48ff8ce15c51b513366ed3694c9f916f05e74df3
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "isl.h"
29 #include "isl_gen4.h"
30 #include "isl_gen6.h"
31 #include "isl_gen7.h"
32 #include "isl_gen8.h"
33 #include "isl_gen9.h"
34 #include "isl_priv.h"
35
36 void PRINTFLIKE(3, 4) UNUSED
37 __isl_finishme(const char *file, int line, const char *fmt, ...)
38 {
39 va_list ap;
40 char buf[512];
41
42 va_start(ap, fmt);
43 vsnprintf(buf, sizeof(buf), fmt, ap);
44 va_end(ap);
45
46 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
47 }
48
49 void
50 isl_device_init(struct isl_device *dev,
51 const struct brw_device_info *info,
52 bool has_bit6_swizzling)
53 {
54 dev->info = info;
55 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
56 dev->has_bit6_swizzling = has_bit6_swizzling;
57
58 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
59 * device properties at buildtime. Verify that the macros with the device
60 * properties chosen during runtime.
61 */
62 ISL_DEV_GEN_SANITIZE(dev);
63 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
64
65 /* Did we break hiz or stencil? */
66 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
67 assert(info->has_hiz_and_separate_stencil);
68 if (info->must_use_separate_stencil)
69 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
70 }
71
72 /**
73 * @brief Query the set of multisamples supported by the device.
74 *
75 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
76 * supported.
77 */
78 isl_sample_count_mask_t ATTRIBUTE_CONST
79 isl_device_get_sample_counts(struct isl_device *dev)
80 {
81 if (ISL_DEV_GEN(dev) >= 9) {
82 return ISL_SAMPLE_COUNT_1_BIT |
83 ISL_SAMPLE_COUNT_2_BIT |
84 ISL_SAMPLE_COUNT_4_BIT |
85 ISL_SAMPLE_COUNT_8_BIT |
86 ISL_SAMPLE_COUNT_16_BIT;
87 } else if (ISL_DEV_GEN(dev) >= 8) {
88 return ISL_SAMPLE_COUNT_1_BIT |
89 ISL_SAMPLE_COUNT_2_BIT |
90 ISL_SAMPLE_COUNT_4_BIT |
91 ISL_SAMPLE_COUNT_8_BIT;
92 } else if (ISL_DEV_GEN(dev) >= 7) {
93 return ISL_SAMPLE_COUNT_1_BIT |
94 ISL_SAMPLE_COUNT_4_BIT |
95 ISL_SAMPLE_COUNT_8_BIT;
96 } else if (ISL_DEV_GEN(dev) >= 6) {
97 return ISL_SAMPLE_COUNT_1_BIT |
98 ISL_SAMPLE_COUNT_4_BIT;
99 } else {
100 return ISL_SAMPLE_COUNT_1_BIT;
101 }
102 }
103
104 /**
105 * @param[out] info is written only on success
106 */
107 bool
108 isl_tiling_get_info(const struct isl_device *dev,
109 enum isl_tiling tiling,
110 uint32_t format_bpb,
111 struct isl_tile_info *tile_info)
112 {
113 const uint32_t bs = format_bpb / 8;
114 struct isl_extent2d logical_el, phys_B;
115
116 assert(bs > 0);
117 assert(tiling == ISL_TILING_LINEAR || isl_is_pow2(bs));
118
119 switch (tiling) {
120 case ISL_TILING_LINEAR:
121 logical_el = isl_extent2d(1, 1);
122 phys_B = isl_extent2d(bs, 1);
123 break;
124
125 case ISL_TILING_X:
126 logical_el = isl_extent2d(512 / bs, 8);
127 phys_B = isl_extent2d(512, 8);
128 break;
129
130 case ISL_TILING_Y0:
131 logical_el = isl_extent2d(128 / bs, 32);
132 phys_B = isl_extent2d(128, 32);
133 break;
134
135 case ISL_TILING_W:
136 assert(bs == 1);
137 logical_el = isl_extent2d(64, 64);
138 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
139 *
140 * "If the surface is a stencil buffer (and thus has Tile Mode set
141 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
142 * computed based on width, as the stencil buffer is stored with two
143 * rows interleaved."
144 *
145 * This, together with the fact that stencil buffers are referred to as
146 * being Y-tiled in the PRMs for older hardware implies that the
147 * physical size of a W-tile is actually the same as for a Y-tile.
148 */
149 phys_B = isl_extent2d(128, 32);
150 break;
151
152 case ISL_TILING_Yf:
153 case ISL_TILING_Ys: {
154 if (ISL_DEV_GEN(dev) < 9)
155 return false;
156
157 if (!isl_is_pow2(bs))
158 return false;
159
160 bool is_Ys = tiling == ISL_TILING_Ys;
161
162 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
163 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
164
165 logical_el = isl_extent2d(width / bs, height);
166 phys_B = isl_extent2d(width, height);
167 break;
168 }
169
170 case ISL_TILING_HIZ:
171 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
172 * 128bpb format. The tiling has the same physical dimensions as
173 * Y-tiling but actually has two HiZ columns per Y-tiled column.
174 */
175 assert(bs == 16);
176 logical_el = isl_extent2d(16, 16);
177 phys_B = isl_extent2d(128, 32);
178 break;
179
180 case ISL_TILING_CCS:
181 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
182 * have a block size of 1 or 2 bits per block and each CCS element
183 * corresponds to one cache-line pair in the main surface. From the Sky
184 * Lake PRM Vol. 12 in the section on planes:
185 *
186 * "The Color Control Surface (CCS) contains the compression status
187 * of the cache-line pairs. The compression state of the cache-line
188 * pair is specified by 2 bits in the CCS. Each CCS cache-line
189 * represents an area on the main surface of 16x16 sets of 128 byte
190 * Y-tiled cache-line-pairs. CCS is always Y tiled."
191 *
192 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
193 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
194 * that yields total tile area of 128x128 cache-line pairs or CCS
195 * elements. On older hardware, each CCS element is 1 bit and the tile
196 * is 128x256 elements.
197 */
198 assert(format_bpb == 1 || format_bpb == 2);
199 logical_el = isl_extent2d(128, 256 / format_bpb);
200 phys_B = isl_extent2d(128, 32);
201 break;
202
203 default:
204 unreachable("not reached");
205 } /* end switch */
206
207 *tile_info = (struct isl_tile_info) {
208 .tiling = tiling,
209 .logical_extent_el = logical_el,
210 .phys_extent_B = phys_B,
211 };
212
213 return true;
214 }
215
216 /**
217 * @param[out] tiling is set only on success
218 */
219 bool
220 isl_surf_choose_tiling(const struct isl_device *dev,
221 const struct isl_surf_init_info *restrict info,
222 enum isl_tiling *tiling)
223 {
224 isl_tiling_flags_t tiling_flags = info->tiling_flags;
225
226 /* Filter if multiple tiling options are given */
227 if (!isl_is_pow2(tiling_flags)) {
228 if (ISL_DEV_GEN(dev) >= 7) {
229 gen7_filter_tiling(dev, info, &tiling_flags);
230 } else {
231 isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
232 gen7_filter_tiling(dev, info, &tiling_flags);
233 }
234 }
235
236 #define CHOOSE(__tiling) \
237 do { \
238 if (tiling_flags & (1u << (__tiling))) { \
239 *tiling = (__tiling); \
240 return true; \
241 } \
242 } while (0)
243
244 /* Of the tiling modes remaining, choose the one that offers the best
245 * performance.
