isl: Finish tiling filtering for Gen6.
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "isl.h"
29 #include "isl_gen4.h"
30 #include "isl_gen6.h"
31 #include "isl_gen7.h"
32 #include "isl_gen8.h"
33 #include "isl_gen9.h"
34 #include "isl_priv.h"
35
36 void PRINTFLIKE(3, 4) UNUSED
37 __isl_finishme(const char *file, int line, const char *fmt, ...)
38 {
39 va_list ap;
40 char buf[512];
41
42 va_start(ap, fmt);
43 vsnprintf(buf, sizeof(buf), fmt, ap);
44 va_end(ap);
45
46 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
47 }
48
49 void
50 isl_device_init(struct isl_device *dev,
51 const struct gen_device_info *info,
52 bool has_bit6_swizzling)
53 {
54 dev->info = info;
55 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
56 dev->has_bit6_swizzling = has_bit6_swizzling;
57
58 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
59 * device properties at buildtime. Verify that the macros with the device
60 * properties chosen during runtime.
61 */
62 ISL_DEV_GEN_SANITIZE(dev);
63 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
64
65 /* Did we break hiz or stencil? */
66 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
67 assert(info->has_hiz_and_separate_stencil);
68 if (info->must_use_separate_stencil)
69 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
70 }
71
72 /**
73 * @brief Query the set of multisamples supported by the device.
74 *
75 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
76 * supported.
77 */
78 isl_sample_count_mask_t ATTRIBUTE_CONST
79 isl_device_get_sample_counts(struct isl_device *dev)
80 {
81 if (ISL_DEV_GEN(dev) >= 9) {
82 return ISL_SAMPLE_COUNT_1_BIT |
83 ISL_SAMPLE_COUNT_2_BIT |
84 ISL_SAMPLE_COUNT_4_BIT |
85 ISL_SAMPLE_COUNT_8_BIT |
86 ISL_SAMPLE_COUNT_16_BIT;
87 } else if (ISL_DEV_GEN(dev) >= 8) {
88 return ISL_SAMPLE_COUNT_1_BIT |
89 ISL_SAMPLE_COUNT_2_BIT |
90 ISL_SAMPLE_COUNT_4_BIT |
91 ISL_SAMPLE_COUNT_8_BIT;
92 } else if (ISL_DEV_GEN(dev) >= 7) {
93 return ISL_SAMPLE_COUNT_1_BIT |
94 ISL_SAMPLE_COUNT_4_BIT |
95 ISL_SAMPLE_COUNT_8_BIT;
96 } else if (ISL_DEV_GEN(dev) >= 6) {
97 return ISL_SAMPLE_COUNT_1_BIT |
98 ISL_SAMPLE_COUNT_4_BIT;
99 } else {
100 return ISL_SAMPLE_COUNT_1_BIT;
101 }
102 }
103
104 /**
105 * @param[out] info is written only on success
106 */
107 bool
108 isl_tiling_get_info(const struct isl_device *dev,
109 enum isl_tiling tiling,
110 uint32_t format_bpb,
111 struct isl_tile_info *tile_info)
112 {
113 const uint32_t bs = format_bpb / 8;
114 struct isl_extent2d logical_el, phys_B;
115
116 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
117 /* It is possible to have non-power-of-two formats in a tiled buffer.
118 * The easiest way to handle this is to treat the tile as if it is three
119 * times as wide. This way no pixel will ever cross a tile boundary.
120 * This really only works on legacy X and Y tiling formats.
121 */
122 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
123 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
124 return isl_tiling_get_info(dev, tiling, format_bpb / 3, tile_info);
125 }
126
127 switch (tiling) {
128 case ISL_TILING_LINEAR:
129 assert(bs > 0);
130 logical_el = isl_extent2d(1, 1);
131 phys_B = isl_extent2d(bs, 1);
132 break;
133
134 case ISL_TILING_X:
135 assert(bs > 0);
136 logical_el = isl_extent2d(512 / bs, 8);
137 phys_B = isl_extent2d(512, 8);
138 break;
139
140 case ISL_TILING_Y0:
141 assert(bs > 0);
142 logical_el = isl_extent2d(128 / bs, 32);
143 phys_B = isl_extent2d(128, 32);
144 break;
145
146 case ISL_TILING_W:
147 assert(bs == 1);
148 logical_el = isl_extent2d(64, 64);
149 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
150 *
151 * "If the surface is a stencil buffer (and thus has Tile Mode set
152 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
153 * computed based on width, as the stencil buffer is stored with two
154 * rows interleaved."
155 *
156 * This, together with the fact that stencil buffers are referred to as
157 * being Y-tiled in the PRMs for older hardware implies that the
158 * physical size of a W-tile is actually the same as for a Y-tile.
159 */
160 phys_B = isl_extent2d(128, 32);
161 break;
162
163 case ISL_TILING_Yf:
164 case ISL_TILING_Ys: {
165 if (ISL_DEV_GEN(dev) < 9)
166 return false;
167
168 if (!isl_is_pow2(bs))
169 return false;
170
171 bool is_Ys = tiling == ISL_TILING_Ys;
172
173 assert(bs > 0);
174 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
175 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
176
177 logical_el = isl_extent2d(width / bs, height);
178 phys_B = isl_extent2d(width, height);
179 break;
180 }
181
182 case ISL_TILING_HIZ:
183 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
184 * 128bpb format. The tiling has the same physical dimensions as
185 * Y-tiling but actually has two HiZ columns per Y-tiled column.
186 */
187 assert(bs == 16);
188 logical_el = isl_extent2d(16, 16);
189 phys_B = isl_extent2d(128, 32);
190 break;
191
192 case ISL_TILING_CCS:
193 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
194 * have a block size of 1 or 2 bits per block and each CCS element
195 * corresponds to one cache-line pair in the main surface. From the Sky
196 * Lake PRM Vol. 12 in the section on planes:
197 *
198 * "The Color Control Surface (CCS) contains the compression status
199 * of the cache-line pairs. The compression state of the cache-line
200 * pair is specified by 2 bits in the CCS. Each CCS cache-line
201 * represents an area on the main surface of 16x16 sets of 128 byte
202 * Y-tiled cache-line-pairs. CCS is always Y tiled."
203 *
204 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
205 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
206 * that yields total tile area of 128x128 cache-line pairs or CCS
207 * elements. On older hardware, each CCS element is 1 bit and the tile
208 * is 128x256 elements.
209 */
210 assert(format_bpb == 1 || format_bpb == 2);
211 logical_el = isl_extent2d(128, 256 / format_bpb);
212 phys_B = isl_extent2d(128, 32);
213 break;
214
215 default:
216 unreachable("not reached");
217 } /* end switch */
218
219 *tile_info = (struct isl_tile_info) {
220 .tiling = tiling,
221 .format_bpb = format_bpb,
222 .logical_extent_el = logical_el,
223 .phys_extent_B = phys_B,
224 };
225
226 return true;
227 }
228
229 /**
230 * @param[out] tiling is set only on success
231 */
232 bool
233 isl_surf_choose_tiling(const struct isl_device *dev,
234 const struct isl_surf_init_info *restrict info,
235 enum isl_tiling *tiling)
236 {
237 isl_tiling_flags_t tiling_flags = info->tiling_flags;
238
239 if (ISL_DEV_GEN(dev) >= 6) {
240 gen6_filter_tiling(dev, info, &tiling_flags);
241 } else {
242 isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
243 gen6_filter_tiling(dev, info, &tiling_flags);
244 }
245
246 #define CHOOSE(__tiling) \
247 do { \
248 if (tiling_flags & (1u << (__tiling))) { \
249 *tiling = (__tiling); \
250 return true; \
251 } \
252 } while (0)
253
254 /* Of the tiling modes remaining, choose the one that offers the best
255 * performance.
