i965: isl: Move the MCS gen7+ assertion into ISL
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gen4.h"
32 #include "isl_gen6.h"
33 #include "isl_gen7.h"
34 #include "isl_gen8.h"
35 #include "isl_gen9.h"
36 #include "isl_priv.h"
37
38 void PRINTFLIKE(3, 4) UNUSED
39 __isl_finishme(const char *file, int line, const char *fmt, ...)
40 {
41 va_list ap;
42 char buf[512];
43
44 va_start(ap, fmt);
45 vsnprintf(buf, sizeof(buf), fmt, ap);
46 va_end(ap);
47
48 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
49 }
50
51 void
52 isl_device_init(struct isl_device *dev,
53 const struct gen_device_info *info,
54 bool has_bit6_swizzling)
55 {
56 dev->info = info;
57 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
58 dev->has_bit6_swizzling = has_bit6_swizzling;
59
60 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
61 * device properties at buildtime. Verify that the macros with the device
62 * properties chosen during runtime.
63 */
64 ISL_DEV_GEN_SANITIZE(dev);
65 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
66
67 /* Did we break hiz or stencil? */
68 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
69 assert(info->has_hiz_and_separate_stencil);
70 if (info->must_use_separate_stencil)
71 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
72
73 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
74 dev->ss.align = isl_align(dev->ss.size, 32);
75
76 dev->ss.clear_color_state_size = CLEAR_COLOR_length(info) * 4;
77 dev->ss.clear_color_state_offset =
78 RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
79
80 dev->ss.clear_value_size =
81 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
82 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
83 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
84 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
85
86 dev->ss.clear_value_offset =
87 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
88
89 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
90 dev->ss.addr_offset =
91 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
92
93 /* The "Auxiliary Surface Base Address" field starts a bit higher up
94 * because the bottom 12 bits are used for other things. Round down to
95 * the nearest dword before.
96 */
97 dev->ss.aux_addr_offset =
98 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
99
100 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
101 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
102 dev->ds.depth_offset =
103 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
104
105 if (dev->use_separate_stencil) {
106 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
107 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
108 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
109
110 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
111 dev->ds.stencil_offset =
112 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
113 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
114
115 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
116 dev->ds.hiz_offset =
117 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
118 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
119 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
120 } else {
121 dev->ds.stencil_offset = 0;
122 dev->ds.hiz_offset = 0;
123 }
124 }
125
126 /**
127 * @brief Query the set of multisamples supported by the device.
128 *
129 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
130 * supported.
131 */
132 isl_sample_count_mask_t ATTRIBUTE_CONST
133 isl_device_get_sample_counts(struct isl_device *dev)
134 {
135 if (ISL_DEV_GEN(dev) >= 9) {
136 return ISL_SAMPLE_COUNT_1_BIT |
137 ISL_SAMPLE_COUNT_2_BIT |
138 ISL_SAMPLE_COUNT_4_BIT |
139 ISL_SAMPLE_COUNT_8_BIT |
140 ISL_SAMPLE_COUNT_16_BIT;
141 } else if (ISL_DEV_GEN(dev) >= 8) {
142 return ISL_SAMPLE_COUNT_1_BIT |
143 ISL_SAMPLE_COUNT_2_BIT |
144 ISL_SAMPLE_COUNT_4_BIT |
145 ISL_SAMPLE_COUNT_8_BIT;
146 } else if (ISL_DEV_GEN(dev) >= 7) {
147 return ISL_SAMPLE_COUNT_1_BIT |
148 ISL_SAMPLE_COUNT_4_BIT |
149 ISL_SAMPLE_COUNT_8_BIT;
150 } else if (ISL_DEV_GEN(dev) >= 6) {
151 return ISL_SAMPLE_COUNT_1_BIT |
152 ISL_SAMPLE_COUNT_4_BIT;
153 } else {
154 return ISL_SAMPLE_COUNT_1_BIT;
155 }
156 }
157
158 /**
159 * @param[out] info is written only on success
160 */
161 static void
162 isl_tiling_get_info(enum isl_tiling tiling,
163 uint32_t format_bpb,
164 struct isl_tile_info *tile_info)
165 {
166 const uint32_t bs = format_bpb / 8;
167 struct isl_extent2d logical_el, phys_B;
168
169 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
170 /* It is possible to have non-power-of-two formats in a tiled buffer.
171 * The easiest way to handle this is to treat the tile as if it is three
172 * times as wide. This way no pixel will ever cross a tile boundary.
173 * This really only works on legacy X and Y tiling formats.
174 */
175 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
176 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
177 isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
178 return;
179 }
180
181 switch (tiling) {
182 case ISL_TILING_LINEAR:
183 assert(bs > 0);
184 logical_el = isl_extent2d(1, 1);
185 phys_B = isl_extent2d(bs, 1);
186 break;
187
188 case ISL_TILING_X:
189 assert(bs > 0);
190 logical_el = isl_extent2d(512 / bs, 8);
191 phys_B = isl_extent2d(512, 8);
192 break;
193
194 case ISL_TILING_Y0:
195 assert(bs > 0);
196 logical_el = isl_extent2d(128 / bs, 32);
197 phys_B = isl_extent2d(128, 32);
198 break;
199
200 case ISL_TILING_W:
201 assert(bs == 1);
202 logical_el = isl_extent2d(64, 64);
203 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
204 *
205 * "If the surface is a stencil buffer (and thus has Tile Mode set
206 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
207 * computed based on width, as the stencil buffer is stored with two
208 * rows interleaved."
209 *
210 * This, together with the fact that stencil buffers are referred to as
211 * being Y-tiled in the PRMs for older hardware implies that the
212 * physical size of a W-tile is actually the same as for a Y-tile.
213 */
214 phys_B = isl_extent2d(128, 32);
215 break;
216
217 case ISL_TILING_Yf:
218 case ISL_TILING_Ys: {
219 bool is_Ys = tiling == ISL_TILING_Ys;
220
221 assert(bs > 0);
222 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
223 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
224
225 logical_el = isl_extent2d(width / bs, height);
226 phys_B = isl_extent2d(width, height);
227 break;
228 }
229
230 case ISL_TILING_HIZ:
231 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
232 * 128bpb format. The tiling has the same physical dimensions as
233 * Y-tiling but actually has two HiZ columns per Y-tiled column.
234 */
235 assert(bs == 16);
236 logical_el = isl_extent2d(16, 16);
237 phys_B = isl_extent2d(128, 32);
238 break;
239
240 case ISL_TILING_CCS:
241 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
242 * have a block size of 1 or 2 bits per block and each CCS element
243 * corresponds to one cache-line pair in the main surface. From the Sky
244 * Lake PRM Vol. 12 in the section on planes:
245 *
246 * "The Color Control Surface (CCS) contains the compression status
247 * of the cache-line pairs. The compression state of the cache-line
248 * pair is specified by 2 bits in the CCS. Each CCS cache-line
249 * represents an area on the main surface of 16x16 sets of 128 byte
250 * Y-tiled cache-line-pairs. CCS is always Y tiled."
251 *
252 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
253 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
254 * that yields total tile area of 128x128 cache-line pairs or CCS
255 * elements. On older hardware, each CCS element is 1 bit and the tile
256 * is 128x256 elements.
257 */
258 assert(format_bpb == 1 || format_bpb == 2);
259 logical_el = isl_extent2d(128, 256 / format_bpb);
260 phys_B = isl_extent2d(128, 32);
261 break;
262
263 default:
264 unreachable("not reached");
265 } /* end switch */
266
267 *tile_info = (struct isl_tile_info) {
268 .tiling = tiling,
269 .format_bpb = format_bpb,
270 .logical_extent_el = logical_el,
271 .phys_extent_B = phys_B,
272 };
273 }
274
275 bool
276 isl_color_value_is_zero(union isl_color_value value,
277 enum isl_format format)
278 {
279 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
280
281 #define RETURN_FALSE_IF_NOT_0(c, i) \
282 if (fmtl->channels.c.bits && value.u32[i] != 0) \
283 return false
284
285 RETURN_FALSE_IF_NOT_0(r, 0);
286 RETURN_FALSE_IF_NOT_0(g, 1);
287 RETURN_FALSE_IF_NOT_0(b, 2);
288 RETURN_FALSE_IF_NOT_0(a, 3);
289
290 #undef RETURN_FALSE_IF_NOT_0
291
292 return true;
293 }
294
295 bool
296 isl_color_value_is_zero_one(union isl_color_value value,
297 enum isl_format format)
298 {
299 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
300
301 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
302 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
303 return false
304
305 if (isl_format_has_int_channel(format)) {
306 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
307 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
308 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
309 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
310 } else {
311 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
312 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
313 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
314 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
315 }
316
317 #undef RETURN_FALSE_IF_NOT_0_1
318
319 return true;
320 }
321
322 /**
323 * @param[out] tiling is set only on success
324 */
325 static bool
326 isl_surf_choose_tiling(const struct isl_device *dev,
327 const struct isl_surf_init_info *restrict info,
328 enum isl_tiling *tiling)
329 {
330 isl_tiling_flags_t tiling_flags = info->tiling_flags;
331
332 /* HiZ surfaces always use the HiZ tiling */
333 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
334 assert(info->format == ISL_FORMAT_HIZ);
335 assert(tiling_flags == ISL_TILING_HIZ_BIT);
336 *tiling = ISL_TILING_HIZ;
337 return true;
338 }
339
340 /* CCS surfaces always use the CCS tiling */
341 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
342 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
343 assert(tiling_flags == ISL_TILING_CCS_BIT);
344 *tiling = ISL_TILING_CCS;
345 return true;
346 }
347
348 if (ISL_DEV_GEN(dev) >= 6) {
349 isl_gen6_filter_tiling(dev, info, &tiling_flags);
350 } else {
351 isl_gen4_filter_tiling(dev, info, &tiling_flags);
352 }
353
354 #define CHOOSE(__tiling) \
355 do { \
356 if (tiling_flags & (1u << (__tiling))) { \
357 *tiling = (__tiling); \
358 return true; \
359 } \
360 } while (0)
361
362 /* Of the tiling modes remaining, choose the one that offers the best
363 * performance.
