intel/vec4: Drop all of the 64-bit varying code
[mesa.git] / src / intel / compiler / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_eu.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
42 }
43
44 void
45 vec4_visitor::nir_setup_uniforms()
46 {
47 uniforms = nir->num_uniforms / 16;
48 }
49
50 void
51 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
52 {
53 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
54 for (unsigned i = 0; i < impl->reg_alloc; i++) {
55 nir_locals[i] = dst_reg();
56 }
57
58 foreach_list_typed(nir_register, reg, node, &impl->registers) {
59 unsigned array_elems =
60 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
61 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
62 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
63
64 if (reg->bit_size == 64)
65 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
66 }
67
68 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
69
70 nir_emit_cf_list(&impl->body);
71 }
72
73 void
74 vec4_visitor::nir_emit_cf_list(exec_list *list)
75 {
76 exec_list_validate(list);
77 foreach_list_typed(nir_cf_node, node, node, list) {
78 switch (node->type) {
79 case nir_cf_node_if:
80 nir_emit_if(nir_cf_node_as_if(node));
81 break;
82
83 case nir_cf_node_loop:
84 nir_emit_loop(nir_cf_node_as_loop(node));
85 break;
86
87 case nir_cf_node_block:
88 nir_emit_block(nir_cf_node_as_block(node));
89 break;
90
91 default:
92 unreachable("Invalid CFG node block");
93 }
94 }
95 }
96
97 void
98 vec4_visitor::nir_emit_if(nir_if *if_stmt)
99 {
100 /* First, put the condition in f0 */
101 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
102 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
103 inst->conditional_mod = BRW_CONDITIONAL_NZ;
104
105 /* We can just predicate based on the X channel, as the condition only
106 * goes on its own line */
107 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
108
109 nir_emit_cf_list(&if_stmt->then_list);
110
111 /* note: if the else is empty, dead CF elimination will remove it */
112 emit(BRW_OPCODE_ELSE);
113
114 nir_emit_cf_list(&if_stmt->else_list);
115
116 emit(BRW_OPCODE_ENDIF);
117 }
118
119 void
120 vec4_visitor::nir_emit_loop(nir_loop *loop)
121 {
122 emit(BRW_OPCODE_DO);
123
124 nir_emit_cf_list(&loop->body);
125
126 emit(BRW_OPCODE_WHILE);
127 }
128
129 void
130 vec4_visitor::nir_emit_block(nir_block *block)
131 {
132 nir_foreach_instr(instr, block) {
133 nir_emit_instr(instr);
134 }
135 }
136
137 void
138 vec4_visitor::nir_emit_instr(nir_instr *instr)
139 {
140 base_ir = instr;
141
142 switch (instr->type) {
143 case nir_instr_type_load_const:
144 nir_emit_load_const(nir_instr_as_load_const(instr));
145 break;
146
147 case nir_instr_type_intrinsic:
148 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
149 break;
150
151 case nir_instr_type_alu:
152 nir_emit_alu(nir_instr_as_alu(instr));
153 break;
154
155 case nir_instr_type_jump:
156 nir_emit_jump(nir_instr_as_jump(instr));
157 break;
158
159 case nir_instr_type_tex:
160 nir_emit_texture(nir_instr_as_tex(instr));
161 break;
162
163 case nir_instr_type_ssa_undef:
164 nir_emit_undef(nir_instr_as_ssa_undef(instr));
165 break;
166
167 default:
168 unreachable("VS instruction not yet implemented by NIR->vec4");
169 }
170 }
171
172 static dst_reg
173 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
174 unsigned base_offset, nir_src *indirect)
175 {
176 dst_reg reg;
177
178 reg = v->nir_locals[nir_reg->index];
179 if (nir_reg->bit_size == 64)
180 reg.type = BRW_REGISTER_TYPE_DF;
181 reg = offset(reg, 8, base_offset);
182 if (indirect) {
183 reg.reladdr =
184 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
185 BRW_REGISTER_TYPE_D,
186 1));
187 }
188 return reg;
189 }
190
191 dst_reg
192 vec4_visitor::get_nir_dest(const nir_dest &dest)
193 {
194 if (dest.is_ssa) {
195 dst_reg dst =
196 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
197 if (dest.ssa.bit_size == 64)
198 dst.type = BRW_REGISTER_TYPE_DF;
199 nir_ssa_values[dest.ssa.index] = dst;
200 return dst;
201 } else {
202 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
203 dest.reg.indirect);
204 }
205 }
206
207 dst_reg
208 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
209 {
210 return retype(get_nir_dest(dest), type);
211 }
212
213 dst_reg
214 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
215 {
216 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
217 }
218
219 src_reg
220 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
221 unsigned num_components)
222 {
223 dst_reg reg;
224
225 if (src.is_ssa) {
226 assert(src.ssa != NULL);
227 reg = nir_ssa_values[src.ssa->index];
228 }
229 else {
230 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
231 src.reg.indirect);
232 }
233
234 reg = retype(reg, type);
235
236 src_reg reg_as_src = src_reg(reg);
237 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
238 return reg_as_src;
239 }
240
241 src_reg
242 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
243 unsigned num_components)
244 {
245 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
246 num_components);
247 }
248
249 src_reg
250 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
251 {
252 /* if type is not specified, default to signed int */
253 return get_nir_src(src, nir_type_int32, num_components);
254 }
255
256 src_reg
257 vec4_visitor::get_nir_src_imm(const nir_src &src)
258 {
259 assert(nir_src_num_components(src) == 1);
260 assert(nir_src_bit_size(src) == 32);
261 return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
262 get_nir_src(src, 1);
263 }
264
265 src_reg
266 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
267 {
268 nir_src *offset_src = nir_get_io_offset_src(instr);
269
270 if (nir_src_is_const(*offset_src)) {
271 /* The only constant offset we should find is 0. brw_nir.c's
272 * add_const_offset_to_base() will fold other constant offsets
273 * into instr->const_index[0].
274 */
275 assert(nir_src_as_uint(*offset_src) == 0);
276 return src_reg();
277 }
278
279 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
280 }
281
282 static src_reg
283 setup_imm_df(const vec4_builder &bld, double v)
284 {
285 const gen_device_info *devinfo = bld.shader->devinfo;
286 assert(devinfo->gen >= 7);
287
288 if (devinfo->gen >= 8)
289 return brw_imm_df(v);
290
291 /* gen7.5 does not support DF immediates straighforward but the DIM
292 * instruction allows to set the 64-bit immediate value.
293 */
294 if (devinfo->is_haswell) {
295 const vec4_builder ubld = bld.exec_all();
296 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
297 ubld.DIM(dst, brw_imm_df(v));
298 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
299 }
300
301 /* gen7 does not support DF immediates */
302 union {
303 double d;
304 struct {
305 uint32_t i1;
306 uint32_t i2;
307 };
308 } di;
309
310 di.d = v;
311
312 /* Write the low 32-bit of the constant to the X:UD channel and the
313 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
314 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
315 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
316 * XXXX so any access to the VGRF only reads the constant data in these
317 * channels.
318 */
319 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
320 for (unsigned n = 0; n < 2; n++) {
321 const vec4_builder ubld = bld.exec_all().group(4, n);
322 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
323 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
324 }
325
326 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
327 }
328
329 void
330 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
331 {
332 dst_reg reg;
333
334 if (instr->def.bit_size == 64) {
335 reg = dst_reg(VGRF, alloc.allocate(2));
336 reg.type = BRW_REGISTER_TYPE_DF;
337 } else {
338 reg = dst_reg(VGRF, alloc.allocate(1));
339 reg.type = BRW_REGISTER_TYPE_D;
340 }
341
342 const vec4_builder ibld = vec4_builder(this).at_end();
343 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
344
345 /* @FIXME: consider emitting vector operations to save some MOVs in
346 * cases where the components are representable in 8 bits.
347 * For now, we emit a MOV for each distinct value.