256 */
257
258 if (info->dim == ISL_SURF_DIM_1D) {
259 /* Prefer linear for 1D surfaces because they do not benefit from
260 * tiling. To the contrary, tiling leads to wasted memory and poor
261 * memory locality due to the swizzling and alignment restrictions
262 * required in tiled surfaces.
263 */
264 CHOOSE(ISL_TILING_LINEAR);
265 }
266
267 CHOOSE(ISL_TILING_CCS);
268 CHOOSE(ISL_TILING_HIZ);
269 CHOOSE(ISL_TILING_Ys);
270 CHOOSE(ISL_TILING_Yf);
271 CHOOSE(ISL_TILING_Y0);
272 CHOOSE(ISL_TILING_X);
273 CHOOSE(ISL_TILING_W);
274 CHOOSE(ISL_TILING_LINEAR);
275
276 #undef CHOOSE
277
278 /* No tiling mode accomodates the inputs. */
279 return false;
280 }
281
282 static bool
283 isl_choose_msaa_layout(const struct isl_device *dev,
284 const struct isl_surf_init_info *info,
285 enum isl_tiling tiling,
286 enum isl_msaa_layout *msaa_layout)
287 {
288 if (ISL_DEV_GEN(dev) >= 8) {
289 return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
290 } else if (ISL_DEV_GEN(dev) >= 7) {
291 return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
292 } else if (ISL_DEV_GEN(dev) >= 6) {
293 return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
294 } else {
295 return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
296 }
297 }
298
299 struct isl_extent2d
300 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
301 {
302 assert(isl_is_pow2(samples));
303
304 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
305 * Sizes (p133):
306 *
307 * If the surface is multisampled and it is a depth or stencil surface
308 * or Multisampled Surface StorageFormat in SURFACE_STATE is
309 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
310 * proceeding: [...]
311 */
312 return (struct isl_extent2d) {
313 .width = 1 << ((ffs(samples) - 0) / 2),
314 .height = 1 << ((ffs(samples) - 1) / 2),
315 };
316 }
317
318 static void
319 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
320 uint32_t *width, uint32_t *height)
321 {
322 const struct isl_extent2d px_size_sa =
323 isl_get_interleaved_msaa_px_size_sa(samples);
324
325 if (width)
326 *width = isl_align(*width, 2) * px_size_sa.width;
327 if (height)
328 *height = isl_align(*height, 2) * px_size_sa.width;
329 }
330
331 static enum isl_array_pitch_span
332 isl_choose_array_pitch_span(const struct isl_device *dev,
333 const struct isl_surf_init_info *restrict info,
334 enum isl_dim_layout dim_layout,
335 const struct isl_extent4d *phys_level0_sa)
336 {
337 switch (dim_layout) {
338 case ISL_DIM_LAYOUT_GEN9_1D:
339 case ISL_DIM_LAYOUT_GEN4_2D:
340 if (ISL_DEV_GEN(dev) >= 8) {
341 /* QPitch becomes programmable in Broadwell. So choose the
342 * most compact QPitch possible in order to conserve memory.
343 *
344 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
345 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
346 *
347 * - Software must ensure that this field is set to a value
348 * sufficiently large such that the array slices in the surface
349 * do not overlap. Refer to the Memory Data Formats section for
350 * information on how surfaces are stored in memory.
351 *
352 * - This field specifies the distance in rows between array
353 * slices. It is used only in the following cases:
354 *
355 * - Surface Array is enabled OR
356 * - Number of Mulitsamples is not NUMSAMPLES_1 and
357 * Multisampled Surface Storage Format set to MSFMT_MSS OR
358 * - Surface Type is SURFTYPE_CUBE
359 */
360 return ISL_ARRAY_PITCH_SPAN_COMPACT;
361 } else if (ISL_DEV_GEN(dev) >= 7) {
362 /* Note that Ivybridge introduces
363 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
364 * driver more control over the QPitch.
365 */
366
367 if (phys_level0_sa->array_len == 1) {
368 /* The hardware will never use the QPitch. So choose the most
369 * compact QPitch possible in order to conserve memory.
370 */
371 return ISL_ARRAY_PITCH_SPAN_COMPACT;
372 }
373
374 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
375 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
376 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
377 * Section 6.18.4.7: Surface Arrays (p112):
378 *
379 * If Surface Array Spacing is set to ARYSPC_FULL (note that
380 * the depth buffer and stencil buffer have an implied value of
381 * ARYSPC_FULL):
382 */
383 return ISL_ARRAY_PITCH_SPAN_FULL;
384 }
385
386 if (info->levels == 1) {
387 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
388 * to ARYSPC_LOD0.
389 */
390 return ISL_ARRAY_PITCH_SPAN_COMPACT;
391 }
392
393 return ISL_ARRAY_PITCH_SPAN_FULL;
394 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
395 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
396 isl_surf_usage_is_stencil(info->usage)) {
397 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
398 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
399 *
400 * The separate stencil buffer does not support mip mapping, thus
401 * the storage for LODs other than LOD 0 is not needed.
402 */
403 assert(info->levels == 1);
404 assert(phys_level0_sa->array_len == 1);
405 return ISL_ARRAY_PITCH_SPAN_COMPACT;
406 } else {
407 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
408 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
409 isl_surf_usage_is_stencil(info->usage)) {
410 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
411 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
412 *
413 * The separate stencil buffer does not support mip mapping,
414 * thus the storage for LODs other than LOD 0 is not needed.
415 */
416 assert(info->levels == 1);
417 assert(phys_level0_sa->array_len == 1);
418 return ISL_ARRAY_PITCH_SPAN_COMPACT;
419 }
420
421 if (phys_level0_sa->array_len == 1) {
422 /* The hardware will never use the QPitch. So choose the most
423 * compact QPitch possible in order to conserve memory.
424 */
425 return ISL_ARRAY_PITCH_SPAN_COMPACT;
426 }
427
428 return ISL_ARRAY_PITCH_SPAN_FULL;
429 }
430
431 case ISL_DIM_LAYOUT_GEN4_3D:
432 /* The hardware will never use the QPitch. So choose the most
433 * compact QPitch possible in order to conserve memory.
434 */
435 return ISL_ARRAY_PITCH_SPAN_COMPACT;
436 }
437
438 unreachable("bad isl_dim_layout");
439 return ISL_ARRAY_PITCH_SPAN_FULL;
440 }
441
442 static void
443 isl_choose_image_alignment_el(const struct isl_device *dev,
444 const struct isl_surf_init_info *restrict info,
445 enum isl_tiling tiling,
446 enum isl_dim_layout dim_layout,
447 enum isl_msaa_layout msaa_layout,
448 struct isl_extent3d *image_align_el)
449 {
450 if (info->format == ISL_FORMAT_HIZ) {
451 assert(ISL_DEV_GEN(dev) >= 6);
452 /* HiZ surfaces are always aligned to 16x8 pixels in the primary surface
453 * which works out to 2x2 HiZ elments.
