intel/compiler: Pass detailed dependency classes to invalidate_analysis()
[mesa.git] / src / intel / compiler / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_vs.h"
30 #include "brw_dead_control_flow.h"
31 #include "dev/gen_debug.h"
32 #include "program/prog_parameter.h"
33 #include "util/u_math.h"
34
35 #define MAX_INSTRUCTION (1 << 30)
36
37 using namespace brw;
38
39 namespace brw {
40
41 void
42 src_reg::init()
43 {
44 memset((void*)this, 0, sizeof(*this));
45 this->file = BAD_FILE;
46 this->type = BRW_REGISTER_TYPE_UD;
47 }
48
49 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50 {
51 init();
52
53 this->file = file;
54 this->nr = nr;
55 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56 this->swizzle = brw_swizzle_for_size(type->vector_elements);
57 else
58 this->swizzle = BRW_SWIZZLE_XYZW;
59 if (type)
60 this->type = brw_type_for_base_type(type);
61 }
62
63 /** Generic unset register constructor. */
64 src_reg::src_reg()
65 {
66 init();
67 }
68
69 src_reg::src_reg(struct ::brw_reg reg) :
70 backend_reg(reg)
71 {
72 this->offset = 0;
73 this->reladdr = NULL;
74 }
75
76 src_reg::src_reg(const dst_reg &reg) :
77 backend_reg(reg)
78 {
79 this->reladdr = reg.reladdr;
80 this->swizzle = brw_swizzle_for_mask(reg.writemask);
81 }
82
83 void
84 dst_reg::init()
85 {
86 memset((void*)this, 0, sizeof(*this));
87 this->file = BAD_FILE;
88 this->type = BRW_REGISTER_TYPE_UD;
89 this->writemask = WRITEMASK_XYZW;
90 }
91
92 dst_reg::dst_reg()
93 {
94 init();
95 }
96
97 dst_reg::dst_reg(enum brw_reg_file file, int nr)
98 {
99 init();
100
101 this->file = file;
102 this->nr = nr;
103 }
104
105 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
106 unsigned writemask)
107 {
108 init();
109
110 this->file = file;
111 this->nr = nr;
112 this->type = brw_type_for_base_type(type);
113 this->writemask = writemask;
114 }
115
116 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
117 unsigned writemask)
118 {
119 init();
120
121 this->file = file;
122 this->nr = nr;
123 this->type = type;
124 this->writemask = writemask;
125 }
126
127 dst_reg::dst_reg(struct ::brw_reg reg) :
128 backend_reg(reg)
129 {
130 this->offset = 0;
131 this->reladdr = NULL;
132 }
133
134 dst_reg::dst_reg(const src_reg &reg) :
135 backend_reg(reg)
136 {
137 this->writemask = brw_mask_for_swizzle(reg.swizzle);
138 this->reladdr = reg.reladdr;
139 }
140
141 bool
142 dst_reg::equals(const dst_reg &r) const
143 {
144 return (this->backend_reg::equals(r) &&
145 (reladdr == r.reladdr ||
146 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
147 }
148
149 bool
150 vec4_instruction::is_send_from_grf()
151 {
152 switch (opcode) {
153 case SHADER_OPCODE_SHADER_TIME_ADD:
154 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
155 case VEC4_OPCODE_UNTYPED_ATOMIC:
156 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
157 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
158 case VEC4_OPCODE_URB_READ:
159 case TCS_OPCODE_URB_WRITE:
160 case TCS_OPCODE_RELEASE_INPUT:
161 case SHADER_OPCODE_BARRIER:
162 return true;
163 default:
164 return false;
165 }
166 }
167
168 /**
169 * Returns true if this instruction's sources and destinations cannot
170 * safely be the same register.
171 *
172 * In most cases, a register can be written over safely by the same
173 * instruction that is its last use. For a single instruction, the
174 * sources are dereferenced before writing of the destination starts
175 * (naturally).
176 *
177 * However, there are a few cases where this can be problematic:
178 *
179 * - Virtual opcodes that translate to multiple instructions in the
180 * code generator: if src == dst and one instruction writes the
181 * destination before a later instruction reads the source, then
182 * src will have been clobbered.
183 *
184 * The register allocator uses this information to set up conflicts between
185 * GRF sources and the destination.
186 */
187 bool
188 vec4_instruction::has_source_and_destination_hazard() const
189 {
190 switch (opcode) {
191 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
192 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
193 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
194 return true;
195 default:
196 /* 8-wide compressed DF operations are executed as two 4-wide operations,
197 * so we have a src/dst hazard if the first half of the instruction
198 * overwrites the source of the second half. Prevent this by marking
199 * compressed instructions as having src/dst hazards, so the register
200 * allocator assigns safe register regions for dst and srcs.
201 */
202 return size_written > REG_SIZE;
203 }
204 }
205
206 unsigned
207 vec4_instruction::size_read(unsigned arg) const
208 {
209 switch (opcode) {
210 case SHADER_OPCODE_SHADER_TIME_ADD:
211 case VEC4_OPCODE_UNTYPED_ATOMIC:
212 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
213 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
214 case TCS_OPCODE_URB_WRITE:
215 if (arg == 0)
216 return mlen * REG_SIZE;
217 break;
218 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
219 if (arg == 1)
220 return mlen * REG_SIZE;
221 break;
222 default:
223 break;
224 }
225
226 switch (src[arg].file) {
227 case BAD_FILE:
228 return 0;
229 case IMM:
230 case UNIFORM:
231 return 4 * type_sz(src[arg].type);
232 default:
233 /* XXX - Represent actual vertical stride. */
234 return exec_size * type_sz(src[arg].type);
235 }
236 }
237
238 bool
239 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
240 {
241 if (devinfo->gen == 6 && is_math())
242 return false;
243
244 if (is_send_from_grf())
245 return false;
246
247 if (!backend_instruction::can_do_source_mods())
248 return false;
249
250 return true;
251 }
252
253 bool
254 vec4_instruction::can_do_cmod()
255 {
256 if (!backend_instruction::can_do_cmod())
257 return false;
258
259 /* The accumulator result appears to get used for the conditional modifier
260 * generation. When negating a UD value, there is a 33rd bit generated for
261 * the sign in the accumulator value, so now you can't check, for example,
262 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
263 */
264 for (unsigned i = 0; i < 3; i++) {
265 if (src[i].file != BAD_FILE &&
266 type_is_unsigned_int(src[i].type) && src[i].negate)
267 return false;
268 }
269
270 return true;
271 }
272
273 bool
274 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
275 {
276 switch (opcode) {
277 case SHADER_OPCODE_GEN4_SCRATCH_READ:
278 case VEC4_OPCODE_DOUBLE_TO_F32:
279 case VEC4_OPCODE_DOUBLE_TO_D32:
280 case VEC4_OPCODE_DOUBLE_TO_U32:
281 case VEC4_OPCODE_TO_DOUBLE:
282 case VEC4_OPCODE_PICK_LOW_32BIT:
283 case VEC4_OPCODE_PICK_HIGH_32BIT:
284 case VEC4_OPCODE_SET_LOW_32BIT:
285 case VEC4_OPCODE_SET_HIGH_32BIT:
286 case VS_OPCODE_PULL_CONSTANT_LOAD:
287 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
288 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
289 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
290 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
291 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
292 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
293 case VEC4_OPCODE_URB_READ:
294 case SHADER_OPCODE_MOV_INDIRECT:
295 return false;
296 default:
297 /* The MATH instruction on Gen6 only executes in align1 mode, which does
298 * not support writemasking.
299 */
300 if (devinfo->gen == 6 && is_math())
301 return false;
302
303 if (is_tex())
304 return false;
305
306 return true;
307 }
308 }
309
310 bool
311 vec4_instruction::can_change_types() const
312 {
313 return dst.type == src[0].type &&
314 !src[0].abs && !src[0].negate && !saturate &&
315 (opcode == BRW_OPCODE_MOV ||
316 (opcode == BRW_OPCODE_SEL &&
317 dst.type == src[1].type &&
318 predicate != BRW_PREDICATE_NONE &&
319 !src[1].abs && !src[1].negate));
320 }
321
322 /**
323 * Returns how many MRFs an opcode will write over.
324 *
325 * Note that this is not the 0 or 1 implied writes in an actual gen
326 * instruction -- the generate_* functions generate additional MOVs
327 * for setup.
328 */
329 int
330 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
331 {
332 if (inst->mlen == 0 || inst->is_send_from_grf())
333 return 0;
334
335 switch (inst->opcode) {
336 case SHADER_OPCODE_RCP:
337 case SHADER_OPCODE_RSQ:
338 case SHADER_OPCODE_SQRT:
339 case SHADER_OPCODE_EXP2:
340 case SHADER_OPCODE_LOG2:
341 case SHADER_OPCODE_SIN:
342 case SHADER_OPCODE_COS:
343 return 1;
344 case SHADER_OPCODE_INT_QUOTIENT:
345 case SHADER_OPCODE_INT_REMAINDER:
346 case SHADER_OPCODE_POW:
347 case TCS_OPCODE_THREAD_END:
348 return 2;
349 case VS_OPCODE_URB_WRITE:
350 return 1;
351 case VS_OPCODE_PULL_CONSTANT_LOAD:
352 return 2;
353 case SHADER_OPCODE_GEN4_SCRATCH_READ:
354 return 2;
355 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
356 return 3;
357 case GS_OPCODE_URB_WRITE:
358 case GS_OPCODE_URB_WRITE_ALLOCATE:
359 case GS_OPCODE_THREAD_END:
360 return 0;
361 case GS_OPCODE_FF_SYNC:
362 return 1;
363 case TCS_OPCODE_URB_WRITE:
364 return 0;
365 case SHADER_OPCODE_SHADER_TIME_ADD:
366 return 0;
367 case SHADER_OPCODE_TEX:
368 case SHADER_OPCODE_TXL:
369 case SHADER_OPCODE_TXD:
370 case SHADER_OPCODE_TXF:
371 case SHADER_OPCODE_TXF_CMS:
372 case SHADER_OPCODE_TXF_CMS_W:
373 case SHADER_OPCODE_TXF_MCS:
374 case SHADER_OPCODE_TXS:
375 case SHADER_OPCODE_TG4:
376 case SHADER_OPCODE_TG4_OFFSET:
377 case SHADER_OPCODE_SAMPLEINFO:
378 case SHADER_OPCODE_GET_BUFFER_SIZE:
379 return inst->header_size;
380 default:
381 unreachable("not reached");
382 }
383 }
384
385 bool
386 src_reg::equals(const src_reg &r) const
387 {
388 return (this->backend_reg::equals(r) &&
389 !reladdr && !r.reladdr);
390 }
391
392 bool
393 src_reg::negative_equals(const src_reg &r) const
394 {
395 return this->backend_reg::negative_equals(r) &&
396 !reladdr && !r.reladdr;
397 }
398
399 bool
400 vec4_visitor::opt_vector_float()
401 {
402 bool progress = false;
403
404 foreach_block(block, cfg) {
405 unsigned last_reg = ~0u, last_offset = ~0u;
406 enum brw_reg_file last_reg_file = BAD_FILE;
407
408 uint8_t imm[4] = { 0 };
409 int inst_count = 0;
410 vec4_instruction *imm_inst[4];
411 unsigned writemask = 0;
412 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
413
414 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
415 int vf = -1;
416 enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
417
418 /* Look for unconditional MOVs from an immediate with a partial
419 * writemask. Skip type-conversion MOVs other than integer 0,
420 * where the type doesn't matter. See if the immediate can be
421 * represented as a VF.