348 */
349 for (unsigned i = 0; i < instr->def.num_components; i++) {
350 unsigned writemask = 1 << i;
351
352 if ((remaining & writemask) == 0)
353 continue;
354
355 for (unsigned j = i; j < instr->def.num_components; j++) {
356 if ((instr->def.bit_size == 32 &&
357 instr->value[i].u32 == instr->value[j].u32) ||
358 (instr->def.bit_size == 64 &&
359 instr->value[i].f64 == instr->value[j].f64)) {
360 writemask |= 1 << j;
361 }
362 }
363
364 reg.writemask = writemask;
365 if (instr->def.bit_size == 64) {
366 emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64)));
367 } else {
368 emit(MOV(reg, brw_imm_d(instr->value[i].i32)));
369 }
370
371 remaining &= ~writemask;
372 }
373
374 /* Set final writemask */
375 reg.writemask = brw_writemask_for_size(instr->def.num_components);
376
377 nir_ssa_values[instr->def.index] = reg;
378 }
379
380 src_reg
381 vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
382 {
383 /* SSBO stores are weird in that their index is in src[1] */
384 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
385
386 src_reg surf_index;
387 if (nir_src_is_const(instr->src[src])) {
388 unsigned index = prog_data->base.binding_table.ssbo_start +
389 nir_src_as_uint(instr->src[src]);
390 surf_index = brw_imm_ud(index);
391 } else {
392 surf_index = src_reg(this, glsl_type::uint_type);
393 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1),
394 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
395 surf_index = emit_uniformize(surf_index);
396 }
397
398 return surf_index;
399 }
400
401 void
402 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
403 {
404 dst_reg dest;
405 src_reg src;
406
407 switch (instr->intrinsic) {
408
409 case nir_intrinsic_load_input: {
410 assert(nir_dest_bit_size(instr->dest) == 32);
411 /* We set EmitNoIndirectInput for VS */
412 unsigned load_offset = nir_src_as_uint(instr->src[0]);
413
414 dest = get_nir_dest(instr->dest);
415 dest.writemask = brw_writemask_for_size(instr->num_components);
416
417 src = src_reg(ATTR, instr->const_index[0] + load_offset,
418 glsl_type::uvec4_type);
419 src = retype(src, dest.type);
420
421 /* Swizzle source based on component layout qualifier */
422 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
423 emit(MOV(dest, src));
424 break;
425 }
426
427 case nir_intrinsic_store_output: {
428 assert(nir_src_bit_size(instr->src[0]) == 32);
429 unsigned store_offset = nir_src_as_uint(instr->src[1]);
430 int varying = instr->const_index[0] + store_offset;
431 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
432 instr->num_components);
433
434 unsigned c = nir_intrinsic_component(instr);
435 output_reg[varying][c] = dst_reg(src);
436 output_num_components[varying][c] = instr->num_components;
437 break;
438 }
439
440 case nir_intrinsic_get_buffer_size: {
441 assert(nir_src_num_components(instr->src[0]) == 1);
442 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
443 nir_src_as_uint(instr->src[0]) : 0;
444
445 const unsigned index =
446 prog_data->base.binding_table.ssbo_start + ssbo_index;
447 dst_reg result_dst = get_nir_dest(instr->dest);
448 vec4_instruction *inst = new(mem_ctx)
449 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
450
451 inst->base_mrf = 2;
452 inst->mlen = 1; /* always at least one */
453 inst->src[1] = brw_imm_ud(index);
454
455 /* MRF for the first parameter */
456 src_reg lod = brw_imm_d(0);
457 int param_base = inst->base_mrf;
458 int writemask = WRITEMASK_X;
459 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
460
461 emit(inst);
462 break;
463 }
464
465 case nir_intrinsic_store_ssbo: {
466 assert(devinfo->gen >= 7);
467
468 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
469 assert(nir_src_bit_size(instr->src[0]) == 32);
470 assert(nir_intrinsic_write_mask(instr) ==
471 (1u << instr->num_components) - 1);
472
473 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
474 src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
475 BRW_REGISTER_TYPE_UD);
476
477 /* Value */
478 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
479
480 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
481 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
482 * typed and untyped messages and across hardware platforms, the
483 * current implementation of the untyped messages will transparently convert
484 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
485 * and enabling only channel X on the SEND instruction.
486 *
487 * The above, works well for full vector writes, but not for partial writes
488 * where we want to write some channels and not others, like when we have
489 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
490 * quite restrictive with regards to the channel enables we can configure in
491 * the message descriptor (not all combinations are allowed) we cannot simply
492 * implement these scenarios with a single message while keeping the
493 * aforementioned symmetry in the implementation. For now we de decided that
494 * it is better to keep the symmetry to reduce complexity, so in situations
495 * such as the one described we end up emitting two untyped write messages
496 * (one for xy and another for w).
497 *
498 * The code below packs consecutive channels into a single write message,
499 * detects gaps in the vector write and if needed, sends a second message
500 * with the remaining channels. If in the future we decide that we want to
501 * emit a single message at the expense of losing the symmetry in the
502 * implementation we can:
503 *
504 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
505 * message payload. In this mode we can write up to 8 offsets and dwords
506 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
507 * and select which of the 8 channels carry data to write by setting the
508 * appropriate writemask in the dst register of the SEND instruction.
509 * It would require to write a new generator opcode specifically for
510 * IvyBridge since we would need to prepare a SIMD8 payload that could
511 * use any channel, not just X.
512 *
513 * 2) For Haswell+: Simply send a single write message but set the writemask
514 * on the dst of the SEND instruction to select the channels we want to
515 * write. It would require to modify the current messages to receive
516 * and honor the writemask provided.
517 */
518 const vec4_builder bld = vec4_builder(this).at_end()
519 .annotate(current_annotation, base_ir);
520
521 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
522 1 /* dims */, instr->num_components /* size */,
523 BRW_PREDICATE_NONE);
524 break;
525 }
526
527 case nir_intrinsic_load_ssbo: {
528 assert(devinfo->gen >= 7);
529
530 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
531 assert(nir_dest_bit_size(instr->dest) == 32);
532
533 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
534 src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
535 BRW_REGISTER_TYPE_UD);
536
537 /* Read the vector */
538 const vec4_builder bld = vec4_builder(this).at_end()
539 .annotate(current_annotation, base_ir);
540
541 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
542 1 /* dims */, 4 /* size*/,
543 BRW_PREDICATE_NONE);
544 dst_reg dest = get_nir_dest(instr->dest);
545 read_result.type = dest.type;
546 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
547 emit(MOV(dest, read_result));
548 break;
549 }
550
551 case nir_intrinsic_ssbo_atomic_add: {
552 int op = BRW_AOP_ADD;
553
554 if (nir_src_is_const(instr->src[2])) {
555 int add_val = nir_src_as_int(instr->src[2]);
556 if (add_val == 1)
557 op = BRW_AOP_INC;
558 else if (add_val == -1)
559 op = BRW_AOP_DEC;
560 }
561
562 nir_emit_ssbo_atomic(op, instr);
563 break;
564 }
565 case nir_intrinsic_ssbo_atomic_imin:
566 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
567 break;
568 case nir_intrinsic_ssbo_atomic_umin:
569 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
570 break;
571 case nir_intrinsic_ssbo_atomic_imax:
572 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
573 break;
574 case nir_intrinsic_ssbo_atomic_umax:
575 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
576 break;
577 case nir_intrinsic_ssbo_atomic_and:
578 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
579 break;
580 case nir_intrinsic_ssbo_atomic_or:
581 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
582 break;
583 case nir_intrinsic_ssbo_atomic_xor:
584 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
585 break;
586 case nir_intrinsic_ssbo_atomic_exchange:
587 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
588 break;
589 case nir_intrinsic_ssbo_atomic_comp_swap:
590 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
591 break;
592
593 case nir_intrinsic_load_vertex_id:
594 unreachable("should be lowered by lower_vertex_id()");
595
596 case nir_intrinsic_load_vertex_id_zero_base:
597 case nir_intrinsic_load_base_vertex:
598 case nir_intrinsic_load_instance_id:
599 case nir_intrinsic_load_base_instance:
600 case nir_intrinsic_load_draw_id:
601 case nir_intrinsic_load_invocation_id:
602 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
603
604 case nir_intrinsic_load_uniform: {
605 /* Offsets are in bytes but they should always be multiples of 4 */
606 assert(nir_intrinsic_base(instr) % 4 == 0);
607
608 dest = get_nir_dest(instr->dest);
609
610 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
611 src.type = dest.type;
612
613 /* Uniforms don't actually have to be vec4 aligned. In the case that
614 * it isn't, we have to use a swizzle to shift things around. They
615 * do still have the std140 alignment requirement that vec2's have to
616 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
617 *
618 * The swizzle also works in the indirect case as the generator adds
619 * the swizzle to the offset for us.
620 */
621 const int type_size = type_sz(src.type);
622 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
623 assert(shift + instr->num_components <= 4);
624
625 if (nir_src_is_const(instr->src[0])) {
626 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
627 /* Offsets are in bytes but they should always be multiples of 4 */
628 assert(load_offset % 4 == 0);
629
630 src.swizzle = brw_swizzle_for_size(instr->num_components);
631 dest.writemask = brw_writemask_for_size(instr->num_components);
632 unsigned offset = load_offset + shift * type_size;
633 src.offset = ROUND_DOWN_TO(offset, 16);
634 shift = (offset % 16) / type_size;
635 assert(shift + instr->num_components <= 4);
636 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
637
638 emit(MOV(dest, src));
639 } else {
640 /* Uniform arrays are vec4 aligned, because of std140 alignment
641 * rules.