454 */
455 *image_align_el = isl_extent3d(2, 2, 1);
456 return;
457 }
458
459 if (ISL_DEV_GEN(dev) >= 9) {
460 gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
461 msaa_layout, image_align_el);
462 } else if (ISL_DEV_GEN(dev) >= 8) {
463 gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
464 msaa_layout, image_align_el);
465 } else if (ISL_DEV_GEN(dev) >= 7) {
466 gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
467 msaa_layout, image_align_el);
468 } else if (ISL_DEV_GEN(dev) >= 6) {
469 gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
470 msaa_layout, image_align_el);
471 } else {
472 gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
473 msaa_layout, image_align_el);
474 }
475 }
476
477 static enum isl_dim_layout
478 isl_surf_choose_dim_layout(const struct isl_device *dev,
479 enum isl_surf_dim logical_dim,
480 enum isl_tiling tiling)
481 {
482 if (ISL_DEV_GEN(dev) >= 9) {
483 switch (logical_dim) {
484 case ISL_SURF_DIM_1D:
485 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
486 *
487 * One-dimensional surfaces use a tiling mode of linear.
488 * Technically, they are not tiled resources, but the Tiled
489 * Resource Mode field in RENDER_SURFACE_STATE is still used to
490 * indicate the alignment requirements for this linear surface
491 * (See 1D Alignment requirements for how 4K and 64KB Tiled
492 * Resource Modes impact alignment). Alternatively, a 1D surface
493 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
494 * a height of 0.
495 *
496 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
497 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
498 */
499 if (tiling == ISL_TILING_LINEAR)
500 return ISL_DIM_LAYOUT_GEN9_1D;
501 else
502 return ISL_DIM_LAYOUT_GEN4_2D;
503 case ISL_SURF_DIM_2D:
504 case ISL_SURF_DIM_3D:
505 return ISL_DIM_LAYOUT_GEN4_2D;
506 }
507 } else {
508 switch (logical_dim) {
509 case ISL_SURF_DIM_1D:
510 case ISL_SURF_DIM_2D:
511 return ISL_DIM_LAYOUT_GEN4_2D;
512 case ISL_SURF_DIM_3D:
513 return ISL_DIM_LAYOUT_GEN4_3D;
514 }
515 }
516
517 unreachable("bad isl_surf_dim");
518 return ISL_DIM_LAYOUT_GEN4_2D;
519 }
520
521 /**
522 * Calculate the physical extent of the surface's first level, in units of
523 * surface samples. The result is aligned to the format's compression block.
524 */
525 static void
526 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
527 const struct isl_surf_init_info *restrict info,
528 enum isl_dim_layout dim_layout,
529 enum isl_tiling tiling,
530 enum isl_msaa_layout msaa_layout,
531 struct isl_extent4d *phys_level0_sa)
532 {
533 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
534
535 if (isl_format_is_yuv(info->format))
536 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
537
538 switch (info->dim) {
539 case ISL_SURF_DIM_1D:
540 assert(info->height == 1);
541 assert(info->depth == 1);
542 assert(info->samples == 1);
543 assert(!isl_format_is_compressed(info->format));
544
545 switch (dim_layout) {
546 case ISL_DIM_LAYOUT_GEN4_3D:
547 unreachable("bad isl_dim_layout");
548
549 case ISL_DIM_LAYOUT_GEN9_1D:
550 case ISL_DIM_LAYOUT_GEN4_2D:
551 *phys_level0_sa = (struct isl_extent4d) {
552 .w = info->width,
553 .h = 1,
554 .d = 1,
555 .a = info->array_len,
556 };
557 break;
558 }
559 break;
560
561 case ISL_SURF_DIM_2D:
562 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
563
564 if (tiling == ISL_TILING_Ys && info->samples > 1)
565 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
566
567 switch (msaa_layout) {
568 case ISL_MSAA_LAYOUT_NONE:
569 assert(info->depth == 1);
570 assert(info->samples == 1);
571
572 *phys_level0_sa = (struct isl_extent4d) {
573 .w = isl_align_npot(info->width, fmtl->bw),
574 .h = isl_align_npot(info->height, fmtl->bh),
575 .d = 1,
576 .a = info->array_len,
577 };
578 break;
579
580 case ISL_MSAA_LAYOUT_ARRAY:
581 assert(info->depth == 1);
582 assert(info->levels == 1);
583 assert(!isl_format_is_compressed(info->format));
584
585 *phys_level0_sa = (struct isl_extent4d) {
586 .w = info->width,
587 .h = info->height,
588 .d = 1,
589 .a = info->array_len * info->samples,
590 };
591 break;
592
593 case ISL_MSAA_LAYOUT_INTERLEAVED:
594 assert(info->depth == 1);
595 assert(info->levels == 1);
596 assert(!isl_format_is_compressed(info->format));
597
598 *phys_level0_sa = (struct isl_extent4d) {
599 .w = info->width,
600 .h = info->height,
601 .d = 1,
602 .a = info->array_len,
603 };
604
605 isl_msaa_interleaved_scale_px_to_sa(info->samples,
606 &phys_level0_sa->w,
607 &phys_level0_sa->h);
608 break;
609 }
610 break;
611
612 case ISL_SURF_DIM_3D:
613 assert(info->array_len == 1);
614 assert(info->samples == 1);
615
616 if (fmtl->bd > 1) {
617 isl_finishme("%s:%s: compression block with depth > 1",
618 __FILE__, __func__);
619 }
620
621 switch (dim_layout) {
622 case ISL_DIM_LAYOUT_GEN9_1D:
623 unreachable("bad isl_dim_layout");
624
625 case ISL_DIM_LAYOUT_GEN4_2D:
626 assert(ISL_DEV_GEN(dev) >= 9);
627
628 *phys_level0_sa = (struct isl_extent4d) {
629 .w = isl_align_npot(info->width, fmtl->bw),
630 .h = isl_align_npot(info->height, fmtl->bh),
631 .d = 1,
632 .a = info->depth,
633 };
634 break;
635
636 case ISL_DIM_LAYOUT_GEN4_3D:
637 assert(ISL_DEV_GEN(dev) < 9);
638 *phys_level0_sa = (struct isl_extent4d) {
639 .w = isl_align(info->width, fmtl->bw),
640 .h = isl_align(info->height, fmtl->bh),
641 .d = info->depth,
642 .a = 1,
643 };
644 break;
645 }
646 break;
647 }
648 }
649
650 /**
651 * A variant of isl_calc_phys_slice0_extent_sa() specific to
652 * ISL_DIM_LAYOUT_GEN4_2D.
653 */
654 static void
655 isl_calc_phys_slice0_extent_sa_gen4_2d(
656 const struct isl_device *dev,
657 const struct isl_surf_init_info *restrict info,
658 enum isl_msaa_layout msaa_layout,
659 const struct isl_extent3d *image_align_sa,
660 const struct isl_extent4d *phys_level0_sa,
661 struct isl_extent2d *phys_slice0_sa)
662 {
663 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
664
665 assert(phys_level0_sa->depth == 1);
666
667 if (info->levels == 1) {
668 /* Do not pad the surface to the image alignment. Instead, pad it only
669 * to the pixel format's block alignment.
670 *
671 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
672 * cycles on the below mipmap layout caluclations. Reducing the
673 * alignment here is safe because we later align the row pitch and array
674 * pitch to the tile boundary. It is safe even for
675 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
676 * to accomodate the interleaved samples.
677 *
678 * For linear surfaces, reducing the alignment here permits us to later
679 * choose an arbitrary, non-aligned row pitch. If the surface backs
680 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
681 * VkBufferImageCopy::bufferRowLength.