246 */
247
248 if (info->dim == ISL_SURF_DIM_1D) {
249 /* Prefer linear for 1D surfaces because they do not benefit from
250 * tiling. To the contrary, tiling leads to wasted memory and poor
251 * memory locality due to the swizzling and alignment restrictions
252 * required in tiled surfaces.
253 */
254 CHOOSE(ISL_TILING_LINEAR);
255 }
256
257 CHOOSE(ISL_TILING_CCS);
258 CHOOSE(ISL_TILING_HIZ);
259 CHOOSE(ISL_TILING_Ys);
260 CHOOSE(ISL_TILING_Yf);
261 CHOOSE(ISL_TILING_Y0);
262 CHOOSE(ISL_TILING_X);
263 CHOOSE(ISL_TILING_W);
264 CHOOSE(ISL_TILING_LINEAR);
265
266 #undef CHOOSE
267
268 /* No tiling mode accomodates the inputs. */
269 return false;
270 }
271
272 static bool
273 isl_choose_msaa_layout(const struct isl_device *dev,
274 const struct isl_surf_init_info *info,
275 enum isl_tiling tiling,
276 enum isl_msaa_layout *msaa_layout)
277 {
278 if (ISL_DEV_GEN(dev) >= 8) {
279 return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
280 } else if (ISL_DEV_GEN(dev) >= 7) {
281 return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
282 } else if (ISL_DEV_GEN(dev) >= 6) {
283 return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
284 } else {
285 return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
286 }
287 }
288
289 static void
290 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
291 uint32_t *width, uint32_t *height)
292 {
293 assert(isl_is_pow2(samples));
294
295 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
296 * Sizes (p133):
297 *
298 * If the surface is multisampled and it is a depth or stencil surface
299 * or Multisampled Surface StorageFormat in SURFACE_STATE is
300 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
301 * proceeding: [...]
302 */
303 if (width)
304 *width = isl_align(*width, 2) << ((ffs(samples) - 0) / 2);
305 if (height)
306 *height = isl_align(*height, 2) << ((ffs(samples) - 1) / 2);
307 }
308
309 static enum isl_array_pitch_span
310 isl_choose_array_pitch_span(const struct isl_device *dev,
311 const struct isl_surf_init_info *restrict info,
312 enum isl_dim_layout dim_layout,
313 const struct isl_extent4d *phys_level0_sa)
314 {
315 switch (dim_layout) {
316 case ISL_DIM_LAYOUT_GEN9_1D:
317 case ISL_DIM_LAYOUT_GEN4_2D:
318 if (ISL_DEV_GEN(dev) >= 8) {
319 /* QPitch becomes programmable in Broadwell. So choose the
320 * most compact QPitch possible in order to conserve memory.
321 *
322 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
323 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
324 *
325 * - Software must ensure that this field is set to a value
326 * sufficiently large such that the array slices in the surface
327 * do not overlap. Refer to the Memory Data Formats section for
328 * information on how surfaces are stored in memory.
329 *
330 * - This field specifies the distance in rows between array
331 * slices. It is used only in the following cases:
332 *
333 * - Surface Array is enabled OR
334 * - Number of Mulitsamples is not NUMSAMPLES_1 and
335 * Multisampled Surface Storage Format set to MSFMT_MSS OR
336 * - Surface Type is SURFTYPE_CUBE
337 */
338 return ISL_ARRAY_PITCH_SPAN_COMPACT;
339 } else if (ISL_DEV_GEN(dev) >= 7) {
340 /* Note that Ivybridge introduces
341 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
342 * driver more control over the QPitch.
343 */
344
345 if (phys_level0_sa->array_len == 1) {
346 /* The hardware will never use the QPitch. So choose the most
347 * compact QPitch possible in order to conserve memory.
348 */
349 return ISL_ARRAY_PITCH_SPAN_COMPACT;
350 }
351
352 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
353 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
354 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
355 * Section 6.18.4.7: Surface Arrays (p112):
356 *
357 * If Surface Array Spacing is set to ARYSPC_FULL (note that
358 * the depth buffer and stencil buffer have an implied value of
359 * ARYSPC_FULL):
360 */
361 return ISL_ARRAY_PITCH_SPAN_FULL;
362 }
363
364 if (info->levels == 1) {
365 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
366 * to ARYSPC_LOD0.
367 */
368 return ISL_ARRAY_PITCH_SPAN_COMPACT;
369 }
370
371 return ISL_ARRAY_PITCH_SPAN_FULL;
372 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
373 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
374 isl_surf_usage_is_stencil(info->usage)) {
375 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
376 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
377 *
378 * The separate stencil buffer does not support mip mapping, thus
379 * the storage for LODs other than LOD 0 is not needed.
380 */
381 assert(info->levels == 1);
382 assert(phys_level0_sa->array_len == 1);
383 return ISL_ARRAY_PITCH_SPAN_COMPACT;
384 } else {
385 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
386 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
387 isl_surf_usage_is_stencil(info->usage)) {
388 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
389 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
390 *
391 * The separate stencil buffer does not support mip mapping,
392 * thus the storage for LODs other than LOD 0 is not needed.
393 */
394 assert(info->levels == 1);
395 assert(phys_level0_sa->array_len == 1);
396 return ISL_ARRAY_PITCH_SPAN_COMPACT;
397 }
398
399 if (phys_level0_sa->array_len == 1) {
400 /* The hardware will never use the QPitch. So choose the most
401 * compact QPitch possible in order to conserve memory.
402 */
403 return ISL_ARRAY_PITCH_SPAN_COMPACT;
404 }
405
406 return ISL_ARRAY_PITCH_SPAN_FULL;
407 }
408
409 case ISL_DIM_LAYOUT_GEN4_3D:
410 /* The hardware will never use the QPitch. So choose the most
411 * compact QPitch possible in order to conserve memory.