642 */
643 assert(shift == 0);
644
645 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
646
647 /* MOV_INDIRECT is going to stomp the whole thing anyway */
648 dest.writemask = WRITEMASK_XYZW;
649
650 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
651 indirect, brw_imm_ud(instr->const_index[1]));
652 }
653 break;
654 }
655
656 case nir_intrinsic_load_ubo: {
657 src_reg surf_index;
658
659 dest = get_nir_dest(instr->dest);
660
661 if (nir_src_is_const(instr->src[0])) {
662 /* The block index is a constant, so just emit the binding table entry
663 * as an immediate.
664 */
665 const unsigned index = prog_data->base.binding_table.ubo_start +
666 nir_src_as_uint(instr->src[0]);
667 surf_index = brw_imm_ud(index);
668 } else {
669 /* The block index is not a constant. Evaluate the index expression
670 * per-channel and add the base UBO index; we have to select a value
671 * from any live channel.
672 */
673 surf_index = src_reg(this, glsl_type::uint_type);
674 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
675 instr->num_components),
676 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
677 surf_index = emit_uniformize(surf_index);
678 }
679
680 src_reg offset_reg;
681 if (nir_src_is_const(instr->src[1])) {
682 unsigned load_offset = nir_src_as_uint(instr->src[1]);
683 offset_reg = brw_imm_ud(load_offset & ~15);
684 } else {
685 offset_reg = src_reg(this, glsl_type::uint_type);
686 emit(MOV(dst_reg(offset_reg),
687 get_nir_src(instr->src[1], nir_type_uint32, 1)));
688 }
689
690 src_reg packed_consts;
691 if (nir_dest_bit_size(instr->dest) == 32) {
692 packed_consts = src_reg(this, glsl_type::vec4_type);
693 emit_pull_constant_load_reg(dst_reg(packed_consts),
694 surf_index,
695 offset_reg,
696 NULL, NULL /* before_block/inst */);
697 } else {
698 src_reg temp = src_reg(this, glsl_type::dvec4_type);
699 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
700
701 emit_pull_constant_load_reg(dst_reg(temp_float),
702 surf_index, offset_reg, NULL, NULL);
703 if (offset_reg.file == IMM)
704 offset_reg.ud += 16;
705 else
706 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
707 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
708 surf_index, offset_reg, NULL, NULL);
709
710 packed_consts = src_reg(this, glsl_type::dvec4_type);
711 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
712 }
713
714 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
715 if (nir_src_is_const(instr->src[1])) {
716 unsigned load_offset = nir_src_as_uint(instr->src[1]);
717 unsigned type_size = type_sz(dest.type);
718 packed_consts.swizzle +=
719 BRW_SWIZZLE4(load_offset % 16 / type_size,
720 load_offset % 16 / type_size,
721 load_offset % 16 / type_size,
722 load_offset % 16 / type_size);
723 }
724
725 emit(MOV(dest, retype(packed_consts, dest.type)));
726
727 break;
728 }
729
730 case nir_intrinsic_memory_barrier: {
731 const vec4_builder bld =
732 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
733 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
734 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0))
735 ->size_written = 2 * REG_SIZE;
736 break;
737 }
738
739 case nir_intrinsic_shader_clock: {
740 /* We cannot do anything if there is an event, so ignore it for now */
741 const src_reg shader_clock = get_timestamp();
742 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
743
744 dest = get_nir_dest(instr->dest, type);
745 emit(MOV(dest, shader_clock));
746 break;
747 }
748
749 default:
750 unreachable("Unknown intrinsic");
751 }
752 }
753
754 void
755 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
756 {
757 dst_reg dest;
758 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
759 dest = get_nir_dest(instr->dest);
760
761 src_reg surface = get_nir_ssbo_intrinsic_index(instr);
762 src_reg offset = get_nir_src(instr->src[1], 1);
763 src_reg data1;
764 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
765 data1 = get_nir_src(instr->src[2], 1);
766 src_reg data2;
767 if (op == BRW_AOP_CMPWR)
768 data2 = get_nir_src(instr->src[3], 1);
769
770 /* Emit the actual atomic operation operation */
771 const vec4_builder bld =
772 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
773
774 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
775 data1, data2,
776 1 /* dims */, 1 /* rsize */,
777 op,
778 BRW_PREDICATE_NONE);
779 dest.type = atomic_result.type;
780 bld.MOV(dest, atomic_result);
781 }
782
783 static unsigned
784 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
785 {
786 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
787 }
788
789 static enum brw_conditional_mod
790 brw_conditional_for_nir_comparison(nir_op op)
791 {
792 switch (op) {
793 case nir_op_flt32:
794 case nir_op_ilt32:
795 case nir_op_ult32:
796 return BRW_CONDITIONAL_L;
797
798 case nir_op_fge32:
799 case nir_op_ige32:
800 case nir_op_uge32:
801 return BRW_CONDITIONAL_GE;
802
803 case nir_op_feq32:
804 case nir_op_ieq32:
805 case nir_op_b32all_fequal2:
806 case nir_op_b32all_iequal2:
807 case nir_op_b32all_fequal3:
808 case nir_op_b32all_iequal3:
809 case nir_op_b32all_fequal4:
810 case nir_op_b32all_iequal4:
811 return BRW_CONDITIONAL_Z;
812
813 case nir_op_fne32:
814 case nir_op_ine32:
815 case nir_op_b32any_fnequal2:
816 case nir_op_b32any_inequal2:
817 case nir_op_b32any_fnequal3:
818 case nir_op_b32any_inequal3:
819 case nir_op_b32any_fnequal4:
820 case nir_op_b32any_inequal4:
821 return BRW_CONDITIONAL_NZ;
822
823 default:
824 unreachable("not reached: bad operation for comparison");
825 }
826 }
827
828 bool
829 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
830 enum brw_predicate *predicate)
831 {
832 if (!instr->src[0].src.is_ssa ||
833 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
834 return false;
835
836 nir_alu_instr *cmp_instr =
837 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
838
839 switch (cmp_instr->op) {
840 case nir_op_b32any_fnequal2:
841 case nir_op_b32any_inequal2:
842 case nir_op_b32any_fnequal3:
843 case nir_op_b32any_inequal3:
844 case nir_op_b32any_fnequal4:
845 case nir_op_b32any_inequal4:
846 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
847 break;
848 case nir_op_b32all_fequal2:
849 case nir_op_b32all_iequal2:
850 case nir_op_b32all_fequal3:
851 case nir_op_b32all_iequal3:
852 case nir_op_b32all_fequal4:
853 case nir_op_b32all_iequal4:
854 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
855 break;
856 default:
857 return false;
858 }
859
860 unsigned size_swizzle =
861 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
862
863 src_reg op[2];
864 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
865 for (unsigned i = 0; i < 2; i++) {
866 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
867 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
868 type = (nir_alu_type) (((unsigned) type) | bit_size);
869 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
870 unsigned base_swizzle =
871 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
872 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
873 op[i].abs = cmp_instr->src[i].abs;
874 op[i].negate = cmp_instr->src[i].negate;
875 }
876
877 emit(CMP(dst_null_d(), op[0], op[1],
878 brw_conditional_for_nir_comparison(cmp_instr->op)));
879
880 return true;
881 }
882
883 static void
884 emit_find_msb_using_lzd(const vec4_builder &bld,
885 const dst_reg &dst,
886 const src_reg &src,
887 bool is_signed)
888 {
889 vec4_instruction *inst;
890 src_reg temp = src;
891
892 if (is_signed) {
893 /* LZD of an absolute value source almost always does the right
894 * thing. There are two problem values:
895 *
896 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
897 * 0. However, findMSB(int(0x80000000)) == 30.
898 *
899 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
900 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
901 *
902 * For a value of zero or negative one, -1 will be returned.
903 *
904 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
905 * findMSB(-(1<<x)) should return x-1.
906 *
907 * For all negative number cases, including 0x80000000 and
908 * 0xffffffff, the correct value is obtained from LZD if instead of
909 * negating the (already negative) value the logical-not is used. A
910 * conditonal logical-not can be achieved in two instructions.
911 */
912 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
913
914 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
915 bld.XOR(dst_reg(temp), temp, src);
916 }
917
918 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
919 retype(temp, BRW_REGISTER_TYPE_UD));
920
921 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
922 * from the LSB side. Subtract the result from 31 to convert the MSB count
923 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
924 * which is exactly what findMSB() is supposed to return.
925 */
926 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
927 brw_imm_d(31));
928 inst->src[0].negate = true;
929 }
930
931 void
932 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
933 bool saturate)
934 {
935 /* BDW PRM vol 15 - workarounds:
936 * DF->f format conversion for Align16 has wrong emask calculation when
937 * source is immediate.