422 */
423 if (inst->opcode == BRW_OPCODE_MOV &&
424 inst->src[0].file == IMM &&
425 inst->predicate == BRW_PREDICATE_NONE &&
426 inst->dst.writemask != WRITEMASK_XYZW &&
427 type_sz(inst->src[0].type) < 8 &&
428 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
429
430 vf = brw_float_to_vf(inst->src[0].d);
431 need_type = BRW_REGISTER_TYPE_D;
432
433 if (vf == -1) {
434 vf = brw_float_to_vf(inst->src[0].f);
435 need_type = BRW_REGISTER_TYPE_F;
436 }
437 } else {
438 last_reg = ~0u;
439 }
440
441 /* If this wasn't a MOV, or the destination register doesn't match,
442 * or we have to switch destination types, then this breaks our
443 * sequence. Combine anything we've accumulated so far.
444 */
445 if (last_reg != inst->dst.nr ||
446 last_offset != inst->dst.offset ||
447 last_reg_file != inst->dst.file ||
448 (vf > 0 && dest_type != need_type)) {
449
450 if (inst_count > 1) {
451 unsigned vf;
452 memcpy(&vf, imm, sizeof(vf));
453 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
454 mov->dst.type = dest_type;
455 mov->dst.writemask = writemask;
456 inst->insert_before(block, mov);
457
458 for (int i = 0; i < inst_count; i++) {
459 imm_inst[i]->remove(block);
460 }
461
462 progress = true;
463 }
464
465 inst_count = 0;
466 last_reg = ~0u;;
467 writemask = 0;
468 dest_type = BRW_REGISTER_TYPE_F;
469
470 for (int i = 0; i < 4; i++) {
471 imm[i] = 0;
472 }
473 }
474
475 /* Record this instruction's value (if it was representable). */
476 if (vf != -1) {
477 if ((inst->dst.writemask & WRITEMASK_X) != 0)
478 imm[0] = vf;
479 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
480 imm[1] = vf;
481 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
482 imm[2] = vf;
483 if ((inst->dst.writemask & WRITEMASK_W) != 0)
484 imm[3] = vf;
485
486 writemask |= inst->dst.writemask;
487 imm_inst[inst_count++] = inst;
488
489 last_reg = inst->dst.nr;
490 last_offset = inst->dst.offset;
491 last_reg_file = inst->dst.file;
492 if (vf > 0)
493 dest_type = need_type;
494 }
495 }
496 }
497
498 if (progress)
499 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
500
501 return progress;
502 }
503
504 /* Replaces unused channels of a swizzle with channels that are used.
505 *
506 * For instance, this pass transforms
507 *
508 * mov vgrf4.yz, vgrf5.wxzy
509 *
510 * into
511 *
512 * mov vgrf4.yz, vgrf5.xxzx
513 *
514 * This eliminates false uses of some channels, letting dead code elimination
515 * remove the instructions that wrote them.
516 */
517 bool
518 vec4_visitor::opt_reduce_swizzle()
519 {
520 bool progress = false;
521
522 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
523 if (inst->dst.file == BAD_FILE ||
524 inst->dst.file == ARF ||
525 inst->dst.file == FIXED_GRF ||
526 inst->is_send_from_grf())
527 continue;
528
529 unsigned swizzle;
530
531 /* Determine which channels of the sources are read. */
532 switch (inst->opcode) {
533 case VEC4_OPCODE_PACK_BYTES:
534 case BRW_OPCODE_DP4:
535 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
536 * but all four of src1.
537 */
538 swizzle = brw_swizzle_for_size(4);
539 break;
540 case BRW_OPCODE_DP3:
541 swizzle = brw_swizzle_for_size(3);
542 break;
543 case BRW_OPCODE_DP2:
544 swizzle = brw_swizzle_for_size(2);
545 break;
546
547 case VEC4_OPCODE_TO_DOUBLE:
548 case VEC4_OPCODE_DOUBLE_TO_F32:
549 case VEC4_OPCODE_DOUBLE_TO_D32:
550 case VEC4_OPCODE_DOUBLE_TO_U32:
551 case VEC4_OPCODE_PICK_LOW_32BIT:
552 case VEC4_OPCODE_PICK_HIGH_32BIT:
553 case VEC4_OPCODE_SET_LOW_32BIT:
554 case VEC4_OPCODE_SET_HIGH_32BIT:
555 swizzle = brw_swizzle_for_size(4);
556 break;
557
558 default:
559 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
560 break;
561 }
562
563 /* Update sources' swizzles. */
564 for (int i = 0; i < 3; i++) {
565 if (inst->src[i].file != VGRF &&
566 inst->src[i].file != ATTR &&
567 inst->src[i].file != UNIFORM)
568 continue;
569
570 const unsigned new_swizzle =
571 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
572 if (inst->src[i].swizzle != new_swizzle) {
573 inst->src[i].swizzle = new_swizzle;
574 progress = true;
575 }
576 }
577 }
578
579 if (progress)
580 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
581
582 return progress;
583 }
584
585 void
586 vec4_visitor::split_uniform_registers()
587 {
588 /* Prior to this, uniforms have been in an array sized according to
589 * the number of vector uniforms present, sparsely filled (so an
590 * aggregate results in reg indices being skipped over). Now we're
591 * going to cut those aggregates up so each .nr index is one
592 * vector. The goal is to make elimination of unused uniform
593 * components easier later.
594 */
595 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
596 for (int i = 0 ; i < 3; i++) {
597 if (inst->src[i].file != UNIFORM)
598 continue;
599
600 assert(!inst->src[i].reladdr);
601
602 inst->src[i].nr += inst->src[i].offset / 16;
603 inst->src[i].offset %= 16;
604 }
605 }
606 }
607
608 /* This function returns the register number where we placed the uniform */
609 static int
610 set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
611 const int src, const int size, const int channel_size,
612 int *new_loc, int *new_chan,
613 int *new_chans_used)
614 {
615 int dst;
616 /* Find the lowest place we can slot this uniform in. */
617 for (dst = 0; dst < nr_uniforms; dst++) {
618 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
619 break;
620 }
621
622 assert(dst < nr_uniforms);
623
624 new_loc[src] = dst;
625 new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
626 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
627
628 *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
629 return dst;
630 }
631
632 void
633 vec4_visitor::pack_uniform_registers()
634 {
635 if (!compiler->compact_params)
636 return;
637
638 uint8_t chans_used[this->uniforms];
639 int new_loc[this->uniforms];
640 int new_chan[this->uniforms];
641 bool is_aligned_to_dvec4[this->uniforms];
642 int new_chans_used[this->uniforms];
643 int channel_sizes[this->uniforms];
644
645 memset(chans_used, 0, sizeof(chans_used));
646 memset(new_loc, 0, sizeof(new_loc));
647 memset(new_chan, 0, sizeof(new_chan));
648 memset(new_chans_used, 0, sizeof(new_chans_used));
649 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
650 memset(channel_sizes, 0, sizeof(channel_sizes));
651
652 /* Find which uniform vectors are actually used by the program. We
653 * expect unused vector elements when we've moved array access out
654 * to pull constants, and from some GLSL code generators like wine.
655 */
656 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
657 unsigned readmask;
658 switch (inst->opcode) {
659 case VEC4_OPCODE_PACK_BYTES:
660 case BRW_OPCODE_DP4:
661 case BRW_OPCODE_DPH:
662 readmask = 0xf;
663 break;
664 case BRW_OPCODE_DP3:
665 readmask = 0x7;
666 break;
667 case BRW_OPCODE_DP2:
668 readmask = 0x3;
669 break;
670 default:
671 readmask = inst->dst.writemask;
672 break;
673 }
674
675 for (int i = 0 ; i < 3; i++) {
676 if (inst->src[i].file != UNIFORM)
677 continue;
678
679 assert(type_sz(inst->src[i].type) % 4 == 0);
680 int channel_size = type_sz(inst->src[i].type) / 4;
681
682 int reg = inst->src[i].nr;
683 for (int c = 0; c < 4; c++) {
684 if (!(readmask & (1 << c)))
685 continue;
686
687 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
688 unsigned used = MAX2(chans_used[reg], channel * channel_size);
689 if (used <= 4) {
690 chans_used[reg] = used;
691 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
692 } else {
693 is_aligned_to_dvec4[reg] = true;
694 is_aligned_to_dvec4[reg + 1] = true;
695 chans_used[reg + 1] = used - 4;
696 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
697 }
698 }
699 }
700
701 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
702 inst->src[0].file == UNIFORM) {
703 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
704 assert(inst->src[0].subnr == 0);
705
706 unsigned bytes_read = inst->src[2].ud;
707 assert(bytes_read % 4 == 0);
708 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
709
710 /* We just mark every register touched by a MOV_INDIRECT as being
711 * fully used. This ensures that it doesn't broken up piecewise by
712 * the next part of our packing algorithm.
713 */
714 int reg = inst->src[0].nr;
715 int channel_size = type_sz(inst->src[0].type) / 4;
716 for (unsigned i = 0; i < vec4s_read; i++) {
717 chans_used[reg + i] = 4;
718 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
719 }
720 }
721 }
722
723 int new_uniform_count = 0;
724
725 /* As the uniforms are going to be reordered, take the data from a temporary
726 * copy of the original param[].
727 */
728 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
729 memcpy(param, stage_prog_data->param,
730 sizeof(uint32_t) * stage_prog_data->nr_params);
731
732 /* Now, figure out a packing of the live uniform vectors into our
733 * push constants. Start with dvec{3,4} because they are aligned to
734 * dvec4 size (2 vec4).
735 */
736 for (int src = 0; src < uniforms; src++) {
737 int size = chans_used[src];
738
739 if (size == 0 || !is_aligned_to_dvec4[src])
740 continue;
741
742 /* dvec3 are aligned to dvec4 size, apply the alignment of the size
743 * to 4 to avoid moving last component of a dvec3 to the available
744 * location at the end of a previous dvec3. These available locations
745 * could be filled by smaller variables in next loop.
746 */
747 size = ALIGN(size, 4);
748 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
749 src, size, channel_sizes[src],
750 new_loc, new_chan,
751 new_chans_used);
752 /* Move the references to the data */
753 for (int j = 0; j < size; j++) {
754 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
755 param[src * 4 + j];
756 }
757 }
758
759 /* Continue with the rest of data, which is aligned to vec4. */
760 for (int src = 0; src < uniforms; src++) {
761 int size = chans_used[src];
762
763 if (size == 0 || is_aligned_to_dvec4[src])
764 continue;
765
766 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
767 src, size, channel_sizes[src],
768 new_loc, new_chan,
769 new_chans_used);
770 /* Move the references to the data */
771 for (int j = 0; j < size; j++) {
772 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
773 param[src * 4 + j];
774 }
775 }
776
777 ralloc_free(param);
778 this->uniforms = new_uniform_count;
779
780 /* Now, update the instructions for our repacked uniforms. */
781 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
782 for (int i = 0 ; i < 3; i++) {
783 int src = inst->src[i].nr;
784
785 if (inst->src[i].file != UNIFORM)
786 continue;
787
788 int chan = new_chan[src] / channel_sizes[src];
789 inst->src[i].nr = new_loc[src];
790 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
791 }
792 }
793 }
794
795 /**
796 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
797 *
798 * While GLSL IR also performs this optimization, we end up with it in
799 * our instruction stream for a couple of reasons. One is that we
800 * sometimes generate silly instructions, for example in array access
801 * where we'll generate "ADD offset, index, base" even if base is 0.