412 */
413 return ISL_ARRAY_PITCH_SPAN_COMPACT;
414 }
415
416 unreachable("bad isl_dim_layout");
417 return ISL_ARRAY_PITCH_SPAN_FULL;
418 }
419
420 static void
421 isl_choose_image_alignment_el(const struct isl_device *dev,
422 const struct isl_surf_init_info *restrict info,
423 enum isl_tiling tiling,
424 enum isl_msaa_layout msaa_layout,
425 struct isl_extent3d *image_align_el)
426 {
427 if (info->format == ISL_FORMAT_HIZ) {
428 assert(ISL_DEV_GEN(dev) >= 6);
429 /* HiZ surfaces are always aligned to 16x8 pixels in the primary surface
430 * which works out to 2x2 HiZ elments.
431 */
432 *image_align_el = isl_extent3d(2, 2, 1);
433 return;
434 }
435
436 if (ISL_DEV_GEN(dev) >= 9) {
437 gen9_choose_image_alignment_el(dev, info, tiling, msaa_layout,
438 image_align_el);
439 } else if (ISL_DEV_GEN(dev) >= 8) {
440 gen8_choose_image_alignment_el(dev, info, tiling, msaa_layout,
441 image_align_el);
442 } else if (ISL_DEV_GEN(dev) >= 7) {
443 gen7_choose_image_alignment_el(dev, info, tiling, msaa_layout,
444 image_align_el);
445 } else if (ISL_DEV_GEN(dev) >= 6) {
446 gen6_choose_image_alignment_el(dev, info, tiling, msaa_layout,
447 image_align_el);
448 } else {
449 gen4_choose_image_alignment_el(dev, info, tiling, msaa_layout,
450 image_align_el);
451 }
452 }
453
454 static enum isl_dim_layout
455 isl_surf_choose_dim_layout(const struct isl_device *dev,
456 enum isl_surf_dim logical_dim)
457 {
458 if (ISL_DEV_GEN(dev) >= 9) {
459 switch (logical_dim) {
460 case ISL_SURF_DIM_1D:
461 return ISL_DIM_LAYOUT_GEN9_1D;
462 case ISL_SURF_DIM_2D:
463 case ISL_SURF_DIM_3D:
464 return ISL_DIM_LAYOUT_GEN4_2D;
465 }
466 } else {
467 switch (logical_dim) {
468 case ISL_SURF_DIM_1D:
469 case ISL_SURF_DIM_2D:
470 return ISL_DIM_LAYOUT_GEN4_2D;
471 case ISL_SURF_DIM_3D:
472 return ISL_DIM_LAYOUT_GEN4_3D;
473 }
474 }
475
476 unreachable("bad isl_surf_dim");
477 return ISL_DIM_LAYOUT_GEN4_2D;
478 }
479
480 /**
481 * Calculate the physical extent of the surface's first level, in units of
482 * surface samples. The result is aligned to the format's compression block.
483 */
484 static void
485 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
486 const struct isl_surf_init_info *restrict info,
487 enum isl_dim_layout dim_layout,
488 enum isl_tiling tiling,
489 enum isl_msaa_layout msaa_layout,
490 struct isl_extent4d *phys_level0_sa)
491 {
492 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
493
494 if (isl_format_is_yuv(info->format))
495 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
496
497 switch (info->dim) {
498 case ISL_SURF_DIM_1D:
499 assert(info->height == 1);
500 assert(info->depth == 1);
501 assert(info->samples == 1);
502 assert(!isl_format_is_compressed(info->format));
503
504 switch (dim_layout) {
505 case ISL_DIM_LAYOUT_GEN4_3D:
506 unreachable("bad isl_dim_layout");
507
508 case ISL_DIM_LAYOUT_GEN9_1D:
509 case ISL_DIM_LAYOUT_GEN4_2D:
510 *phys_level0_sa = (struct isl_extent4d) {
511 .w = info->width,
512 .h = 1,
513 .d = 1,
514 .a = info->array_len,
515 };
516 break;
517 }
518 break;
519
520 case ISL_SURF_DIM_2D:
521 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
522
523 if (tiling == ISL_TILING_Ys && info->samples > 1)
524 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
525
526 switch (msaa_layout) {
527 case ISL_MSAA_LAYOUT_NONE:
528 assert(info->depth == 1);
529 assert(info->samples == 1);
530
531 *phys_level0_sa = (struct isl_extent4d) {
532 .w = isl_align_npot(info->width, fmtl->bw),
533 .h = isl_align_npot(info->height, fmtl->bh),
534 .d = 1,
535 .a = info->array_len,
536 };
537 break;
538
539 case ISL_MSAA_LAYOUT_ARRAY:
540 assert(info->depth == 1);
541 assert(info->array_len == 1);
542 assert(!isl_format_is_compressed(info->format));
543
544 *phys_level0_sa = (struct isl_extent4d) {
545 .w = info->width,
546 .h = info->height,
547 .d = 1,
548 .a = info->samples,
549 };
550 break;
551
552 case ISL_MSAA_LAYOUT_INTERLEAVED:
553 assert(info->depth == 1);
554 assert(info->array_len == 1);
555 assert(!isl_format_is_compressed(info->format));
556
557 *phys_level0_sa = (struct isl_extent4d) {
558 .w = info->width,
559 .h = info->height,
560 .d = 1,
561 .a = 1,
562 };
563
564 isl_msaa_interleaved_scale_px_to_sa(info->samples,
565 &phys_level0_sa->w,
566 &phys_level0_sa->h);
567 break;
568 }
569 break;
570
571 case ISL_SURF_DIM_3D:
572 assert(info->array_len == 1);
573 assert(info->samples == 1);
574
575 if (fmtl->bd > 1) {
576 isl_finishme("%s:%s: compression block with depth > 1",
577 __FILE__, __func__);
578 }
579
580 switch (dim_layout) {
581 case ISL_DIM_LAYOUT_GEN9_1D:
582 unreachable("bad isl_dim_layout");
583
584 case ISL_DIM_LAYOUT_GEN4_2D:
585 assert(ISL_DEV_GEN(dev) >= 9);
586
587 *phys_level0_sa = (struct isl_extent4d) {
588 .w = isl_align_npot(info->width, fmtl->bw),
589 .h = isl_align_npot(info->height, fmtl->bh),
590 .d = 1,
591 .a = info->depth,
592 };
593 break;
594
595 case ISL_DIM_LAYOUT_GEN4_3D:
596 assert(ISL_DEV_GEN(dev) < 9);
597 *phys_level0_sa = (struct isl_extent4d) {
598 .w = isl_align(info->width, fmtl->bw),
599 .h = isl_align(info->height, fmtl->bh),
600 .d = info->depth,
601 .a = 1,
602 };
603 break;
604 }
605 break;
606 }
607 }
608
609 /**
610 * A variant of isl_calc_phys_slice0_extent_sa() specific to
611 * ISL_DIM_LAYOUT_GEN4_2D.