682 */
683 *phys_slice0_sa = (struct isl_extent2d) {
684 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
685 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
686 };
687 return;
688 }
689
690 uint32_t slice_top_w = 0;
691 uint32_t slice_bottom_w = 0;
692 uint32_t slice_left_h = 0;
693 uint32_t slice_right_h = 0;
694
695 uint32_t W0 = phys_level0_sa->w;
696 uint32_t H0 = phys_level0_sa->h;
697
698 for (uint32_t l = 0; l < info->levels; ++l) {
699 uint32_t W = isl_minify(W0, l);
700 uint32_t H = isl_minify(H0, l);
701
702 uint32_t w = isl_align_npot(W, image_align_sa->w);
703 uint32_t h = isl_align_npot(H, image_align_sa->h);
704
705 if (l == 0) {
706 slice_top_w = w;
707 slice_left_h = h;
708 slice_right_h = h;
709 } else if (l == 1) {
710 slice_bottom_w = w;
711 slice_left_h += h;
712 } else if (l == 2) {
713 slice_bottom_w += w;
714 slice_right_h += h;
715 } else {
716 slice_right_h += h;
717 }
718 }
719
720 *phys_slice0_sa = (struct isl_extent2d) {
721 .w = MAX(slice_top_w, slice_bottom_w),
722 .h = MAX(slice_left_h, slice_right_h),
723 };
724 }
725
726 /**
727 * A variant of isl_calc_phys_slice0_extent_sa() specific to
728 * ISL_DIM_LAYOUT_GEN4_3D.
729 */
730 static void
731 isl_calc_phys_slice0_extent_sa_gen4_3d(
732 const struct isl_device *dev,
733 const struct isl_surf_init_info *restrict info,
734 const struct isl_extent3d *image_align_sa,
735 const struct isl_extent4d *phys_level0_sa,
736 struct isl_extent2d *phys_slice0_sa)
737 {
738 assert(info->samples == 1);
739 assert(phys_level0_sa->array_len == 1);
740
741 uint32_t slice_w = 0;
742 uint32_t slice_h = 0;
743
744 uint32_t W0 = phys_level0_sa->w;
745 uint32_t H0 = phys_level0_sa->h;
746 uint32_t D0 = phys_level0_sa->d;
747
748 for (uint32_t l = 0; l < info->levels; ++l) {
749 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
750 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
751 uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
752
753 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
754 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
755
756 slice_w = MAX(slice_w, level_w * max_layers_horiz);
757 slice_h += level_h * max_layers_vert;
758 }
759
760 *phys_slice0_sa = (struct isl_extent2d) {
761 .w = slice_w,
762 .h = slice_h,
763 };
764 }
765
766 /**
767 * A variant of isl_calc_phys_slice0_extent_sa() specific to
768 * ISL_DIM_LAYOUT_GEN9_1D.
769 */
770 static void
771 isl_calc_phys_slice0_extent_sa_gen9_1d(
772 const struct isl_device *dev,
773 const struct isl_surf_init_info *restrict info,
774 const struct isl_extent3d *image_align_sa,
775 const struct isl_extent4d *phys_level0_sa,
776 struct isl_extent2d *phys_slice0_sa)
777 {
778 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
779
780 assert(phys_level0_sa->height == 1);
781 assert(phys_level0_sa->depth == 1);
782 assert(info->samples == 1);
783 assert(image_align_sa->w >= fmtl->bw);
784
785 uint32_t slice_w = 0;
786 const uint32_t W0 = phys_level0_sa->w;
787
788 for (uint32_t l = 0; l < info->levels; ++l) {
789 uint32_t W = isl_minify(W0, l);
790 uint32_t w = isl_align_npot(W, image_align_sa->w);
791
792 slice_w += w;
793 }
794
795 *phys_slice0_sa = isl_extent2d(slice_w, 1);
796 }
797
798 /**
799 * Calculate the physical extent of the surface's first array slice, in units
800 * of surface samples. If the surface is multi-leveled, then the result will
801 * be aligned to \a image_align_sa.
802 */
803 static void
804 isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
805 const struct isl_surf_init_info *restrict info,
806 enum isl_dim_layout dim_layout,
807 enum isl_msaa_layout msaa_layout,
808 const struct isl_extent3d *image_align_sa,
809 const struct isl_extent4d *phys_level0_sa,
810 struct isl_extent2d *phys_slice0_sa)
811 {
812 switch (dim_layout) {
813 case ISL_DIM_LAYOUT_GEN9_1D:
814 isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
815 image_align_sa, phys_level0_sa,
816 phys_slice0_sa);
817 return;
818 case ISL_DIM_LAYOUT_GEN4_2D:
819 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
820 image_align_sa, phys_level0_sa,
821 phys_slice0_sa);
822 return;
823 case ISL_DIM_LAYOUT_GEN4_3D:
824 isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
825 phys_level0_sa, phys_slice0_sa);
826 return;
827 }
828 }
829
830 /**
831 * Calculate the pitch between physical array slices, in units of rows of
832 * surface elements.
833 */
834 static uint32_t
835 isl_calc_array_pitch_el_rows(const struct isl_device *dev,
836 const struct isl_surf_init_info *restrict info,
837 const struct isl_tile_info *tile_info,
838 enum isl_dim_layout dim_layout,
839 enum isl_array_pitch_span array_pitch_span,
840 const struct isl_extent3d *image_align_sa,
841 const struct isl_extent4d *phys_level0_sa,
842 const struct isl_extent2d *phys_slice0_sa)
843 {
844 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
845 uint32_t pitch_sa_rows = 0;
846
847 switch (dim_layout) {
848 case ISL_DIM_LAYOUT_GEN9_1D:
849 /* Each row is an array slice */
850 pitch_sa_rows = 1;
851 break;
852 case ISL_DIM_LAYOUT_GEN4_2D:
853 switch (array_pitch_span) {
854 case ISL_ARRAY_PITCH_SPAN_COMPACT:
855 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
856 break;
857 case ISL_ARRAY_PITCH_SPAN_FULL: {
858 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
859 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
860 * Surfaces >> Surface Arrays.
861 */
862 uint32_t H0_sa = phys_level0_sa->h;
863 uint32_t H1_sa = isl_minify(H0_sa, 1);
864
865 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
866 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
867
868 uint32_t m;
869 if (ISL_DEV_GEN(dev) >= 7) {
870 /* The QPitch equation changed slightly in Ivybridge. */
871 m = 12;
872 } else {
873 m = 11;
874 }
875
876 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
877
878 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
879 (info->height % 4 == 1)) {
880 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
881 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
882 *
883 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
884 * the value calculated in the equation above , for every
885 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
886 *
887 * XXX(chadv): Is the errata natural corollary of the physical
888 * layout of interleaved samples?
889 */
890 pitch_sa_rows += 4;
891 }
892
893 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
894 } /* end case */
895 break;
896 }
897 break;
898 case ISL_DIM_LAYOUT_GEN4_3D:
899 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
900 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
901 break;
902 default:
903 unreachable("bad isl_dim_layout");
904 break;
905 }
906
907 assert(pitch_sa_rows % fmtl->bh == 0);
908 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
909
910 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
911 /*
912 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
913 *
914 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
915 * layout with these alignments in the RT space: Horizontal
916 * Alignment = 128 and Vertical Alignment = 64."
917 *
918 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
919 *
920 * "For non-multisampled render target's CCS auxiliary surface,
921 * QPitch must be computed with Horizontal Alignment = 128 and
922 * Surface Vertical Alignment = 256. These alignments are only for
923 * CCS buffer and not for associated render target."
924 *
925 * The first restriction is already handled by isl_choose_image_alignment_el
926 * but the second restriction, which is an extension of the first, only
927 * applies to qpitch and must be applied here.
