intel: limit shader geometry on BDW GT1
[mesa.git] / src / intel / dev / gen_device_info.h
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #ifndef GEN_DEVICE_INFO_H
26 #define GEN_DEVICE_INFO_H
27
28 #include <stdbool.h>
29 #include <stdint.h>
30
31 #include "util/macros.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct drm_i915_query_topology_info;
38
39 #define GEN_DEVICE_MAX_SLICES (6) /* Maximum on gen10 */
40 #define GEN_DEVICE_MAX_SUBSLICES (8) /* Maximum on gen11 */
41 #define GEN_DEVICE_MAX_EUS_PER_SUBSLICE (10) /* Maximum on Haswell */
42 #define GEN_DEVICE_MAX_PIXEL_PIPES (2) /* Maximum on gen11 */
43
44 /**
45 * Intel hardware information and quirks
46 */
47 struct gen_device_info
48 {
49 int gen; /**< Generation number: 4, 5, 6, 7, ... */
50 int revision;
51 int gt;
52
53 bool is_g4x;
54 bool is_ivybridge;
55 bool is_baytrail;
56 bool is_haswell;
57 bool is_broadwell;
58 bool is_cherryview;
59 bool is_skylake;
60 bool is_broxton;
61 bool is_kabylake;
62 bool is_geminilake;
63 bool is_coffeelake;
64 bool is_cannonlake;
65 bool is_elkhartlake;
66
67 bool has_hiz_and_separate_stencil;
68 bool must_use_separate_stencil;
69 bool has_sample_with_hiz;
70 bool has_llc;
71
72 bool has_pln;
73 bool has_64bit_types;
74 bool has_integer_dword_mul;
75 bool has_compr4;
76 bool has_surface_tile_offset;
77 bool supports_simd16_3src;
78 bool has_resource_streamer;
79 bool disable_ccs_repack;
80 bool has_aux_map;
81
82 /**
83 * \name Intel hardware quirks
84 * @{
85 */
86 bool has_negative_rhw_bug;
87
88 /**
89 * Some versions of Gen hardware don't do centroid interpolation correctly
90 * on unlit pixels, causing incorrect values for derivatives near triangle
91 * edges. Enabling this flag causes the fragment shader to use
92 * non-centroid interpolation for unlit pixels, at the expense of two extra
93 * fragment shader instructions.
94 */
95 bool needs_unlit_centroid_workaround;
96 /** @} */
97
98 /**
99 * \name GPU hardware limits
100 *
101 * In general, you can find shader thread maximums by looking at the "Maximum
102 * Number of Threads" field in the Intel PRM description of the 3DSTATE_VS,
103 * 3DSTATE_GS, 3DSTATE_HS, 3DSTATE_DS, and 3DSTATE_PS commands. URB entry
104 * limits come from the "Number of URB Entries" field in the
105 * 3DSTATE_URB_VS command and friends.
106 *
107 * These fields are used to calculate the scratch space to allocate. The
108 * amount of scratch space can be larger without being harmful on modern
109 * GPUs, however, prior to Haswell, programming the maximum number of threads
110 * to greater than the hardware maximum would cause GPU performance to tank.
111 *
112 * @{
113 */
114 /**
115 * Total number of slices present on the device whether or not they've been
116 * fused off.
117 *
118 * XXX: CS thread counts are limited by the inability to do cross subslice
119 * communication. It is the effectively the number of logical threads which
120 * can be executed in a subslice. Fuse configurations may cause this number
121 * to change, so we program @max_cs_threads as the lower maximum.
122 */
123 unsigned num_slices;
124
125 /**
126 * Number of subslices for each slice (used to be uniform until CNL).
127 */
128 unsigned num_subslices[GEN_DEVICE_MAX_SUBSLICES];
129
130 /**
131 * Number of subslices on each pixel pipe (ICL).
132 */
133 unsigned ppipe_subslices[GEN_DEVICE_MAX_PIXEL_PIPES];
134
135 /**
136 * Upper bound of number of EU per subslice (some SKUs might have just 1 EU
137 * fused across all subslices, like 47 EUs, in which case this number won't
138 * be acurate for one subslice).
139 */
140 unsigned num_eu_per_subslice;
141
142 /**
143 * Number of threads per eu, varies between 4 and 8 between generations.
144 */
145 unsigned num_thread_per_eu;
146
147 /**
148 * A bit mask of the slices available.
149 */
150 uint8_t slice_masks;
151
152 /**
153 * An array of bit mask of the subslices available, use subslice_slice_stride
154 * to access this array.
155 */
156 uint8_t subslice_masks[GEN_DEVICE_MAX_SLICES *
157 DIV_ROUND_UP(GEN_DEVICE_MAX_SUBSLICES, 8)];
158
159 /**
160 * An array of bit mask of EUs available, use eu_slice_stride &
161 * eu_subslice_stride to access this array.
