILE)
2322 continue;
2323
2324 bool is_interleaved_attr =
2325 linst->src[i].file == ATTR &&
2326 stage_uses_interleaved_attributes(stage,
2327 prog_data->dispatch_mode);
2328
2329 if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2330 linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2331 }
2332
2333 inst->insert_before(block, linst);
2334
2335 /* If we used a temporary to store the result of the split
2336 * instruction, copy the result to the original destination
2337 */
2338 if (needs_temp) {
2339 vec4_instruction *mov =
2340 MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2341 mov->exec_size = lowered_width;
2342 mov->group = channel_offset;
2343 mov->size_written = size_written;
2344 mov->predicate = inst->predicate;
2345 inst->insert_before(block, mov);
2346 }
2347 }
2348
2349 inst->remove(block);
2350 progress = true;
2351 }
2352
2353 if (progress)
2354 invalidate_live_intervals();
2355
2356 return progress;
2357 }
2358
2359 static brw_predicate
2360 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2361 {
2362 if (predicate != BRW_PREDICATE_NORMAL)
2363 return predicate;
2364
2365 switch (writemask) {
2366 case WRITEMASK_X:
2367 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2368 case WRITEMASK_Y:
2369 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2370 case WRITEMASK_Z:
2371 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2372 case WRITEMASK_W:
2373 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2374 default:
2375 unreachable("invalid writemask");
2376 }
2377 }
2378
2379 /* Gen7 has a hardware decompression bug that we can exploit to represent
2380 * handful of additional swizzles natively.
2381 */
2382 static bool
2383 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2384 {
2385 switch (inst->src[arg].swizzle) {
2386 case BRW_SWIZZLE_XXXX:
2387 case BRW_SWIZZLE_YYYY:
2388 case BRW_SWIZZLE_ZZZZ:
2389 case BRW_SWIZZLE_WWWW:
2390 case BRW_SWIZZLE_XYXY:
2391 case BRW_SWIZZLE_YXYX:
2392 case BRW_SWIZZLE_ZWZW:
2393 case BRW_SWIZZLE_WZWZ:
2394 return true;
2395 default:
2396 return false;
2397 }
2398 }
2399
2400 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2401 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2402 * but it also means that the swizzle we apply on the first two components of a
2403 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2404 * only some specific swizzle combinations can be natively supported.
2405 *
2406 * FIXME: we can go an step further and implement even more swizzle
2407 * variations using only partial scalarization.
2408 *
2409 * For more details see:
2410 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2411 */
2412 bool
2413 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2414 {
2415 const src_reg &src = inst->src[arg];
2416 assert(type_sz(src.type) == 8);
2417
2418 /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2419 * 64-bit regions it means that we cannot access components Z/W, so
2420 * return false for any such case. Interleaved attributes will also be
2421 * mapped to GRF registers with a vstride of 0, so apply the same
2422 * treatment.
2423 */
2424 if ((is_uniform(src) ||
2425 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2426 src.file == ATTR)) &&
2427 (brw_mask_for_swizzle(src.swizzle) & 12))
2428 return false;
2429
2430 switch (src.swizzle) {
2431 case BRW_SWIZZLE_XYZW:
2432 case BRW_SWIZZLE_XXZZ:
2433 case BRW_SWIZZLE_YYWW:
2434 case BRW_SWIZZLE_YXWZ:
2435 return true;
2436 default:
2437 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2438 }
2439 }
2440
2441 bool
2442 vec4_visitor::scalarize_df()
2443 {
2444 bool progress = false;
2445
2446 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2447 /* Skip DF instructions that operate in Align1 mode */
2448 if (is_align1_df(inst))
2449 continue;
2450
2451 /* Check if this is a double-precision instruction */
2452 bool is_double = type_sz(inst->dst.type) == 8;
2453 for (int arg = 0; !is_double && arg < 3; arg++) {
2454 is_double = inst->src[arg].file != BAD_FILE &&
2455 type_sz(inst->src[arg].type) == 8;
2456 }
2457
2458 if (!is_double)
2459 continue;
2460
2461 /* Skip the lowering for specific regioning scenarios that we can
2462 * support natively.