802 * The other is that GLSL IR's constant propagation doesn't track the
803 * components of aggregates, so some VS patterns (initialize matrix to
804 * 0, accumulate in vertex blending factors) end up breaking down to
805 * instructions involving 0.
806 */
807 bool
808 vec4_visitor::opt_algebraic()
809 {
810 bool progress = false;
811
812 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
813 switch (inst->opcode) {
814 case BRW_OPCODE_MOV:
815 if (inst->src[0].file != IMM)
816 break;
817
818 if (inst->saturate) {
819 /* Full mixed-type saturates don't happen. However, we can end up
820 * with things like:
821 *
822 * mov.sat(8) g21<1>DF -1F
823 *
824 * Other mixed-size-but-same-base-type cases may also be possible.
825 */
826 if (inst->dst.type != inst->src[0].type &&
827 inst->dst.type != BRW_REGISTER_TYPE_DF &&
828 inst->src[0].type != BRW_REGISTER_TYPE_F)
829 assert(!"unimplemented: saturate mixed types");
830
831 if (brw_saturate_immediate(inst->src[0].type,
832 &inst->src[0].as_brw_reg())) {
833 inst->saturate = false;
834 progress = true;
835 }
836 }
837 break;
838
839 case BRW_OPCODE_OR:
840 if (inst->src[1].is_zero()) {
841 inst->opcode = BRW_OPCODE_MOV;
842 inst->src[1] = src_reg();
843 progress = true;
844 }
845 break;
846
847 case VEC4_OPCODE_UNPACK_UNIFORM:
848 if (inst->src[0].file != UNIFORM) {
849 inst->opcode = BRW_OPCODE_MOV;
850 progress = true;
851 }
852 break;
853
854 case BRW_OPCODE_ADD:
855 if (inst->src[1].is_zero()) {
856 inst->opcode = BRW_OPCODE_MOV;
857 inst->src[1] = src_reg();
858 progress = true;
859 }
860 break;
861
862 case BRW_OPCODE_MUL:
863 if (inst->src[1].is_zero()) {
864 inst->opcode = BRW_OPCODE_MOV;
865 switch (inst->src[0].type) {
866 case BRW_REGISTER_TYPE_F:
867 inst->src[0] = brw_imm_f(0.0f);
868 break;
869 case BRW_REGISTER_TYPE_D:
870 inst->src[0] = brw_imm_d(0);
871 break;
872 case BRW_REGISTER_TYPE_UD:
873 inst->src[0] = brw_imm_ud(0u);
874 break;
875 default:
876 unreachable("not reached");
877 }
878 inst->src[1] = src_reg();
879 progress = true;
880 } else if (inst->src[1].is_one()) {
881 inst->opcode = BRW_OPCODE_MOV;
882 inst->src[1] = src_reg();
883 progress = true;
884 } else if (inst->src[1].is_negative_one()) {
885 inst->opcode = BRW_OPCODE_MOV;
886 inst->src[0].negate = !inst->src[0].negate;
887 inst->src[1] = src_reg();
888 progress = true;
889 }
890 break;
891 case SHADER_OPCODE_BROADCAST:
892 if (is_uniform(inst->src[0]) ||
893 inst->src[1].is_zero()) {
894 inst->opcode = BRW_OPCODE_MOV;
895 inst->src[1] = src_reg();
896 inst->force_writemask_all = true;
897 progress = true;
898 }
899 break;
900
901 default:
902 break;
903 }
904 }
905
906 if (progress)
907 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
908 DEPENDENCY_INSTRUCTION_DETAIL);
909
910 return progress;
911 }
912
913 /**
914 * Only a limited number of hardware registers may be used for push
915 * constants, so this turns access to the overflowed constants into
916 * pull constants.
917 */
918 void
919 vec4_visitor::move_push_constants_to_pull_constants()
920 {
921 int pull_constant_loc[this->uniforms];
922
923 /* Only allow 32 registers (256 uniform components) as push constants,
924 * which is the limit on gen6.
925 *
926 * If changing this value, note the limitation about total_regs in
927 * brw_curbe.c.
928 */
929 int max_uniform_components = 32 * 8;
930 if (this->uniforms * 4 <= max_uniform_components)
931 return;
932
933 /* Make some sort of choice as to which uniforms get sent to pull
934 * constants. We could potentially do something clever here like
935 * look for the most infrequently used uniform vec4s, but leave
936 * that for later.
937 */
938 for (int i = 0; i < this->uniforms * 4; i += 4) {
939 pull_constant_loc[i / 4] = -1;
940
941 if (i >= max_uniform_components) {
942 uint32_t *values = &stage_prog_data->param[i];
943
944 /* Try to find an existing copy of this uniform in the pull
945 * constants if it was part of an array access already.
946 */
947 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
948 int matches;
949
950 for (matches = 0; matches < 4; matches++) {
951 if (stage_prog_data->pull_param[j + matches] != values[matches])
952 break;
953 }
954
955 if (matches == 4) {
956 pull_constant_loc[i / 4] = j / 4;
957 break;
958 }
959 }
960
961 if (pull_constant_loc[i / 4] == -1) {
962 assert(stage_prog_data->nr_pull_params % 4 == 0);
963 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
964
965 for (int j = 0; j < 4; j++) {
966 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
967 values[j];
968 }
969 }
970 }
971 }
972
973 /* Now actually rewrite usage of the things we've moved to pull
974 * constants.
975 */
976 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
977 for (int i = 0 ; i < 3; i++) {
978 if (inst->src[i].file != UNIFORM ||
979 pull_constant_loc[inst->src[i].nr] == -1)
980 continue;
981
982 int uniform = inst->src[i].nr;
983
984 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
985 glsl_type::dvec4_type : glsl_type::vec4_type;
986 dst_reg temp = dst_reg(this, temp_type);
987
988 emit_pull_constant_load(block, inst, temp, inst->src[i],
989 pull_constant_loc[uniform], src_reg());
990
991 inst->src[i].file = temp.file;
992 inst->src[i].nr = temp.nr;
993 inst->src[i].offset %= 16;
994 inst->src[i].reladdr = NULL;
995 }
996 }
997
998 /* Repack push constants to remove the now-unused ones. */
999 pack_uniform_registers();
1000 }
1001
1002 /* Conditions for which we want to avoid setting the dependency control bits */
1003 bool
1004 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1005 {
1006 #define IS_DWORD(reg) \
1007 (reg.type == BRW_REGISTER_TYPE_UD || \
1008 reg.type == BRW_REGISTER_TYPE_D)
1009
1010 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1011
1012 /* From the Cherryview and Broadwell PRMs:
1013 *
1014 * "When source or destination datatype is 64b or operation is integer DWord
1015 * multiply, DepCtrl must not be used."
1016 *
1017 * SKL PRMs don't include this restriction, however, gen7 seems to be
1018 * affected, at least by the 64b restriction, since DepCtrl with double
1019 * precision instructions seems to produce GPU hangs in some cases.
1020 */
1021 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) {
1022 if (inst->opcode == BRW_OPCODE_MUL &&
1023 IS_DWORD(inst->src[0]) &&
1024 IS_DWORD(inst->src[1]))
1025 return true;
1026 }
1027
1028 if (devinfo->gen >= 7 && devinfo->gen <= 8) {
1029 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1030 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1031 return true;
1032 }
1033
1034 #undef IS_64BIT
1035 #undef IS_DWORD
1036
1037 if (devinfo->gen >= 8) {
1038 if (inst->opcode == BRW_OPCODE_F32TO16)
1039 return true;
1040 }
1041
1042 /*
1043 * mlen:
1044 * In the presence of send messages, totally interrupt dependency
1045 * control. They're long enough that the chance of dependency
1046 * control around them just doesn't matter.
1047 *
1048 * predicate:
1049 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1050 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1051 * completes the scoreboard clear must have a non-zero execution mask. This
1052 * means, if any kind of predication can change the execution mask or channel
1053 * enable of the last instruction, the optimization must be avoided. This is
1054 * to avoid instructions being shot down the pipeline when no writes are
1055 * required.
1056 *
1057 * math:
1058 * Dependency control does not work well over math instructions.
1059 * NB: Discovered empirically
1060 */
1061 return (inst->mlen || inst->predicate || inst->is_math());
1062 }
1063
1064 /**
1065 * Sets the dependency control fields on instructions after register
1066 * allocation and before the generator is run.
1067 *
1068 * When you have a sequence of instructions like:
1069 *
1070 * DP4 temp.x vertex uniform[0]
1071 * DP4 temp.y vertex uniform[0]
1072 * DP4 temp.z vertex uniform[0]
1073 * DP4 temp.w vertex uniform[0]
1074 *
1075 * The hardware doesn't know that it can actually run the later instructions
1076 * while the previous ones are in flight, producing stalls. However, we have
1077 * manual fields we can set in the instructions that let it do so.
1078 */
1079 void
1080 vec4_visitor::opt_set_dependency_control()
1081 {
1082 vec4_instruction *last_grf_write[BRW_MAX_GRF];
1083 uint8_t grf_channels_written[BRW_MAX_GRF];
1084 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1085 uint8_t mrf_channels_written[BRW_MAX_GRF];
1086
1087 assert(prog_data->total_grf ||
1088 !"Must be called after register allocation");
1089
1090 foreach_block (block, cfg) {
1091 memset(last_grf_write, 0, sizeof(last_grf_write));
1092 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1093
1094 foreach_inst_in_block (vec4_instruction, inst, block) {
1095 /* If we read from a register that we were doing dependency control
1096 * on, don't do dependency control across the read.
1097 */
1098 for (int i = 0; i < 3; i++) {
1099 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1100 if (inst->src[i].file == VGRF) {
1101 last_grf_write[reg] = NULL;
1102 } else if (inst->src[i].file == FIXED_GRF) {
1103 memset(last_grf_write, 0, sizeof(last_grf_write));
1104 break;
1105 }
1106 assert(inst->src[i].file != MRF);
1107 }
1108
1109 if (is_dep_ctrl_unsafe(inst)) {
1110 memset(last_grf_write, 0, sizeof(last_grf_write));
1111 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1112 continue;
1113 }
1114
1115 /* Now, see if we can do dependency control for this instruction
1116 * against a previous one writing to its destination.
1117 */
1118 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1119 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1120 if (last_grf_write[reg] &&
1121 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1122 !(inst->dst.writemask & grf_channels_written[reg])) {
1123 last_grf_write[reg]->no_dd_clear = true;
1124 inst->no_dd_check = true;
1125 } else {
1126 grf_channels_written[reg] = 0;
1127 }
1128
1129 last_grf_write[reg] = inst;
1130 grf_channels_written[reg] |= inst->dst.writemask;
1131 } else if (inst->dst.file == MRF) {
1132 if (last_mrf_write[reg] &&
1133 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1134 !(inst->dst.writemask & mrf_channels_written[reg])) {
1135 last_mrf_write[reg]->no_dd_clear = true;
1136 inst->no_dd_check = true;
1137 } else {
1138 mrf_channels_written[reg] = 0;
1139 }
1140
1141 last_mrf_write[reg] = inst;
1142 mrf_channels_written[reg] |= inst->dst.writemask;
1143 }
1144 }
1145 }
1146 }
1147
1148 bool
1149 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1150 int dst_writemask,
1151 int swizzle,
1152 int swizzle_mask)
1153 {
1154 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1155 * are not allowed.