364 */
365
366 if (info->dim == ISL_SURF_DIM_1D) {
367 /* Prefer linear for 1D surfaces because they do not benefit from
368 * tiling. To the contrary, tiling leads to wasted memory and poor
369 * memory locality due to the swizzling and alignment restrictions
370 * required in tiled surfaces.
371 */
372 CHOOSE(ISL_TILING_LINEAR);
373 }
374
375 CHOOSE(ISL_TILING_Ys);
376 CHOOSE(ISL_TILING_Yf);
377 CHOOSE(ISL_TILING_Y0);
378 CHOOSE(ISL_TILING_X);
379 CHOOSE(ISL_TILING_W);
380 CHOOSE(ISL_TILING_LINEAR);
381
382 #undef CHOOSE
383
384 /* No tiling mode accomodates the inputs. */
385 return false;
386 }
387
388 static bool
389 isl_choose_msaa_layout(const struct isl_device *dev,
390 const struct isl_surf_init_info *info,
391 enum isl_tiling tiling,
392 enum isl_msaa_layout *msaa_layout)
393 {
394 if (ISL_DEV_GEN(dev) >= 8) {
395 return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
396 } else if (ISL_DEV_GEN(dev) >= 7) {
397 return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
398 } else if (ISL_DEV_GEN(dev) >= 6) {
399 return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
400 } else {
401 return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
402 }
403 }
404
405 struct isl_extent2d
406 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
407 {
408 assert(isl_is_pow2(samples));
409
410 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
411 * Sizes (p133):
412 *
413 * If the surface is multisampled and it is a depth or stencil surface
414 * or Multisampled Surface StorageFormat in SURFACE_STATE is
415 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
416 * proceeding: [...]
417 */
418 return (struct isl_extent2d) {
419 .width = 1 << ((ffs(samples) - 0) / 2),
420 .height = 1 << ((ffs(samples) - 1) / 2),
421 };
422 }
423
424 static void
425 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
426 uint32_t *width, uint32_t *height)
427 {
428 const struct isl_extent2d px_size_sa =
429 isl_get_interleaved_msaa_px_size_sa(samples);
430
431 if (width)
432 *width = isl_align(*width, 2) * px_size_sa.width;
433 if (height)
434 *height = isl_align(*height, 2) * px_size_sa.height;
435 }
436
437 static enum isl_array_pitch_span
438 isl_choose_array_pitch_span(const struct isl_device *dev,
439 const struct isl_surf_init_info *restrict info,
440 enum isl_dim_layout dim_layout,
441 const struct isl_extent4d *phys_level0_sa)
442 {
443 switch (dim_layout) {
444 case ISL_DIM_LAYOUT_GEN9_1D:
445 case ISL_DIM_LAYOUT_GEN4_2D:
446 if (ISL_DEV_GEN(dev) >= 8) {
447 /* QPitch becomes programmable in Broadwell. So choose the
448 * most compact QPitch possible in order to conserve memory.
449 *
450 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
451 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
452 *
453 * - Software must ensure that this field is set to a value
454 * sufficiently large such that the array slices in the surface
455 * do not overlap. Refer to the Memory Data Formats section for
456 * information on how surfaces are stored in memory.
457 *
458 * - This field specifies the distance in rows between array
459 * slices. It is used only in the following cases:
460 *
461 * - Surface Array is enabled OR
462 * - Number of Mulitsamples is not NUMSAMPLES_1 and
463 * Multisampled Surface Storage Format set to MSFMT_MSS OR
464 * - Surface Type is SURFTYPE_CUBE
465 */
466 return ISL_ARRAY_PITCH_SPAN_COMPACT;
467 } else if (ISL_DEV_GEN(dev) >= 7) {
468 /* Note that Ivybridge introduces
469 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
470 * driver more control over the QPitch.
471 */
472
473 if (phys_level0_sa->array_len == 1) {
474 /* The hardware will never use the QPitch. So choose the most
475 * compact QPitch possible in order to conserve memory.
476 */
477 return ISL_ARRAY_PITCH_SPAN_COMPACT;
478 }
479
480 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
481 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
482 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
483 * Section 6.18.4.7: Surface Arrays (p112):
484 *
485 * If Surface Array Spacing is set to ARYSPC_FULL (note that
486 * the depth buffer and stencil buffer have an implied value of
487 * ARYSPC_FULL):
488 */
489 return ISL_ARRAY_PITCH_SPAN_FULL;
490 }
491
492 if (info->levels == 1) {
493 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
494 * to ARYSPC_LOD0.
495 */
496 return ISL_ARRAY_PITCH_SPAN_COMPACT;
497 }
498
499 return ISL_ARRAY_PITCH_SPAN_FULL;
500 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
501 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
502 isl_surf_usage_is_stencil(info->usage)) {
503 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
504 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
505 *
506 * The separate stencil buffer does not support mip mapping, thus
507 * the storage for LODs other than LOD 0 is not needed.
508 */
509 assert(info->levels == 1);
510 return ISL_ARRAY_PITCH_SPAN_COMPACT;
511 } else {
512 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
513 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
514 isl_surf_usage_is_stencil(info->usage)) {
515 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
516 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
517 *
518 * The separate stencil buffer does not support mip mapping,
519 * thus the storage for LODs other than LOD 0 is not needed.
520 */
521 assert(info->levels == 1);
522 assert(phys_level0_sa->array_len == 1);
523 return ISL_ARRAY_PITCH_SPAN_COMPACT;
524 }
525
526 if (phys_level0_sa->array_len == 1) {
527 /* The hardware will never use the QPitch. So choose the most
528 * compact QPitch possible in order to conserve memory.
529 */
530 return ISL_ARRAY_PITCH_SPAN_COMPACT;
531 }
532
533 return ISL_ARRAY_PITCH_SPAN_FULL;
534 }
535
536 case ISL_DIM_LAYOUT_GEN4_3D:
537 /* The hardware will never use the QPitch. So choose the most
538 * compact QPitch possible in order to conserve memory.
539 */
540 return ISL_ARRAY_PITCH_SPAN_COMPACT;
541
542 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
543 /* Each array image in the gen6 stencil of HiZ surface is compact in the
544 * sense that every LOD is a compact array of the same size as LOD0.
545 */
546 return ISL_ARRAY_PITCH_SPAN_COMPACT;
547 }
548
549 unreachable("bad isl_dim_layout");
550 return ISL_ARRAY_PITCH_SPAN_FULL;
551 }
552
553 static void
554 isl_choose_image_alignment_el(const struct isl_device *dev,
555 const struct isl_surf_init_info *restrict info,
556 enum isl_tiling tiling,
557 enum isl_dim_layout dim_layout,
558 enum isl_msaa_layout msaa_layout,
559 struct isl_extent3d *image_align_el)
560 {
561 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
562 if (fmtl->txc == ISL_TXC_MCS) {
563 assert(tiling == ISL_TILING_Y0);
564
565 /*
566 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
567 *
568 * Height, width, and layout of MCS buffer in this case must match with
569 * Render Target height, width, and layout. MCS buffer is tiledY.
570 *
571 * To avoid wasting memory, choose the smallest alignment possible:
572 * HALIGN_4 and VALIGN_4.
573 */
574 *image_align_el = isl_extent3d(4, 4, 1);
575 return;
576 } else if (info->format == ISL_FORMAT_HIZ) {
577 assert(ISL_DEV_GEN(dev) >= 6);
578 if (ISL_DEV_GEN(dev) == 6) {
579 /* HiZ surfaces on Sandy Bridge are packed tightly. */
580 *image_align_el = isl_extent3d(1, 1, 1);
581 } else {
582 /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
583 * primary surface which works out to 2x2 HiZ elments.
584 */
585 *image_align_el = isl_extent3d(2, 2, 1);
586 }
587 return;
588 }
589
590 if (ISL_DEV_GEN(dev) >= 9) {
591 isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
592 msaa_layout, image_align_el);
593 } else if (ISL_DEV_GEN(dev) >= 8) {
594 isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
595 msaa_layout, image_align_el);
596 } else if (ISL_DEV_GEN(dev) >= 7) {
597 isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
598 msaa_layout, image_align_el);
599 } else if (ISL_DEV_GEN(dev) >= 6) {
600 isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
601 msaa_layout, image_align_el);
602 } else {
603 isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
604 msaa_layout, image_align_el);
605 }
606 }
607
608 static enum isl_dim_layout
609 isl_surf_choose_dim_layout(const struct isl_device *dev,
610 enum isl_surf_dim logical_dim,
611 enum isl_tiling tiling,
612 isl_surf_usage_flags_t usage)
613 {
614 /* Sandy bridge needs a special layout for HiZ and stencil. */
615 if (ISL_DEV_GEN(dev) == 6 &&
616 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
617 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
618
619 if (ISL_DEV_GEN(dev) >= 9) {
620 switch (logical_dim) {
621 case ISL_SURF_DIM_1D:
622 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
623 *
624 * One-dimensional surfaces use a tiling mode of linear.
625 * Technically, they are not tiled resources, but the Tiled
626 * Resource Mode field in RENDER_SURFACE_STATE is still used to
627 * indicate the alignment requirements for this linear surface
628 * (See 1D Alignment requirements for how 4K and 64KB Tiled
629 * Resource Modes impact alignment). Alternatively, a 1D surface
630 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
631 * a height of 0.
632 *
633 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
634 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
635 */
636 if (tiling == ISL_TILING_LINEAR)
637 return ISL_DIM_LAYOUT_GEN9_1D;
638 else
639 return ISL_DIM_LAYOUT_GEN4_2D;
640 case ISL_SURF_DIM_2D:
641 case ISL_SURF_DIM_3D:
642 return ISL_DIM_LAYOUT_GEN4_2D;
643 }
644 } else {
645 switch (logical_dim) {
646 case ISL_SURF_DIM_1D:
647 case ISL_SURF_DIM_2D:
648 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
649 *
650 * The cube face textures are stored in the same way as 3D surfaces
651 * are stored (see section 6.17.5 for details). For cube surfaces,
652 * however, the depth is equal to the number of faces (always 6) and
653 * is not reduced for each MIP.