2463 */
2464 bool skip_lowering = true;
2465
2466 /* XY and ZW writemasks operate in 32-bit, which means that they don't
2467 * have a native 64-bit representation and they should always be split.
2468 */
2469 if (inst->dst.writemask == WRITEMASK_XY ||
2470 inst->dst.writemask == WRITEMASK_ZW) {
2471 skip_lowering = false;
2472 } else {
2473 for (unsigned i = 0; i < 3; i++) {
2474 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2475 continue;
2476 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2477 }
2478 }
2479
2480 if (skip_lowering)
2481 continue;
2482
2483 /* Generate scalar instructions for each enabled channel */
2484 for (unsigned chan = 0; chan < 4; chan++) {
2485 unsigned chan_mask = 1 << chan;
2486 if (!(inst->dst.writemask & chan_mask))
2487 continue;
2488
2489 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2490
2491 for (unsigned i = 0; i < 3; i++) {
2492 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2493 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2494 }
2495
2496 scalar_inst->dst.writemask = chan_mask;
2497
2498 if (inst->predicate != BRW_PREDICATE_NONE) {
2499 scalar_inst->predicate =
2500 scalarize_predicate(inst->predicate, chan_mask);
2501 }
2502
2503 inst->insert_before(block, scalar_inst);
2504 }
2505
2506 inst->remove(block);
2507 progress = true;
2508 }
2509
2510 if (progress)
2511 invalidate_live_intervals();
2512
2513 return progress;
2514 }
2515
2516 bool
2517 vec4_visitor::lower_64bit_mad_to_mul_add()
2518 {
2519 bool progress = false;
2520
2521 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2522 if (inst->opcode != BRW_OPCODE_MAD)
2523 continue;
2524
2525 if (type_sz(inst->dst.type) != 8)
2526 continue;
2527
2528 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2529
2530 /* Use the copy constructor so we copy all relevant instruction fields
2531 * from the original mad into the add and mul instructions
2532 */
2533 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2534 mul->opcode = BRW_OPCODE_MUL;
2535 mul->dst = mul_dst;
2536 mul->src[0] = inst->src[1];
2537 mul->src[1] = inst->src[2];
2538 mul->src[2].file = BAD_FILE;
2539
2540 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2541 add->opcode = BRW_OPCODE_ADD;
2542 add->src[0] = src_reg(mul_dst);
2543 add->src[1] = inst->src[0];
2544 add->src[2].file = BAD_FILE;
2545
2546 inst->insert_before(block, mul);
2547 inst->insert_before(block, add);
2548 inst->remove(block);
2549
2550 progress = true;
2551 }
2552
2553 if (progress)
2554 invalidate_live_intervals();
2555
2556 return progress;
2557 }
2558
2559 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2560 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2561 * to 32-bit swizzle channels in hardware registers.
2562 *
2563 * @inst and @arg identify the original vec4 IR source operand we need to
2564 * translate the swizzle for and @hw_reg is the hardware register where we
2565 * will write the hardware swizzle to use.
2566 *
2567 * This pass assumes that Align16/DF instructions have been fully scalarized
2568 * previously so there is just one 64-bit swizzle channel to deal with for any
2569 * given Vec4 IR source.
2570 */
2571 void
2572 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2573 vec4_instruction *inst, int arg)
2574 {
2575 src_reg reg = inst->src[arg];
2576
2577 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2578 return;
2579
2580 /* If this is not a 64-bit operand or this is a scalar instruction we don't
2581 * need to do anything about the swizzles.
2582 */
2583 if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2584 hw_reg->swizzle = reg.swizzle;
2585 return;
2586 }
2587
2588 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2589 assert(brw_is_single_value_swizzle(reg.swizzle) ||
2590 is_supported_64bit_region(inst, arg));
2591
2592 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2593 * HW can only do 32-bit swizzle channels.