1156 */
1157 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1158 return false;
1159
1160 /* If we write to the flag register changing the swizzle would change
1161 * what channels are written to the flag register.
1162 */
1163 if (writes_flag())
1164 return false;
1165
1166 /* We can't swizzle implicit accumulator access. We'd have to
1167 * reswizzle the producer of the accumulator value in addition
1168 * to the consumer (i.e. both MUL and MACH). Just skip this.
1169 */
1170 if (reads_accumulator_implicitly())
1171 return false;
1172
1173 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1174 return false;
1175
1176 /* If this instruction sets anything not referenced by swizzle, then we'd
1177 * totally break it when we reswizzle.
1178 */
1179 if (dst.writemask & ~swizzle_mask)
1180 return false;
1181
1182 if (mlen > 0)
1183 return false;
1184
1185 for (int i = 0; i < 3; i++) {
1186 if (src[i].is_accumulator())
1187 return false;
1188 }
1189
1190 return true;
1191 }
1192
1193 /**
1194 * For any channels in the swizzle's source that were populated by this
1195 * instruction, rewrite the instruction to put the appropriate result directly
1196 * in those channels.
1197 *
1198 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1199 */
1200 void
1201 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1202 {
1203 /* Destination write mask doesn't correspond to source swizzle for the dot
1204 * product and pack_bytes instructions.
1205 */
1206 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1207 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1208 opcode != VEC4_OPCODE_PACK_BYTES) {
1209 for (int i = 0; i < 3; i++) {
1210 if (src[i].file == BAD_FILE)
1211 continue;
1212
1213 if (src[i].file == IMM) {
1214 assert(src[i].type != BRW_REGISTER_TYPE_V &&
1215 src[i].type != BRW_REGISTER_TYPE_UV);
1216
1217 /* Vector immediate types need to be reswizzled. */
1218 if (src[i].type == BRW_REGISTER_TYPE_VF) {
1219 const unsigned imm[] = {
1220 (src[i].ud >> 0) & 0x0ff,
1221 (src[i].ud >> 8) & 0x0ff,
1222 (src[i].ud >> 16) & 0x0ff,
1223 (src[i].ud >> 24) & 0x0ff,
1224 };
1225
1226 src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
1227 imm[BRW_GET_SWZ(swizzle, 1)],
1228 imm[BRW_GET_SWZ(swizzle, 2)],
1229 imm[BRW_GET_SWZ(swizzle, 3)]);
1230 }
1231
1232 continue;
1233 }
1234
1235 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1236 }
1237 }
1238
1239 /* Apply the specified swizzle and writemask to the original mask of
1240 * written components.
1241 */
1242 dst.writemask = dst_writemask &
1243 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1244 }
1245
1246 /*
1247 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1248 * just written and then MOVed into another reg and making the original write
1249 * of the GRF write directly to the final destination instead.
1250 */
1251 bool
1252 vec4_visitor::opt_register_coalesce()
1253 {
1254 bool progress = false;
1255 int next_ip = 0;
1256
1257 calculate_live_intervals();
1258
1259 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1260 int ip = next_ip;
1261 next_ip++;
1262
1263 if (inst->opcode != BRW_OPCODE_MOV ||
1264 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1265 inst->predicate ||
1266 inst->src[0].file != VGRF ||
1267 inst->dst.type != inst->src[0].type ||
1268 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1269 continue;
1270
1271 /* Remove no-op MOVs */
1272 if (inst->dst.file == inst->src[0].file &&
1273 inst->dst.nr == inst->src[0].nr &&
1274 inst->dst.offset == inst->src[0].offset) {
1275 bool is_nop_mov = true;
1276
1277 for (unsigned c = 0; c < 4; c++) {
1278 if ((inst->dst.writemask & (1 << c)) == 0)
1279 continue;
1280
1281 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1282 is_nop_mov = false;
1283 break;
1284 }
1285 }
1286
1287 if (is_nop_mov) {
1288 inst->remove(block);
1289 progress = true;
1290 continue;
1291 }
1292 }
1293
1294 bool to_mrf = (inst->dst.file == MRF);
1295
1296 /* Can't coalesce this GRF if someone else was going to
1297 * read it later.
1298 */
1299 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1300 continue;
1301
1302 /* We need to check interference with the final destination between this
1303 * instruction and the earliest instruction involved in writing the GRF
1304 * we're eliminating. To do that, keep track of which of our source
1305 * channels we've seen initialized.
1306 */
1307 const unsigned chans_needed =
1308 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1309 inst->dst.writemask);
1310 unsigned chans_remaining = chans_needed;
1311
1312 /* Now walk up the instruction stream trying to see if we can rewrite
1313 * everything writing to the temporary to write into the destination
1314 * instead.
1315 */
1316 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1317 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1318 inst) {
1319 _scan_inst = scan_inst;
1320
1321 if (regions_overlap(inst->src[0], inst->size_read(0),
1322 scan_inst->dst, scan_inst->size_written)) {
1323 /* Found something writing to the reg we want to coalesce away. */
1324 if (to_mrf) {
1325 /* SEND instructions can't have MRF as a destination. */
1326 if (scan_inst->mlen)
1327 break;
1328
1329 if (devinfo->gen == 6) {
1330 /* gen6 math instructions must have the destination be
1331 * VGRF, so no compute-to-MRF for them.
1332 */
1333 if (scan_inst->is_math()) {
1334 break;
1335 }
1336 }
1337 }
1338
1339 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1340 * instructions, and this optimization pass is not capable of
1341 * handling that. Bail on these instructions and hope that some
1342 * later optimization pass can do the right thing after they are
1343 * expanded.
1344 */
1345 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1346 break;
1347
1348 /* This doesn't handle saturation on the instruction we
1349 * want to coalesce away if the register types do not match.
1350 * But if scan_inst is a non type-converting 'mov', we can fix
1351 * the types later.
1352 */
1353 if (inst->saturate &&
1354 inst->dst.type != scan_inst->dst.type &&
1355 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1356 scan_inst->dst.type == scan_inst->src[0].type))
1357 break;
1358
1359 /* Only allow coalescing between registers of the same type size.
1360 * Otherwise we would need to make the pass aware of the fact that
1361 * channel sizes are different for single and double precision.
1362 */
1363 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1364 break;
1365
1366 /* Check that scan_inst writes the same amount of data as the
1367 * instruction, otherwise coalescing would lead to writing a
1368 * different (larger or smaller) region of the destination
1369 */
1370 if (scan_inst->size_written != inst->size_written)
1371 break;
1372
1373 /* If we can't handle the swizzle, bail. */
1374 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1375 inst->src[0].swizzle,
1376 chans_needed)) {
1377 break;
1378 }
1379
1380 /* This only handles coalescing writes of 8 channels (1 register
1381 * for single-precision and 2 registers for double-precision)
1382 * starting at the source offset of the copy instruction.
1383 */
1384 if (DIV_ROUND_UP(scan_inst->size_written,
1385 type_sz(scan_inst->dst.type)) > 8 ||
1386 scan_inst->dst.offset != inst->src[0].offset)
1387 break;
1388
1389 /* Mark which channels we found unconditional writes for. */
1390 if (!scan_inst->predicate)
1391 chans_remaining &= ~scan_inst->dst.writemask;
1392
1393 if (chans_remaining == 0)
1394 break;
1395 }
1396
1397 /* You can't read from an MRF, so if someone else reads our MRF's
1398 * source GRF that we wanted to rewrite, that stops us. If it's a
1399 * GRF we're trying to coalesce to, we don't actually handle
1400 * rewriting sources so bail in that case as well.
1401 */
1402 bool interfered = false;
1403 for (int i = 0; i < 3; i++) {
1404 if (regions_overlap(inst->src[0], inst->size_read(0),
1405 scan_inst->src[i], scan_inst->size_read(i)))
1406 interfered = true;
1407 }
1408 if (interfered)
1409 break;
1410
1411 /* If somebody else writes the same channels of our destination here,
1412 * we can't coalesce before that.
1413 */
1414 if (regions_overlap(inst->dst, inst->size_written,
1415 scan_inst->dst, scan_inst->size_written) &&
1416 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1417 break;
1418 }
1419
1420 /* Check for reads of the register we're trying to coalesce into. We
1421 * can't go rewriting instructions above that to put some other value
1422 * in the register instead.
1423 */
1424 if (to_mrf && scan_inst->mlen > 0) {
1425 unsigned start = scan_inst->base_mrf;
1426 unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1427
1428 if (inst->dst.nr >= start && inst->dst.nr < end) {
1429 break;
1430 }
1431 } else {
1432 for (int i = 0; i < 3; i++) {
1433 if (regions_overlap(inst->dst, inst->size_written,
1434 scan_inst->src[i], scan_inst->size_read(i)))
1435 interfered = true;
1436 }
1437 if (interfered)
1438 break;
1439 }
1440 }
1441
1442 if (chans_remaining == 0) {
1443 /* If we've made it here, we have an MOV we want to coalesce out, and
1444 * a scan_inst pointing to the earliest instruction involved in
1445 * computing the value. Now go rewrite the instruction stream
1446 * between the two.
1447 */
1448 vec4_instruction *scan_inst = _scan_inst;
1449 while (scan_inst != inst) {
1450 if (scan_inst->dst.file == VGRF &&
1451 scan_inst->dst.nr == inst->src[0].nr &&
1452 scan_inst->dst.offset == inst->src[0].offset) {
1453 scan_inst->reswizzle(inst->dst.writemask,
1454 inst->src[0].swizzle);
1455 scan_inst->dst.file = inst->dst.file;
1456 scan_inst->dst.nr = inst->dst.nr;
1457 scan_inst->dst.offset = inst->dst.offset;
1458 if (inst->saturate &&
1459 inst->dst.type != scan_inst->dst.type) {
1460 /* If we have reached this point, scan_inst is a non
1461 * type-converting 'mov' and we can modify its register types
1462 * to match the ones in inst. Otherwise, we could have an
1463 * incorrect saturation result.
1464 */
1465 scan_inst->dst.type = inst->dst.type;
1466 scan_inst->src[0].type = inst->src[0].type;
1467 }
1468 scan_inst->saturate |= inst->saturate;
1469 }
1470 scan_inst = (vec4_instruction *)scan_inst->next;
1471 }
1472 inst->remove(block);
1473 progress = true;
1474 }
1475 }
1476
1477 if (progress)
1478 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1479
1480 return progress;
1481 }
1482
1483 /**
1484 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1485 * flow. We could probably do better here with some form of divergence
1486 * analysis.
1487 */
1488 bool
1489 vec4_visitor::eliminate_find_live_channel()
1490 {
1491 bool progress = false;
1492 unsigned depth = 0;
1493
1494 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1495 /* The optimization below assumes that channel zero is live on thread
1496 * dispatch, which may not be the case if the fixed function dispatches
1497 * threads sparsely.