612 */
613 static void
614 isl_calc_phys_slice0_extent_sa_gen4_2d(
615 const struct isl_device *dev,
616 const struct isl_surf_init_info *restrict info,
617 enum isl_msaa_layout msaa_layout,
618 const struct isl_extent3d *image_align_sa,
619 const struct isl_extent4d *phys_level0_sa,
620 struct isl_extent2d *phys_slice0_sa)
621 {
622 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
623
624 assert(phys_level0_sa->depth == 1);
625
626 if (info->levels == 1 && msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED) {
627 /* Do not pad the surface to the image alignment. Instead, pad it only
628 * to the pixel format's block alignment.
629 *
630 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
631 * cycles on the below mipmap layout caluclations. Reducing the
632 * alignment here is safe because we later align the row pitch and array
633 * pitch to the tile boundary. It is safe even for
634 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
635 * to accomodate the interleaved samples.
636 *
637 * For linear surfaces, reducing the alignment here permits us to later
638 * choose an arbitrary, non-aligned row pitch. If the surface backs
639 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
640 * VkBufferImageCopy::bufferRowLength.
641 */
642 *phys_slice0_sa = (struct isl_extent2d) {
643 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
644 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
645 };
646 return;
647 }
648
649 uint32_t slice_top_w = 0;
650 uint32_t slice_bottom_w = 0;
651 uint32_t slice_left_h = 0;
652 uint32_t slice_right_h = 0;
653
654 uint32_t W0 = phys_level0_sa->w;
655 uint32_t H0 = phys_level0_sa->h;
656
657 for (uint32_t l = 0; l < info->levels; ++l) {
658 uint32_t W = isl_minify(W0, l);
659 uint32_t H = isl_minify(H0, l);
660
661 if (msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
662 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
663 * Sizes (p133):
664 *
665 * If the surface is multisampled and it is a depth or stencil
666 * surface or Multisampled Surface StorageFormat in
667 * SURFACE_STATE is MSFMT_DEPTH_STENCIL, W_L and H_L must be
668 * adjusted as follows before proceeding: [...]
669 */
670 isl_msaa_interleaved_scale_px_to_sa(info->samples, &W, &H);
671 }
672
673 uint32_t w = isl_align_npot(W, image_align_sa->w);
674 uint32_t h = isl_align_npot(H, image_align_sa->h);
675
676 if (l == 0) {
677 slice_top_w = w;
678 slice_left_h = h;
679 slice_right_h = h;
680 } else if (l == 1) {
681 slice_bottom_w = w;
682 slice_left_h += h;
683 } else if (l == 2) {
684 slice_bottom_w += w;
685 slice_right_h += h;
686 } else {
687 slice_right_h += h;
688 }
689 }
690
691 *phys_slice0_sa = (struct isl_extent2d) {
692 .w = MAX(slice_top_w, slice_bottom_w),
693 .h = MAX(slice_left_h, slice_right_h),
694 };
695 }
696
697 /**
698 * A variant of isl_calc_phys_slice0_extent_sa() specific to
699 * ISL_DIM_LAYOUT_GEN4_3D.
700 */
701 static void
702 isl_calc_phys_slice0_extent_sa_gen4_3d(
703 const struct isl_device *dev,
704 const struct isl_surf_init_info *restrict info,
705 const struct isl_extent3d *image_align_sa,
706 const struct isl_extent4d *phys_level0_sa,
707 struct isl_extent2d *phys_slice0_sa)
708 {
709 assert(info->samples == 1);
710 assert(phys_level0_sa->array_len == 1);
711
712 uint32_t slice_w = 0;
713 uint32_t slice_h = 0;
714
715 uint32_t W0 = phys_level0_sa->w;
716 uint32_t H0 = phys_level0_sa->h;
717 uint32_t D0 = phys_level0_sa->d;
718
719 for (uint32_t l = 0; l < info->levels; ++l) {
720 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
721 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
722 uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
723
724 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
725 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
726
727 slice_w = MAX(slice_w, level_w * max_layers_horiz);
728 slice_h += level_h * max_layers_vert;
729 }
730
731 *phys_slice0_sa = (struct isl_extent2d) {
732 .w = slice_w,
733 .h = slice_h,
734 };
735 }
736
737 /**
738 * A variant of isl_calc_phys_slice0_extent_sa() specific to
739 * ISL_DIM_LAYOUT_GEN9_1D.
740 */
741 static void
742 isl_calc_phys_slice0_extent_sa_gen9_1d(
743 const struct isl_device *dev,
744 const struct isl_surf_init_info *restrict info,
745 const struct isl_extent3d *image_align_sa,
746 const struct isl_extent4d *phys_level0_sa,
747 struct isl_extent2d *phys_slice0_sa)
748 {
749 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
750
751 assert(phys_level0_sa->height == 1);
752 assert(phys_level0_sa->depth == 1);
753 assert(info->samples == 1);
754 assert(image_align_sa->w >= fmtl->bw);
755
756 uint32_t slice_w = 0;
757 const uint32_t W0 = phys_level0_sa->w;
758
759 for (uint32_t l = 0; l < info->levels; ++l) {
760 uint32_t W = isl_minify(W0, l);
761 uint32_t w = isl_align_npot(W, image_align_sa->w);
762
763 slice_w += w;
764 }
765
766 *phys_slice0_sa = isl_extent2d(slice_w, 1);
767 }
768
769 /**
770 * Calculate the physical extent of the surface's first array slice, in units
771 * of surface samples. If the surface is multi-leveled, then the result will
772 * be aligned to \a image_align_sa.
773 */
774 static void
775 isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
776 const struct isl_surf_init_info *restrict info,
777 enum isl_dim_layout dim_layout,
778 enum isl_msaa_layout msaa_layout,
779 const struct isl_extent3d *image_align_sa,
780 const struct isl_extent4d *phys_level0_sa,
781 struct isl_extent2d *phys_slice0_sa)
782 {
783 switch (dim_layout) {
784 case ISL_DIM_LAYOUT_GEN9_1D:
785 isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
786 image_align_sa, phys_level0_sa,
787 phys_slice0_sa);
788 return;
789 case ISL_DIM_LAYOUT_GEN4_2D:
790 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
791 image_align_sa, phys_level0_sa,
792 phys_slice0_sa);
793 return;
794 case ISL_DIM_LAYOUT_GEN4_3D:
795 isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
796 phys_level0_sa, phys_slice0_sa);
797 return;
798 }
799 }
800
801 /**
802 * Calculate the pitch between physical array slices, in units of rows of
803 * surface elements.