2594 */
2595 hw_reg->width = BRW_WIDTH_2;
2596
2597 if (is_supported_64bit_region(inst, arg) &&
2598 !is_gen7_supported_64bit_swizzle(inst, arg)) {
2599 /* Supported 64-bit swizzles are those such that their first two
2600 * components, when expanded to 32-bit swizzles, match the semantics
2601 * of the original 64-bit swizzle with 2-wide row regioning.
2602 */
2603 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2604 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2605 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2606 swizzle1 * 2, swizzle1 * 2 + 1);
2607 } else {
2608 /* If we got here then we have one of the following:
2609 *
2610 * 1. An unsupported swizzle, which should be single-value thanks to the
2611 * scalarization pass.
2612 *
2613 * 2. A gen7 supported swizzle. These can be single-value or double-value
2614 * swizzles. If the latter, they are never cross-dvec2 channels. For
2615 * these we always need to activate the gen7 vstride=0 exploit.
2616 */
2617 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2618 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2619 assert((swizzle0 < 2) == (swizzle1 < 2));
2620
2621 /* To gain access to Z/W components we need to select the second half
2622 * of the register and then use a X/Y swizzle to select Z/W respectively.
2623 */
2624 if (swizzle0 >= 2) {
2625 *hw_reg = suboffset(*hw_reg, 2);
2626 swizzle0 -= 2;
2627 swizzle1 -= 2;
2628 }
2629
2630 /* All gen7-specific supported swizzles require the vstride=0 exploit */
2631 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2632 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2633
2634 /* Any 64-bit source with an offset at 16B is intended to address the
2635 * second half of a register and needs a vertical stride of 0 so we:
2636 *
2637 * 1. Don't violate register region restrictions.
2638 * 2. Activate the gen7 instruction decompresion bug exploit when
2639 * execsize > 4
2640 */
2641 if (hw_reg->subnr % REG_SIZE == 16) {
2642 assert(devinfo->gen == 7);
2643 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2644 }
2645
2646 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2647 swizzle1 * 2, swizzle1 * 2 + 1);
2648 }
2649 }
2650
2651 bool
2652 vec4_visitor::run()
2653 {
2654 if (shader_time_index >= 0)
2655 emit_shader_time_begin();
2656
2657 emit_prolog();
2658
2659 emit_nir_code();
2660 if (failed)
2661 return false;
2662 base_ir = NULL;
2663
2664 emit_thread_end();
2665
2666 calculate_cfg();
2667
2668 /* Before any optimization, push array accesses out to scratch
2669 * space where we need them to be. This pass may allocate new
2670 * virtual GRFs, so we want to do it early. It also makes sure
2671 * that we have reladdr computations available for CSE, since we'll
2672 * often do repeated subexpressions for those.
2673 */
2674 move_grf_array_access_to_scratch();
2675 move_uniform_array_access_to_pull_constants();
2676
2677 pack_uniform_registers();
2678 move_push_constants_to_pull_constants();
2679 split_virtual_grfs();
2680
2681 #define OPT(pass, args...) ({ \
2682 pass_num++; \
2683 bool this_progress = pass(args); \
2684 \
2685 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
2686 char filename[64]; \
2687 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
2688 stage_abbrev, nir->info.name, iteration, pass_num); \
2689 \
2690 backend_shader::dump_instructions(filename); \
2691 } \
2692 \
2693 progress = progress || this_progress; \
2694 this_progress; \
2695 })
2696
2697
2698 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2699 char filename[64];
2700 snprintf(filename, 64, "%s-%s-00-00-start",
2701 stage_abbrev, nir->info.name);
2702
2703 backend_shader::dump_instructions(filename);
2704 }
2705
2706 bool progress;
2707 int iteration = 0;
2708 int pass_num = 0;
2709 do {
2710 progress = false;
2711 pass_num = 0;
2712 iteration++;
2713
2714 OPT(opt_predicated_break, this);