1498 */
1499 return false;
1500 }
1501
1502 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1503 switch (inst->opcode) {
1504 case BRW_OPCODE_IF:
1505 case BRW_OPCODE_DO:
1506 depth++;
1507 break;
1508
1509 case BRW_OPCODE_ENDIF:
1510 case BRW_OPCODE_WHILE:
1511 depth--;
1512 break;
1513
1514 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1515 if (depth == 0) {
1516 inst->opcode = BRW_OPCODE_MOV;
1517 inst->src[0] = brw_imm_d(0);
1518 inst->force_writemask_all = true;
1519 progress = true;
1520 }
1521 break;
1522
1523 default:
1524 break;
1525 }
1526 }
1527
1528 if (progress)
1529 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
1530
1531 return progress;
1532 }
1533
1534 /**
1535 * Splits virtual GRFs requesting more than one contiguous physical register.
1536 *
1537 * We initially create large virtual GRFs for temporary structures, arrays,
1538 * and matrices, so that the visitor functions can add offsets to work their
1539 * way down to the actual member being accessed. But when it comes to
1540 * optimization, we'd like to treat each register as individual storage if
1541 * possible.
1542 *
1543 * So far, the only thing that might prevent splitting is a send message from
1544 * a GRF on IVB.
1545 */
1546 void
1547 vec4_visitor::split_virtual_grfs()
1548 {
1549 int num_vars = this->alloc.count;
1550 int new_virtual_grf[num_vars];
1551 bool split_grf[num_vars];
1552
1553 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1554
1555 /* Try to split anything > 0 sized. */
1556 for (int i = 0; i < num_vars; i++) {
1557 split_grf[i] = this->alloc.sizes[i] != 1;
1558 }
1559
1560 /* Check that the instructions are compatible with the registers we're trying
1561 * to split.
1562 */
1563 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1564 if (inst->dst.file == VGRF && regs_written(inst) > 1)
1565 split_grf[inst->dst.nr] = false;
1566
1567 for (int i = 0; i < 3; i++) {
1568 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1569 split_grf[inst->src[i].nr] = false;
1570 }
1571 }
1572
1573 /* Allocate new space for split regs. Note that the virtual
1574 * numbers will be contiguous.
1575 */
1576 for (int i = 0; i < num_vars; i++) {
1577 if (!split_grf[i])
1578 continue;
1579
1580 new_virtual_grf[i] = alloc.allocate(1);
1581 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1582 unsigned reg = alloc.allocate(1);
1583 assert(reg == new_virtual_grf[i] + j - 1);
1584 (void) reg;
1585 }
1586 this->alloc.sizes[i] = 1;
1587 }
1588
1589 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1590 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1591 inst->dst.offset / REG_SIZE != 0) {
1592 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1593 inst->dst.offset / REG_SIZE - 1);
1594 inst->dst.offset %= REG_SIZE;
1595 }
1596 for (int i = 0; i < 3; i++) {
1597 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1598 inst->src[i].offset / REG_SIZE != 0) {
1599 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1600 inst->src[i].offset / REG_SIZE - 1);
1601 inst->src[i].offset %= REG_SIZE;
1602 }
1603 }
1604 }
1605 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
1606 }
1607
1608 void
1609 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1610 {
1611 dump_instruction(be_inst, stderr);
1612 }
1613
1614 void
1615 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1616 {
1617 vec4_instruction *inst = (vec4_instruction *)be_inst;
1618
1619 if (inst->predicate) {
1620 fprintf(file, "(%cf%d.%d%s) ",
1621 inst->predicate_inverse ? '-' : '+',
1622 inst->flag_subreg / 2,
1623 inst->flag_subreg % 2,
1624 pred_ctrl_align16[inst->predicate]);
1625 }
1626
1627 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1628 inst->exec_size);
1629 if (inst->saturate)
1630 fprintf(file, ".sat");
1631 if (inst->conditional_mod) {
1632 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1633 if (!inst->predicate &&
1634 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1635 inst->opcode != BRW_OPCODE_CSEL &&
1636 inst->opcode != BRW_OPCODE_IF &&
1637 inst->opcode != BRW_OPCODE_WHILE))) {
1638 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1639 }
1640 }
1641 fprintf(file, " ");
1642
1643 switch (inst->dst.file) {
1644 case VGRF:
1645 fprintf(file, "vgrf%d", inst->dst.nr);
1646 break;
1647 case FIXED_GRF:
1648 fprintf(file, "g%d", inst->dst.nr);
1649 break;
1650 case MRF:
1651 fprintf(file, "m%d", inst->dst.nr);
1652 break;
1653 case ARF:
1654 switch (inst->dst.nr) {
1655 case BRW_ARF_NULL:
1656 fprintf(file, "null");
1657 break;
1658 case BRW_ARF_ADDRESS:
1659 fprintf(file, "a0.%d", inst->dst.subnr);
1660 break;
1661 case BRW_ARF_ACCUMULATOR:
1662 fprintf(file, "acc%d", inst->dst.subnr);
1663 break;
1664 case BRW_ARF_FLAG:
1665 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1666 break;
1667 default:
1668 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1669 break;
1670 }
1671 break;
1672 case BAD_FILE:
1673 fprintf(file, "(null)");
1674 break;
1675 case IMM:
1676 case ATTR:
1677 case UNIFORM:
1678 unreachable("not reached");
1679 }
1680 if (inst->dst.offset ||
1681 (inst->dst.file == VGRF &&
1682 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1683 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1684 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1685 inst->dst.offset % reg_size);
1686 }
1687 if (inst->dst.writemask != WRITEMASK_XYZW) {
1688 fprintf(file, ".");
1689 if (inst->dst.writemask & 1)
1690 fprintf(file, "x");
1691 if (inst->dst.writemask & 2)
1692 fprintf(file, "y");
1693 if (inst->dst.writemask & 4)
1694 fprintf(file, "z");
1695 if (inst->dst.writemask & 8)
1696 fprintf(file, "w");
1697 }
1698 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1699
1700 if (inst->src[0].file != BAD_FILE)
1701 fprintf(file, ", ");
1702
1703 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1704 if (inst->src[i].negate)
1705 fprintf(file, "-");
1706 if (inst->src[i].abs)
1707 fprintf(file, "|");
1708 switch (inst->src[i].file) {
1709 case VGRF:
1710 fprintf(file, "vgrf%d", inst->src[i].nr);
1711 break;
1712 case FIXED_GRF:
1713 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1714 break;
1715 case ATTR:
1716 fprintf(file, "attr%d", inst->src[i].nr);
1717 break;
1718 case UNIFORM:
1719 fprintf(file, "u%d", inst->src[i].nr);
1720 break;
1721 case IMM:
1722 switch (inst->src[i].type) {
1723 case BRW_REGISTER_TYPE_F:
1724 fprintf(file, "%fF", inst->src[i].f);
1725 break;
1726 case BRW_REGISTER_TYPE_DF:
1727 fprintf(file, "%fDF", inst->src[i].df);
1728 break;
1729 case BRW_REGISTER_TYPE_D:
1730 fprintf(file, "%dD", inst->src[i].d);
1731 break;
1732 case BRW_REGISTER_TYPE_UD:
1733 fprintf(file, "%uU", inst->src[i].ud);
1734 break;
1735 case BRW_REGISTER_TYPE_VF:
1736 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1737 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1738 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1739 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1740 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1741 break;
1742 default:
1743 fprintf(file, "???");
1744 break;
1745 }
1746 break;
1747 case ARF:
1748 switch (inst->src[i].nr) {
1749 case BRW_ARF_NULL:
1750 fprintf(file, "null");
1751 break;
1752 case BRW_ARF_ADDRESS:
1753 fprintf(file, "a0.%d", inst->src[i].subnr);
1754 break;
1755 case BRW_ARF_ACCUMULATOR:
1756 fprintf(file, "acc%d", inst->src[i].subnr);
1757 break;
1758 case BRW_ARF_FLAG:
1759 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1760 break;
1761 default:
1762 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1763 break;
1764 }
1765 break;
1766 case BAD_FILE:
1767 fprintf(file, "(null)");
1768 break;
1769 case MRF:
1770 unreachable("not reached");
1771 }
1772
1773 if (inst->src[i].offset ||
1774 (inst->src[i].file == VGRF &&
1775 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1776 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1777 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1778 inst->src[i].offset % reg_size);
1779 }
1780
1781 if (inst->src[i].file != IMM) {
1782 static const char *chans[4] = {"x", "y", "z", "w"};
1783 fprintf(file, ".");
1784 for (int c = 0; c < 4; c++) {
1785 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1786 }
1787 }
1788
1789 if (inst->src[i].abs)
1790 fprintf(file, "|");
1791
1792 if (inst->src[i].file != IMM) {
1793 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1794 }
1795
1796 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1797 fprintf(file, ", ");
1798 }
1799
1800 if (inst->force_writemask_all)
1801 fprintf(file, " NoMask");
1802
1803 if (inst->exec_size != 8)
1804 fprintf(file, " group%d", inst->group);
1805
1806 fprintf(file, "\n");
1807 }
1808
1809
1810 int
1811 vec4_vs_visitor::setup_attributes(int payload_reg)
1812 {
1813 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1814 for (int i = 0; i < 3; i++) {
1815 if (inst->src[i].file == ATTR) {
1816 assert(inst->src[i].offset % REG_SIZE == 0);
1817 int grf = payload_reg + inst->src[i].nr +
1818 inst->src[i].offset / REG_SIZE;
1819
1820 struct brw_reg reg = brw_vec8_grf(grf, 0);
1821 reg.swizzle = inst->src[i].swizzle;
1822 reg.type = inst->src[i].type;
1823 reg.abs = inst->src[i].abs;
1824 reg.negate = inst->src[i].negate;
1825 inst->src[i] = reg;
1826 }
1827 }
1828 }
1829
1830 return payload_reg + vs_prog_data->nr_attribute_slots;
1831 }
1832
1833 int
1834 vec4_visitor::setup_uniforms(int reg)
1835 {
1836 prog_data->base.dispatch_grf_start_reg = reg;
1837
1838 /* The pre-gen6 VS requires that some push constants get loaded no
1839 * matter what, or the GPU would hang.
1840 */
1841 if (devinfo->gen < 6 && this->uniforms == 0) {
1842 brw_stage_prog_data_add_params(stage_prog_data, 4);
1843 for (unsigned int i = 0; i < 4; i++) {
1844 unsigned int slot = this->uniforms * 4 + i;
1845 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1846 }
1847
1848 this->uniforms++;
1849 reg++;
1850 } else {
1851 reg += ALIGN(uniforms, 2) / 2;
1852 }
1853
1854 for (int i = 0; i < 4; i++)
1855 reg += stage_prog_data->ubo_ranges[i].length;
1856
1857 stage_prog_data->nr_params = this->uniforms * 4;
1858
1859 prog_data->base.curb_read_length =
1860 reg - prog_data->base.dispatch_grf_start_reg;
1861
1862 return reg;
1863 }
1864
1865 void
1866 vec4_vs_visitor::setup_payload(void)
1867 {
1868 int reg = 0;
1869
1870 /* The payload always contains important data in g0, which contains
1871 * the URB handles that are passed on to the URB write at the end
1872 * of the thread. So, we always start push constants at g1.