928 */
929 assert(fmtl->bh == 4);
930 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
931 }
932
933 if (ISL_DEV_GEN(dev) >= 9 &&
934 info->dim == ISL_SURF_DIM_3D &&
935 tile_info->tiling != ISL_TILING_LINEAR) {
936 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
937 *
938 * Tile Mode != Linear: This field must be set to an integer multiple
939 * of the tile height
940 */
941 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
942 }
943
944 return pitch_el_rows;
945 }
946
947 /**
948 * Calculate the pitch of each surface row, in bytes.
949 */
950 static uint32_t
951 isl_calc_linear_row_pitch(const struct isl_device *dev,
952 const struct isl_surf_init_info *restrict info,
953 const struct isl_extent2d *phys_slice0_sa)
954 {
955 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
956
957 uint32_t row_pitch = info->min_pitch;
958
959 /* First, align the surface to a cache line boundary, as the PRM explains
960 * below.
961 *
962 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
963 * Formats >> Surface Padding Requirements >> Render Target and Media
964 * Surfaces:
965 *
966 * The data port accesses data (pixels) outside of the surface if they
967 * are contained in the same cache request as pixels that are within the
968 * surface. These pixels will not be returned by the requesting message,
969 * however if these pixels lie outside of defined pages in the GTT,
970 * a GTT error will result when the cache request is processed. In order
971 * to avoid these GTT errors, “padding” at the bottom of the surface is
972 * sometimes necessary.
973 *
974 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
975 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
976 *
977 * The sampling engine accesses texels outside of the surface if they
978 * are contained in the same cache line as texels that are within the
979 * surface. These texels will not participate in any calculation
980 * performed by the sampling engine and will not affect the result of
981 * any sampling engine operation, however if these texels lie outside of
982 * defined pages in the GTT, a GTT error will result when the cache line
983 * is accessed. In order to avoid these GTT errors, “padding” at the
984 * bottom and right side of a sampling engine surface is sometimes
985 * necessary.
986 *
987 * It is possible that a cache line will straddle a page boundary if the
988 * base address or pitch is not aligned. All pages included in the cache
989 * lines that are part of the surface must map to valid GTT entries to
990 * avoid errors. To determine the necessary padding on the bottom and
991 * right side of the surface, refer to the table in Alignment Unit Size
992 * section for the i and j parameters for the surface format in use. The
993 * surface must then be extended to the next multiple of the alignment
994 * unit size in each dimension, and all texels contained in this
995 * extended surface must have valid GTT entries.
996 *
997 * For example, suppose the surface size is 15 texels by 10 texels and
998 * the alignment parameters are i=4 and j=2. In this case, the extended
999 * surface would be 16 by 10. Note that these calculations are done in
1000 * texels, and must be converted to bytes based on the surface format
1001 * being used to determine whether additional pages need to be defined.
1002 */
1003 assert(phys_slice0_sa->w % fmtl->bw == 0);
1004 const uint32_t bs = fmtl->bpb / 8;
1005 row_pitch = MAX(row_pitch, bs * (phys_slice0_sa->w / fmtl->bw));
1006
1007 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1008 * RENDER_SURFACE_STATE Surface Pitch (p349):
1009 *
1010 * - For linear render target surfaces and surfaces accessed with the
1011 * typed data port messages, the pitch must be a multiple of the
1012 * element size for non-YUV surface formats. Pitch must be
1013 * a multiple of 2 * element size for YUV surface formats.
1014 *
1015 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1016 * ignore because isl doesn't do buffers.]
1017 *
1018 * - For other linear surfaces, the pitch can be any multiple of
1019 * bytes.
1020 */
1021 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1022 if (isl_format_is_yuv(info->format)) {
1023 row_pitch = isl_align_npot(row_pitch, 2 * bs);
1024 } else {
1025 row_pitch = isl_align_npot(row_pitch, bs);
1026 }
1027 }
1028
1029 return row_pitch;
1030 }
1031
1032 /**
1033 * Calculate and apply any padding required for the surface.
1034 *
1035 * @param[inout] total_h_el is updated with the new height
1036 * @param[out] pad_bytes is overwritten with additional padding requirements.
1037 */
1038 static void
1039 isl_apply_surface_padding(const struct isl_device *dev,
1040 const struct isl_surf_init_info *restrict info,
1041 const struct isl_tile_info *tile_info,
1042 uint32_t *total_h_el,
1043 uint32_t *pad_bytes)
1044 {
1045 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1046
1047 *pad_bytes = 0;
1048
1049 /* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1050 * Formats >> Surface Padding Requirements >> Render Target and Media
1051 * Surfaces:
1052 *
1053 * The data port accesses data (pixels) outside of the surface if they
1054 * are contained in the same cache request as pixels that are within the
1055 * surface. These pixels will not be returned by the requesting message,
1056 * however if these pixels lie outside of defined pages in the GTT,
1057 * a GTT error will result when the cache request is processed. In
1058 * order to avoid these GTT errors, “padding” at the bottom of the
1059 * surface is sometimes necessary.
1060 *
1061 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1062 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
1063 *
1064 * ... Lots of padding requirements, all listed separately below.
1065 */
1066
1067 /* We can safely ignore the first padding requirement, quoted below,
1068 * because isl doesn't do buffers.
1069 *
1070 * - [pre-BDW] For buffers, which have no inherent “height,” padding
1071 * requirements are different. A buffer must be padded to the next
1072 * multiple of 256 array elements, with an additional 16 bytes added
1073 * beyond that to account for the L1 cache line.
1074 */
1075
1076 /*
1077 * - For compressed textures [...], padding at the bottom of the surface
1078 * is to an even compressed row.
1079 */
1080 if (isl_format_is_compressed(info->format))
1081 *total_h_el = isl_align(*total_h_el, 2);
1082
1083 /*
1084 * - For cube surfaces, an additional two rows of padding are required
1085 * at the bottom of the surface.
1086 */
1087 if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
1088 *total_h_el += 2;
1089
1090 /*
1091 * - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
1092 * additional padding is required. These surfaces require an extra row
1093 * plus 16 bytes of padding at the bottom in addition to the general
1094 * padding requirements.
1095 */
1096 if (isl_format_is_yuv(info->format) &&
1097 (fmtl->bpb == 96 || fmtl->bpb == 48|| fmtl->bpb == 24)) {
1098 *total_h_el += 1;
1099 *pad_bytes += 16;
1100 }
1101
1102 /*
1103 * - For linear surfaces, additional padding of 64 bytes is required at
1104 * the bottom of the surface. This is in addition to the padding
1105 * required above.
1106 */
1107 if (tile_info->tiling == ISL_TILING_LINEAR)
1108 *pad_bytes += 64;
1109
1110 /* The below text weakens, not strengthens, the padding requirements for
1111 * linear surfaces. Therefore we can safely ignore it.
1112 *
1113 * - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
1114 * non-MSAA, non-mip-mapped surfaces in linear memory, the only
1115 * padding requirement is to the next aligned 64-byte boundary beyond
1116 * the end of the surface. The rest of the padding requirements
1117 * documented above do not apply to these surfaces.
1118 */
1119
1120 /*
1121 * - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
1122 * height % 4 != 0, the surface must be padded with
1123 * 4-(height % 4)*Surface Pitch # of bytes.