804 */
805 static uint32_t
806 isl_calc_array_pitch_el_rows(const struct isl_device *dev,
807 const struct isl_surf_init_info *restrict info,
808 const struct isl_tile_info *tile_info,
809 enum isl_dim_layout dim_layout,
810 enum isl_array_pitch_span array_pitch_span,
811 const struct isl_extent3d *image_align_sa,
812 const struct isl_extent4d *phys_level0_sa,
813 const struct isl_extent2d *phys_slice0_sa)
814 {
815 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
816 uint32_t pitch_sa_rows = 0;
817
818 switch (dim_layout) {
819 case ISL_DIM_LAYOUT_GEN9_1D:
820 /* Each row is an array slice */
821 pitch_sa_rows = 1;
822 break;
823 case ISL_DIM_LAYOUT_GEN4_2D:
824 switch (array_pitch_span) {
825 case ISL_ARRAY_PITCH_SPAN_COMPACT:
826 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
827 break;
828 case ISL_ARRAY_PITCH_SPAN_FULL: {
829 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
830 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
831 * Surfaces >> Surface Arrays.
832 */
833 uint32_t H0_sa = phys_level0_sa->h;
834 uint32_t H1_sa = isl_minify(H0_sa, 1);
835
836 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
837 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
838
839 uint32_t m;
840 if (ISL_DEV_GEN(dev) >= 7) {
841 /* The QPitch equation changed slightly in Ivybridge. */
842 m = 12;
843 } else {
844 m = 11;
845 }
846
847 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
848
849 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
850 (info->height % 4 == 1)) {
851 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
852 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
853 *
854 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
855 * the value calculated in the equation above , for every
856 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
857 *
858 * XXX(chadv): Is the errata natural corollary of the physical
859 * layout of interleaved samples?
860 */
861 pitch_sa_rows += 4;
862 }
863
864 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
865 } /* end case */
866 break;
867 }
868 break;
869 case ISL_DIM_LAYOUT_GEN4_3D:
870 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
871 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
872 break;
873 default:
874 unreachable("bad isl_dim_layout");
875 break;
876 }
877
878 assert(pitch_sa_rows % fmtl->bh == 0);
879 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
880
881 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
882 /*
883 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
884 *
885 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
886 * layout with these alignments in the RT space: Horizontal
887 * Alignment = 128 and Vertical Alignment = 64."
888 *
889 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
890 *
891 * "For non-multisampled render target's CCS auxiliary surface,
892 * QPitch must be computed with Horizontal Alignment = 128 and
893 * Surface Vertical Alignment = 256. These alignments are only for
894 * CCS buffer and not for associated render target."
895 *
896 * The first restriction is already handled by isl_choose_image_alignment_el
897 * but the second restriction, which is an extension of the first, only
898 * applies to qpitch and must be applied here.
899 */
900 assert(fmtl->bh == 4);
901 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
902 }
903
904 if (ISL_DEV_GEN(dev) >= 9 &&
905 info->dim == ISL_SURF_DIM_3D &&
906 tile_info->tiling != ISL_TILING_LINEAR) {
907 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
908 *
909 * Tile Mode != Linear: This field must be set to an integer multiple
910 * of the tile height
911 */
912 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
913 }
914
915 return pitch_el_rows;
916 }
917
918 /**
919 * Calculate the pitch of each surface row, in bytes.
920 */
921 static uint32_t
922 isl_calc_linear_row_pitch(const struct isl_device *dev,
923 const struct isl_surf_init_info *restrict info,
924 const struct isl_extent2d *phys_slice0_sa)
925 {
926 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
927
928 uint32_t row_pitch = info->min_pitch;
929
930 /* First, align the surface to a cache line boundary, as the PRM explains
931 * below.
932 *
933 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
934 * Formats >> Surface Padding Requirements >> Render Target and Media
935 * Surfaces:
936 *
937 * The data port accesses data (pixels) outside of the surface if they
938 * are contained in the same cache request as pixels that are within the
939 * surface. These pixels will not be returned by the requesting message,
940 * however if these pixels lie outside of defined pages in the GTT,
941 * a GTT error will result when the cache request is processed. In order
942 * to avoid these GTT errors, “padding” at the bottom of the surface is
943 * sometimes necessary.
944 *
945 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
946 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
947 *
948 * The sampling engine accesses texels outside of the surface if they
949 * are contained in the same cache line as texels that are within the
950 * surface. These texels will not participate in any calculation
951 * performed by the sampling engine and will not affect the result of
952 * any sampling engine operation, however if these texels lie outside of
953 * defined pages in the GTT, a GTT error will result when the cache line
954 * is accessed. In order to avoid these GTT errors, “padding” at the
955 * bottom and right side of a sampling engine surface is sometimes
956 * necessary.
957 *
958 * It is possible that a cache line will straddle a page boundary if the
959 * base address or pitch is not aligned. All pages included in the cache
960 * lines that are part of the surface must map to valid GTT entries to
961 * avoid errors. To determine the necessary padding on the bottom and
962 * right side of the surface, refer to the table in Alignment Unit Size
963 * section for the i and j parameters for the surface format in use. The
964 * surface must then be extended to the next multiple of the alignment
965 * unit size in each dimension, and all texels contained in this
966 * extended surface must have valid GTT entries.
967 *
968 * For example, suppose the surface size is 15 texels by 10 texels and
969 * the alignment parameters are i=4 and j=2. In this case, the extended
970 * surface would be 16 by 10. Note that these calculations are done in
971 * texels, and must be converted to bytes based on the surface format
972 * being used to determine whether additional pages need to be defined.
973 */
974 assert(phys_slice0_sa->w % fmtl->bw == 0);
975 const uint32_t bs = fmtl->bpb / 8;
976 row_pitch = MAX(row_pitch, bs * (phys_slice0_sa->w / fmtl->bw));
977
978 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
979 * RENDER_SURFACE_STATE Surface Pitch (p349):
980 *
981 * - For linear render target surfaces and surfaces accessed with the
982 * typed data port messages, the pitch must be a multiple of the
983 * element size for non-YUV surface formats. Pitch must be
984 * a multiple of 2 * element size for YUV surface formats.
985 *
986 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
987 * ignore because isl doesn't do buffers.]
988 *
989 * - For other linear surfaces, the pitch can be any multiple of
990 * bytes.
991 */
992 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
993 if (isl_format_is_yuv(info->format)) {
994 row_pitch = isl_align_npot(row_pitch, 2 * bs);
995 } else {
996 row_pitch = isl_align_npot(row_pitch, bs);
997 }
998 }
999
1000 return row_pitch;
1001 }
1002
1003 /**
1004 * Calculate and apply any padding required for the surface.
1005 *
1006 * @param[inout] total_h_el is updated with the new height
1007 * @param[out] pad_bytes is overwritten with additional padding requirements.