1873 */
1874 reg++;
1875
1876 reg = setup_uniforms(reg);
1877
1878 reg = setup_attributes(reg);
1879
1880 this->first_non_payload_grf = reg;
1881 }
1882
1883 bool
1884 vec4_visitor::lower_minmax()
1885 {
1886 assert(devinfo->gen < 6);
1887
1888 bool progress = false;
1889
1890 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1891 const vec4_builder ibld(this, block, inst);
1892
1893 if (inst->opcode == BRW_OPCODE_SEL &&
1894 inst->predicate == BRW_PREDICATE_NONE) {
1895 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1896 * the original SEL.L/GE instruction
1897 */
1898 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1899 inst->conditional_mod);
1900 inst->predicate = BRW_PREDICATE_NORMAL;
1901 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1902
1903 progress = true;
1904 }
1905 }
1906
1907 if (progress)
1908 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1909
1910 return progress;
1911 }
1912
1913 src_reg
1914 vec4_visitor::get_timestamp()
1915 {
1916 assert(devinfo->gen >= 7);
1917
1918 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1919 BRW_ARF_TIMESTAMP,
1920 0,
1921 0,
1922 0,
1923 BRW_REGISTER_TYPE_UD,
1924 BRW_VERTICAL_STRIDE_0,
1925 BRW_WIDTH_4,
1926 BRW_HORIZONTAL_STRIDE_4,
1927 BRW_SWIZZLE_XYZW,
1928 WRITEMASK_XYZW));
1929
1930 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1931
1932 vec4_instruction *mov = emit(MOV(dst, ts));
1933 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1934 * even if it's not enabled in the dispatch.
1935 */
1936 mov->force_writemask_all = true;
1937
1938 return src_reg(dst);
1939 }
1940
1941 void
1942 vec4_visitor::emit_shader_time_begin()
1943 {
1944 current_annotation = "shader time start";
1945 shader_start_time = get_timestamp();
1946 }
1947
1948 void
1949 vec4_visitor::emit_shader_time_end()
1950 {
1951 current_annotation = "shader time end";
1952 src_reg shader_end_time = get_timestamp();
1953
1954
1955 /* Check that there weren't any timestamp reset events (assuming these
1956 * were the only two timestamp reads that happened).
1957 */
1958 src_reg reset_end = shader_end_time;
1959 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1960 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1961 test->conditional_mod = BRW_CONDITIONAL_Z;
1962
1963 emit(IF(BRW_PREDICATE_NORMAL));
1964
1965 /* Take the current timestamp and get the delta. */
1966 shader_start_time.negate = true;
1967 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1968 emit(ADD(diff, shader_start_time, shader_end_time));
1969
1970 /* If there were no instructions between the two timestamp gets, the diff
1971 * is 2 cycles. Remove that overhead, so I can forget about that when
1972 * trying to determine the time taken for single instructions.
1973 */
1974 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1975
1976 emit_shader_time_write(0, src_reg(diff));
1977 emit_shader_time_write(1, brw_imm_ud(1u));
1978 emit(BRW_OPCODE_ELSE);
1979 emit_shader_time_write(2, brw_imm_ud(1u));
1980 emit(BRW_OPCODE_ENDIF);
1981 }
1982
1983 void
1984 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1985 {
1986 dst_reg dst =
1987 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1988
1989 dst_reg offset = dst;
1990 dst_reg time = dst;
1991 time.offset += REG_SIZE;
1992
1993 offset.type = BRW_REGISTER_TYPE_UD;
1994 int index = shader_time_index * 3 + shader_time_subindex;
1995 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1996
1997 time.type = BRW_REGISTER_TYPE_UD;
1998 emit(MOV(time, value));
1999
2000 vec4_instruction *inst =
2001 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
2002 inst->mlen = 2;
2003 }
2004
2005 static bool
2006 is_align1_df(vec4_instruction *inst)
2007 {
2008 switch (inst->opcode) {
2009 case VEC4_OPCODE_DOUBLE_TO_F32:
2010 case VEC4_OPCODE_DOUBLE_TO_D32:
2011 case VEC4_OPCODE_DOUBLE_TO_U32:
2012 case VEC4_OPCODE_TO_DOUBLE:
2013 case VEC4_OPCODE_PICK_LOW_32BIT:
2014 case VEC4_OPCODE_PICK_HIGH_32BIT:
2015 case VEC4_OPCODE_SET_LOW_32BIT:
2016 case VEC4_OPCODE_SET_HIGH_32BIT:
2017 return true;
2018 default:
2019 return false;
2020 }
2021 }
2022
2023 /**
2024 * Three source instruction must have a GRF/MRF destination register.
2025 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
2026 */
2027 void
2028 vec4_visitor::fixup_3src_null_dest()
2029 {
2030 bool progress = false;
2031
2032 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2033 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2034 const unsigned size_written = type_sz(inst->dst.type);
2035 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2036
2037 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2038 inst->dst.type);
2039 progress = true;
2040 }
2041 }
2042
2043 if (progress)
2044 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
2045 DEPENDENCY_VARIABLES);
2046 }
2047
2048 void
2049 vec4_visitor::convert_to_hw_regs()
2050 {
2051 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2052 for (int i = 0; i < 3; i++) {
2053 class src_reg &src = inst->src[i];
2054 struct brw_reg reg;
2055 switch (src.file) {
2056 case VGRF: {
2057 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2058 reg.type = src.type;
2059 reg.abs = src.abs;
2060 reg.negate = src.negate;
2061 break;
2062 }
2063
2064 case UNIFORM: {
2065 reg = stride(byte_offset(brw_vec4_grf(
2066 prog_data->base.dispatch_grf_start_reg +
2067 src.nr / 2, src.nr % 2 * 4),
2068 src.offset),
2069 0, 4, 1);
2070 reg.type = src.type;
2071 reg.abs = src.abs;
2072 reg.negate = src.negate;
2073
2074 /* This should have been moved to pull constants. */
2075 assert(!src.reladdr);
2076 break;
2077 }
2078
2079 case FIXED_GRF:
2080 if (type_sz(src.type) == 8) {
2081 reg = src.as_brw_reg();
2082 break;
2083 }
2084 /* fallthrough */
2085 case ARF:
2086 case IMM:
2087 continue;
2088
2089 case BAD_FILE:
2090 /* Probably unused. */
2091 reg = brw_null_reg();
2092 reg = retype(reg, src.type);
2093 break;
2094
2095 case MRF:
2096 case ATTR:
2097 unreachable("not reached");
2098 }
2099
2100 apply_logical_swizzle(&reg, inst, i);
2101 src = reg;
2102
2103 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2104 * Parameters":
2105 *
2106 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2107 * to Width * HorzStride."
2108 *
2109 * We can break this rule with DF sources on DF align1
2110 * instructions, because the exec_size would be 4 and width is 4.
2111 * As we know we are not accessing to next GRF, it is safe to
2112 * set vstride to the formula given by the rule itself.
2113 */
2114 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2115 src.vstride = src.width + src.hstride;
2116 }
2117
2118 if (inst->is_3src(devinfo)) {
2119 /* 3-src instructions with scalar sources support arbitrary subnr,
2120 * but don't actually use swizzles. Convert swizzle into subnr.
2121 * Skip this for double-precision instructions: RepCtrl=1 is not
2122 * allowed for them and needs special handling.
2123 */
2124 for (int i = 0; i < 3; i++) {
2125 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2126 type_sz(inst->src[i].type) < 8) {
2127 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2128 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2129 }
2130 }
2131 }
2132
2133 dst_reg &dst = inst->dst;
2134 struct brw_reg reg;
2135
2136 switch (inst->dst.file) {
2137 case VGRF:
2138 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2139 reg.type = dst.type;
2140 reg.writemask = dst.writemask;
2141 break;
2142
2143 case MRF:
2144 reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2145 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
2146 reg.type = dst.type;
2147 reg.writemask = dst.writemask;
2148 break;
2149
2150 case ARF:
2151 case FIXED_GRF:
2152 reg = dst.as_brw_reg();
2153 break;
2154
2155 case BAD_FILE:
2156 reg = brw_null_reg();
2157 reg = retype(reg, dst.type);
2158 break;
2159
2160 case IMM:
2161 case ATTR:
2162 case UNIFORM:
2163 unreachable("not reached");
2164 }
2165
2166 dst = reg;
2167 }
2168 }
2169
2170 static bool
2171 stage_uses_interleaved_attributes(unsigned stage,
2172 enum shader_dispatch_mode dispatch_mode)
2173 {
2174 switch (stage) {
2175 case MESA_SHADER_TESS_EVAL:
2176 return true;
2177 case MESA_SHADER_GEOMETRY:
2178 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2179 default:
2180 return false;
2181 }
2182 }
2183
2184 /**
2185 * Get the closest native SIMD width supported by the hardware for instruction
2186 * \p inst. The instruction will be left untouched by
2187 * vec4_visitor::lower_simd_width() if the returned value matches the
2188 * instruction's original execution size.
2189 */
2190 static unsigned
2191 get_lowered_simd_width(const struct gen_device_info *devinfo,
2192 enum shader_dispatch_mode dispatch_mode,
2193 unsigned stage, const vec4_instruction *inst)
2194 {
2195 /* Do not split some instructions that require special handling */
2196 switch (inst->opcode) {
2197 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2198 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2199 return inst->exec_size;
2200 default:
2201 break;
2202 }
2203
2204 unsigned lowered_width = MIN2(16, inst->exec_size);
2205
2206 /* We need to split some cases of double-precision instructions that write
2207 * 2 registers. We only need to care about this in gen7 because that is the
2208 * only hardware that implements fp64 in Align16.
2209 */
2210 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2211 /* Align16 8-wide double-precision SEL does not work well. Verified
2212 * empirically.
2213 */
2214 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2215 lowered_width = MIN2(lowered_width, 4);
2216
2217 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2218 * Register Addressing:
2219 *
2220 * "When destination spans two registers, the source MUST span two
2221 * registers."
2222 */
2223 for (unsigned i = 0; i < 3; i++) {
2224 if (inst->src[i].file == BAD_FILE)
2225 continue;
2226 if (inst->size_read(i) <= REG_SIZE)
2227 lowered_width = MIN2(lowered_width, 4);
2228
2229 /* Interleaved attribute setups use a vertical stride of 0, which
2230 * makes them hit the associated instruction decompression bug in gen7.
2231 * Split them to prevent this.
2232 */
2233 if (inst->src[i].file == ATTR &&
2234 stage_uses_interleaved_attributes(stage, dispatch_mode))
2235 lowered_width = MIN2(lowered_width, 4);
2236 }
2237 }
2238
2239 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2240 * it doesn't support compression in Align16 mode, no matter if it has
2241 * force_writemask_all enabled or disabled (the latter is affected by the
2242 * compressed instruction bug in gen7, which is another reason to enforce
2243 * this limit).