938 */
939 if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
940 src.file == BRW_IMMEDIATE_VALUE) {
941 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
942 inst->saturate = saturate;
943 return;
944 }
945
946 enum opcode op;
947 switch (dst.type) {
948 case BRW_REGISTER_TYPE_D:
949 op = VEC4_OPCODE_DOUBLE_TO_D32;
950 break;
951 case BRW_REGISTER_TYPE_UD:
952 op = VEC4_OPCODE_DOUBLE_TO_U32;
953 break;
954 case BRW_REGISTER_TYPE_F:
955 op = VEC4_OPCODE_DOUBLE_TO_F32;
956 break;
957 default:
958 unreachable("Unknown conversion");
959 }
960
961 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
962 emit(MOV(temp, src));
963 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
964 emit(op, temp2, src_reg(temp));
965
966 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
967 vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
968 inst->saturate = saturate;
969 }
970
971 void
972 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
973 bool saturate)
974 {
975 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
976 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
977 emit(MOV(dst_reg(tmp_src), src));
978 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
979 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
980 inst->saturate = saturate;
981 }
982
983 /**
984 * Try to use an immediate value for a source
985 *
986 * In cases of flow control, constant propagation is sometimes unable to
987 * determine that a register contains a constant value. To work around this,
988 * try to emit a literal as one of the sources. If \c try_src0_also is set,
989 * \c op[0] will also be tried for an immediate value.
990 *
991 * If \c op[0] is modified, the operands will be exchanged so that \c op[1]
992 * will always be the immediate value.
993 *
994 * \return The index of the source that was modified, 0 or 1, if successful.
995 * Otherwise, -1.
996 *
997 * \param op - Operands to the instruction
998 * \param try_src0_also - True if \c op[0] should also be a candidate for
999 * getting an immediate value. This should only be set
1000 * for commutative operations.
1001 */
1002 static int
1003 try_immediate_source(const nir_alu_instr *instr, src_reg *op,
1004 bool try_src0_also,
1005 ASSERTED const gen_device_info *devinfo)
1006 {
1007 unsigned idx;
1008
1009 /* MOV should be the only single-source instruction passed to this
1010 * function. Any other unary instruction with a constant source should
1011 * have been constant-folded away!
1012 */
1013 assert(nir_op_infos[instr->op].num_inputs > 1 ||
1014 instr->op == nir_op_mov);
1015
1016 if (instr->op != nir_op_mov &&
1017 nir_src_bit_size(instr->src[1].src) == 32 &&
1018 nir_src_is_const(instr->src[1].src)) {
1019 idx = 1;
1020 } else if (try_src0_also &&
1021 nir_src_bit_size(instr->src[0].src) == 32 &&
1022 nir_src_is_const(instr->src[0].src)) {
1023 idx = 0;
1024 } else {
1025 return -1;
1026 }
1027
1028 const enum brw_reg_type old_type = op[idx].type;
1029
1030 switch (old_type) {
1031 case BRW_REGISTER_TYPE_D:
1032 case BRW_REGISTER_TYPE_UD: {
1033 int first_comp = -1;
1034 int d;
1035
1036 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1037 if (nir_alu_instr_channel_used(instr, idx, i)) {
1038 if (first_comp < 0) {
1039 first_comp = i;
1040 d = nir_src_comp_as_int(instr->src[idx].src,
1041 instr->src[idx].swizzle[i]);
1042 } else if (d != nir_src_comp_as_int(instr->src[idx].src,
1043 instr->src[idx].swizzle[i])) {
1044 return -1;
1045 }
1046 }
1047 }
1048
1049 if (op[idx].abs)
1050 d = MAX2(-d, d);
1051
1052 if (op[idx].negate) {
1053 /* On Gen8+ a negation source modifier on a logical operation means
1054 * something different. Nothing should generate this, so assert that
1055 * it does not occur.
1056 */
1057 assert(devinfo->gen < 8 || (instr->op != nir_op_iand &&
1058 instr->op != nir_op_ior &&
1059 instr->op != nir_op_ixor));
1060 d = -d;
1061 }
1062
1063 op[idx] = retype(src_reg(brw_imm_d(d)), old_type);
1064 break;
1065 }
1066
1067 case BRW_REGISTER_TYPE_F: {
1068 int first_comp = -1;
1069 float f[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
1070 bool is_scalar = true;
1071
1072 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1073 if (nir_alu_instr_channel_used(instr, idx, i)) {
1074 f[i] = nir_src_comp_as_float(instr->src[idx].src,
1075 instr->src[idx].swizzle[i]);
1076 if (first_comp < 0) {
1077 first_comp = i;
1078 } else if (f[first_comp] != f[i]) {
1079 is_scalar = false;
1080 }
1081 }
1082 }
1083
1084 if (is_scalar) {
1085 if (op[idx].abs)
1086 f[first_comp] = fabs(f[first_comp]);
1087
1088 if (op[idx].negate)
1089 f[first_comp] = -f[first_comp];
1090
1091 op[idx] = src_reg(brw_imm_f(f[first_comp]));
1092 assert(op[idx].type == old_type);
1093 } else {
1094 uint8_t vf_values[4] = { 0, 0, 0, 0 };
1095
1096 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1097 if (op[idx].abs)
1098 f[i] = fabs(f[i]);
1099
1100 if (op[idx].negate)
1101 f[i] = -f[i];
1102
1103 const int vf = brw_float_to_vf(f[i]);
1104 if (vf == -1)
1105 return -1;
1106
1107 vf_values[i] = vf;
1108 }
1109
1110 op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1],
1111 vf_values[2], vf_values[3]));
1112 }
1113 break;
1114 }
1115
1116 default:
1117 unreachable("Non-32bit type.");
1118 }
1119
1120 /* If the instruction has more than one source, the instruction format only
1121 * allows source 1 to be an immediate value. If the immediate value was
1122 * source 0, then the sources must be exchanged.
1123 */
1124 if (idx == 0 && instr->op != nir_op_mov) {
1125 src_reg tmp = op[0];
1126 op[0] = op[1];
1127 op[1] = tmp;
1128 }
1129
1130 return idx;
1131 }
1132
1133 void
1134 vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr)
1135 {
1136 bool fixed[3] = { false, false, false };
1137
1138 for (unsigned i = 0; i < 2; i++) {
1139 if (!nir_src_is_const(instr->src[i].src))
1140 continue;
1141
1142 for (unsigned j = i + 1; j < 3; j++) {
1143 if (fixed[j])
1144 continue;
1145
1146 if (!nir_src_is_const(instr->src[j].src))
1147 continue;
1148
1149 if (nir_alu_srcs_equal(instr, instr, i, j)) {
1150 if (!fixed[i])
1151 op[i] = fix_3src_operand(op[i]);
1152
1153 op[j] = op[i];
1154
1155 fixed[i] = true;
1156 fixed[j] = true;
1157 } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) {
1158 if (!fixed[i])
1159 op[i] = fix_3src_operand(op[i]);
1160
1161 op[j] = op[i];
1162 op[j].negate = !op[j].negate;
1163
1164 fixed[i] = true;
1165 fixed[j] = true;
1166 }
1167 }
1168 }
1169
1170 for (unsigned i = 0; i < 3; i++) {
1171 if (!fixed[i])
1172 op[i] = fix_3src_operand(op[i]);
1173 }
1174 }
1175
1176 void
1177 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1178 {
1179 vec4_instruction *inst;
1180
1181 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1182 nir_dest_bit_size(instr->dest.dest));
1183 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1184 dst.writemask = instr->dest.write_mask;
1185
1186 src_reg op[4];
1187 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1188 nir_alu_type src_type = (nir_alu_type)
1189 (nir_op_infos[instr->op].input_types[i] |
1190 nir_src_bit_size(instr->src[i].src));
1191 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1192 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1193 op[i].abs = instr->src[i].abs;
1194 op[i].negate = instr->src[i].negate;
1195 }
1196
1197 switch (instr->op) {
1198 case nir_op_mov:
1199 try_immediate_source(instr, &op[0], true, devinfo);
1200 inst = emit(MOV(dst, op[0]));
1201 inst->saturate = instr->dest.saturate;
1202 break;
1203
1204 case nir_op_vec2:
1205 case nir_op_vec3:
1206 case nir_op_vec4:
1207 unreachable("not reached: should be handled by lower_vec_to_movs()");
1208
1209 case nir_op_i2f32:
1210 case nir_op_u2f32:
1211 inst = emit(MOV(dst, op[0]));
1212 inst->saturate = instr->dest.saturate;
1213 break;
1214
1215 case nir_op_f2f32:
1216 case nir_op_f2i32:
1217 case nir_op_f2u32:
1218 if (nir_src_bit_size(instr->src[0].src) == 64)
1219 emit_conversion_from_double(dst, op[0], instr->dest.saturate);
1220 else
1221 inst = emit(MOV(dst, op[0]));
1222 break;
1223
1224 case nir_op_f2f64:
1225 case nir_op_i2f64:
1226 case nir_op_u2f64:
1227 emit_conversion_to_double(dst, op[0], instr->dest.saturate);
1228 break;
1229
1230 case nir_op_fsat:
1231 inst = emit(MOV(dst, op[0]));
1232 inst->saturate = true;
1233 break;
1234
1235 case nir_op_fneg:
1236 case nir_op_ineg:
1237 op[0].negate = true;
1238 inst = emit(MOV(dst, op[0]));
1239 if (instr->op == nir_op_fneg)
1240 inst->saturate = instr->dest.saturate;
1241 break;
1242
1243 case nir_op_fabs:
1244 case nir_op_iabs:
1245 op[0].negate = false;
1246 op[0].abs = true;
1247 inst = emit(MOV(dst, op[0]));
1248 if (instr->op == nir_op_fabs)
1249 inst->saturate = instr->dest.saturate;
1250 break;
1251
1252 case nir_op_iadd:
1253 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1254 /* fall through */
1255 case nir_op_fadd:
1256 try_immediate_source(instr, op, true, devinfo);
1257 inst = emit(ADD(dst, op[0], op[1]));
1258 inst->saturate = instr->dest.saturate;
1259 break;
1260
1261 case nir_op_uadd_sat:
1262 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1263 inst = emit(ADD(dst, op[0], op[1]));
1264 inst->saturate = true;
1265 break;
1266
1267 case nir_op_fmul:
1268 try_immediate_source(instr, op, true, devinfo);
1269 inst = emit(MUL(dst, op[0], op[1]));
1270 inst->saturate = instr->dest.saturate;
1271 break;
1272
1273 case nir_op_imul: {
1274 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1275 if (devinfo->gen < 8) {
1276 /* For integer multiplication, the MUL uses the low 16 bits of one of
1277 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1278 * accumulates in the contribution of the upper 16 bits of that
1279 * operand. If we can determine that one of the args is in the low
1280 * 16 bits, though, we can just emit a single MUL.