1124 */
1125 if (ISL_DEV_GEN(dev) >= 9 &&
1126 tile_info->tiling == ISL_TILING_LINEAR &&
1127 (info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
1128 *total_h_el = isl_align(*total_h_el, 4);
1129 }
1130
1131 /*
1132 * - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
1133 * to 4 times the Surface Pitch # of bytes
1134 */
1135 if (ISL_DEV_GEN(dev) >= 9 &&
1136 tile_info->tiling == ISL_TILING_LINEAR &&
1137 info->dim == ISL_SURF_DIM_1D) {
1138 *total_h_el += 4;
1139 }
1140 }
1141
1142 bool
1143 isl_surf_init_s(const struct isl_device *dev,
1144 struct isl_surf *surf,
1145 const struct isl_surf_init_info *restrict info)
1146 {
1147 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1148
1149 const struct isl_extent4d logical_level0_px = {
1150 .w = info->width,
1151 .h = info->height,
1152 .d = info->depth,
1153 .a = info->array_len,
1154 };
1155
1156 enum isl_tiling tiling;
1157 if (!isl_surf_choose_tiling(dev, info, &tiling))
1158 return false;
1159
1160 struct isl_tile_info tile_info;
1161 if (!isl_tiling_get_info(dev, tiling, fmtl->bpb, &tile_info))
1162 return false;
1163
1164 const enum isl_dim_layout dim_layout =
1165 isl_surf_choose_dim_layout(dev, info->dim, tiling);
1166
1167 enum isl_msaa_layout msaa_layout;
1168 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1169 return false;
1170
1171 struct isl_extent3d image_align_el;
1172 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1173 &image_align_el);
1174
1175 struct isl_extent3d image_align_sa =
1176 isl_extent3d_el_to_sa(info->format, image_align_el);
1177
1178 struct isl_extent4d phys_level0_sa;
1179 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1180 &phys_level0_sa);
1181 assert(phys_level0_sa.w % fmtl->bw == 0);
1182 assert(phys_level0_sa.h % fmtl->bh == 0);
1183
1184 enum isl_array_pitch_span array_pitch_span =
1185 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1186
1187 struct isl_extent2d phys_slice0_sa;
1188 isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
1189 &image_align_sa, &phys_level0_sa,
1190 &phys_slice0_sa);
1191 assert(phys_slice0_sa.w % fmtl->bw == 0);
1192 assert(phys_slice0_sa.h % fmtl->bh == 0);
1193
1194 const uint32_t array_pitch_el_rows =
1195 isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
1196 array_pitch_span, &image_align_sa,
1197 &phys_level0_sa, &phys_slice0_sa);
1198
1199 uint32_t total_h_el = phys_level0_sa.array_len * array_pitch_el_rows;
1200
1201 uint32_t pad_bytes;
1202 isl_apply_surface_padding(dev, info, &tile_info, &total_h_el, &pad_bytes);
1203
1204 uint32_t row_pitch, size, base_alignment;
1205 if (tiling == ISL_TILING_LINEAR) {
1206 row_pitch = isl_calc_linear_row_pitch(dev, info, &phys_slice0_sa);
1207 size = row_pitch * total_h_el + pad_bytes;
1208
1209 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1210 *
1211 * "The Base Address for linear render target surfaces and surfaces
1212 * accessed with the typed surface read/write data port messages must
1213 * be element-size aligned, for non-YUV surface formats, or a
1214 * multiple of 2 element-sizes for YUV surface formats. Other linear
1215 * surfaces have no alignment requirements (byte alignment is
1216 * sufficient.)"
1217 */
1218 base_alignment = MAX(1, info->min_alignment);
1219 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1220 if (isl_format_is_yuv(info->format)) {
1221 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1222 } else {
1223 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1224 }
1225 }
1226 base_alignment = isl_round_up_to_power_of_two(base_alignment);
1227 } else {
1228 assert(fmtl->bpb % tile_info.format_bpb == 0);
1229 const uint32_t tile_el_scale = fmtl->bpb / tile_info.format_bpb;
1230
1231 assert(phys_slice0_sa.w % fmtl->bw == 0);
1232 const uint32_t total_w_el = phys_slice0_sa.width / fmtl->bw;
1233 const uint32_t total_w_tl =
1234 isl_align_div(total_w_el * tile_el_scale,
1235 tile_info.logical_extent_el.width);
1236
1237 row_pitch = total_w_tl * tile_info.phys_extent_B.width;
1238 if (row_pitch < info->min_pitch) {
1239 row_pitch = isl_align_npot(info->min_pitch,
1240 tile_info.phys_extent_B.width);
1241 }
1242
1243 total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
1244 const uint32_t total_h_tl =
1245 isl_align_div(total_h_el, tile_info.logical_extent_el.height);
1246
1247 size = total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1248
1249 const uint32_t tile_size = tile_info.phys_extent_B.width *
1250 tile_info.phys_extent_B.height;
1251 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1252 base_alignment = MAX(info->min_alignment, tile_size);
1253 }
1254
1255 *surf = (struct isl_surf) {
1256 .dim = info->dim,
1257 .dim_layout = dim_layout,
1258 .msaa_layout = msaa_layout,
1259 .tiling = tiling,
1260 .format = info->format,
1261
1262 .levels = info->levels,
1263 .samples = info->samples,
1264
1265 .image_alignment_el = image_align_el,
1266 .logical_level0_px = logical_level0_px,
1267 .phys_level0_sa = phys_level0_sa,
1268
1269 .size = size,
1270 .alignment = base_alignment,
1271 .row_pitch = row_pitch,
1272 .array_pitch_el_rows = array_pitch_el_rows,
1273 .array_pitch_span = array_pitch_span,
1274
1275 .usage = info->usage,
1276 };
1277
1278 return true;
1279 }
1280
1281 void
1282 isl_surf_get_tile_info(const struct isl_device *dev,
1283 const struct isl_surf *surf,
1284 struct isl_tile_info *tile_info)
1285 {
1286 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1287 isl_tiling_get_info(dev, surf->tiling, fmtl->bpb, tile_info);
1288 }
1289
1290 void
1291 isl_surf_get_hiz_surf(const struct isl_device *dev,
1292 const struct isl_surf *surf,
1293 struct isl_surf *hiz_surf)
1294 {
1295 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1296
1297 /* Multisampled depth is always interleaved */
1298 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1299 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1300
1301 isl_surf_init(dev, hiz_surf,
1302 .dim = ISL_SURF_DIM_2D,
1303 .format = ISL_FORMAT_HIZ,
1304 .width = surf->logical_level0_px.width,
1305 .height = surf->logical_level0_px.height,
1306 .depth = 1,
1307 .levels = surf->levels,
1308 .array_len = surf->logical_level0_px.array_len,
1309 /* On SKL+, HiZ is always single-sampled */
1310 .samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples,
1311 .usage = ISL_SURF_USAGE_HIZ_BIT,
1312 .tiling_flags = ISL_TILING_HIZ_BIT);
1313 }
1314
1315 void
1316 isl_surf_get_mcs_surf(const struct isl_device *dev,
1317 const struct isl_surf *surf,
1318 struct isl_surf *mcs_surf)
1319 {
1320 /* It must be multisampled with an array layout */
1321 assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1322
1323 /* The following are true of all multisampled surfaces */