2244 */
2245 if (devinfo->gen == 7 && !devinfo->is_haswell &&
2246 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2247 lowered_width = MIN2(lowered_width, 4);
2248
2249 return lowered_width;
2250 }
2251
2252 static bool
2253 dst_src_regions_overlap(vec4_instruction *inst)
2254 {
2255 if (inst->size_written == 0)
2256 return false;
2257
2258 unsigned dst_start = inst->dst.offset;
2259 unsigned dst_end = dst_start + inst->size_written - 1;
2260 for (int i = 0; i < 3; i++) {
2261 if (inst->src[i].file == BAD_FILE)
2262 continue;
2263
2264 if (inst->dst.file != inst->src[i].file ||
2265 inst->dst.nr != inst->src[i].nr)
2266 continue;
2267
2268 unsigned src_start = inst->src[i].offset;
2269 unsigned src_end = src_start + inst->size_read(i) - 1;
2270
2271 if ((dst_start >= src_start && dst_start <= src_end) ||
2272 (dst_end >= src_start && dst_end <= src_end) ||
2273 (dst_start <= src_start && dst_end >= src_end)) {
2274 return true;
2275 }
2276 }
2277
2278 return false;
2279 }
2280
2281 bool
2282 vec4_visitor::lower_simd_width()
2283 {
2284 bool progress = false;
2285
2286 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2287 const unsigned lowered_width =
2288 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2289 assert(lowered_width <= inst->exec_size);
2290 if (lowered_width == inst->exec_size)
2291 continue;
2292
2293 /* We need to deal with source / destination overlaps when splitting.
2294 * The hardware supports reading from and writing to the same register
2295 * in the same instruction, but we need to be careful that each split
2296 * instruction we produce does not corrupt the source of the next.
2297 *
2298 * The easiest way to handle this is to make the split instructions write
2299 * to temporaries if there is an src/dst overlap and then move from the
2300 * temporaries to the original destination. We also need to consider
2301 * instructions that do partial writes via align1 opcodes, in which case
2302 * we need to make sure that the we initialize the temporary with the
2303 * value of the instruction's dst.
2304 */
2305 bool needs_temp = dst_src_regions_overlap(inst);
2306 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
2307 unsigned channel_offset = lowered_width * n;
2308
2309 unsigned size_written = lowered_width * type_sz(inst->dst.type);
2310
2311 /* Create the split instruction from the original so that we copy all
2312 * relevant instruction fields, then set the width and calculate the
2313 * new dst/src regions.
2314 */
2315 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2316 linst->exec_size = lowered_width;
2317 linst->group = channel_offset;
2318 linst->size_written = size_written;
2319
2320 /* Compute split dst region */
2321 dst_reg dst;
2322 if (needs_temp) {
2323 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2324 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2325 inst->dst.type);
2326 if (inst->is_align1_partial_write()) {
2327 vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2328 copy->exec_size = lowered_width;
2329 copy->group = channel_offset;
2330 copy->size_written = size_written;
2331 inst->insert_before(block, copy);
2332 }
2333 } else {
2334 dst = horiz_offset(inst->dst, channel_offset);
2335 }
2336 linst->dst = dst;
2337
2338 /* Compute split source regions */
2339 for (int i = 0; i < 3; i++) {
2340 if (linst->src[i].file == BAD_FILE)
2341 continue;
2342
2343 bool is_interleaved_attr =
2344 linst->src[i].file == ATTR &&
2345 stage_uses_interleaved_attributes(stage,
2346 prog_data->dispatch_mode);
2347
2348 if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2349 linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2350 }
2351
2352 inst->insert_before(block, linst);
2353
2354 /* If we used a temporary to store the result of the split
2355 * instruction, copy the result to the original destination
2356 */
2357 if (needs_temp) {
2358 vec4_instruction *mov =
2359 MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2360 mov->exec_size = lowered_width;
2361 mov->group = channel_offset;
2362 mov->size_written = size_written;
2363 mov->predicate = inst->predicate;
2364 inst->insert_before(block, mov);
2365 }
2366 }
2367
2368 inst->remove(block);
2369 progress = true;
2370 }
2371
2372 if (progress)
2373 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2374
2375 return progress;
2376 }
2377
2378 static brw_predicate
2379 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2380 {
2381 if (predicate != BRW_PREDICATE_NORMAL)
2382 return predicate;
2383
2384 switch (writemask) {
2385 case WRITEMASK_X:
2386 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2387 case WRITEMASK_Y:
2388 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2389 case WRITEMASK_Z:
2390 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2391 case WRITEMASK_W:
2392 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2393 default:
2394 unreachable("invalid writemask");
2395 }
2396 }
2397
2398 /* Gen7 has a hardware decompression bug that we can exploit to represent
2399 * handful of additional swizzles natively.
2400 */
2401 static bool
2402 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2403 {
2404 switch (inst->src[arg].swizzle) {
2405 case BRW_SWIZZLE_XXXX:
2406 case BRW_SWIZZLE_YYYY:
2407 case BRW_SWIZZLE_ZZZZ:
2408 case BRW_SWIZZLE_WWWW:
2409 case BRW_SWIZZLE_XYXY:
2410 case BRW_SWIZZLE_YXYX:
2411 case BRW_SWIZZLE_ZWZW:
2412 case BRW_SWIZZLE_WZWZ:
2413 return true;
2414 default:
2415 return false;
2416 }
2417 }
2418
2419 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2420 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2421 * but it also means that the swizzle we apply on the first two components of a
2422 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2423 * only some specific swizzle combinations can be natively supported.
2424 *
2425 * FIXME: we can go an step further and implement even more swizzle
2426 * variations using only partial scalarization.
2427 *
2428 * For more details see:
2429 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2430 */
2431 bool
2432 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2433 {
2434 const src_reg &src = inst->src[arg];
2435 assert(type_sz(src.type) == 8);
2436
2437 /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2438 * 64-bit regions it means that we cannot access components Z/W, so
2439 * return false for any such case. Interleaved attributes will also be
2440 * mapped to GRF registers with a vstride of 0, so apply the same
2441 * treatment.
2442 */
2443 if ((is_uniform(src) ||
2444 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2445 src.file == ATTR)) &&
2446 (brw_mask_for_swizzle(src.swizzle) & 12))
2447 return false;
2448
2449 switch (src.swizzle) {
2450 case BRW_SWIZZLE_XYZW:
2451 case BRW_SWIZZLE_XXZZ:
2452 case BRW_SWIZZLE_YYWW:
2453 case BRW_SWIZZLE_YXWZ:
2454 return true;
2455 default:
2456 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2457 }
2458 }
2459
2460 bool
2461 vec4_visitor::scalarize_df()
2462 {
2463 bool progress = false;
2464
2465 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2466 /* Skip DF instructions that operate in Align1 mode */
2467 if (is_align1_df(inst))
2468 continue;
2469
2470 /* Check if this is a double-precision instruction */
2471 bool is_double = type_sz(inst->dst.type) == 8;
2472 for (int arg = 0; !is_double && arg < 3; arg++) {
2473 is_double = inst->src[arg].file != BAD_FILE &&
2474 type_sz(inst->src[arg].type) == 8;
2475 }
2476
2477 if (!is_double)
2478 continue;
2479
2480 /* Skip the lowering for specific regioning scenarios that we can
2481 * support natively.
2482 */
2483 bool skip_lowering = true;
2484
2485 /* XY and ZW writemasks operate in 32-bit, which means that they don't
2486 * have a native 64-bit representation and they should always be split.
2487 */
2488 if (inst->dst.writemask == WRITEMASK_XY ||
2489 inst->dst.writemask == WRITEMASK_ZW) {
2490 skip_lowering = false;
2491 } else {
2492 for (unsigned i = 0; i < 3; i++) {
2493 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2494 continue;
2495 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2496 }
2497 }
2498
2499 if (skip_lowering)
2500 continue;
2501
2502 /* Generate scalar instructions for each enabled channel */
2503 for (unsigned chan = 0; chan < 4; chan++) {
2504 unsigned chan_mask = 1 << chan;
2505 if (!(inst->dst.writemask & chan_mask))
2506 continue;
2507
2508 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2509
2510 for (unsigned i = 0; i < 3; i++) {
2511 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2512 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2513 }
2514
2515 scalar_inst->dst.writemask = chan_mask;
2516
2517 if (inst->predicate != BRW_PREDICATE_NONE) {
2518 scalar_inst->predicate =
2519 scalarize_predicate(inst->predicate, chan_mask);
2520 }
2521
2522 inst->insert_before(block, scalar_inst);
2523 }
2524
2525 inst->remove(block);
2526 progress = true;
2527 }
2528
2529 if (progress)
2530 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2531
2532 return progress;
2533 }
2534
2535 bool
2536 vec4_visitor::lower_64bit_mad_to_mul_add()
2537 {
2538 bool progress = false;
2539
2540 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2541 if (inst->opcode != BRW_OPCODE_MAD)
2542 continue;
2543
2544 if (type_sz(inst->dst.type) != 8)
2545 continue;
2546
2547 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2548
2549 /* Use the copy constructor so we copy all relevant instruction fields
2550 * from the original mad into the add and mul instructions
2551 */
2552 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2553 mul->opcode = BRW_OPCODE_MUL;
2554 mul->dst = mul_dst;
2555 mul->src[0] = inst->src[1];
2556 mul->src[1] = inst->src[2];
2557 mul->src[2].file = BAD_FILE;
2558
2559 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2560 add->opcode = BRW_OPCODE_ADD;
2561 add->src[0] = src_reg(mul_dst);
2562 add->src[1] = inst->src[0];
2563 add->src[2].file = BAD_FILE;
2564
2565 inst->insert_before(block, mul);
2566 inst->insert_before(block, add);
2567 inst->remove(block);
2568
2569 progress = true;
2570 }
2571
2572 if (progress)
2573 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2574
2575 return progress;
2576 }
2577
2578 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2579 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2580 * to 32-bit swizzle channels in hardware registers.
2581 *
2582 * @inst and @arg identify the original vec4 IR source operand we need to
2583 * translate the swizzle for and @hw_reg is the hardware register where we
2584 * will write the hardware swizzle to use.
2585 *
2586 * This pass assumes that Align16/DF instructions have been fully scalarized
2587 * previously so there is just one 64-bit swizzle channel to deal with for any
2588 * given Vec4 IR source.
2589 */
2590 void
2591 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2592 vec4_instruction *inst, int arg)
2593 {
2594 src_reg reg = inst->src[arg];
2595
2596 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2597 return;
2598
2599 /* If this is not a 64-bit operand or this is a scalar instruction we don't
2600 * need to do anything about the swizzles.
2601 */
2602 if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2603 hw_reg->swizzle = reg.swizzle;
2604 return;
2605 }
2606
2607 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2608 assert(brw_is_single_value_swizzle(reg.swizzle) ||
2609 is_supported_64bit_region(inst, arg));
2610
2611 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2612 * HW can only do 32-bit swizzle channels.
2613 */
2614 hw_reg->width = BRW_WIDTH_2;
2615
2616 if (is_supported_64bit_region(inst, arg) &&
2617 !is_gen7_supported_64bit_swizzle(inst, arg)) {
2618 /* Supported 64-bit swizzles are those such that their first two
2619 * components, when expanded to 32-bit swizzles, match the semantics
2620 * of the original 64-bit swizzle with 2-wide row regioning.
2621 */
2622 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2623 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2624 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2625 swizzle1 * 2, swizzle1 * 2 + 1);
2626 } else {
2627 /* If we got here then we have one of the following:
2628 *
2629 * 1. An unsupported swizzle, which should be single-value thanks to the
2630 * scalarization pass.
2631 *
2632 * 2. A gen7 supported swizzle. These can be single-value or double-value
2633 * swizzles. If the latter, they are never cross-dvec2 channels. For
2634 * these we always need to activate the gen7 vstride=0 exploit.