1281 */
1282 if (nir_src_is_const(instr->src[0].src) &&
1283 nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1284 nir_src_comp_as_uint(instr->src[0].src, 0) < (1 << 16)) {
1285 if (devinfo->gen < 7)
1286 emit(MUL(dst, op[0], op[1]));
1287 else
1288 emit(MUL(dst, op[1], op[0]));
1289 } else if (nir_src_is_const(instr->src[1].src) &&
1290 nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1291 nir_src_comp_as_uint(instr->src[1].src, 0) < (1 << 16)) {
1292 if (devinfo->gen < 7)
1293 emit(MUL(dst, op[1], op[0]));
1294 else
1295 emit(MUL(dst, op[0], op[1]));
1296 } else {
1297 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1298
1299 emit(MUL(acc, op[0], op[1]));
1300 emit(MACH(dst_null_d(), op[0], op[1]));
1301 emit(MOV(dst, src_reg(acc)));
1302 }
1303 } else {
1304 emit(MUL(dst, op[0], op[1]));
1305 }
1306 break;
1307 }
1308
1309 case nir_op_imul_high:
1310 case nir_op_umul_high: {
1311 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1312 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1313
1314 if (devinfo->gen >= 8)
1315 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1316 else
1317 emit(MUL(acc, op[0], op[1]));
1318
1319 emit(MACH(dst, op[0], op[1]));
1320 break;
1321 }
1322
1323 case nir_op_frcp:
1324 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1325 inst->saturate = instr->dest.saturate;
1326 break;
1327
1328 case nir_op_fexp2:
1329 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1330 inst->saturate = instr->dest.saturate;
1331 break;
1332
1333 case nir_op_flog2:
1334 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1335 inst->saturate = instr->dest.saturate;
1336 break;
1337
1338 case nir_op_fsin:
1339 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1340 inst->saturate = instr->dest.saturate;
1341 break;
1342
1343 case nir_op_fcos:
1344 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1345 inst->saturate = instr->dest.saturate;
1346 break;
1347
1348 case nir_op_idiv:
1349 case nir_op_udiv:
1350 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1351 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1352 break;
1353
1354 case nir_op_umod:
1355 case nir_op_irem:
1356 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1357 * appears that our hardware just does the right thing for signed
1358 * remainder.
1359 */
1360 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1361 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1362 break;
1363
1364 case nir_op_imod: {
1365 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1366 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1367
1368 /* Math instructions don't support conditional mod */
1369 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1370 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1371
1372 /* Now, we need to determine if signs of the sources are different.
1373 * When we XOR the sources, the top bit is 0 if they are the same and 1
1374 * if they are different. We can then use a conditional modifier to
1375 * turn that into a predicate. This leads us to an XOR.l instruction.
1376 *
1377 * Technically, according to the PRM, you're not allowed to use .l on a
1378 * XOR instruction. However, emperical experiments and Curro's reading
1379 * of the simulator source both indicate that it's safe.
1380 */
1381 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1382 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1383 inst->predicate = BRW_PREDICATE_NORMAL;
1384 inst->conditional_mod = BRW_CONDITIONAL_L;
1385
1386 /* If the result of the initial remainder operation is non-zero and the
1387 * two sources have different signs, add in a copy of op[1] to get the
1388 * final integer modulus value.
1389 */
1390 inst = emit(ADD(dst, src_reg(dst), op[1]));
1391 inst->predicate = BRW_PREDICATE_NORMAL;
1392 break;
1393 }
1394
1395 case nir_op_ldexp:
1396 unreachable("not reached: should be handled by ldexp_to_arith()");
1397
1398 case nir_op_fsqrt:
1399 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1400 inst->saturate = instr->dest.saturate;
1401 break;
1402
1403 case nir_op_frsq:
1404 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1405 inst->saturate = instr->dest.saturate;
1406 break;
1407
1408 case nir_op_fpow:
1409 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1410 inst->saturate = instr->dest.saturate;
1411 break;
1412
1413 case nir_op_uadd_carry: {
1414 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1415 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1416
1417 emit(ADDC(dst_null_ud(), op[0], op[1]));
1418 emit(MOV(dst, src_reg(acc)));
1419 break;
1420 }
1421
1422 case nir_op_usub_borrow: {
1423 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1424 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1425
1426 emit(SUBB(dst_null_ud(), op[0], op[1]));
1427 emit(MOV(dst, src_reg(acc)));
1428 break;
1429 }
1430
1431 case nir_op_ftrunc:
1432 inst = emit(RNDZ(dst, op[0]));
1433 inst->saturate = instr->dest.saturate;
1434 break;
1435
1436 case nir_op_fceil: {
1437 src_reg tmp = src_reg(this, glsl_type::float_type);
1438 tmp.swizzle =
1439 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1440 instr->src[0].src.ssa->num_components :
1441 instr->src[0].src.reg.reg->num_components);
1442
1443 op[0].negate = !op[0].negate;
1444 emit(RNDD(dst_reg(tmp), op[0]));
1445 tmp.negate = true;
1446 inst = emit(MOV(dst, tmp));
1447 inst->saturate = instr->dest.saturate;
1448 break;
1449 }
1450
1451 case nir_op_ffloor:
1452 inst = emit(RNDD(dst, op[0]));
1453 inst->saturate = instr->dest.saturate;
1454 break;
1455
1456 case nir_op_ffract:
1457 inst = emit(FRC(dst, op[0]));
1458 inst->saturate = instr->dest.saturate;
1459 break;
1460
1461 case nir_op_fround_even:
1462 inst = emit(RNDE(dst, op[0]));
1463 inst->saturate = instr->dest.saturate;
1464 break;
1465
1466 case nir_op_fquantize2f16: {
1467 /* See also vec4_visitor::emit_pack_half_2x16() */
1468 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1469 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1470 src_reg zero = src_reg(this, glsl_type::vec4_type);
1471
1472 /* Check for denormal */
1473 src_reg abs_src0 = op[0];
1474 abs_src0.abs = true;
1475 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1476 BRW_CONDITIONAL_L));
1477 /* Get the appropriately signed zero */
1478 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1479 retype(op[0], BRW_REGISTER_TYPE_UD),
1480 brw_imm_ud(0x80000000)));
1481 /* Do the actual F32 -> F16 -> F32 conversion */
1482 emit(F32TO16(dst_reg(tmp16), op[0]));
1483 emit(F16TO32(dst_reg(tmp32), tmp16));
1484 /* Select that or zero based on normal status */
1485 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1486 inst->predicate = BRW_PREDICATE_NORMAL;
1487 inst->saturate = instr->dest.saturate;
1488 break;
1489 }
1490
1491 case nir_op_imin:
1492 case nir_op_umin:
1493 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1494 /* fall through */
1495 case nir_op_fmin:
1496 try_immediate_source(instr, op, true, devinfo);
1497 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1498 inst->saturate = instr->dest.saturate;
1499 break;
1500
1501 case nir_op_imax:
1502 case nir_op_umax:
1503 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1504 /* fall through */
1505 case nir_op_fmax:
1506 try_immediate_source(instr, op, true, devinfo);
1507 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1508 inst->saturate = instr->dest.saturate;
1509 break;
1510
1511 case nir_op_fddx:
1512 case nir_op_fddx_coarse:
1513 case nir_op_fddx_fine:
1514 case nir_op_fddy:
1515 case nir_op_fddy_coarse:
1516 case nir_op_fddy_fine:
1517 unreachable("derivatives are not valid in vertex shaders");
1518
1519 case nir_op_ilt32:
1520 case nir_op_ult32:
1521 case nir_op_ige32:
1522 case nir_op_uge32:
1523 case nir_op_ieq32:
1524 case nir_op_ine32:
1525 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1526 /* Fallthrough */
1527 case nir_op_flt32:
1528 case nir_op_fge32:
1529 case nir_op_feq32:
1530 case nir_op_fne32: {
1531 enum brw_conditional_mod conditional_mod =
1532 brw_conditional_for_nir_comparison(instr->op);
1533
1534 if (nir_src_bit_size(instr->src[0].src) < 64) {
1535 /* If the order of the sources is changed due to an immediate value,
1536 * then the condition must also be changed.