654 */
655 if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
656 return ISL_DIM_LAYOUT_GEN4_3D;
657
658 return ISL_DIM_LAYOUT_GEN4_2D;
659 case ISL_SURF_DIM_3D:
660 return ISL_DIM_LAYOUT_GEN4_3D;
661 }
662 }
663
664 unreachable("bad isl_surf_dim");
665 return ISL_DIM_LAYOUT_GEN4_2D;
666 }
667
668 /**
669 * Calculate the physical extent of the surface's first level, in units of
670 * surface samples. The result is aligned to the format's compression block.
671 */
672 static void
673 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
674 const struct isl_surf_init_info *restrict info,
675 enum isl_dim_layout dim_layout,
676 enum isl_tiling tiling,
677 enum isl_msaa_layout msaa_layout,
678 struct isl_extent4d *phys_level0_sa)
679 {
680 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
681
682 if (isl_format_is_yuv(info->format))
683 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
684
685 switch (info->dim) {
686 case ISL_SURF_DIM_1D:
687 assert(info->height == 1);
688 assert(info->depth == 1);
689 assert(info->samples == 1);
690
691 switch (dim_layout) {
692 case ISL_DIM_LAYOUT_GEN4_3D:
693 unreachable("bad isl_dim_layout");
694
695 case ISL_DIM_LAYOUT_GEN9_1D:
696 case ISL_DIM_LAYOUT_GEN4_2D:
697 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
698 *phys_level0_sa = (struct isl_extent4d) {
699 .w = isl_align_npot(info->width, fmtl->bw),
700 .h = fmtl->bh,
701 .d = 1,
702 .a = info->array_len,
703 };
704 break;
705 }
706 break;
707
708 case ISL_SURF_DIM_2D:
709 if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
710 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
711 else
712 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
713 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
714
715 if (tiling == ISL_TILING_Ys && info->samples > 1)
716 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
717
718 switch (msaa_layout) {
719 case ISL_MSAA_LAYOUT_NONE:
720 assert(info->depth == 1);
721 assert(info->samples == 1);
722
723 *phys_level0_sa = (struct isl_extent4d) {
724 .w = isl_align_npot(info->width, fmtl->bw),
725 .h = isl_align_npot(info->height, fmtl->bh),
726 .d = 1,
727 .a = info->array_len,
728 };
729 break;
730
731 case ISL_MSAA_LAYOUT_ARRAY:
732 assert(info->depth == 1);
733 assert(info->levels == 1);
734 assert(isl_format_supports_multisampling(dev->info, info->format));
735 assert(fmtl->bw == 1 && fmtl->bh == 1);
736
737 *phys_level0_sa = (struct isl_extent4d) {
738 .w = info->width,
739 .h = info->height,
740 .d = 1,
741 .a = info->array_len * info->samples,
742 };
743 break;
744
745 case ISL_MSAA_LAYOUT_INTERLEAVED:
746 assert(info->depth == 1);
747 assert(info->levels == 1);
748 assert(isl_format_supports_multisampling(dev->info, info->format));
749
750 *phys_level0_sa = (struct isl_extent4d) {
751 .w = info->width,
752 .h = info->height,
753 .d = 1,
754 .a = info->array_len,
755 };
756
757 isl_msaa_interleaved_scale_px_to_sa(info->samples,
758 &phys_level0_sa->w,
759 &phys_level0_sa->h);
760
761 phys_level0_sa->w = isl_align(phys_level0_sa->w, fmtl->bw);
762 phys_level0_sa->h = isl_align(phys_level0_sa->h, fmtl->bh);
763 break;
764 }
765 break;
766
767 case ISL_SURF_DIM_3D:
768 assert(info->array_len == 1);
769 assert(info->samples == 1);
770
771 if (fmtl->bd > 1) {
772 isl_finishme("%s:%s: compression block with depth > 1",
773 __FILE__, __func__);
774 }
775
776 switch (dim_layout) {
777 case ISL_DIM_LAYOUT_GEN9_1D:
778 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
779 unreachable("bad isl_dim_layout");
780
781 case ISL_DIM_LAYOUT_GEN4_2D:
782 assert(ISL_DEV_GEN(dev) >= 9);
783
784 *phys_level0_sa = (struct isl_extent4d) {
785 .w = isl_align_npot(info->width, fmtl->bw),
786 .h = isl_align_npot(info->height, fmtl->bh),
787 .d = 1,
788 .a = info->depth,
789 };
790 break;
791
792 case ISL_DIM_LAYOUT_GEN4_3D:
793 assert(ISL_DEV_GEN(dev) < 9);
794 *phys_level0_sa = (struct isl_extent4d) {
795 .w = isl_align(info->width, fmtl->bw),
796 .h = isl_align(info->height, fmtl->bh),
797 .d = info->depth,
798 .a = 1,
799 };
800 break;
801 }
802 break;
803 }
804 }
805
806 /**
807 * Calculate the pitch between physical array slices, in units of rows of
808 * surface elements.
809 */
810 static uint32_t
811 isl_calc_array_pitch_el_rows_gen4_2d(
812 const struct isl_device *dev,
813 const struct isl_surf_init_info *restrict info,
814 const struct isl_tile_info *tile_info,
815 const struct isl_extent3d *image_align_sa,
816 const struct isl_extent4d *phys_level0_sa,
817 enum isl_array_pitch_span array_pitch_span,
818 const struct isl_extent2d *phys_slice0_sa)
819 {
820 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
821 uint32_t pitch_sa_rows = 0;
822
823 switch (array_pitch_span) {
824 case ISL_ARRAY_PITCH_SPAN_COMPACT:
825 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
826 break;
827 case ISL_ARRAY_PITCH_SPAN_FULL: {
828 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
829 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
830 * Surfaces >> Surface Arrays.
831 */
832 uint32_t H0_sa = phys_level0_sa->h;
833 uint32_t H1_sa = isl_minify(H0_sa, 1);
834
835 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
836 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
837
838 uint32_t m;
839 if (ISL_DEV_GEN(dev) >= 7) {
840 /* The QPitch equation changed slightly in Ivybridge. */
841 m = 12;
842 } else {
843 m = 11;
844 }
845
846 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
847
848 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
849 (info->height % 4 == 1)) {
850 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
851 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
852 *
853 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
854 * the value calculated in the equation above , for every
855 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
856 *
857 * XXX(chadv): Is the errata natural corollary of the physical
858 * layout of interleaved samples?
859 */
860 pitch_sa_rows += 4;
861 }
862
863 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
864 } /* end case */
865 break;
866 }
867
868 assert(pitch_sa_rows % fmtl->bh == 0);
869 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
870
871 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
872 /*
873 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
874 *
875 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
876 * layout with these alignments in the RT space: Horizontal
877 * Alignment = 128 and Vertical Alignment = 64."
878 *
879 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
880 *
881 * "For non-multisampled render target's CCS auxiliary surface,
882 * QPitch must be computed with Horizontal Alignment = 128 and
883 * Surface Vertical Alignment = 256. These alignments are only for
884 * CCS buffer and not for associated render target."
885 *
886 * The first restriction is already handled by isl_choose_image_alignment_el
887 * but the second restriction, which is an extension of the first, only
888 * applies to qpitch and must be applied here.
889 */
890 assert(fmtl->bh == 4);
891 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
892 }
893
894 if (ISL_DEV_GEN(dev) >= 9 &&
895 info->dim == ISL_SURF_DIM_3D &&
896 tile_info->tiling != ISL_TILING_LINEAR) {
897 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
898 *
899 * Tile Mode != Linear: This field must be set to an integer multiple
900 * of the tile height
901 */
902 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
903 }
904
905 return pitch_el_rows;
906 }
907
908 /**
909 * A variant of isl_calc_phys_slice0_extent_sa() specific to
910 * ISL_DIM_LAYOUT_GEN4_2D.
911 */
912 static void
913 isl_calc_phys_slice0_extent_sa_gen4_2d(
914 const struct isl_device *dev,
915 const struct isl_surf_init_info *restrict info,
916 enum isl_msaa_layout msaa_layout,
917 const struct isl_extent3d *image_align_sa,
918 const struct isl_extent4d *phys_level0_sa,
919 struct isl_extent2d *phys_slice0_sa)
920 {
921 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
922
923 assert(phys_level0_sa->depth == 1);
924
925 if (info->levels == 1) {
926 /* Do not pad the surface to the image alignment. Instead, pad it only
927 * to the pixel format's block alignment.
928 *
929 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
930 * cycles on the below mipmap layout caluclations. Reducing the
931 * alignment here is safe because we later align the row pitch and array
932 * pitch to the tile boundary. It is safe even for
933 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
934 * to accomodate the interleaved samples.
935 *
936 * For linear surfaces, reducing the alignment here permits us to later
937 * choose an arbitrary, non-aligned row pitch. If the surface backs
938 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
939 * VkBufferImageCopy::bufferRowLength.