162 */
163 uint8_t eu_masks[GEN_DEVICE_MAX_SLICES *
164 GEN_DEVICE_MAX_SUBSLICES *
165 DIV_ROUND_UP(GEN_DEVICE_MAX_EUS_PER_SUBSLICE, 8)];
166
167 /**
168 * Stride to access subslice_masks[].
169 */
170 uint16_t subslice_slice_stride;
171
172 /**
173 * Strides to access eu_masks[].
174 */
175 uint16_t eu_slice_stride;
176 uint16_t eu_subslice_stride;
177
178 unsigned l3_banks;
179 unsigned max_vs_threads; /**< Maximum Vertex Shader threads */
180 unsigned max_tcs_threads; /**< Maximum Hull Shader threads */
181 unsigned max_tes_threads; /**< Maximum Domain Shader threads */
182 unsigned max_gs_threads; /**< Maximum Geometry Shader threads. */
183 /**
184 * Theoretical maximum number of Pixel Shader threads.
185 *
186 * PSD means Pixel Shader Dispatcher. On modern Intel GPUs, hardware will
187 * automatically scale pixel shader thread count, based on a single value
188 * programmed into 3DSTATE_PS.
189 *
190 * To calculate the maximum number of threads for Gen8 beyond (which have
191 * multiple Pixel Shader Dispatchers):
192 *
193 * - Look up 3DSTATE_PS and find "Maximum Number of Threads Per PSD"
194 * - Usually there's only one PSD per subslice, so use the number of
195 * subslices for number of PSDs.
196 * - For max_wm_threads, the total should be PSD threads * #PSDs.
197 */
198 unsigned max_wm_threads;
199
200 /**
201 * Maximum Compute Shader threads.
202 *
203 * Thread count * number of EUs per subslice
204 */
205 unsigned max_cs_threads;
206
207 struct {
208 /**
209 * Hardware default URB size.
210 *
211 * The units this is expressed in are somewhat inconsistent: 512b units
212 * on Gen4-5, KB on Gen6-7, and KB times the slice count on Gen8+.
213 *
214 * Look up "URB Size" in the "Device Attributes" page, and take the
215 * maximum. Look up the slice count for each GT SKU on the same page.
216 * urb.size = URB Size (kbytes) / slice count
217 */
218 unsigned size;
219
220 /**
221 * The minimum number of URB entries. See the 3DSTATE_URB_<XS> docs.
222 */
223 unsigned min_entries[4];
224
225 /**
226 * The maximum number of URB entries. See the 3DSTATE_URB_<XS> docs.
227 */
228 unsigned max_entries[4];
229 } urb;
230
231 /**
232 * For the longest time the timestamp frequency for Gen's timestamp counter
233 * could be assumed to be 12.5MHz, where the least significant bit neatly
234 * corresponded to 80 nanoseconds.
235 *
236 * Since Gen9 the numbers aren't so round, with a a frequency of 12MHz for
237 * SKL (or scale factor of 83.33333333) and a frequency of 19200000Hz for
238 * BXT.
239 *
240 * For simplicty to fit with the current code scaling by a single constant
241 * to map from raw timestamps to nanoseconds we now do the conversion in
242 * floating point instead of integer arithmetic.
243 *
244 * In general it's probably worth noting that the documented constants we
245 * have for the per-platform timestamp frequencies aren't perfect and
246 * shouldn't be trusted for scaling and comparing timestamps with a large
247 * delta.
248 *
249 * E.g. with crude testing on my system using the 'correct' scale factor I'm
250 * seeing a drift of ~2 milliseconds per second.
251 */
252 uint64_t timestamp_frequency;
253
254 /**
255 * ID to put into the .aub files.
256 */
257 int simulator_id;
258
259 /**
260 * holds the pci device id
261 */
262 uint32_t chipset_id;
263
264 /**
265 * no_hw is true when the chipset_id pci device id has been overridden
266 */
267 bool no_hw;
268 /** @} */
269 };
270
271 #define gen_device_info_is_9lp(devinfo) \
272 ((devinfo)->is_broxton || (devinfo)->is_geminilake)
273
274 static inline bool
275 gen_device_info_subslice_available(const struct gen_device_info *devinfo,
276 int slice, int subslice)
277 {
278 return (devinfo->subslice_masks[slice * devinfo->subslice_slice_stride +
279 subslice / 8] & (1U << (subslice % 8))) != 0;
280 }
281
282 int gen_device_name_to_pci_device_id(const char *name);
283 const char *gen_get_device_name(int devid);
284
285 static inline uint64_t
286 gen_device_info_timebase_scale(const struct gen_device_info *devinfo,
287 uint64_t gpu_timestamp)
288 {
289 return (1000000000ull * gpu_timestamp) / devinfo->timestamp_frequency;
290 }
291
292 bool gen_get_device_info_from_fd(int fh, struct gen_device_info *devinfo);
293 bool gen_get_device_info_from_pci_id(int pci_id,
294 struct gen_device_info *devinfo);
295
296 #ifdef __cplusplus
297 }
298 #endif
299
300 #endif /* GEN_DEVICE_INFO_H */