1537 */
1538 if (try_immediate_source(instr, op, true, devinfo) == 0)
1539 conditional_mod = brw_swap_cmod(conditional_mod);
1540
1541 emit(CMP(dst, op[0], op[1], conditional_mod));
1542 } else {
1543 /* Produce a 32-bit boolean result from the DF comparison by selecting
1544 * only the low 32-bit in each DF produced. Do this in a temporary
1545 * so we can then move from there to the result using align16 again
1546 * to honor the original writemask.
1547 */
1548 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1549 emit(CMP(temp, op[0], op[1], conditional_mod));
1550 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1551 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1552 emit(MOV(dst, src_reg(result)));
1553 }
1554 break;
1555 }
1556
1557 case nir_op_b32all_iequal2:
1558 case nir_op_b32all_iequal3:
1559 case nir_op_b32all_iequal4:
1560 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1561 /* Fallthrough */
1562 case nir_op_b32all_fequal2:
1563 case nir_op_b32all_fequal3:
1564 case nir_op_b32all_fequal4: {
1565 unsigned swiz =
1566 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1567
1568 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1569 brw_conditional_for_nir_comparison(instr->op)));
1570 emit(MOV(dst, brw_imm_d(0)));
1571 inst = emit(MOV(dst, brw_imm_d(~0)));
1572 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1573 break;
1574 }
1575
1576 case nir_op_b32any_inequal2:
1577 case nir_op_b32any_inequal3:
1578 case nir_op_b32any_inequal4:
1579 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1580 /* Fallthrough */
1581 case nir_op_b32any_fnequal2:
1582 case nir_op_b32any_fnequal3:
1583 case nir_op_b32any_fnequal4: {
1584 unsigned swiz =
1585 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1586
1587 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1588 brw_conditional_for_nir_comparison(instr->op)));
1589
1590 emit(MOV(dst, brw_imm_d(0)));
1591 inst = emit(MOV(dst, brw_imm_d(~0)));
1592 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1593 break;
1594 }
1595
1596 case nir_op_inot:
1597 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1598 if (devinfo->gen >= 8) {
1599 op[0] = resolve_source_modifiers(op[0]);
1600 }
1601 emit(NOT(dst, op[0]));
1602 break;
1603
1604 case nir_op_ixor:
1605 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1606 if (devinfo->gen >= 8) {
1607 op[0] = resolve_source_modifiers(op[0]);
1608 op[1] = resolve_source_modifiers(op[1]);
1609 }
1610 try_immediate_source(instr, op, true, devinfo);
1611 emit(XOR(dst, op[0], op[1]));
1612 break;
1613
1614 case nir_op_ior:
1615 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1616 if (devinfo->gen >= 8) {
1617 op[0] = resolve_source_modifiers(op[0]);
1618 op[1] = resolve_source_modifiers(op[1]);
1619 }
1620 try_immediate_source(instr, op, true, devinfo);
1621 emit(OR(dst, op[0], op[1]));
1622 break;
1623
1624 case nir_op_iand:
1625 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1626 if (devinfo->gen >= 8) {
1627 op[0] = resolve_source_modifiers(op[0]);
1628 op[1] = resolve_source_modifiers(op[1]);
1629 }
1630 try_immediate_source(instr, op, true, devinfo);
1631 emit(AND(dst, op[0], op[1]));
1632 break;
1633
1634 case nir_op_b2i32:
1635 case nir_op_b2f32:
1636 case nir_op_b2f64:
1637 if (nir_dest_bit_size(instr->dest.dest) > 32) {
1638 assert(dst.type == BRW_REGISTER_TYPE_DF);
1639 emit_conversion_to_double(dst, negate(op[0]), false);
1640 } else {
1641 emit(MOV(dst, negate(op[0])));
1642 }
1643 break;
1644
1645 case nir_op_f2b32:
1646 if (nir_src_bit_size(instr->src[0].src) == 64) {
1647 /* We use a MOV with conditional_mod to check if the provided value is
1648 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1649 * source modifier on the source operand to trigger this, as source
1650 * modifiers don't affect the result of the testing against 0.0.
1651 */
1652 src_reg value = op[0];
1653 value.abs = true;
1654 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1655 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1656
1657 src_reg one = src_reg(this, glsl_type::ivec4_type);
1658 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1659 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1660 inst->predicate = BRW_PREDICATE_NORMAL;
1661 } else {
1662 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1663 }
1664 break;
1665
1666 case nir_op_i2b32:
1667 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1668 break;
1669
1670 case nir_op_fnoise1_1:
1671 case nir_op_fnoise1_2:
1672 case nir_op_fnoise1_3:
1673 case nir_op_fnoise1_4:
1674 case nir_op_fnoise2_1:
1675 case nir_op_fnoise2_2:
1676 case nir_op_fnoise2_3:
1677 case nir_op_fnoise2_4:
1678 case nir_op_fnoise3_1:
1679 case nir_op_fnoise3_2:
1680 case nir_op_fnoise3_3:
1681 case nir_op_fnoise3_4:
1682 case nir_op_fnoise4_1:
1683 case nir_op_fnoise4_2:
1684 case nir_op_fnoise4_3:
1685 case nir_op_fnoise4_4:
1686 unreachable("not reached: should be handled by lower_noise");
1687
1688 case nir_op_unpack_half_2x16_split_x:
1689 case nir_op_unpack_half_2x16_split_y:
1690 case nir_op_pack_half_2x16_split:
1691 unreachable("not reached: should not occur in vertex shader");
1692
1693 case nir_op_unpack_snorm_2x16:
1694 case nir_op_unpack_unorm_2x16:
1695 case nir_op_pack_snorm_2x16:
1696 case nir_op_pack_unorm_2x16:
1697 unreachable("not reached: should be handled by lower_packing_builtins");
1698
1699 case nir_op_pack_uvec4_to_uint:
1700 unreachable("not reached");
1701
1702 case nir_op_pack_uvec2_to_uint: {
1703 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1704 tmp1.writemask = WRITEMASK_X;
1705 op[0].swizzle = BRW_SWIZZLE_YYYY;
1706 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1707
1708 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1709 tmp2.writemask = WRITEMASK_X;
1710 op[0].swizzle = BRW_SWIZZLE_XXXX;
1711 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1712
1713 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1714 break;
1715 }
1716
1717 case nir_op_pack_64_2x32_split: {
1718 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1719 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1720 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1721 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1722 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1723 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1724 emit(MOV(dst, src_reg(result)));
1725 break;
1726 }
1727
1728 case nir_op_unpack_64_2x32_split_x:
1729 case nir_op_unpack_64_2x32_split_y: {
1730 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1731 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1732 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1733 emit(MOV(tmp, op[0]));
1734 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1735 emit(oper, tmp2, src_reg(tmp));
1736 emit(MOV(dst, src_reg(tmp2)));
1737 break;
1738 }
1739
1740 case nir_op_unpack_half_2x16:
1741 /* As NIR does not guarantee that we have a correct swizzle outside the
1742 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1743 * uses the source operand in an operation with WRITEMASK_Y while our
1744 * source operand has only size 1, it accessed incorrect data producing
1745 * regressions in Piglit. We repeat the swizzle of the first component on the
1746 * rest of components to avoid regressions. In the vec4_visitor IR code path
1747 * this is not needed because the operand has already the correct swizzle.