940 */
941 *phys_slice0_sa = (struct isl_extent2d) {
942 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
943 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
944 };
945 return;
946 }
947
948 uint32_t slice_top_w = 0;
949 uint32_t slice_bottom_w = 0;
950 uint32_t slice_left_h = 0;
951 uint32_t slice_right_h = 0;
952
953 uint32_t W0 = phys_level0_sa->w;
954 uint32_t H0 = phys_level0_sa->h;
955
956 for (uint32_t l = 0; l < info->levels; ++l) {
957 uint32_t W = isl_minify(W0, l);
958 uint32_t H = isl_minify(H0, l);
959
960 uint32_t w = isl_align_npot(W, image_align_sa->w);
961 uint32_t h = isl_align_npot(H, image_align_sa->h);
962
963 if (l == 0) {
964 slice_top_w = w;
965 slice_left_h = h;
966 slice_right_h = h;
967 } else if (l == 1) {
968 slice_bottom_w = w;
969 slice_left_h += h;
970 } else if (l == 2) {
971 slice_bottom_w += w;
972 slice_right_h += h;
973 } else {
974 slice_right_h += h;
975 }
976 }
977
978 *phys_slice0_sa = (struct isl_extent2d) {
979 .w = MAX(slice_top_w, slice_bottom_w),
980 .h = MAX(slice_left_h, slice_right_h),
981 };
982 }
983
984 static void
985 isl_calc_phys_total_extent_el_gen4_2d(
986 const struct isl_device *dev,
987 const struct isl_surf_init_info *restrict info,
988 const struct isl_tile_info *tile_info,
989 enum isl_msaa_layout msaa_layout,
990 const struct isl_extent3d *image_align_sa,
991 const struct isl_extent4d *phys_level0_sa,
992 enum isl_array_pitch_span array_pitch_span,
993 uint32_t *array_pitch_el_rows,
994 struct isl_extent2d *total_extent_el)
995 {
996 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
997
998 struct isl_extent2d phys_slice0_sa;
999 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
1000 image_align_sa, phys_level0_sa,
1001 &phys_slice0_sa);
1002 *array_pitch_el_rows =
1003 isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
1004 image_align_sa, phys_level0_sa,
1005 array_pitch_span,
1006 &phys_slice0_sa);
1007 *total_extent_el = (struct isl_extent2d) {
1008 .w = isl_assert_div(phys_slice0_sa.w, fmtl->bw),
1009 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
1010 isl_assert_div(phys_slice0_sa.h, fmtl->bh),
1011 };
1012 }
1013
1014 /**
1015 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1016 * ISL_DIM_LAYOUT_GEN4_3D.
1017 */
1018 static void
1019 isl_calc_phys_total_extent_el_gen4_3d(
1020 const struct isl_device *dev,
1021 const struct isl_surf_init_info *restrict info,
1022 const struct isl_extent3d *image_align_sa,
1023 const struct isl_extent4d *phys_level0_sa,
1024 uint32_t *array_pitch_el_rows,
1025 struct isl_extent2d *phys_total_el)
1026 {
1027 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1028
1029 assert(info->samples == 1);
1030
1031 if (info->dim != ISL_SURF_DIM_3D) {
1032 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1033 *
1034 * The cube face textures are stored in the same way as 3D surfaces
1035 * are stored (see section 6.17.5 for details). For cube surfaces,
1036 * however, the depth is equal to the number of faces (always 6) and
1037 * is not reduced for each MIP.
1038 */
1039 assert(ISL_DEV_GEN(dev) == 4);
1040 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1041 assert(phys_level0_sa->array_len == 6);
1042 } else {
1043 assert(phys_level0_sa->array_len == 1);
1044 }
1045
1046 uint32_t total_w = 0;
1047 uint32_t total_h = 0;
1048
1049 uint32_t W0 = phys_level0_sa->w;
1050 uint32_t H0 = phys_level0_sa->h;
1051 uint32_t D0 = phys_level0_sa->d;
1052 uint32_t A0 = phys_level0_sa->a;
1053
1054 for (uint32_t l = 0; l < info->levels; ++l) {
1055 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1056 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1057 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1058
1059 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1060 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1061
1062 total_w = MAX(total_w, level_w * max_layers_horiz);
1063 total_h += level_h * max_layers_vert;
1064 }
1065
1066 /* GEN4_3D layouts don't really have an array pitch since each LOD has a
1067 * different number of horizontal and vertical layers. We have to set it
1068 * to something, so at least make it true for LOD0.
1069 */
1070 *array_pitch_el_rows =
1071 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1072 *phys_total_el = (struct isl_extent2d) {
1073 .w = isl_assert_div(total_w, fmtl->bw),
1074 .h = isl_assert_div(total_h, fmtl->bh),
1075 };
1076 }
1077
1078 /**
1079 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1080 * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
1081 */
1082 static void
1083 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
1084 const struct isl_device *dev,
1085 const struct isl_surf_init_info *restrict info,
1086 const struct isl_tile_info *tile_info,
1087 const struct isl_extent3d *image_align_sa,
1088 const struct isl_extent4d *phys_level0_sa,
1089 uint32_t *array_pitch_el_rows,
1090 struct isl_extent2d *phys_total_el)
1091 {
1092 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1093
1094 const struct isl_extent2d tile_extent_sa = {
1095 .w = tile_info->logical_extent_el.w * fmtl->bw,
1096 .h = tile_info->logical_extent_el.h * fmtl->bh,
1097 };
1098 /* Tile size is a multiple of image alignment */
1099 assert(tile_extent_sa.w % image_align_sa->w == 0);
1100 assert(tile_extent_sa.h % image_align_sa->h == 0);
1101
1102 const uint32_t W0 = phys_level0_sa->w;
1103 const uint32_t H0 = phys_level0_sa->h;
1104
1105 /* Each image has the same height as LOD0 because the hardware thinks
1106 * everything is LOD0
1107 */
1108 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1109
1110 uint32_t total_top_w = 0;
1111 uint32_t total_bottom_w = 0;
1112 uint32_t total_h = 0;
1113
1114 for (uint32_t l = 0; l < info->levels; ++l) {
1115 const uint32_t W = isl_minify(W0, l);
1116
1117 const uint32_t w = isl_align(W, tile_extent_sa.w);
1118 const uint32_t h = isl_align(H, tile_extent_sa.h);
1119
1120 if (l == 0) {
1121 total_top_w = w;
1122 total_h = h;
1123 } else if (l == 1) {
1124 total_bottom_w = w;
1125 total_h += h;
1126 } else {
1127 total_bottom_w += w;
1128 }
1129 }
1130
1131 *array_pitch_el_rows =
1132 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1133 *phys_total_el = (struct isl_extent2d) {
1134 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1135 .h = isl_assert_div(total_h, fmtl->bh),
1136 };
1137 }
1138
1139 /**
1140 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1141 * ISL_DIM_LAYOUT_GEN9_1D.
1142 */
1143 static void
1144 isl_calc_phys_total_extent_el_gen9_1d(
1145 const struct isl_device *dev,
1146 const struct isl_surf_init_info *restrict info,
1147 const struct isl_extent3d *image_align_sa,
1148 const struct isl_extent4d *phys_level0_sa,
1149 uint32_t *array_pitch_el_rows,
1150 struct isl_extent2d *phys_total_el)
1151 {
1152 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1153
1154 assert(phys_level0_sa->height / fmtl->bh == 1);
1155 assert(phys_level0_sa->depth == 1);
1156 assert(info->samples == 1);
1157 assert(image_align_sa->w >= fmtl->bw);
1158
1159 uint32_t slice_w = 0;
1160 const uint32_t W0 = phys_level0_sa->w;
1161
1162 for (uint32_t l = 0; l < info->levels; ++l) {
1163 uint32_t W = isl_minify(W0, l);
1164 uint32_t w = isl_align_npot(W, image_align_sa->w);
1165
1166 slice_w += w;
1167 }
1168
1169 *array_pitch_el_rows = 1;
1170 *phys_total_el = (struct isl_extent2d) {
1171 .w = isl_assert_div(slice_w, fmtl->bw),
1172 .h = phys_level0_sa->array_len,
1173 };
1174 }
1175
1176 /**
1177 * Calculate the two-dimensional total physical extent of the surface, in
1178 * units of surface elements.
1179 */
1180 static void
1181 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1182 const struct isl_surf_init_info *restrict info,
1183 const struct isl_tile_info *tile_info,
1184 enum isl_dim_layout dim_layout,
1185 enum isl_msaa_layout msaa_layout,
1186 const struct isl_extent3d *image_align_sa,
1187 const struct isl_extent4d *phys_level0_sa,
1188 enum isl_array_pitch_span array_pitch_span,
1189 uint32_t *array_pitch_el_rows,
1190 struct isl_extent2d *total_extent_el)
1191 {
1192 switch (dim_layout) {
1193 case ISL_DIM_LAYOUT_GEN9_1D:
1194 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1195 isl_calc_phys_total_extent_el_gen9_1d(dev, info,
1196 image_align_sa, phys_level0_sa,
1197 array_pitch_el_rows,
1198 total_extent_el);
1199 return;
1200 case ISL_DIM_LAYOUT_GEN4_2D:
1201 isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
1202 image_align_sa, phys_level0_sa,
1203 array_pitch_span,
1204 array_pitch_el_rows,
1205 total_extent_el);
1206 return;
1207 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
1208 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1209 isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
1210 image_align_sa,
1211 phys_level0_sa,
1212 array_pitch_el_rows,
1213 total_extent_el);
1214 return;
1215 case ISL_DIM_LAYOUT_GEN4_3D:
1216 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1217 isl_calc_phys_total_extent_el_gen4_3d(dev, info,
1218 image_align_sa, phys_level0_sa,
1219 array_pitch_el_rows,
1220 total_extent_el);
1221 return;
1222 }
1223 }
1224
1225 static uint32_t
1226 isl_calc_row_pitch_alignment(const struct isl_surf_init_info *surf_info,
1227 const struct isl_tile_info *tile_info)
1228 {
1229 if (tile_info->tiling != ISL_TILING_LINEAR)
1230 return tile_info->phys_extent_B.width;
1231
1232 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1233 * RENDER_SURFACE_STATE Surface Pitch (p349):
1234 *
1235 * - For linear render target surfaces and surfaces accessed with the
1236 * typed data port messages, the pitch must be a multiple of the
1237 * element size for non-YUV surface formats. Pitch must be
1238 * a multiple of 2 * element size for YUV surface formats.
1239 *
1240 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1241 * ignore because isl doesn't do buffers.]
1242 *
1243 * - For other linear surfaces, the pitch can be any multiple of
1244 * bytes.