1008 */
1009 static void
1010 isl_apply_surface_padding(const struct isl_device *dev,
1011 const struct isl_surf_init_info *restrict info,
1012 const struct isl_tile_info *tile_info,
1013 uint32_t *total_h_el,
1014 uint32_t *pad_bytes)
1015 {
1016 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1017
1018 *pad_bytes = 0;
1019
1020 /* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1021 * Formats >> Surface Padding Requirements >> Render Target and Media
1022 * Surfaces:
1023 *
1024 * The data port accesses data (pixels) outside of the surface if they
1025 * are contained in the same cache request as pixels that are within the
1026 * surface. These pixels will not be returned by the requesting message,
1027 * however if these pixels lie outside of defined pages in the GTT,
1028 * a GTT error will result when the cache request is processed. In
1029 * order to avoid these GTT errors, “padding” at the bottom of the
1030 * surface is sometimes necessary.
1031 *
1032 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1033 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
1034 *
1035 * ... Lots of padding requirements, all listed separately below.
1036 */
1037
1038 /* We can safely ignore the first padding requirement, quoted below,
1039 * because isl doesn't do buffers.
1040 *
1041 * - [pre-BDW] For buffers, which have no inherent “height,” padding
1042 * requirements are different. A buffer must be padded to the next
1043 * multiple of 256 array elements, with an additional 16 bytes added
1044 * beyond that to account for the L1 cache line.
1045 */
1046
1047 /*
1048 * - For compressed textures [...], padding at the bottom of the surface
1049 * is to an even compressed row.
1050 */
1051 if (isl_format_is_compressed(info->format))
1052 *total_h_el = isl_align(*total_h_el, 2);
1053
1054 /*
1055 * - For cube surfaces, an additional two rows of padding are required
1056 * at the bottom of the surface.
1057 */
1058 if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
1059 *total_h_el += 2;
1060
1061 /*
1062 * - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
1063 * additional padding is required. These surfaces require an extra row
1064 * plus 16 bytes of padding at the bottom in addition to the general
1065 * padding requirements.
1066 */
1067 if (isl_format_is_yuv(info->format) &&
1068 (fmtl->bpb == 96 || fmtl->bpb == 48|| fmtl->bpb == 24)) {
1069 *total_h_el += 1;
1070 *pad_bytes += 16;
1071 }
1072
1073 /*
1074 * - For linear surfaces, additional padding of 64 bytes is required at
1075 * the bottom of the surface. This is in addition to the padding
1076 * required above.
1077 */
1078 if (tile_info->tiling == ISL_TILING_LINEAR)
1079 *pad_bytes += 64;
1080
1081 /* The below text weakens, not strengthens, the padding requirements for
1082 * linear surfaces. Therefore we can safely ignore it.
1083 *
1084 * - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
1085 * non-MSAA, non-mip-mapped surfaces in linear memory, the only
1086 * padding requirement is to the next aligned 64-byte boundary beyond
1087 * the end of the surface. The rest of the padding requirements
1088 * documented above do not apply to these surfaces.
1089 */
1090
1091 /*
1092 * - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
1093 * height % 4 != 0, the surface must be padded with
1094 * 4-(height % 4)*Surface Pitch # of bytes.
1095 */
1096 if (ISL_DEV_GEN(dev) >= 9 &&
1097 tile_info->tiling == ISL_TILING_LINEAR &&
1098 (info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
1099 *total_h_el = isl_align(*total_h_el, 4);
1100 }
1101
1102 /*
1103 * - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
1104 * to 4 times the Surface Pitch # of bytes
1105 */
1106 if (ISL_DEV_GEN(dev) >= 9 &&
1107 tile_info->tiling == ISL_TILING_LINEAR &&
1108 info->dim == ISL_SURF_DIM_1D) {
1109 *total_h_el += 4;
1110 }
1111 }
1112
1113 bool
1114 isl_surf_init_s(const struct isl_device *dev,
1115 struct isl_surf *surf,
1116 const struct isl_surf_init_info *restrict info)
1117 {
1118 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1119
1120 const struct isl_extent4d logical_level0_px = {
1121 .w = info->width,
1122 .h = info->height,
1123 .d = info->depth,
1124 .a = info->array_len,
1125 };
1126
1127 enum isl_dim_layout dim_layout =
1128 isl_surf_choose_dim_layout(dev, info->dim);
1129
1130 enum isl_tiling tiling;
1131 if (!isl_surf_choose_tiling(dev, info, &tiling))
1132 return false;
1133
1134 struct isl_tile_info tile_info;
1135 if (!isl_tiling_get_info(dev, tiling, fmtl->bpb, &tile_info))
1136 return false;
1137
1138 enum isl_msaa_layout msaa_layout;
1139 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1140 return false;
1141
1142 struct isl_extent3d image_align_el;
1143 isl_choose_image_alignment_el(dev, info, tiling, msaa_layout,
1144 &image_align_el);
1145
1146 struct isl_extent3d image_align_sa =
1147 isl_extent3d_el_to_sa(info->format, image_align_el);
1148
1149 struct isl_extent4d phys_level0_sa;
1150 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1151 &phys_level0_sa);
1152 assert(phys_level0_sa.w % fmtl->bw == 0);
1153 assert(phys_level0_sa.h % fmtl->bh == 0);
1154
1155 enum isl_array_pitch_span array_pitch_span =
1156 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1157
1158 struct isl_extent2d phys_slice0_sa;
1159 isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
1160 &image_align_sa, &phys_level0_sa,
1161 &phys_slice0_sa);
1162 assert(phys_slice0_sa.w % fmtl->bw == 0);
1163 assert(phys_slice0_sa.h % fmtl->bh == 0);
1164
1165 const uint32_t array_pitch_el_rows =
1166 isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
1167 array_pitch_span, &image_align_sa,
1168 &phys_level0_sa, &phys_slice0_sa);
1169
1170 uint32_t total_h_el = phys_level0_sa.array_len * array_pitch_el_rows;
1171
1172 uint32_t pad_bytes;
1173 isl_apply_surface_padding(dev, info, &tile_info, &total_h_el, &pad_bytes);
1174
1175 uint32_t row_pitch, size, base_alignment;
1176 if (tiling == ISL_TILING_LINEAR) {
1177 row_pitch = isl_calc_linear_row_pitch(dev, info, &phys_slice0_sa);
1178 size = row_pitch * total_h_el + pad_bytes;
1179
1180 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1181 *
1182 * "The Base Address for linear render target surfaces and surfaces
1183 * accessed with the typed surface read/write data port messages must
1184 * be element-size aligned, for non-YUV surface formats, or a
1185 * multiple of 2 element-sizes for YUV surface formats. Other linear
1186 * surfaces have no alignment requirements (byte alignment is
1187 * sufficient.)"