1324 assert(surf->dim == ISL_SURF_DIM_2D);
1325 assert(surf->levels == 1);
1326 assert(surf->logical_level0_px.depth == 1);
1327
1328 enum isl_format mcs_format;
1329 switch (surf->samples) {
1330 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1331 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1332 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1333 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1334 default:
1335 unreachable("Invalid sample count");
1336 }
1337
1338 isl_surf_init(dev, mcs_surf,
1339 .dim = ISL_SURF_DIM_2D,
1340 .format = mcs_format,
1341 .width = surf->logical_level0_px.width,
1342 .height = surf->logical_level0_px.height,
1343 .depth = 1,
1344 .levels = 1,
1345 .array_len = surf->logical_level0_px.array_len,
1346 .samples = 1, /* MCS surfaces are really single-sampled */
1347 .usage = ISL_SURF_USAGE_MCS_BIT,
1348 .tiling_flags = ISL_TILING_Y0_BIT);
1349 }
1350
1351 bool
1352 isl_surf_get_ccs_surf(const struct isl_device *dev,
1353 const struct isl_surf *surf,
1354 struct isl_surf *ccs_surf)
1355 {
1356 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1357 assert(ISL_DEV_GEN(dev) >= 7);
1358
1359 assert(ISL_DEV_GEN(dev) >= 8 || surf->dim == ISL_SURF_DIM_2D);
1360
1361 assert(surf->logical_level0_px.depth == 1);
1362
1363 /* TODO: More conditions where it can fail. */
1364
1365 enum isl_format ccs_format;
1366 if (ISL_DEV_GEN(dev) >= 9) {
1367 if (!isl_tiling_is_any_y(surf->tiling))
1368 return false;
1369
1370 switch (isl_format_get_layout(surf->format)->bpb) {
1371 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1372 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1373 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1374 default:
1375 return false;
1376 }
1377 } else if (surf->tiling == ISL_TILING_Y0) {
1378 switch (isl_format_get_layout(surf->format)->bpb) {
1379 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1380 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1381 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1382 default:
1383 return false;
1384 }
1385 } else if (surf->tiling == ISL_TILING_X) {
1386 switch (isl_format_get_layout(surf->format)->bpb) {
1387 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1388 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1389 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1390 default:
1391 return false;
1392 }
1393 } else {
1394 return false;
1395 }
1396
1397 isl_surf_init(dev, ccs_surf,
1398 .dim = ISL_SURF_DIM_2D,
1399 .format = ccs_format,
1400 .width = surf->logical_level0_px.width,
1401 .height = surf->logical_level0_px.height,
1402 .depth = 1,
1403 .levels = surf->levels,
1404 .array_len = surf->logical_level0_px.array_len,
1405 .samples = 1,
1406 .usage = ISL_SURF_USAGE_CCS_BIT,
1407 .tiling_flags = ISL_TILING_CCS_BIT);
1408
1409 return true;
1410 }
1411
1412 void
1413 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1414 const struct isl_surf_fill_state_info *restrict info)
1415 {
1416 #ifndef NDEBUG
1417 isl_surf_usage_flags_t _base_usage =
1418 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1419 ISL_SURF_USAGE_TEXTURE_BIT |
1420 ISL_SURF_USAGE_STORAGE_BIT);
1421 /* They may only specify one of the above bits at a time */
1422 assert(__builtin_popcount(_base_usage) == 1);
1423 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1424 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1425 #endif
1426
1427 if (info->surf->dim == ISL_SURF_DIM_3D) {
1428 assert(info->view->base_array_layer + info->view->array_len <=
1429 info->surf->logical_level0_px.depth);
1430 } else {
1431 assert(info->view->base_array_layer + info->view->array_len <=
1432 info->surf->logical_level0_px.array_len);
1433 }
1434
1435 switch (ISL_DEV_GEN(dev)) {
1436 case 4:
1437 if (ISL_DEV_IS_G4X(dev)) {
1438 /* G45 surface state is the same as gen5 */
1439 isl_gen5_surf_fill_state_s(dev, state, info);
1440 } else {
1441 isl_gen4_surf_fill_state_s(dev, state, info);
1442 }
1443 break;
1444 case 5:
1445 isl_gen5_surf_fill_state_s(dev, state, info);
1446 break;
1447 case 6:
1448 isl_gen6_surf_fill_state_s(dev, state, info);
1449 break;
1450 case 7:
1451 if (ISL_DEV_IS_HASWELL(dev)) {
1452 isl_gen75_surf_fill_state_s(dev, state, info);
1453 } else {
1454 isl_gen7_surf_fill_state_s(dev, state, info);
1455 }
1456 break;
1457 case 8:
1458 isl_gen8_surf_fill_state_s(dev, state, info);
1459 break;
1460 case 9:
1461 isl_gen9_surf_fill_state_s(dev, state, info);
1462 break;
1463 default:
1464 assert(!"Cannot fill surface state for this gen");
1465 }
1466 }
1467
1468 void
1469 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1470 const struct isl_buffer_fill_state_info *restrict info)
1471 {
1472 switch (ISL_DEV_GEN(dev)) {
1473 case 4:
1474 case 5:
1475 /* Gen 4-5 are all the same when it comes to buffer surfaces */
1476 isl_gen5_buffer_fill_state_s(state, info);
1477 break;
1478 case 6:
1479 isl_gen6_buffer_fill_state_s(state, info);
1480 break;
1481 case 7:
1482 if (ISL_DEV_IS_HASWELL(dev)) {
1483 isl_gen75_buffer_fill_state_s(state, info);
1484 } else {
1485 isl_gen7_buffer_fill_state_s(state, info);
1486 }
1487 break;
1488 case 8:
1489 isl_gen8_buffer_fill_state_s(state, info);
1490 break;
1491 case 9:
1492 isl_gen9_buffer_fill_state_s(state, info);
1493 break;
1494 default:
1495 assert(!"Cannot fill surface state for this gen");
1496 }
1497 }
1498
1499 /**
1500 * A variant of isl_surf_get_image_offset_sa() specific to
1501 * ISL_DIM_LAYOUT_GEN4_2D.
1502 */
1503 static void
1504 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1505 uint32_t level, uint32_t logical_array_layer,
1506 uint32_t *x_offset_sa,
1507 uint32_t *y_offset_sa)
1508 {
1509 assert(level < surf->levels);
1510 if (surf->dim == ISL_SURF_DIM_3D)
1511 assert(logical_array_layer < surf->logical_level0_px.depth);
1512 else
1513 assert(logical_array_layer < surf->logical_level0_px.array_len);
1514
1515 const struct isl_extent3d image_align_sa =
1516 isl_surf_get_image_alignment_sa(surf);
1517
1518 const uint32_t W0 = surf->phys_level0_sa.width;
1519 const uint32_t H0 = surf->phys_level0_sa.height;
1520
1521 const uint32_t phys_layer = logical_array_layer *
1522 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1523
1524 uint32_t x = 0;
1525 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1526
1527 for (uint32_t l = 0; l < level; ++l) {
1528 if (l == 1) {
1529 uint32_t W = isl_minify(W0, l);
1530 x += isl_align_npot(W, image_align_sa.w);
1531 } else {
1532 uint32_t H = isl_minify(H0, l);
1533 y += isl_align_npot(H, image_align_sa.h);
1534 }
1535 }
1536
1537 *x_offset_sa = x;
1538 *y_offset_sa = y;
1539 }
1540
1541 /**
1542 * A variant of isl_surf_get_image_offset_sa() specific to
1543 * ISL_DIM_LAYOUT_GEN4_3D.