1245 */
1246 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1247 const uint32_t bs = fmtl->bpb / 8;
1248
1249 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1250 if (isl_format_is_yuv(surf_info->format)) {
1251 return 2 * bs;
1252 } else {
1253 return bs;
1254 }
1255 }
1256
1257 return 1;
1258 }
1259
1260 static uint32_t
1261 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1262 const struct isl_surf_init_info *info,
1263 const struct isl_extent2d *phys_total_el,
1264 uint32_t alignment)
1265 {
1266 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1267 const uint32_t bs = fmtl->bpb / 8;
1268
1269 return isl_align_npot(bs * phys_total_el->w, alignment);
1270 }
1271
1272 static uint32_t
1273 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1274 const struct isl_surf_init_info *surf_info,
1275 const struct isl_tile_info *tile_info,
1276 const struct isl_extent2d *phys_total_el,
1277 uint32_t alignment)
1278 {
1279 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1280
1281 assert(fmtl->bpb % tile_info->format_bpb == 0);
1282
1283 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1284 const uint32_t total_w_tl =
1285 isl_align_div(phys_total_el->w * tile_el_scale,
1286 tile_info->logical_extent_el.width);
1287
1288 assert(alignment == tile_info->phys_extent_B.width);
1289 return total_w_tl * tile_info->phys_extent_B.width;
1290 }
1291
1292 static uint32_t
1293 isl_calc_min_row_pitch(const struct isl_device *dev,
1294 const struct isl_surf_init_info *surf_info,
1295 const struct isl_tile_info *tile_info,
1296 const struct isl_extent2d *phys_total_el,
1297 uint32_t alignment)
1298 {
1299 if (tile_info->tiling == ISL_TILING_LINEAR) {
1300 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1301 alignment);
1302 } else {
1303 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1304 phys_total_el, alignment);
1305 }
1306 }
1307
1308 /**
1309 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1310 * size is `bits` bits?
1311 *
1312 * Hardware pitch fields are offset by 1. For example, if the size of
1313 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1314 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1315 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1316 */
1317 static bool
1318 pitch_in_range(uint32_t n, uint32_t bits)
1319 {
1320 assert(n != 0);
1321 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1322 }
1323
1324 static bool
1325 isl_calc_row_pitch(const struct isl_device *dev,
1326 const struct isl_surf_init_info *surf_info,
1327 const struct isl_tile_info *tile_info,
1328 enum isl_dim_layout dim_layout,
1329 const struct isl_extent2d *phys_total_el,
1330 uint32_t *out_row_pitch)
1331 {
1332 uint32_t alignment =
1333 isl_calc_row_pitch_alignment(surf_info, tile_info);
1334
1335 /* If pitch isn't given and it can be chosen freely, align it by cache line
1336 * allowing one to use blit engine on the surface.
1337 */
1338 if (surf_info->row_pitch == 0 && tile_info->tiling == ISL_TILING_LINEAR) {
1339 /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
1340 *
1341 * "Base address of the destination surface: X=0, Y=0. Lower 32bits
1342 * of the 48bit addressing. When Src Tiling is enabled (Bit_15
1343 * enabled), this address must be 4KB-aligned. When Tiling is not
1344 * enabled, this address should be CL (64byte) aligned."
1345 */
1346 alignment = MAX2(alignment, 64);
1347 }
1348
1349 const uint32_t min_row_pitch =
1350 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1351 alignment);
1352
1353 uint32_t row_pitch = min_row_pitch;
1354
1355 if (surf_info->row_pitch != 0) {
1356 row_pitch = surf_info->row_pitch;
1357
1358 if (row_pitch < min_row_pitch)
1359 return false;
1360
1361 if (row_pitch % alignment != 0)
1362 return false;
1363 }
1364
1365 const uint32_t row_pitch_tiles = row_pitch / tile_info->phys_extent_B.width;
1366
1367 if (row_pitch == 0)
1368 return false;
1369
1370 if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
1371 /* SurfacePitch is ignored for this layout. */
1372 goto done;
1373 }
1374
1375 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1376 ISL_SURF_USAGE_TEXTURE_BIT |
1377 ISL_SURF_USAGE_STORAGE_BIT)) &&
1378 !pitch_in_range(row_pitch, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1379 return false;
1380
1381 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1382 ISL_SURF_USAGE_MCS_BIT)) &&
1383 !pitch_in_range(row_pitch_tiles, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1384 return false;
1385
1386 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1387 !pitch_in_range(row_pitch, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1388 return false;
1389
1390 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1391 !pitch_in_range(row_pitch, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1392 return false;
1393
1394 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1395 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1396 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1397
1398 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1399 !pitch_in_range(row_pitch, stencil_pitch_bits))
1400 return false;
1401
1402 done:
1403 *out_row_pitch = row_pitch;
1404 return true;
1405 }
1406
1407 bool
1408 isl_surf_init_s(const struct isl_device *dev,
1409 struct isl_surf *surf,
1410 const struct isl_surf_init_info *restrict info)
1411 {
1412 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1413
1414 const struct isl_extent4d logical_level0_px = {
1415 .w = info->width,
1416 .h = info->height,
1417 .d = info->depth,
1418 .a = info->array_len,
1419 };
1420
1421 enum isl_tiling tiling;
1422 if (!isl_surf_choose_tiling(dev, info, &tiling))
1423 return false;
1424
1425 struct isl_tile_info tile_info;
1426 isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
1427
1428 const enum isl_dim_layout dim_layout =
1429 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1430
1431 enum isl_msaa_layout msaa_layout;
1432 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1433 return false;
1434
1435 struct isl_extent3d image_align_el;
1436 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1437 &image_align_el);
1438
1439 struct isl_extent3d image_align_sa =
1440 isl_extent3d_el_to_sa(info->format, image_align_el);
1441
1442 struct isl_extent4d phys_level0_sa;
1443 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1444 &phys_level0_sa);
1445 assert(phys_level0_sa.w % fmtl->bw == 0);
1446 assert(phys_level0_sa.h % fmtl->bh == 0);
1447
1448 enum isl_array_pitch_span array_pitch_span =
1449 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1450
1451 uint32_t array_pitch_el_rows;
1452 struct isl_extent2d phys_total_el;
1453 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1454 dim_layout, msaa_layout,
1455 &image_align_sa, &phys_level0_sa,
1456 array_pitch_span, &array_pitch_el_rows,
1457 &phys_total_el);
1458
1459 uint32_t row_pitch;
1460 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1461 &phys_total_el, &row_pitch))
1462 return false;
1463
1464 uint32_t base_alignment;
1465 uint64_t size;
1466 if (tiling == ISL_TILING_LINEAR) {
1467 size = (uint64_t) row_pitch * phys_total_el.h;
1468
1469 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1470 *
1471 * "The Base Address for linear render target surfaces and surfaces
1472 * accessed with the typed surface read/write data port messages must
1473 * be element-size aligned, for non-YUV surface formats, or a
1474 * multiple of 2 element-sizes for YUV surface formats. Other linear
1475 * surfaces have no alignment requirements (byte alignment is
1476 * sufficient.)"
1477 */
1478 base_alignment = MAX(1, info->min_alignment);
1479 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1480 if (isl_format_is_yuv(info->format)) {
1481 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1482 } else {
1483 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1484 }
1485 }
1486 base_alignment = isl_round_up_to_power_of_two(base_alignment);
1487 } else {
1488 const uint32_t total_h_tl =
1489 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1490
1491 size = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1492
1493 const uint32_t tile_size = tile_info.phys_extent_B.width *
1494 tile_info.phys_extent_B.height;
1495 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1496 base_alignment = MAX(info->min_alignment, tile_size);
1497 }
1498
1499 if (ISL_DEV_GEN(dev) < 9) {
1500 /* From the Broadwell PRM Vol 5, Surface Layout:
1501 *
1502 * "In addition to restrictions on maximum height, width, and depth,
1503 * surfaces are also restricted to a maximum size in bytes. This
1504 * maximum is 2 GB for all products and all surface types."
1505 *
1506 * This comment is applicable to all Pre-gen9 platforms.
1507 */
1508 if (size > (uint64_t) 1 << 31)
1509 return false;
1510 } else if (ISL_DEV_GEN(dev) < 11) {
1511 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1512 * "In addition to restrictions on maximum height, width, and depth,
1513 * surfaces are also restricted to a maximum size of 2^38 bytes.
1514 * All pixels within the surface must be contained within 2^38 bytes
1515 * of the base address."
1516 */
1517 if (size > (uint64_t) 1 << 38)
1518 return false;
1519 } else {
1520 /* gen11+ platforms raised this limit to 2^44 bytes. */
1521 if (size > (uint64_t) 1 << 44)
1522 return false;
1523 }
1524
1525 *surf = (struct isl_surf) {
1526 .dim = info->dim,
1527 .dim_layout = dim_layout,
1528 .msaa_layout = msaa_layout,
1529 .tiling = tiling,
1530 .format = info->format,
1531
1532 .levels = info->levels,
1533 .samples = info->samples,
1534
1535 .image_alignment_el = image_align_el,
1536 .logical_level0_px = logical_level0_px,
1537 .phys_level0_sa = phys_level0_sa,
1538
1539 .size = size,
1540 .alignment = base_alignment,
1541 .row_pitch = row_pitch,
1542 .array_pitch_el_rows = array_pitch_el_rows,
1543 .array_pitch_span = array_pitch_span,
1544
1545 .usage = info->usage,
1546 };
1547
1548 return true;
1549 }
1550
1551 void
1552 isl_surf_get_tile_info(const struct isl_surf *surf,
1553 struct isl_tile_info *tile_info)
1554 {
1555 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1556 isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
1557 }
1558
1559 bool
1560 isl_surf_get_hiz_surf(const struct isl_device *dev,
1561 const struct isl_surf *surf,
1562 struct isl_surf *hiz_surf)
1563 {
1564 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1565
1566 /* Multisampled depth is always interleaved */
1567 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1568 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1569
1570 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
1571 *
1572 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
1573 * Target View Extent, and Depth Coordinate Offset X/Y of the
1574 * hierarchical depth buffer are inherited from the depth buffer. The
1575 * height and width of the hierarchical depth buffer that must be
1576 * allocated are computed by the following formulas, where HZ is the
1577 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
1578 * Z_Width, and Z_Depth values given in these formulas are those present
1579 * in 3DSTATE_DEPTH_BUFFER incremented by one.