1188 */
1189 base_alignment = MAX(1, info->min_alignment);
1190 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1191 if (isl_format_is_yuv(info->format)) {
1192 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1193 } else {
1194 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1195 }
1196 }
1197 } else {
1198 assert(phys_slice0_sa.w % fmtl->bw == 0);
1199 const uint32_t total_w_el = phys_slice0_sa.width / fmtl->bw;
1200 const uint32_t total_w_tl =
1201 isl_align_div(total_w_el, tile_info.logical_extent_el.width);
1202
1203 row_pitch = total_w_tl * tile_info.phys_extent_B.width;
1204 if (row_pitch < info->min_pitch) {
1205 row_pitch = isl_align(info->min_pitch, tile_info.phys_extent_B.width);
1206 }
1207
1208 total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
1209 const uint32_t total_h_tl =
1210 isl_align_div(total_h_el, tile_info.logical_extent_el.height);
1211
1212 size = total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1213
1214 const uint32_t tile_size = tile_info.phys_extent_B.width *
1215 tile_info.phys_extent_B.height;
1216 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1217 base_alignment = MAX(info->min_alignment, tile_size);
1218 }
1219
1220 *surf = (struct isl_surf) {
1221 .dim = info->dim,
1222 .dim_layout = dim_layout,
1223 .msaa_layout = msaa_layout,
1224 .tiling = tiling,
1225 .format = info->format,
1226
1227 .levels = info->levels,
1228 .samples = info->samples,
1229
1230 .image_alignment_el = image_align_el,
1231 .logical_level0_px = logical_level0_px,
1232 .phys_level0_sa = phys_level0_sa,
1233
1234 .size = size,
1235 .alignment = base_alignment,
1236 .row_pitch = row_pitch,
1237 .array_pitch_el_rows = array_pitch_el_rows,
1238 .array_pitch_span = array_pitch_span,
1239
1240 .usage = info->usage,
1241 };
1242
1243 return true;
1244 }
1245
1246 void
1247 isl_surf_get_tile_info(const struct isl_device *dev,
1248 const struct isl_surf *surf,
1249 struct isl_tile_info *tile_info)
1250 {
1251 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1252 isl_tiling_get_info(dev, surf->tiling, fmtl->bpb, tile_info);
1253 }
1254
1255 void
1256 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1257 const struct isl_surf_fill_state_info *restrict info)
1258 {
1259 #ifndef NDEBUG
1260 isl_surf_usage_flags_t _base_usage =
1261 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1262 ISL_SURF_USAGE_TEXTURE_BIT |
1263 ISL_SURF_USAGE_STORAGE_BIT);
1264 /* They may only specify one of the above bits at a time */
1265 assert(__builtin_popcount(_base_usage) == 1);
1266 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1267 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1268 #endif
1269
1270 if (info->surf->dim == ISL_SURF_DIM_3D) {
1271 assert(info->view->base_array_layer + info->view->array_len <=
1272 info->surf->logical_level0_px.depth);
1273 } else {
1274 assert(info->view->base_array_layer + info->view->array_len <=
1275 info->surf->logical_level0_px.array_len);
1276 }
1277
1278 switch (ISL_DEV_GEN(dev)) {
1279 case 7:
1280 if (ISL_DEV_IS_HASWELL(dev)) {
1281 isl_gen75_surf_fill_state_s(dev, state, info);
1282 } else {
1283 isl_gen7_surf_fill_state_s(dev, state, info);
1284 }
1285 break;
1286 case 8:
1287 isl_gen8_surf_fill_state_s(dev, state, info);
1288 break;
1289 case 9:
1290 isl_gen9_surf_fill_state_s(dev, state, info);
1291 break;
1292 default:
1293 assert(!"Cannot fill surface state for this gen");
1294 }
1295 }
1296
1297 void
1298 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1299 const struct isl_buffer_fill_state_info *restrict info)
1300 {
1301 switch (ISL_DEV_GEN(dev)) {
1302 case 7:
1303 if (ISL_DEV_IS_HASWELL(dev)) {
1304 isl_gen75_buffer_fill_state_s(state, info);
1305 } else {
1306 isl_gen7_buffer_fill_state_s(state, info);
1307 }
1308 break;
1309 case 8:
1310 isl_gen8_buffer_fill_state_s(state, info);
1311 break;
1312 case 9:
1313 isl_gen9_buffer_fill_state_s(state, info);
1314 break;
1315 default:
1316 assert(!"Cannot fill surface state for this gen");
1317 }
1318 }
1319
1320 /**
1321 * A variant of isl_surf_get_image_offset_sa() specific to
1322 * ISL_DIM_LAYOUT_GEN4_2D.
1323 */
1324 static void
1325 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1326 uint32_t level, uint32_t layer,
1327 uint32_t *x_offset_sa,
1328 uint32_t *y_offset_sa)
1329 {
1330 assert(level < surf->levels);
1331 assert(layer < surf->phys_level0_sa.array_len);
1332 assert(surf->phys_level0_sa.depth == 1);
1333
1334 const struct isl_extent3d image_align_sa =
1335 isl_surf_get_image_alignment_sa(surf);
1336
1337 const uint32_t W0 = surf->phys_level0_sa.width;
1338 const uint32_t H0 = surf->phys_level0_sa.height;
1339
1340 uint32_t x = 0;
1341 uint32_t y = layer * isl_surf_get_array_pitch_sa_rows(surf);
1342
1343 for (uint32_t l = 0; l < level; ++l) {
1344 if (l == 1) {
1345 uint32_t W = isl_minify(W0, l);
1346
1347 if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED)
1348 isl_msaa_interleaved_scale_px_to_sa(surf->samples, &W, NULL);
1349
1350 x += isl_align_npot(W, image_align_sa.w);
1351 } else {
1352 uint32_t H = isl_minify(H0, l);
1353
1354 if (surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED)
1355 isl_msaa_interleaved_scale_px_to_sa(surf->samples, NULL, &H);
1356
1357 y += isl_align_npot(H, image_align_sa.h);
1358 }
1359 }
1360
1361 *x_offset_sa = x;
1362 *y_offset_sa = y;
1363 }
1364
1365 /**
1366 * A variant of isl_surf_get_image_offset_sa() specific to
1367 * ISL_DIM_LAYOUT_GEN4_3D.
1368 */
1369 static void
1370 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1371 uint32_t level, uint32_t logical_z_offset_px,
1372 uint32_t *x_offset_sa,
1373 uint32_t *y_offset_sa)
1374 {
1375 assert(level < surf->levels);
1376 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1377 assert(surf->phys_level0_sa.array_len == 1);
1378
1379 const struct isl_extent3d image_align_sa =
1380 isl_surf_get_image_alignment_sa(surf);
1381
1382 const uint32_t W0 = surf->phys_level0_sa.width;
1383 const uint32_t H0 = surf->phys_level0_sa.height;
1384 const uint32_t D0 = surf->phys_level0_sa.depth;
1385
1386 uint32_t x = 0;
1387 uint32_t y = 0;
1388
1389 for (uint32_t l = 0; l < level; ++l) {
1390 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1391 const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
1392 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1393
1394 y += level_h * max_layers_vert;
1395 }
1396
1397 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1398 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1399 const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
1400
1401 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1402
1403 x += level_w * (logical_z_offset_px % max_layers_horiz);
1404 y += level_h * (logical_z_offset_px / max_layers_horiz);
1405
1406 *x_offset_sa = x;
1407 *y_offset_sa = y;
1408 }
1409
1410 /**
1411 * A variant of isl_surf_get_image_offset_sa() specific to
1412 * ISL_DIM_LAYOUT_GEN9_1D.