1544 */
1545 static void
1546 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1547 uint32_t level, uint32_t logical_z_offset_px,
1548 uint32_t *x_offset_sa,
1549 uint32_t *y_offset_sa)
1550 {
1551 assert(level < surf->levels);
1552 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1553 assert(surf->phys_level0_sa.array_len == 1);
1554
1555 const struct isl_extent3d image_align_sa =
1556 isl_surf_get_image_alignment_sa(surf);
1557
1558 const uint32_t W0 = surf->phys_level0_sa.width;
1559 const uint32_t H0 = surf->phys_level0_sa.height;
1560 const uint32_t D0 = surf->phys_level0_sa.depth;
1561
1562 uint32_t x = 0;
1563 uint32_t y = 0;
1564
1565 for (uint32_t l = 0; l < level; ++l) {
1566 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1567 const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
1568 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1569
1570 y += level_h * max_layers_vert;
1571 }
1572
1573 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1574 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1575 const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
1576
1577 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1578
1579 x += level_w * (logical_z_offset_px % max_layers_horiz);
1580 y += level_h * (logical_z_offset_px / max_layers_horiz);
1581
1582 *x_offset_sa = x;
1583 *y_offset_sa = y;
1584 }
1585
1586 /**
1587 * A variant of isl_surf_get_image_offset_sa() specific to
1588 * ISL_DIM_LAYOUT_GEN9_1D.
1589 */
1590 static void
1591 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
1592 uint32_t level, uint32_t layer,
1593 uint32_t *x_offset_sa,
1594 uint32_t *y_offset_sa)
1595 {
1596 assert(level < surf->levels);
1597 assert(layer < surf->phys_level0_sa.array_len);
1598 assert(surf->phys_level0_sa.height == 1);
1599 assert(surf->phys_level0_sa.depth == 1);
1600 assert(surf->samples == 1);
1601
1602 const uint32_t W0 = surf->phys_level0_sa.width;
1603 const struct isl_extent3d image_align_sa =
1604 isl_surf_get_image_alignment_sa(surf);
1605
1606 uint32_t x = 0;
1607
1608 for (uint32_t l = 0; l < level; ++l) {
1609 uint32_t W = isl_minify(W0, l);
1610 uint32_t w = isl_align_npot(W, image_align_sa.w);
1611
1612 x += w;
1613 }
1614
1615 *x_offset_sa = x;
1616 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
1617 }
1618
1619 /**
1620 * Calculate the offset, in units of surface samples, to a subimage in the
1621 * surface.
1622 *
1623 * @invariant level < surface levels
1624 * @invariant logical_array_layer < logical array length of surface
1625 * @invariant logical_z_offset_px < logical depth of surface at level
1626 */
1627 void
1628 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
1629 uint32_t level,
1630 uint32_t logical_array_layer,
1631 uint32_t logical_z_offset_px,
1632 uint32_t *x_offset_sa,
1633 uint32_t *y_offset_sa)
1634 {
1635 assert(level < surf->levels);
1636 assert(logical_array_layer < surf->logical_level0_px.array_len);
1637 assert(logical_z_offset_px
1638 < isl_minify(surf->logical_level0_px.depth, level));
1639
1640 switch (surf->dim_layout) {
1641 case ISL_DIM_LAYOUT_GEN9_1D:
1642 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
1643 x_offset_sa, y_offset_sa);
1644 break;
1645 case ISL_DIM_LAYOUT_GEN4_2D:
1646 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
1647 + logical_z_offset_px,
1648 x_offset_sa, y_offset_sa);
1649 break;
1650 case ISL_DIM_LAYOUT_GEN4_3D:
1651 get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
1652 x_offset_sa, y_offset_sa);
1653 break;
1654
1655 default:
1656 unreachable("not reached");
1657 }
1658 }
1659
1660 void
1661 isl_surf_get_image_offset_el(const struct isl_surf *surf,
1662 uint32_t level,
1663 uint32_t logical_array_layer,
1664 uint32_t logical_z_offset_px,
1665 uint32_t *x_offset_el,
1666 uint32_t *y_offset_el)
1667 {
1668 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1669
1670 assert(level < surf->levels);
1671 assert(logical_array_layer < surf->logical_level0_px.array_len);
1672 assert(logical_z_offset_px
1673 < isl_minify(surf->logical_level0_px.depth, level));
1674
1675 uint32_t x_offset_sa, y_offset_sa;
1676 isl_surf_get_image_offset_sa(surf, level,
1677 logical_array_layer,
1678 logical_z_offset_px,
1679 &x_offset_sa,
1680 &y_offset_sa);
1681
1682 *x_offset_el = x_offset_sa / fmtl->bw;
1683 *y_offset_el = y_offset_sa / fmtl->bh;
1684 }
1685
1686 void
1687 isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
1688 enum isl_tiling tiling,
1689 uint8_t bs,
1690 uint32_t row_pitch,
1691 uint32_t total_x_offset_el,
1692 uint32_t total_y_offset_el,
1693 uint32_t *base_address_offset,
1694 uint32_t *x_offset_el,
1695 uint32_t *y_offset_el)
1696 {
1697 if (tiling == ISL_TILING_LINEAR) {
1698 *base_address_offset = total_y_offset_el * row_pitch +
1699 total_x_offset_el * bs;
1700 *x_offset_el = 0;
1701 *y_offset_el = 0;
1702 return;
1703 }
1704
1705 const uint32_t bpb = bs * 8;
1706
1707 struct isl_tile_info tile_info;
1708 isl_tiling_get_info(dev, tiling, bpb, &tile_info);
1709
1710 assert(row_pitch % tile_info.phys_extent_B.width == 0);
1711
1712 /* For non-power-of-two formats, we need the address to be both tile and
1713 * element-aligned. The easiest way to achieve this is to work with a tile
1714 * that is three times as wide as the regular tile.
1715 *
1716 * The tile info returned by get_tile_info has a logical size that is an
1717 * integer number of tile_info.format_bpb size elements. To scale the
1718 * tile, we scale up the physical width and then treat the logical tile
1719 * size as if it has bpb size elements.
1720 */
1721 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
1722 tile_info.phys_extent_B.width *= tile_el_scale;
1723
1724 /* Compute the offset into the tile */
1725 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
1726 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
1727
1728 /* Compute the offset of the tile in units of whole tiles */
1729 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
1730 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
1731
1732 *base_address_offset =
1733 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
1734 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
1735 }
1736
1737 uint32_t
1738 isl_surf_get_depth_format(const struct isl_device *dev,
1739 const struct isl_surf *surf)
1740 {
1741 /* Support for separate stencil buffers began in gen5. Support for
1742 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
1743 * those that supported separate and interleaved stencil, were gen5 and
1744 * gen6.
1745 *
1746 * For a list of all available formats, see the Sandybridge PRM >> Volume
1747 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
1748 * Format (p321).
1749 */
1750
1751 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
1752
1753 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
1754
1755 if (has_stencil)
1756 assert(ISL_DEV_GEN(dev) < 7);
1757
1758 switch (surf->format) {
1759 default:
1760 unreachable("bad isl depth format");
1761 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1762 assert(ISL_DEV_GEN(dev) < 7);
1763 return 0; /* D32_FLOAT_S8X24_UINT */
1764 case ISL_FORMAT_R32_FLOAT:
1765 assert(!has_stencil);
1766 return 1; /* D32_FLOAT */
1767 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1768 if (has_stencil) {
1769 assert(ISL_DEV_GEN(dev) < 7);
1770 return 2; /* D24_UNORM_S8_UINT */
1771 } else {
1772 assert(ISL_DEV_GEN(dev) >= 5);
1773 return 3; /* D24_UNORM_X8_UINT */
1774 }
1775 case ISL_FORMAT_R16_UNORM:
1776 assert(!has_stencil);
1777 return 5; /* D16_UNORM */
1778 }
1779 }