1580 *
1581 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
1582 * being applied to the table below if Number of Multisamples is set to
1583 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
1584 * Z_Width must be multiplied by 4 before being applied to the table
1585 * below if Number of Multisamples is set to NUMSAMPLES_8."
1586 *
1587 * In the Sky Lake PRM, the second paragraph is replaced with this:
1588 *
1589 * "The Z_Height and Z_Width values must equal those present in
1590 * 3DSTATE_DEPTH_BUFFER incremented by one."
1591 *
1592 * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
1593 * block corresponds to a region of 8x4 samples in the primary depth
1594 * surface. On Sky Lake, on the other hand, each HiZ block corresponds to
1595 * a region of 8x4 pixels in the primary depth surface regardless of the
1596 * number of samples. The dimensions of a HiZ block in both pixels and
1597 * samples are given in the table below:
1598 *
1599 * | SNB - BDW | SKL+
1600 * ------+-----------+-------------
1601 * 1x | 8 x 4 sa | 8 x 4 sa
1602 * MSAA | 8 x 4 px | 8 x 4 px
1603 * ------+-----------+-------------
1604 * 2x | 8 x 4 sa | 16 x 4 sa
1605 * MSAA | 4 x 4 px | 8 x 4 px
1606 * ------+-----------+-------------
1607 * 4x | 8 x 4 sa | 16 x 8 sa
1608 * MSAA | 4 x 2 px | 8 x 4 px
1609 * ------+-----------+-------------
1610 * 8x | 8 x 4 sa | 32 x 8 sa
1611 * MSAA | 2 x 2 px | 8 x 4 px
1612 * ------+-----------+-------------
1613 * 16x | N/A | 32 x 16 sa
1614 * MSAA | N/A | 8 x 4 px
1615 * ------+-----------+-------------
1616 *
1617 * There are a number of different ways that this discrepency could be
1618 * handled. The way we have chosen is to simply make MSAA HiZ have the
1619 * same number of samples as the parent surface pre-Sky Lake and always be
1620 * single-sampled on Sky Lake and above. Since the block sizes of
1621 * compressed formats are given in samples, this neatly handles everything
1622 * without the need for additional HiZ formats with different block sizes
1623 * on SKL+.
1624 */
1625 const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
1626
1627 return isl_surf_init(dev, hiz_surf,
1628 .dim = surf->dim,
1629 .format = ISL_FORMAT_HIZ,
1630 .width = surf->logical_level0_px.width,
1631 .height = surf->logical_level0_px.height,
1632 .depth = surf->logical_level0_px.depth,
1633 .levels = surf->levels,
1634 .array_len = surf->logical_level0_px.array_len,
1635 .samples = samples,
1636 .usage = ISL_SURF_USAGE_HIZ_BIT,
1637 .tiling_flags = ISL_TILING_HIZ_BIT);
1638 }
1639
1640 bool
1641 isl_surf_get_mcs_surf(const struct isl_device *dev,
1642 const struct isl_surf *surf,
1643 struct isl_surf *mcs_surf)
1644 {
1645 assert(ISL_DEV_GEN(dev) >= 7);
1646
1647 /* It must be multisampled with an array layout */
1648 assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1649
1650 /* The following are true of all multisampled surfaces */
1651 assert(surf->dim == ISL_SURF_DIM_2D);
1652 assert(surf->levels == 1);
1653 assert(surf->logical_level0_px.depth == 1);
1654
1655 /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
1656 * bits which means the maximum pitch of a compression surface is 512
1657 * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is
1658 * 64bpp, this gives us a maximum width of 8192 pixels. We can create
1659 * larger multisampled surfaces, we just can't compress them. For 2x, 4x,
1660 * and 8x, we have enough room for the full 16k supported by the hardware.
1661 */
1662 if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
1663 return false;
1664
1665 enum isl_format mcs_format;
1666 switch (surf->samples) {
1667 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1668 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1669 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1670 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1671 default:
1672 unreachable("Invalid sample count");
1673 }
1674
1675 return isl_surf_init(dev, mcs_surf,
1676 .dim = ISL_SURF_DIM_2D,
1677 .format = mcs_format,
1678 .width = surf->logical_level0_px.width,
1679 .height = surf->logical_level0_px.height,
1680 .depth = 1,
1681 .levels = 1,
1682 .array_len = surf->logical_level0_px.array_len,
1683 .samples = 1, /* MCS surfaces are really single-sampled */
1684 .usage = ISL_SURF_USAGE_MCS_BIT,
1685 .tiling_flags = ISL_TILING_Y0_BIT);
1686 }
1687
1688 bool
1689 isl_surf_get_ccs_surf(const struct isl_device *dev,
1690 const struct isl_surf *surf,
1691 struct isl_surf *ccs_surf,
1692 uint32_t row_pitch)
1693 {
1694 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1695 assert(ISL_DEV_GEN(dev) >= 7);
1696
1697 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
1698 return false;
1699
1700 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
1701 * work for 3D textures until gen9 where the layout of 3D textures changes
1702 * to match 2D array textures.
1703 */
1704 if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
1705 return false;
1706
1707 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
1708 * Non-MultiSampler Render Target Restrictions):
1709 *
1710 * "Support is for non-mip-mapped and non-array surface types only."
1711 *
1712 * This restriction is lifted on gen8+. Technically, it may be possible to
1713 * create a CCS for an arrayed or mipmapped image and only enable CCS_D
1714 * when rendering to the base slice. However, there is no documentation
1715 * tell us what the hardware would do in that case or what it does if you
1716 * walk off the bases slice. (Does it ignore CCS or does it start
1717 * scribbling over random memory?) We play it safe and just follow the
1718 * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
1719 */
1720 if (ISL_DEV_GEN(dev) <= 7 &&
1721 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
1722 return false;
1723
1724 if (isl_format_is_compressed(surf->format))
1725 return false;
1726
1727 /* TODO: More conditions where it can fail. */
1728
1729 enum isl_format ccs_format;
1730 if (ISL_DEV_GEN(dev) >= 9) {
1731 if (!isl_tiling_is_any_y(surf->tiling))
1732 return false;
1733
1734 switch (isl_format_get_layout(surf->format)->bpb) {
1735 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1736 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1737 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1738 default:
1739 return false;
1740 }
1741 } else if (surf->tiling == ISL_TILING_Y0) {
1742 switch (isl_format_get_layout(surf->format)->bpb) {
1743 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1744 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1745 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1746 default:
1747 return false;
1748 }
1749 } else if (surf->tiling == ISL_TILING_X) {
1750 switch (isl_format_get_layout(surf->format)->bpb) {
1751 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1752 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1753 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1754 default:
1755 return false;
1756 }
1757 } else {
1758 return false;
1759 }
1760
1761 return isl_surf_init(dev, ccs_surf,
1762 .dim = surf->dim,
1763 .format = ccs_format,
1764 .width = surf->logical_level0_px.width,
1765 .height = surf->logical_level0_px.height,
1766 .depth = surf->logical_level0_px.depth,
1767 .levels = surf->levels,
1768 .array_len = surf->logical_level0_px.array_len,
1769 .samples = 1,
1770 .row_pitch = row_pitch,
1771 .usage = ISL_SURF_USAGE_CCS_BIT,
1772 .tiling_flags = ISL_TILING_CCS_BIT);
1773 }
1774
1775 #define isl_genX_call(dev, func, ...) \
1776 switch (ISL_DEV_GEN(dev)) { \
1777 case 4: \
1778 /* G45 surface state is the same as gen5 */ \
1779 if (ISL_DEV_IS_G4X(dev)) { \
1780 isl_gen5_##func(__VA_ARGS__); \
1781 } else { \
1782 isl_gen4_##func(__VA_ARGS__); \
1783 } \
1784 break; \
1785 case 5: \
1786 isl_gen5_##func(__VA_ARGS__); \
1787 break; \
1788 case 6: \
1789 isl_gen6_##func(__VA_ARGS__); \
1790 break; \
1791 case 7: \
1792 if (ISL_DEV_IS_HASWELL(dev)) { \
1793 isl_gen75_##func(__VA_ARGS__); \
1794 } else { \
1795 isl_gen7_##func(__VA_ARGS__); \
1796 } \
1797 break; \
1798 case 8: \
1799 isl_gen8_##func(__VA_ARGS__); \
1800 break; \
1801 case 9: \
1802 isl_gen9_##func(__VA_ARGS__); \
1803 break; \
1804 case 10: \
1805 isl_gen10_##func(__VA_ARGS__); \
1806 break; \
1807 case 11: \
1808 isl_gen11_##func(__VA_ARGS__); \
1809 break; \
1810 default: \
1811 assert(!"Unknown hardware generation"); \
1812 }
1813
1814 void
1815 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1816 const struct isl_surf_fill_state_info *restrict info)
1817 {
1818 #ifndef NDEBUG
1819 isl_surf_usage_flags_t _base_usage =
1820 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1821 ISL_SURF_USAGE_TEXTURE_BIT |
1822 ISL_SURF_USAGE_STORAGE_BIT);
1823 /* They may only specify one of the above bits at a time */
1824 assert(__builtin_popcount(_base_usage) == 1);
1825 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1826 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1827 #endif
1828
1829 if (info->surf->dim == ISL_SURF_DIM_3D) {
1830 assert(info->view->base_array_layer + info->view->array_len <=
1831 info->surf->logical_level0_px.depth);
1832 } else {
1833 assert(info->view->base_array_layer + info->view->array_len <=
1834 info->surf->logical_level0_px.array_len);
1835 }
1836
1837 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
1838 }
1839
1840 void
1841 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1842 const struct isl_buffer_fill_state_info *restrict info)
1843 {
1844 isl_genX_call(dev, buffer_fill_state_s, state, info);
1845 }
1846
1847 void
1848 isl_null_fill_state(const struct isl_device *dev, void *state,
1849 struct isl_extent3d size)
1850 {
1851 isl_genX_call(dev, null_fill_state, state, size);
1852 }
1853
1854 void
1855 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
1856 const struct isl_depth_stencil_hiz_emit_info *restrict info)
1857 {
1858 if (info->depth_surf && info->stencil_surf) {
1859 if (!dev->info->has_hiz_and_separate_stencil) {
1860 assert(info->depth_surf == info->stencil_surf);
1861 assert(info->depth_address == info->stencil_address);
1862 }
1863 assert(info->depth_surf->dim == info->stencil_surf->dim);
1864 }
1865
1866 if (info->depth_surf) {
1867 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
1868 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
1869 assert(info->view->base_array_layer + info->view->array_len <=
1870 info->depth_surf->logical_level0_px.depth);
1871 } else {
1872 assert(info->view->base_array_layer + info->view->array_len <=
1873 info->depth_surf->logical_level0_px.array_len);
1874 }
1875 }
1876
1877 if (info->stencil_surf) {
1878 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
1879 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
1880 assert(info->view->base_array_layer + info->view->array_len <=
1881 info->stencil_surf->logical_level0_px.depth);
1882 } else {
1883 assert(info->view->base_array_layer + info->view->array_len <=
1884 info->stencil_surf->logical_level0_px.array_len);
1885 }
1886 }
1887
1888 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
1889 }
1890
1891 /**
1892 * A variant of isl_surf_get_image_offset_sa() specific to
1893 * ISL_DIM_LAYOUT_GEN4_2D.