1413 */
1414 static void
1415 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
1416 uint32_t level, uint32_t layer,
1417 uint32_t *x_offset_sa,
1418 uint32_t *y_offset_sa)
1419 {
1420 assert(level < surf->levels);
1421 assert(layer < surf->phys_level0_sa.array_len);
1422 assert(surf->phys_level0_sa.height == 1);
1423 assert(surf->phys_level0_sa.depth == 1);
1424 assert(surf->samples == 1);
1425
1426 const uint32_t W0 = surf->phys_level0_sa.width;
1427 const struct isl_extent3d image_align_sa =
1428 isl_surf_get_image_alignment_sa(surf);
1429
1430 uint32_t x = 0;
1431
1432 for (uint32_t l = 0; l < level; ++l) {
1433 uint32_t W = isl_minify(W0, l);
1434 uint32_t w = isl_align_npot(W, image_align_sa.w);
1435
1436 x += w;
1437 }
1438
1439 *x_offset_sa = x;
1440 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
1441 }
1442
1443 /**
1444 * Calculate the offset, in units of surface samples, to a subimage in the
1445 * surface.
1446 *
1447 * @invariant level < surface levels
1448 * @invariant logical_array_layer < logical array length of surface
1449 * @invariant logical_z_offset_px < logical depth of surface at level
1450 */
1451 static void
1452 get_image_offset_sa(const struct isl_surf *surf,
1453 uint32_t level,
1454 uint32_t logical_array_layer,
1455 uint32_t logical_z_offset_px,
1456 uint32_t *x_offset_sa,
1457 uint32_t *y_offset_sa)
1458 {
1459 assert(level < surf->levels);
1460 assert(logical_array_layer < surf->logical_level0_px.array_len);
1461 assert(logical_z_offset_px
1462 < isl_minify(surf->logical_level0_px.depth, level));
1463
1464 switch (surf->dim_layout) {
1465 case ISL_DIM_LAYOUT_GEN9_1D:
1466 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
1467 x_offset_sa, y_offset_sa);
1468 break;
1469 case ISL_DIM_LAYOUT_GEN4_2D:
1470 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
1471 + logical_z_offset_px,
1472 x_offset_sa, y_offset_sa);
1473 break;
1474 case ISL_DIM_LAYOUT_GEN4_3D:
1475 get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
1476 x_offset_sa, y_offset_sa);
1477 break;
1478
1479 default:
1480 unreachable("not reached");
1481 }
1482 }
1483
1484 void
1485 isl_surf_get_image_offset_el(const struct isl_surf *surf,
1486 uint32_t level,
1487 uint32_t logical_array_layer,
1488 uint32_t logical_z_offset_px,
1489 uint32_t *x_offset_el,
1490 uint32_t *y_offset_el)
1491 {
1492 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1493
1494 assert(level < surf->levels);
1495 assert(logical_array_layer < surf->logical_level0_px.array_len);
1496 assert(logical_z_offset_px
1497 < isl_minify(surf->logical_level0_px.depth, level));
1498
1499 uint32_t x_offset_sa, y_offset_sa;
1500 get_image_offset_sa(surf, level,
1501 logical_array_layer,
1502 logical_z_offset_px,
1503 &x_offset_sa,
1504 &y_offset_sa);
1505
1506 *x_offset_el = x_offset_sa / fmtl->bw;
1507 *y_offset_el = y_offset_sa / fmtl->bh;
1508 }
1509
1510 void
1511 isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
1512 enum isl_tiling tiling,
1513 uint8_t bs,
1514 uint32_t row_pitch,
1515 uint32_t total_x_offset_el,
1516 uint32_t total_y_offset_el,
1517 uint32_t *base_address_offset,
1518 uint32_t *x_offset_el,
1519 uint32_t *y_offset_el)
1520 {
1521 /* This function only really works for power-of-two surfaces. In
1522 * theory, we could make it work for non-power-of-two surfaces by going
1523 * to the left until we find a block that is bs-aligned. The Vulkan
1524 * driver doesn't use non-power-of-two tiled surfaces so we'll leave
1525 * this unimplemented for now.
1526 */
1527 assert(tiling == ISL_TILING_LINEAR || isl_is_pow2(bs));
1528
1529 if (tiling == ISL_TILING_LINEAR) {
1530 *base_address_offset = total_y_offset_el * row_pitch +
1531 total_x_offset_el * bs;
1532 *x_offset_el = 0;
1533 *y_offset_el = 0;
1534 return;
1535 }
1536
1537 struct isl_tile_info tile_info;
1538 isl_tiling_get_info(dev, tiling, bs * 8, &tile_info);
1539
1540 /* Compute the offset into the tile */
1541 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
1542 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
1543
1544 /* Compute the offset of the tile in units of whole tiles */
1545 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
1546 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
1547
1548 assert(row_pitch % tile_info.phys_extent_B.width == 0);
1549 *base_address_offset =
1550 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
1551 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
1552 }
1553
1554 uint32_t
1555 isl_surf_get_depth_format(const struct isl_device *dev,
1556 const struct isl_surf *surf)
1557 {
1558 /* Support for separate stencil buffers began in gen5. Support for
1559 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
1560 * those that supported separate and interleaved stencil, were gen5 and
1561 * gen6.
1562 *
1563 * For a list of all available formats, see the Sandybridge PRM >> Volume
1564 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
1565 * Format (p321).
1566 */
1567
1568 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
1569
1570 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
1571
1572 if (has_stencil)
1573 assert(ISL_DEV_GEN(dev) < 7);
1574
1575 switch (surf->format) {
1576 default:
1577 unreachable("bad isl depth format");
1578 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1579 assert(ISL_DEV_GEN(dev) < 7);
1580 return 0; /* D32_FLOAT_S8X24_UINT */
1581 case ISL_FORMAT_R32_FLOAT:
1582 assert(!has_stencil);
1583 return 1; /* D32_FLOAT */
1584 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1585 if (has_stencil) {
1586 assert(ISL_DEV_GEN(dev) < 7);
1587 return 2; /* D24_UNORM_S8_UINT */
1588 } else {
1589 assert(ISL_DEV_GEN(dev) >= 5);
1590 return 3; /* D24_UNORM_X8_UINT */
1591 }
1592 case ISL_FORMAT_R16_UNORM:
1593 assert(!has_stencil);
1594 return 5; /* D16_UNORM */
1595 }
1596 }