2635 */
2636 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2637 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2638 assert((swizzle0 < 2) == (swizzle1 < 2));
2639
2640 /* To gain access to Z/W components we need to select the second half
2641 * of the register and then use a X/Y swizzle to select Z/W respectively.
2642 */
2643 if (swizzle0 >= 2) {
2644 *hw_reg = suboffset(*hw_reg, 2);
2645 swizzle0 -= 2;
2646 swizzle1 -= 2;
2647 }
2648
2649 /* All gen7-specific supported swizzles require the vstride=0 exploit */
2650 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2651 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2652
2653 /* Any 64-bit source with an offset at 16B is intended to address the
2654 * second half of a register and needs a vertical stride of 0 so we:
2655 *
2656 * 1. Don't violate register region restrictions.
2657 * 2. Activate the gen7 instruction decompresion bug exploit when
2658 * execsize > 4
2659 */
2660 if (hw_reg->subnr % REG_SIZE == 16) {
2661 assert(devinfo->gen == 7);
2662 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2663 }
2664
2665 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2666 swizzle1 * 2, swizzle1 * 2 + 1);
2667 }
2668 }
2669
2670 void
2671 vec4_visitor::invalidate_analysis(brw::analysis_dependency_class c)
2672 {
2673 backend_shader::invalidate_analysis(c);
2674 }
2675
2676 bool
2677 vec4_visitor::run()
2678 {
2679 if (shader_time_index >= 0)
2680 emit_shader_time_begin();
2681
2682 emit_prolog();
2683
2684 emit_nir_code();
2685 if (failed)
2686 return false;
2687 base_ir = NULL;
2688
2689 emit_thread_end();
2690
2691 calculate_cfg();
2692
2693 /* Before any optimization, push array accesses out to scratch
2694 * space where we need them to be. This pass may allocate new
2695 * virtual GRFs, so we want to do it early. It also makes sure
2696 * that we have reladdr computations available for CSE, since we'll
2697 * often do repeated subexpressions for those.
2698 */
2699 move_grf_array_access_to_scratch();
2700 move_uniform_array_access_to_pull_constants();
2701
2702 pack_uniform_registers();
2703 move_push_constants_to_pull_constants();
2704 split_virtual_grfs();
2705
2706 #define OPT(pass, args...) ({ \
2707 pass_num++; \
2708 bool this_progress = pass(args); \
2709 \
2710 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
2711 char filename[64]; \
2712 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
2713 stage_abbrev, nir->info.name, iteration, pass_num); \
2714 \
2715 backend_shader::dump_instructions(filename); \
2716 } \
2717 \
2718 progress = progress || this_progress; \
2719 this_progress; \
2720 })
2721
2722
2723 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2724 char filename[64];
2725 snprintf(filename, 64, "%s-%s-00-00-start",
2726 stage_abbrev, nir->info.name);
2727
2728 backend_shader::dump_instructions(filename);
2729 }
2730
2731 bool progress;
2732 int iteration = 0;
2733 int pass_num = 0;
2734 do {
2735 progress = false;
2736 pass_num = 0;
2737 iteration++;
2738
2739 OPT(opt_predicated_break, this);
2740 OPT(opt_reduce_swizzle);
2741 OPT(dead_code_eliminate);
2742 OPT(dead_control_flow_eliminate, this);
2743 OPT(opt_copy_propagation);
2744 OPT(opt_cmod_propagation);
2745 OPT(opt_cse);
2746 OPT(opt_algebraic);
2747 OPT(opt_register_coalesce);
2748 OPT(eliminate_find_live_channel);
2749 } while (progress);
2750
2751 pass_num = 0;
2752
2753 if (OPT(opt_vector_float)) {
2754 OPT(opt_cse);
2755 OPT(opt_copy_propagation, false);
2756 OPT(opt_copy_propagation, true);
2757 OPT(dead_code_eliminate);
2758 }
2759
2760 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2761 OPT(opt_cmod_propagation);
2762 OPT(opt_cse);
2763 OPT(opt_copy_propagation);
2764 OPT(dead_code_eliminate);
2765 }
2766
2767 if (OPT(lower_simd_width)) {
2768 OPT(opt_copy_propagation);
2769 OPT(dead_code_eliminate);
2770 }
2771
2772 if (failed)
2773 return false;
2774
2775 OPT(lower_64bit_mad_to_mul_add);
2776
2777 /* Run this before payload setup because tesselation shaders
2778 * rely on it to prevent cross dvec2 regioning on DF attributes
2779 * that are setup so that XY are on the second half of register and
2780 * ZW are in the first half of the next.
2781 */
2782 OPT(scalarize_df);
2783
2784 setup_payload();
2785
2786 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2787 /* Debug of register spilling: Go spill everything. */
2788 const int grf_count = alloc.count;
2789 float spill_costs[alloc.count];
2790 bool no_spill[alloc.count];
2791 evaluate_spill_costs(spill_costs, no_spill);
2792 for (int i = 0; i < grf_count; i++) {
2793 if (no_spill[i])
2794 continue;
2795 spill_reg(i);
2796 }
2797
2798 /* We want to run this after spilling because 64-bit (un)spills need to
2799 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2800 * messages that can produce unsupported 64-bit swizzle regions.
2801 */
2802 OPT(scalarize_df);
2803 }
2804
2805 fixup_3src_null_dest();
2806
2807 bool allocated_without_spills = reg_allocate();
2808
2809 if (!allocated_without_spills) {
2810 compiler->shader_perf_log(log_data,
2811 "%s shader triggered register spilling. "
2812 "Try reducing the number of live vec4 values "
2813 "to improve performance.\n",
2814 stage_name);
2815
2816 while (!reg_allocate()) {
2817 if (failed)
2818 return false;
2819 }
2820
2821 /* We want to run this after spilling because 64-bit (un)spills need to
2822 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2823 * messages that can produce unsupported 64-bit swizzle regions.
2824 */
2825 OPT(scalarize_df);
2826 }
2827
2828 opt_schedule_instructions();
2829
2830 opt_set_dependency_control();
2831
2832 convert_to_hw_regs();
2833
2834 if (last_scratch > 0) {
2835 prog_data->base.total_scratch =
2836 brw_get_scratch_size(last_scratch * REG_SIZE);
2837 }
2838
2839 return !failed;
2840 }
2841
2842 } /* namespace brw */
2843
2844 extern "C" {
2845
2846 /**
2847 * Compile a vertex shader.
2848 *
2849 * Returns the final assembly and the program's size.
2850 */
2851 const unsigned *
2852 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2853 void *mem_ctx,
2854 const struct brw_vs_prog_key *key,
2855 struct brw_vs_prog_data *prog_data,
2856 nir_shader *shader,
2857 int shader_time_index,
2858 struct brw_compile_stats *stats,
2859 char **error_str)
2860 {
2861 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2862 brw_nir_apply_key(shader, compiler, &key->base, 8, is_scalar);
2863
2864 const unsigned *assembly = NULL;
2865
2866 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2867 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2868 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done
2869 * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2870 * ensure that prog_data->inputs_read is accurate.
2871 *
2872 * In order to make late NIR passes aware of the change, we actually
2873 * whack shader->info.inputs_read instead. This is safe because we just
2874 * made a copy of the shader.
2875 */
2876 assert(!is_scalar);
2877 assert(key->copy_edgeflag);
2878 shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2879 }
2880
2881 prog_data->inputs_read = shader->info.inputs_read;
2882 prog_data->double_inputs_read = shader->info.vs.double_inputs;
2883
2884 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags);
2885 brw_nir_lower_vue_outputs(shader);
2886 brw_postprocess_nir(shader, compiler, is_scalar);
2887
2888 prog_data->base.clip_distance_mask =
2889 ((1 << shader->info.clip_distance_array_size) - 1);
2890 prog_data->base.cull_distance_mask =
2891 ((1 << shader->info.cull_distance_array_size) - 1) <<
2892 shader->info.clip_distance_array_size;
2893
2894 unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2895
2896 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2897 * incoming vertex attribute. So, add an extra slot.
2898 */
2899 if (shader->info.system_values_read &
2900 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
2901 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2902 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2903 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2904 nr_attribute_slots++;
2905 }
2906
2907 /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2908 if (shader->info.system_values_read &
2909 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) |
2910 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) {
2911 nr_attribute_slots++;
2912 }
2913
2914 if (shader->info.system_values_read &
2915 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))
2916 prog_data->uses_is_indexed_draw = true;
2917
2918 if (shader->info.system_values_read &
2919 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX))
2920 prog_data->uses_firstvertex = true;
2921
2922 if (shader->info.system_values_read &
2923 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2924 prog_data->uses_baseinstance = true;
2925
2926 if (shader->info.system_values_read &
2927 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2928 prog_data->uses_vertexid = true;
2929
2930 if (shader->info.system_values_read &
2931 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2932 prog_data->uses_instanceid = true;
2933
2934 if (shader->info.system_values_read &
2935 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID))
2936 prog_data->uses_drawid = true;
2937
2938 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2939 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2940 * vec4 mode, the hardware appears to wedge unless we read something.
2941 */
2942 if (is_scalar)
2943 prog_data->base.urb_read_length =
2944 DIV_ROUND_UP(nr_attribute_slots, 2);
2945 else
2946 prog_data->base.urb_read_length =
2947 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2948
2949 prog_data->nr_attribute_slots = nr_attribute_slots;
2950
2951 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2952 * (overwriting the original contents), we need to make sure the size is
2953 * the larger of the two.
2954 */
2955 const unsigned vue_entries =
2956 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2957
2958 if (compiler->devinfo->gen == 6) {
2959 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2960 } else {
2961 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2962 /* On Cannonlake software shall not program an allocation size that
2963 * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
2964 */
2965 if (compiler->devinfo->gen == 10 &&
2966 prog_data->base.urb_entry_size % 3 == 0)
2967 prog_data->base.urb_entry_size++;
2968 }
2969
2970 if (INTEL_DEBUG & DEBUG_VS) {
2971 fprintf(stderr, "VS Output ");
2972 brw_print_vue_map(stderr, &prog_data->base.vue_map);
2973 }
2974
2975 if (is_scalar) {
2976 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2977
2978 fs_visitor v(compiler, log_data, mem_ctx, &key->base,
2979 &prog_data->base.base,
2980 shader, 8, shader_time_index);
2981 if (!v.run_vs()) {
2982 if (error_str)
2983 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2984
2985 return NULL;
2986 }
2987
2988 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2989
2990 fs_generator g(compiler, log_data, mem_ctx,
2991 &prog_data->base.base, v.shader_stats,
2992 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2993 if (INTEL_DEBUG & DEBUG_VS) {
2994 const char *debug_name =
2995 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2996 shader->info.label ? shader->info.label :
2997 "unnamed",
2998 shader->info.name);
2999
3000 g.enable_debug(debug_name);
3001 }
3002 g.generate_code(v.cfg, 8, stats);
3003 assembly = g.get_assembly();
3004 }
3005
3006 if (!assembly) {
3007 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
3008
3009 vec4_vs_visitor v(compiler, log_data, key, prog_data,
3010 shader, mem_ctx, shader_time_index);
3011 if (!v.run()) {
3012 if (error_str)
3013 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
3014
3015 return NULL;
3016 }
3017
3018 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
3019 shader, &prog_data->base,
3020 v.cfg, stats);
3021 }
3022
3023 return assembly;
3024 }
3025
3026 } /* extern "C" */