1894 */
1895 static void
1896 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1897 uint32_t level, uint32_t logical_array_layer,
1898 uint32_t *x_offset_sa,
1899 uint32_t *y_offset_sa)
1900 {
1901 assert(level < surf->levels);
1902 if (surf->dim == ISL_SURF_DIM_3D)
1903 assert(logical_array_layer < surf->logical_level0_px.depth);
1904 else
1905 assert(logical_array_layer < surf->logical_level0_px.array_len);
1906
1907 const struct isl_extent3d image_align_sa =
1908 isl_surf_get_image_alignment_sa(surf);
1909
1910 const uint32_t W0 = surf->phys_level0_sa.width;
1911 const uint32_t H0 = surf->phys_level0_sa.height;
1912
1913 const uint32_t phys_layer = logical_array_layer *
1914 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1915
1916 uint32_t x = 0;
1917 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1918
1919 for (uint32_t l = 0; l < level; ++l) {
1920 if (l == 1) {
1921 uint32_t W = isl_minify(W0, l);
1922 x += isl_align_npot(W, image_align_sa.w);
1923 } else {
1924 uint32_t H = isl_minify(H0, l);
1925 y += isl_align_npot(H, image_align_sa.h);
1926 }
1927 }
1928
1929 *x_offset_sa = x;
1930 *y_offset_sa = y;
1931 }
1932
1933 /**
1934 * A variant of isl_surf_get_image_offset_sa() specific to
1935 * ISL_DIM_LAYOUT_GEN4_3D.
1936 */
1937 static void
1938 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1939 uint32_t level, uint32_t logical_z_offset_px,
1940 uint32_t *x_offset_sa,
1941 uint32_t *y_offset_sa)
1942 {
1943 assert(level < surf->levels);
1944 if (surf->dim == ISL_SURF_DIM_3D) {
1945 assert(surf->phys_level0_sa.array_len == 1);
1946 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1947 } else {
1948 assert(surf->dim == ISL_SURF_DIM_2D);
1949 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
1950 assert(surf->phys_level0_sa.array_len == 6);
1951 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
1952 }
1953
1954 const struct isl_extent3d image_align_sa =
1955 isl_surf_get_image_alignment_sa(surf);
1956
1957 const uint32_t W0 = surf->phys_level0_sa.width;
1958 const uint32_t H0 = surf->phys_level0_sa.height;
1959 const uint32_t D0 = surf->phys_level0_sa.depth;
1960 const uint32_t AL = surf->phys_level0_sa.array_len;
1961
1962 uint32_t x = 0;
1963 uint32_t y = 0;
1964
1965 for (uint32_t l = 0; l < level; ++l) {
1966 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1967 const uint32_t level_d =
1968 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
1969 image_align_sa.d);
1970 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1971
1972 y += level_h * max_layers_vert;
1973 }
1974
1975 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1976 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1977 const uint32_t level_d =
1978 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
1979 image_align_sa.d);
1980
1981 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1982
1983 x += level_w * (logical_z_offset_px % max_layers_horiz);
1984 y += level_h * (logical_z_offset_px / max_layers_horiz);
1985
1986 *x_offset_sa = x;
1987 *y_offset_sa = y;
1988 }
1989
1990 static void
1991 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
1992 uint32_t level,
1993 uint32_t logical_array_layer,
1994 uint32_t *x_offset_sa,
1995 uint32_t *y_offset_sa)
1996 {
1997 assert(level < surf->levels);
1998 assert(surf->logical_level0_px.depth == 1);
1999 assert(logical_array_layer < surf->logical_level0_px.array_len);
2000
2001 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2002
2003 const struct isl_extent3d image_align_sa =
2004 isl_surf_get_image_alignment_sa(surf);
2005
2006 struct isl_tile_info tile_info;
2007 isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
2008 const struct isl_extent2d tile_extent_sa = {
2009 .w = tile_info.logical_extent_el.w * fmtl->bw,
2010 .h = tile_info.logical_extent_el.h * fmtl->bh,
2011 };
2012 /* Tile size is a multiple of image alignment */
2013 assert(tile_extent_sa.w % image_align_sa.w == 0);
2014 assert(tile_extent_sa.h % image_align_sa.h == 0);
2015
2016 const uint32_t W0 = surf->phys_level0_sa.w;
2017 const uint32_t H0 = surf->phys_level0_sa.h;
2018
2019 /* Each image has the same height as LOD0 because the hardware thinks
2020 * everything is LOD0
2021 */
2022 const uint32_t H = isl_align(H0, image_align_sa.h);
2023
2024 /* Quick sanity check for consistency */
2025 if (surf->phys_level0_sa.array_len > 1)
2026 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2027
2028 uint32_t x = 0, y = 0;
2029 for (uint32_t l = 0; l < level; ++l) {
2030 const uint32_t W = isl_minify(W0, l);
2031
2032 const uint32_t w = isl_align(W, tile_extent_sa.w);
2033 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2034 tile_extent_sa.h);
2035
2036 if (l == 0) {
2037 y += h;
2038 } else {
2039 x += w;
2040 }
2041 }
2042
2043 y += H * logical_array_layer;
2044
2045 *x_offset_sa = x;
2046 *y_offset_sa = y;
2047 }
2048
2049 /**
2050 * A variant of isl_surf_get_image_offset_sa() specific to
2051 * ISL_DIM_LAYOUT_GEN9_1D.
2052 */
2053 static void
2054 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
2055 uint32_t level, uint32_t layer,
2056 uint32_t *x_offset_sa,
2057 uint32_t *y_offset_sa)
2058 {
2059 assert(level < surf->levels);
2060 assert(layer < surf->phys_level0_sa.array_len);
2061 assert(surf->phys_level0_sa.height == 1);
2062 assert(surf->phys_level0_sa.depth == 1);
2063 assert(surf->samples == 1);
2064
2065 const uint32_t W0 = surf->phys_level0_sa.width;
2066 const struct isl_extent3d image_align_sa =
2067 isl_surf_get_image_alignment_sa(surf);
2068
2069 uint32_t x = 0;
2070
2071 for (uint32_t l = 0; l < level; ++l) {
2072 uint32_t W = isl_minify(W0, l);
2073 uint32_t w = isl_align_npot(W, image_align_sa.w);
2074
2075 x += w;
2076 }
2077
2078 *x_offset_sa = x;
2079 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2080 }
2081
2082 /**
2083 * Calculate the offset, in units of surface samples, to a subimage in the
2084 * surface.
2085 *
2086 * @invariant level < surface levels
2087 * @invariant logical_array_layer < logical array length of surface
2088 * @invariant logical_z_offset_px < logical depth of surface at level
2089 */
2090 void
2091 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2092 uint32_t level,
2093 uint32_t logical_array_layer,
2094 uint32_t logical_z_offset_px,
2095 uint32_t *x_offset_sa,
2096 uint32_t *y_offset_sa)
2097 {
2098 assert(level < surf->levels);
2099 assert(logical_array_layer < surf->logical_level0_px.array_len);
2100 assert(logical_z_offset_px
2101 < isl_minify(surf->logical_level0_px.depth, level));
2102
2103 switch (surf->dim_layout) {
2104 case ISL_DIM_LAYOUT_GEN9_1D:
2105 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
2106 x_offset_sa, y_offset_sa);
2107 break;
2108 case ISL_DIM_LAYOUT_GEN4_2D:
2109 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
2110 + logical_z_offset_px,
2111 x_offset_sa, y_offset_sa);
2112 break;
2113 case ISL_DIM_LAYOUT_GEN4_3D:
2114 get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
2115 logical_z_offset_px,
2116 x_offset_sa, y_offset_sa);
2117 break;
2118 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
2119 get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
2120 logical_z_offset_px,
2121 x_offset_sa, y_offset_sa);
2122 break;
2123
2124 default:
2125 unreachable("not reached");
2126 }
2127 }
2128
2129 void
2130 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2131 uint32_t level,
2132 uint32_t logical_array_layer,
2133 uint32_t logical_z_offset_px,
2134 uint32_t *x_offset_el,
2135 uint32_t *y_offset_el)
2136 {
2137 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2138
2139 assert(level < surf->levels);
2140 assert(logical_array_layer < surf->logical_level0_px.array_len);
2141 assert(logical_z_offset_px
2142 < isl_minify(surf->logical_level0_px.depth, level));
2143
2144 uint32_t x_offset_sa, y_offset_sa;
2145 isl_surf_get_image_offset_sa(surf, level,
2146 logical_array_layer,
2147 logical_z_offset_px,
2148 &x_offset_sa,
2149 &y_offset_sa);
2150
2151 *x_offset_el = x_offset_sa / fmtl->bw;
2152 *y_offset_el = y_offset_sa / fmtl->bh;
2153 }
2154
2155 void
2156 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2157 uint32_t level,
2158 uint32_t logical_array_layer,
2159 uint32_t logical_z_offset_px,
2160 uint32_t *offset_B,
2161 uint32_t *x_offset_sa,
2162 uint32_t *y_offset_sa)
2163 {
2164 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2165
2166 uint32_t total_x_offset_el, total_y_offset_el;
2167 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2168 logical_z_offset_px,
2169 &total_x_offset_el,
2170 &total_y_offset_el);
2171
2172 uint32_t x_offset_el, y_offset_el;
2173 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2174 surf->row_pitch,
2175 total_x_offset_el,
2176 total_y_offset_el,
2177 offset_B,
2178 &x_offset_el,
2179 &y_offset_el);
2180
2181 if (x_offset_sa) {
2182 *x_offset_sa = x_offset_el * fmtl->bw;
2183 } else {
2184 assert(x_offset_el == 0);
2185 }
2186
2187 if (y_offset_sa) {
2188 *y_offset_sa = y_offset_el * fmtl->bh;
2189 } else {
2190 assert(y_offset_el == 0);
2191 }
2192 }
2193
2194 void
2195 isl_surf_get_image_surf(const struct isl_device *dev,
2196 const struct isl_surf *surf,
2197 uint32_t level,
2198 uint32_t logical_array_layer,
2199 uint32_t logical_z_offset_px,
2200 struct isl_surf *image_surf,
2201 uint32_t *offset_B,
2202 uint32_t *x_offset_sa,
2203 uint32_t *y_offset_sa)
2204 {
2205 isl_surf_get_image_offset_B_tile_sa(surf,
2206 level,
2207 logical_array_layer,
2208 logical_z_offset_px,
2209 offset_B,
2210 x_offset_sa,
2211 y_offset_sa);
2212
2213 /* Even for cube maps there will be only single face, therefore drop the
2214 * corresponding flag if present.