1748 */
1749 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1750 emit_unpack_half_2x16(dst, op[0]);
1751 break;
1752
1753 case nir_op_pack_half_2x16:
1754 emit_pack_half_2x16(dst, op[0]);
1755 break;
1756
1757 case nir_op_unpack_unorm_4x8:
1758 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1759 emit_unpack_unorm_4x8(dst, op[0]);
1760 break;
1761
1762 case nir_op_pack_unorm_4x8:
1763 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1764 emit_pack_unorm_4x8(dst, op[0]);
1765 break;
1766
1767 case nir_op_unpack_snorm_4x8:
1768 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1769 emit_unpack_snorm_4x8(dst, op[0]);
1770 break;
1771
1772 case nir_op_pack_snorm_4x8:
1773 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1774 emit_pack_snorm_4x8(dst, op[0]);
1775 break;
1776
1777 case nir_op_bitfield_reverse:
1778 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1779 emit(BFREV(dst, op[0]));
1780 break;
1781
1782 case nir_op_bit_count:
1783 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1784 emit(CBIT(dst, op[0]));
1785 break;
1786
1787 case nir_op_ufind_msb:
1788 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1789 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1790 break;
1791
1792 case nir_op_ifind_msb: {
1793 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1794 vec4_builder bld = vec4_builder(this).at_end();
1795 src_reg src(dst);
1796
1797 if (devinfo->gen < 7) {
1798 emit_find_msb_using_lzd(bld, dst, op[0], true);
1799 } else {
1800 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1801
1802 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1803 * count from the LSB side. If FBH didn't return an error
1804 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1805 * count into an LSB count.
1806 */
1807 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1808
1809 inst = bld.ADD(dst, src, brw_imm_d(31));
1810 inst->predicate = BRW_PREDICATE_NORMAL;
1811 inst->src[0].negate = true;
1812 }
1813 break;
1814 }
1815
1816 case nir_op_find_lsb: {
1817 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1818 vec4_builder bld = vec4_builder(this).at_end();
1819
1820 if (devinfo->gen < 7) {
1821 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1822
1823 /* (x & -x) generates a value that consists of only the LSB of x.
1824 * For all powers of 2, findMSB(y) == findLSB(y).
1825 */
1826 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1827 src_reg negated_src = src;
1828
1829 /* One must be negated, and the other must be non-negated. It
1830 * doesn't matter which is which.
1831 */
1832 negated_src.negate = true;
1833 src.negate = false;
1834
1835 bld.AND(temp, src, negated_src);
1836 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1837 } else {
1838 bld.FBL(dst, op[0]);
1839 }
1840 break;
1841 }
1842
1843 case nir_op_ubitfield_extract:
1844 case nir_op_ibitfield_extract:
1845 unreachable("should have been lowered");
1846 case nir_op_ubfe:
1847 case nir_op_ibfe:
1848 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1849 op[0] = fix_3src_operand(op[0]);
1850 op[1] = fix_3src_operand(op[1]);
1851 op[2] = fix_3src_operand(op[2]);
1852
1853 emit(BFE(dst, op[2], op[1], op[0]));
1854 break;
1855
1856 case nir_op_bfm:
1857 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1858 emit(BFI1(dst, op[0], op[1]));
1859 break;
1860
1861 case nir_op_bfi:
1862 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1863 op[0] = fix_3src_operand(op[0]);
1864 op[1] = fix_3src_operand(op[1]);
1865 op[2] = fix_3src_operand(op[2]);
1866
1867 emit(BFI2(dst, op[0], op[1], op[2]));
1868 break;
1869
1870 case nir_op_bitfield_insert:
1871 unreachable("not reached: should have been lowered");
1872
1873 case nir_op_fsign:
1874 assert(!instr->dest.saturate);
1875 if (op[0].abs) {
1876 /* Straightforward since the source can be assumed to be either
1877 * strictly >= 0 or strictly <= 0 depending on the setting of the
1878 * negate flag.
1879 */
1880 inst = emit(MOV(dst, op[0]));
1881 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1882
1883 inst = (op[0].negate)
1884 ? emit(MOV(dst, brw_imm_f(-1.0f)))
1885 : emit(MOV(dst, brw_imm_f(1.0f)));
1886 inst->predicate = BRW_PREDICATE_NORMAL;
1887 } else if (type_sz(op[0].type) < 8) {
1888 /* AND(val, 0x80000000) gives the sign bit.
1889 *
1890 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1891 * zero.
1892 */
1893 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1894
1895 op[0].type = BRW_REGISTER_TYPE_UD;
1896 dst.type = BRW_REGISTER_TYPE_UD;
1897 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1898
1899 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1900 inst->predicate = BRW_PREDICATE_NORMAL;
1901 dst.type = BRW_REGISTER_TYPE_F;
1902 } else {
1903 /* For doubles we do the same but we need to consider:
1904 *
1905 * - We use a MOV with conditional_mod instead of a CMP so that we can
1906 * skip loading a 0.0 immediate. We use a source modifier on the
1907 * source of the MOV so that we flush denormalized values to 0.
1908 * Since we want to compare against 0, this won't alter the result.
1909 * - We need to extract the high 32-bit of each DF where the sign
1910 * is stored.
1911 * - We need to produce a DF result.
1912 */
1913
1914 /* Check for zero */
1915 src_reg value = op[0];
1916 value.abs = true;
1917 inst = emit(MOV(dst_null_df(), value));
1918 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1919
1920 /* AND each high 32-bit channel with 0x80000000u */
1921 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1922 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1923 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1924
1925 /* Add 1.0 to each channel, predicated to skip the cases where the
1926 * channel's value was 0
1927 */
1928 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1929 inst->predicate = BRW_PREDICATE_NORMAL;
1930
1931 /* Now convert the result from float to double */
1932 emit_conversion_to_double(dst, retype(src_reg(tmp),
1933 BRW_REGISTER_TYPE_F),
1934 false);
1935 }
1936 break;
1937
1938 case nir_op_ishl:
1939 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1940 try_immediate_source(instr, op, false, devinfo);
1941 emit(SHL(dst, op[0], op[1]));
1942 break;
1943
1944 case nir_op_ishr:
1945 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1946 try_immediate_source(instr, op, false, devinfo);
1947 emit(ASR(dst, op[0], op[1]));
1948 break;
1949
1950 case nir_op_ushr:
1951 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1952 try_immediate_source(instr, op, false, devinfo);
1953 emit(SHR(dst, op[0], op[1]));
1954 break;
1955
1956 case nir_op_ffma:
1957 if (type_sz(dst.type) == 8) {
1958 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1959 emit(MUL(mul_dst, op[1], op[0]));
1960 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1961 inst->saturate = instr->dest.saturate;
1962 } else {
1963 fix_float_operands(op, instr);
1964 inst = emit(MAD(dst, op[2], op[1], op[0]));
1965 inst->saturate = instr->dest.saturate;
1966 }
1967 break;
1968
1969 case nir_op_flrp:
1970 fix_float_operands(op, instr);
1971 inst = emit(LRP(dst, op[2], op[1], op[0]));
1972 inst->saturate = instr->dest.saturate;
1973 break;
1974
1975 case nir_op_b32csel:
1976 enum brw_predicate predicate;
1977 if (!optimize_predicate(instr, &predicate)) {
1978 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1979 switch (dst.writemask) {
1980 case WRITEMASK_X:
1981 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1982 break;
1983 case WRITEMASK_Y:
1984 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1985 break;
1986 case WRITEMASK_Z:
1987 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1988 break;
1989 case WRITEMASK_W:
1990 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1991 break;
1992 default:
1993 predicate = BRW_PREDICATE_NORMAL;
1994 break;
1995 }
1996 }
1997 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1998 inst->predicate = predicate;
1999 break;
2000
2001 case nir_op_fdot_replicated2:
2002 try_immediate_source(instr, op, true, devinfo);
2003 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
2004 inst->saturate = instr->dest.saturate;
2005 break;
2006
2007 case nir_op_fdot_replicated3:
2008 try_immediate_source(instr, op, true, devinfo);
2009 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
2010 inst->saturate = instr->dest.saturate;
2011 break;
2012
2013 case nir_op_fdot_replicated4:
2014 try_immediate_source(instr, op, true, devinfo);
2015 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
2016 inst->saturate = instr->dest.saturate;
2017 break;
2018
2019 case nir_op_fdph_replicated:
2020 try_immediate_source(instr, op, true, devinfo);
2021 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
2022 inst->saturate = instr->dest.saturate;
2023 break;
2024
2025 case nir_op_fdiv:
2026 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
2027
2028 case nir_op_fmod:
2029 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
2030
2031 case nir_op_fsub:
2032 case nir_op_isub:
2033 unreachable("not reached: should be handled by ir_sub_to_add_neg");
2034
2035 default:
2036 unreachable("Unimplemented ALU operation");
2037 }
2038
2039 /* If we need to do a boolean resolve, replace the result with -(x & 1)
2040 * to sign extend the low bit to 0/~0