2715 OPT(opt_reduce_swizzle);
2716 OPT(dead_code_eliminate);
2717 OPT(dead_control_flow_eliminate, this);
2718 OPT(opt_copy_propagation);
2719 OPT(opt_cmod_propagation);
2720 OPT(opt_cse);
2721 OPT(opt_algebraic);
2722 OPT(opt_register_coalesce);
2723 OPT(eliminate_find_live_channel);
2724 } while (progress);
2725
2726 pass_num = 0;
2727
2728 if (OPT(opt_vector_float)) {
2729 OPT(opt_cse);
2730 OPT(opt_copy_propagation, false);
2731 OPT(opt_copy_propagation, true);
2732 OPT(dead_code_eliminate);
2733 }
2734
2735 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2736 OPT(opt_cmod_propagation);
2737 OPT(opt_cse);
2738 OPT(opt_copy_propagation);
2739 OPT(dead_code_eliminate);
2740 }
2741
2742 if (OPT(lower_simd_width)) {
2743 OPT(opt_copy_propagation);
2744 OPT(dead_code_eliminate);
2745 }
2746
2747 if (failed)
2748 return false;
2749
2750 OPT(lower_64bit_mad_to_mul_add);
2751
2752 /* Run this before payload setup because tesselation shaders
2753 * rely on it to prevent cross dvec2 regioning on DF attributes
2754 * that are setup so that XY are on the second half of register and
2755 * ZW are in the first half of the next.
2756 */
2757 OPT(scalarize_df);
2758
2759 setup_payload();
2760
2761 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2762 /* Debug of register spilling: Go spill everything. */
2763 const int grf_count = alloc.count;
2764 float spill_costs[alloc.count];
2765 bool no_spill[alloc.count];
2766 evaluate_spill_costs(spill_costs, no_spill);
2767 for (int i = 0; i < grf_count; i++) {
2768 if (no_spill[i])
2769 continue;
2770 spill_reg(i);
2771 }
2772
2773 /* We want to run this after spilling because 64-bit (un)spills need to
2774 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2775 * messages that can produce unsupported 64-bit swizzle regions.
2776 */
2777 OPT(scalarize_df);
2778 }
2779
2780 fixup_3src_null_dest();
2781
2782 bool allocated_without_spills = reg_allocate();
2783
2784 if (!allocated_without_spills) {
2785 compiler->shader_perf_log(log_data,
2786 "%s shader triggered register spilling. "
2787 "Try reducing the number of live vec4 values "
2788 "to improve performance.\n",
2789 stage_name);
2790
2791 while (!reg_allocate()) {
2792 if (failed)
2793 return false;
2794 }
2795
2796 /* We want to run this after spilling because 64-bit (un)spills need to
2797 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2798 * messages that can produce unsupported 64-bit swizzle regions.
2799 */
2800 OPT(scalarize_df);
2801 }
2802
2803 opt_schedule_instructions();
2804
2805 opt_set_dependency_control();
2806
2807 convert_to_hw_regs();
2808
2809 if (last_scratch > 0) {
2810 prog_data->base.total_scratch =
2811 brw_get_scratch_size(last_scratch * REG_SIZE);
2812 }
2813
2814 return !failed;
2815 }
2816
2817 } /* namespace brw */
2818
2819 extern "C" {
2820
2821 /**
2822 * Compile a vertex shader.
2823 *
2824 * Returns the final assembly and the program's size.
2825 */
2826 const unsigned *
2827 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2828 void *mem_ctx,
2829 const struct brw_vs_prog_key *key,
2830 struct brw_vs_prog_data *prog_data,
2831 const nir_shader *src_shader,
2832 int shader_time_index,
2833 char **error_str)
2834 {
2835 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2836 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
2837 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
2838
2839 const unsigned *assembly = NULL;
2840
2841 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2842 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2843 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done
2844 * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2845 * ensure that prog_data->inputs_read is accurate.
2846 *
2847 * In order to make late NIR passes aware of the change, we actually
2848 * whack shader->info.inputs_read instead. This is safe because we just
2849 * made a copy of the shader.