2215 */
2216 const isl_surf_usage_flags_t usage =
2217 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2218
2219 bool ok UNUSED;
2220 ok = isl_surf_init(dev, image_surf,
2221 .dim = ISL_SURF_DIM_2D,
2222 .format = surf->format,
2223 .width = isl_minify(surf->logical_level0_px.w, level),
2224 .height = isl_minify(surf->logical_level0_px.h, level),
2225 .depth = 1,
2226 .levels = 1,
2227 .array_len = 1,
2228 .samples = surf->samples,
2229 .row_pitch = surf->row_pitch,
2230 .usage = usage,
2231 .tiling_flags = (1 << surf->tiling));
2232 assert(ok);
2233 }
2234
2235 void
2236 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2237 uint32_t bpb,
2238 uint32_t row_pitch,
2239 uint32_t total_x_offset_el,
2240 uint32_t total_y_offset_el,
2241 uint32_t *base_address_offset,
2242 uint32_t *x_offset_el,
2243 uint32_t *y_offset_el)
2244 {
2245 if (tiling == ISL_TILING_LINEAR) {
2246 assert(bpb % 8 == 0);
2247 *base_address_offset = total_y_offset_el * row_pitch +
2248 total_x_offset_el * (bpb / 8);
2249 *x_offset_el = 0;
2250 *y_offset_el = 0;
2251 return;
2252 }
2253
2254 struct isl_tile_info tile_info;
2255 isl_tiling_get_info(tiling, bpb, &tile_info);
2256
2257 assert(row_pitch % tile_info.phys_extent_B.width == 0);
2258
2259 /* For non-power-of-two formats, we need the address to be both tile and
2260 * element-aligned. The easiest way to achieve this is to work with a tile
2261 * that is three times as wide as the regular tile.
2262 *
2263 * The tile info returned by get_tile_info has a logical size that is an
2264 * integer number of tile_info.format_bpb size elements. To scale the
2265 * tile, we scale up the physical width and then treat the logical tile
2266 * size as if it has bpb size elements.
2267 */
2268 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
2269 tile_info.phys_extent_B.width *= tile_el_scale;
2270
2271 /* Compute the offset into the tile */
2272 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
2273 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
2274
2275 /* Compute the offset of the tile in units of whole tiles */
2276 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
2277 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
2278
2279 *base_address_offset =
2280 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
2281 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
2282 }
2283
2284 uint32_t
2285 isl_surf_get_depth_format(const struct isl_device *dev,
2286 const struct isl_surf *surf)
2287 {
2288 /* Support for separate stencil buffers began in gen5. Support for
2289 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
2290 * those that supported separate and interleaved stencil, were gen5 and
2291 * gen6.
2292 *
2293 * For a list of all available formats, see the Sandybridge PRM >> Volume
2294 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
2295 * Format (p321).
2296 */
2297
2298 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
2299
2300 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
2301
2302 if (has_stencil)
2303 assert(ISL_DEV_GEN(dev) < 7);
2304
2305 switch (surf->format) {
2306 default:
2307 unreachable("bad isl depth format");
2308 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
2309 assert(ISL_DEV_GEN(dev) < 7);
2310 return 0; /* D32_FLOAT_S8X24_UINT */
2311 case ISL_FORMAT_R32_FLOAT:
2312 assert(!has_stencil);
2313 return 1; /* D32_FLOAT */
2314 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
2315 if (has_stencil) {
2316 assert(ISL_DEV_GEN(dev) < 7);
2317 return 2; /* D24_UNORM_S8_UINT */
2318 } else {
2319 assert(ISL_DEV_GEN(dev) >= 5);
2320 return 3; /* D24_UNORM_X8_UINT */
2321 }
2322 case ISL_FORMAT_R16_UNORM:
2323 assert(!has_stencil);
2324 return 5; /* D16_UNORM */
2325 }
2326 }
2327
2328 bool
2329 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
2330 struct isl_swizzle swizzle)
2331 {
2332 if (devinfo->is_haswell) {
2333 /* From the Haswell PRM,
2334 * RENDER_SURFACE_STATE::Shader Channel Select Red
2335 *
2336 * "The Shader channel selects also define which shader channels are
2337 * written to which surface channel. If the Shader channel select is
2338 * SCS_ZERO or SCS_ONE then it is not written to the surface. If the
2339 * shader channel select is SCS_RED it is written to the surface red
2340 * channel and so on. If more than one shader channel select is set
2341 * to the same surface channel only the first shader channel in RGBA
2342 * order will be written."
2343 */
2344 return true;
2345 } else if (devinfo->gen <= 7) {
2346 /* Ivy Bridge and early doesn't have any swizzling */
2347 return isl_swizzle_is_identity(swizzle);
2348 } else {
2349 /* From the Sky Lake PRM Vol. 2d,
2350 * RENDER_SURFACE_STATE::Shader Channel Select Red
2351 *
2352 * "For Render Target, Red, Green and Blue Shader Channel Selects
2353 * MUST be such that only valid components can be swapped i.e. only
2354 * change the order of components in the pixel. Any other values for
2355 * these Shader Channel Select fields are not valid for Render
2356 * Targets. This also means that there MUST not be multiple shader
2357 * channels mapped to the same RT channel."
2358 *
2359 * From the Sky Lake PRM Vol. 2d,
2360 * RENDER_SURFACE_STATE::Shader Channel Select Alpha
2361 *
2362 * "For Render Target, this field MUST be programmed to
2363 * value = SCS_ALPHA."
2364 */
2365 return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
2366 swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
2367 swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
2368 (swizzle.g == ISL_CHANNEL_SELECT_RED ||
2369 swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
2370 swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
2371 (swizzle.b == ISL_CHANNEL_SELECT_RED ||
2372 swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
2373 swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
2374 swizzle.r != swizzle.g &&
2375 swizzle.r != swizzle.b &&
2376 swizzle.g != swizzle.b &&
2377 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
2378 }
2379 }
2380
2381 static enum isl_channel_select
2382 swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
2383 {
2384 switch (chan) {
2385 case ISL_CHANNEL_SELECT_ZERO:
2386 case ISL_CHANNEL_SELECT_ONE:
2387 return chan;
2388 case ISL_CHANNEL_SELECT_RED:
2389 return swizzle.r;
2390 case ISL_CHANNEL_SELECT_GREEN:
2391 return swizzle.g;
2392 case ISL_CHANNEL_SELECT_BLUE:
2393 return swizzle.b;
2394 case ISL_CHANNEL_SELECT_ALPHA:
2395 return swizzle.a;
2396 default:
2397 unreachable("Invalid swizzle component");
2398 }
2399 }
2400
2401 /**
2402 * Returns the single swizzle that is equivalent to applying the two given
2403 * swizzles in sequence.
2404 */
2405 struct isl_swizzle
2406 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
2407 {
2408 return (struct isl_swizzle) {
2409 .r = swizzle_select(first.r, second),
2410 .g = swizzle_select(first.g, second),
2411 .b = swizzle_select(first.b, second),
2412 .a = swizzle_select(first.a, second),
2413 };
2414 }
2415
2416 /**
2417 * Returns a swizzle that is the pseudo-inverse of this swizzle.
2418 */
2419 struct isl_swizzle
2420 isl_swizzle_invert(struct isl_swizzle swizzle)
2421 {
2422 /* Default to zero for channels which do not show up in the swizzle */
2423 enum isl_channel_select chans[4] = {
2424 ISL_CHANNEL_SELECT_ZERO,
2425 ISL_CHANNEL_SELECT_ZERO,
2426 ISL_CHANNEL_SELECT_ZERO,
2427 ISL_CHANNEL_SELECT_ZERO,
2428 };
2429
2430 /* We go in ABGR order so that, if there are any duplicates, the first one
2431 * is taken if you look at it in RGBA order. This is what Haswell hardware
2432 * does for render target swizzles.
2433 */
2434 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
2435 chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
2436 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
2437 chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
2438 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
2439 chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
2440 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
2441 chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
2442
2443 return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
2444 }