2041 */
2042 if (devinfo->gen <= 5 &&
2043 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
2044 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
2045 dst_reg masked = dst_reg(this, glsl_type::int_type);
2046 masked.writemask = dst.writemask;
2047 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
2048 src_reg masked_neg = src_reg(masked);
2049 masked_neg.negate = true;
2050 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
2051 }
2052 }
2053
2054 void
2055 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
2056 {
2057 switch (instr->type) {
2058 case nir_jump_break:
2059 emit(BRW_OPCODE_BREAK);
2060 break;
2061
2062 case nir_jump_continue:
2063 emit(BRW_OPCODE_CONTINUE);
2064 break;
2065
2066 case nir_jump_return:
2067 /* fall through */
2068 default:
2069 unreachable("unknown jump");
2070 }
2071 }
2072
2073 static enum ir_texture_opcode
2074 ir_texture_opcode_for_nir_texop(nir_texop texop)
2075 {
2076 enum ir_texture_opcode op;
2077
2078 switch (texop) {
2079 case nir_texop_lod: op = ir_lod; break;
2080 case nir_texop_query_levels: op = ir_query_levels; break;
2081 case nir_texop_texture_samples: op = ir_texture_samples; break;
2082 case nir_texop_tex: op = ir_tex; break;
2083 case nir_texop_tg4: op = ir_tg4; break;
2084 case nir_texop_txb: op = ir_txb; break;
2085 case nir_texop_txd: op = ir_txd; break;
2086 case nir_texop_txf: op = ir_txf; break;
2087 case nir_texop_txf_ms: op = ir_txf_ms; break;
2088 case nir_texop_txl: op = ir_txl; break;
2089 case nir_texop_txs: op = ir_txs; break;
2090 case nir_texop_samples_identical: op = ir_samples_identical; break;
2091 default:
2092 unreachable("unknown texture opcode");
2093 }
2094
2095 return op;
2096 }
2097
2098 static const glsl_type *
2099 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
2100 unsigned components)
2101 {
2102 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
2103 components, 1);
2104 }
2105
2106 void
2107 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
2108 {
2109 unsigned texture = instr->texture_index;
2110 unsigned sampler = instr->sampler_index;
2111 src_reg texture_reg = brw_imm_ud(texture);
2112 src_reg sampler_reg = brw_imm_ud(sampler);
2113 src_reg coordinate;
2114 const glsl_type *coord_type = NULL;
2115 src_reg shadow_comparator;
2116 src_reg offset_value;
2117 src_reg lod, lod2;
2118 src_reg sample_index;
2119 src_reg mcs;
2120
2121 const glsl_type *dest_type =
2122 glsl_type_for_nir_alu_type(instr->dest_type,
2123 nir_tex_instr_dest_size(instr));
2124 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2125
2126 /* The hardware requires a LOD for buffer textures */
2127 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2128 lod = brw_imm_d(0);
2129
2130 /* Load the texture operation sources */
2131 uint32_t constant_offset = 0;
2132 for (unsigned i = 0; i < instr->num_srcs; i++) {
2133 switch (instr->src[i].src_type) {
2134 case nir_tex_src_comparator:
2135 shadow_comparator = get_nir_src(instr->src[i].src,
2136 BRW_REGISTER_TYPE_F, 1);
2137 break;
2138
2139 case nir_tex_src_coord: {
2140 unsigned src_size = nir_tex_instr_src_size(instr, i);
2141
2142 switch (instr->op) {
2143 case nir_texop_txf:
2144 case nir_texop_txf_ms:
2145 case nir_texop_samples_identical:
2146 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2147 src_size);
2148 coord_type = glsl_type::ivec(src_size);
2149 break;
2150
2151 default:
2152 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2153 src_size);
2154 coord_type = glsl_type::vec(src_size);
2155 break;
2156 }
2157 break;
2158 }
2159
2160 case nir_tex_src_ddx:
2161 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2162 nir_tex_instr_src_size(instr, i));
2163 break;
2164
2165 case nir_tex_src_ddy:
2166 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2167 nir_tex_instr_src_size(instr, i));
2168 break;
2169
2170 case nir_tex_src_lod:
2171 switch (instr->op) {
2172 case nir_texop_txs:
2173 case nir_texop_txf:
2174 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2175 break;
2176
2177 default:
2178 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2179 break;
2180 }
2181 break;
2182
2183 case nir_tex_src_ms_index: {
2184 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2185 break;
2186 }
2187
2188 case nir_tex_src_offset:
2189 if (!brw_texture_offset(instr, i, &constant_offset)) {
2190 offset_value =
2191 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2192 }
2193 break;
2194
2195 case nir_tex_src_texture_offset: {
2196 /* Emit code to evaluate the actual indexing expression */
2197 src_reg src = get_nir_src(instr->src[i].src, 1);
2198 src_reg temp(this, glsl_type::uint_type);
2199 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2200 texture_reg = emit_uniformize(temp);
2201 break;
2202 }
2203
2204 case nir_tex_src_sampler_offset: {
2205 /* Emit code to evaluate the actual indexing expression */
2206 src_reg src = get_nir_src(instr->src[i].src, 1);
2207 src_reg temp(this, glsl_type::uint_type);
2208 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2209 sampler_reg = emit_uniformize(temp);
2210 break;
2211 }
2212
2213 case nir_tex_src_projector:
2214 unreachable("Should be lowered by do_lower_texture_projection");
2215
2216 case nir_tex_src_bias:
2217 unreachable("LOD bias is not valid for vertex shaders.\n");
2218
2219 default:
2220 unreachable("unknown texture source");
2221 }
2222 }
2223
2224 if (instr->op == nir_texop_txf_ms ||
2225 instr->op == nir_texop_samples_identical) {
2226 assert(coord_type != NULL);
2227 if (devinfo->gen >= 7 &&
2228 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2229 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2230 } else {
2231 mcs = brw_imm_ud(0u);
2232 }
2233 }
2234
2235 /* Stuff the channel select bits in the top of the texture offset */
2236 if (instr->op == nir_texop_tg4) {
2237 if (instr->component == 1 &&
2238 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2239 /* gather4 sampler is broken for green channel on RG32F --
2240 * we must ask for blue instead.
2241 */
2242 constant_offset |= 2 << 16;
2243 } else {
2244 constant_offset |= instr->component << 16;
2245 }
2246 }
2247
2248 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2249
2250 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2251 shadow_comparator,
2252 lod, lod2, sample_index,
2253 constant_offset, offset_value, mcs,
2254 texture, texture_reg, sampler_reg);
2255 }
2256
2257 void
2258 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2259 {
2260 nir_ssa_values[instr->def.index] =
2261 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2262 }
2263
2264 /* SIMD4x2 64bit data is stored in register space like this:
2265 *
2266 * r0.0:DF x0 y0 z0 w0
2267 * r1.0:DF x1 y1 z1 w1
2268 *
2269 * When we need to write data such as this to memory using 32-bit write
2270 * messages we need to shuffle it in this fashion:
2271 *
2272 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2273 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2274 *
2275 * We need to do the inverse operation when we read using 32-bit messages,
2276 * which we can do by applying the same exact shuffling on the 64-bit data
2277 * read, only that because the data for each vertex is positioned differently
2278 * we need to apply different channel enables.
2279 *
2280 * This function takes 64bit data and shuffles it as explained above.
2281 *
2282 * The @for_write parameter is used to specify if the shuffling is being done
2283 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2284 * write message (for_write = true), or instead we are doing the inverse
2285 * operation and we have just read 64-bit data using a 32-bit messages that we
2286 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2287 *
2288 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2289 * otherwise the instructions are emitted normally at the end. The function
2290 * returns the last instruction inserted.
2291 *
2292 * Notice that @src and @dst cannot be the same register.
2293 */
2294 vec4_instruction *
2295 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2296 bblock_t *block, vec4_instruction *ref)
2297 {
2298 assert(type_sz(src.type) == 8);
2299 assert(type_sz(dst.type) == 8);
2300 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2301 assert(!ref == !block);
2302
2303 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2304 vec4_builder(this).at(block, ref->next);
2305
2306 /* Resolve swizzle in src */
2307 vec4_instruction *inst;
2308 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2309 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2310 inst = bld.MOV(data, src);
2311 src = src_reg(data);
2312 }
2313
2314 /* dst+0.XY = src+0.XY */
2315 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2316
2317 /* dst+0.ZW = src+1.XY */
2318 inst = bld.group(4, for_write ? 1 : 0)
2319 .MOV(writemask(dst, WRITEMASK_ZW),
2320 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2321
2322 /* dst+1.XY = src+0.ZW */
2323 inst = bld.group(4, for_write ? 0 : 1)
2324 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2325 swizzle(src, BRW_SWIZZLE_ZWZW));
2326
2327 /* dst+1.ZW = src+1.ZW */
2328 inst = bld.group(4, 1)
2329 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2330 byte_offset(src, REG_SIZE));
2331
2332 return inst;
2333 }
2334
2335 }