2850 */
2851 assert(!is_scalar);
2852 assert(key->copy_edgeflag);
2853 shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2854 }
2855
2856 prog_data->inputs_read = shader->info.inputs_read;
2857 prog_data->double_inputs_read = shader->info.vs.double_inputs;
2858
2859 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags);
2860 brw_nir_lower_vue_outputs(shader);
2861 shader = brw_postprocess_nir(shader, compiler, is_scalar);
2862
2863 prog_data->base.clip_distance_mask =
2864 ((1 << shader->info.clip_distance_array_size) - 1);
2865 prog_data->base.cull_distance_mask =
2866 ((1 << shader->info.cull_distance_array_size) - 1) <<
2867 shader->info.clip_distance_array_size;
2868
2869 unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2870
2871 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2872 * incoming vertex attribute. So, add an extra slot.
2873 */
2874 if (shader->info.system_values_read &
2875 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
2876 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2877 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2878 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2879 nr_attribute_slots++;
2880 }
2881
2882 /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2883 if (shader->info.system_values_read &
2884 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) |
2885 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) {
2886 nr_attribute_slots++;
2887 }
2888
2889 if (shader->info.system_values_read &
2890 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))
2891 prog_data->uses_is_indexed_draw = true;
2892
2893 if (shader->info.system_values_read &
2894 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX))
2895 prog_data->uses_firstvertex = true;
2896
2897 if (shader->info.system_values_read &
2898 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2899 prog_data->uses_baseinstance = true;
2900
2901 if (shader->info.system_values_read &
2902 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2903 prog_data->uses_vertexid = true;
2904
2905 if (shader->info.system_values_read &
2906 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2907 prog_data->uses_instanceid = true;
2908
2909 if (shader->info.system_values_read &
2910 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID))
2911 prog_data->uses_drawid = true;
2912
2913 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2914 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2915 * vec4 mode, the hardware appears to wedge unless we read something.
2916 */
2917 if (is_scalar)
2918 prog_data->base.urb_read_length =
2919 DIV_ROUND_UP(nr_attribute_slots, 2);
2920 else
2921 prog_data->base.urb_read_length =
2922 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2923
2924 prog_data->nr_attribute_slots = nr_attribute_slots;
2925
2926 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2927 * (overwriting the original contents), we need to make sure the size is
2928 * the larger of the two.
2929 */
2930 const unsigned vue_entries =
2931 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2932
2933 if (compiler->devinfo->gen == 6) {
2934 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2935 } else {
2936 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2937 /* On Cannonlake software shall not program an allocation size that
2938 * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
2939 */
2940 if (compiler->devinfo->gen == 10 &&
2941 prog_data->base.urb_entry_size % 3 == 0)
2942 prog_data->base.urb_entry_size++;
2943 }
2944
2945 if (INTEL_DEBUG & DEBUG_VS) {
2946 fprintf(stderr, "VS Output ");
2947 brw_print_vue_map(stderr, &prog_data->base.vue_map);
2948 }
2949
2950 if (is_scalar) {
2951 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2952
2953 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2954 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2955 shader, 8, shader_time_index);
2956 if (!v.run_vs()) {
2957 if (error_str)
2958 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2959
2960 return NULL;
2961 }
2962
2963 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2964
2965 fs_generator g(compiler, log_data, mem_ctx,
2966 &prog_data->base.base, v.promoted_constants,
2967 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2968 if (INTEL_DEBUG & DEBUG_VS) {
2969 const char *debug_name =
2970 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2971 shader->info.label ? shader->info.label :
2972 "unnamed",
2973 shader->info.name);
2974
2975 g.enable_debug(debug_name);
2976 }
2977 g.generate_code(v.cfg, 8);
2978 assembly = g.get_assembly();
2979 }
2980
2981 if (!assembly) {
2982 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2983
2984 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2985 shader, mem_ctx, shader_time_index);
2986 if (!v.run()) {
2987 if (error_str)
2988 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2989
2990 return NULL;
2991 }
2992
2993 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
2994 shader, &prog_data->base, v.cfg);
2995 }
2996
2997 return assembly;
2998 }
2999
3000 } /* extern "C" */