isl: Modify restrictions in isl_surf_get_mcs_surf()
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gen4.h"
32 #include "isl_gen6.h"
33 #include "isl_gen7.h"
34 #include "isl_gen8.h"
35 #include "isl_gen9.h"
36 #include "isl_priv.h"
37
38 void
39 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
40 uint32_t yt1, uint32_t yt2,
41 char *dst, const char *src,
42 uint32_t dst_pitch, int32_t src_pitch,
43 bool has_swizzling,
44 enum isl_tiling tiling,
45 isl_memcpy_type copy_type)
46 {
47 #ifdef USE_SSE41
48 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
49 _isl_memcpy_linear_to_tiled_sse41(
50 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
51 tiling, copy_type);
52 return;
53 }
54 #endif
55
56 _isl_memcpy_linear_to_tiled(
57 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
58 tiling, copy_type);
59 }
60
61 void
62 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
63 uint32_t yt1, uint32_t yt2,
64 char *dst, const char *src,
65 int32_t dst_pitch, uint32_t src_pitch,
66 bool has_swizzling,
67 enum isl_tiling tiling,
68 isl_memcpy_type copy_type)
69 {
70 #ifdef USE_SSE41
71 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
72 _isl_memcpy_tiled_to_linear_sse41(
73 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
74 tiling, copy_type);
75 return;
76 }
77 #endif
78
79 _isl_memcpy_tiled_to_linear(
80 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
81 tiling, copy_type);
82 }
83
84 void PRINTFLIKE(3, 4) UNUSED
85 __isl_finishme(const char *file, int line, const char *fmt, ...)
86 {
87 va_list ap;
88 char buf[512];
89
90 va_start(ap, fmt);
91 vsnprintf(buf, sizeof(buf), fmt, ap);
92 va_end(ap);
93
94 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
95 }
96
97 void
98 isl_device_init(struct isl_device *dev,
99 const struct gen_device_info *info,
100 bool has_bit6_swizzling)
101 {
102 /* Gen8+ don't have bit6 swizzling, ensure callsite is not confused. */
103 assert(!(has_bit6_swizzling && info->gen >= 8));
104
105 dev->info = info;
106 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
107 dev->has_bit6_swizzling = has_bit6_swizzling;
108
109 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
110 * device properties at buildtime. Verify that the macros with the device
111 * properties chosen during runtime.
112 */
113 ISL_DEV_GEN_SANITIZE(dev);
114 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
115
116 /* Did we break hiz or stencil? */
117 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
118 assert(info->has_hiz_and_separate_stencil);
119 if (info->must_use_separate_stencil)
120 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
121
122 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
123 dev->ss.align = isl_align(dev->ss.size, 32);
124
125 dev->ss.clear_color_state_size =
126 isl_align(CLEAR_COLOR_length(info) * 4, 64);
127 dev->ss.clear_color_state_offset =
128 RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
129
130 dev->ss.clear_value_size =
131 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
132 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
133 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
134 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
135
136 dev->ss.clear_value_offset =
137 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
138
139 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
140 dev->ss.addr_offset =
141 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
142
143 /* The "Auxiliary Surface Base Address" field starts a bit higher up
144 * because the bottom 12 bits are used for other things. Round down to
145 * the nearest dword before.
146 */
147 dev->ss.aux_addr_offset =
148 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
149
150 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
151 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
152 dev->ds.depth_offset =
153 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
154
155 if (dev->use_separate_stencil) {
156 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
157 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
158 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
159
160 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
161 dev->ds.stencil_offset =
162 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
163 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
164
165 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
166 dev->ds.hiz_offset =
167 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
168 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
169 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
170 } else {
171 dev->ds.stencil_offset = 0;
172 dev->ds.hiz_offset = 0;
173 }
174 }
175
176 /**
177 * @brief Query the set of multisamples supported by the device.
178 *
179 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
180 * supported.
181 */
182 isl_sample_count_mask_t ATTRIBUTE_CONST
183 isl_device_get_sample_counts(struct isl_device *dev)
184 {
185 if (ISL_DEV_GEN(dev) >= 9) {
186 return ISL_SAMPLE_COUNT_1_BIT |
187 ISL_SAMPLE_COUNT_2_BIT |
188 ISL_SAMPLE_COUNT_4_BIT |
189 ISL_SAMPLE_COUNT_8_BIT |
190 ISL_SAMPLE_COUNT_16_BIT;
191 } else if (ISL_DEV_GEN(dev) >= 8) {
192 return ISL_SAMPLE_COUNT_1_BIT |
193 ISL_SAMPLE_COUNT_2_BIT |
194 ISL_SAMPLE_COUNT_4_BIT |
195 ISL_SAMPLE_COUNT_8_BIT;
196 } else if (ISL_DEV_GEN(dev) >= 7) {
197 return ISL_SAMPLE_COUNT_1_BIT |
198 ISL_SAMPLE_COUNT_4_BIT |
199 ISL_SAMPLE_COUNT_8_BIT;
200 } else if (ISL_DEV_GEN(dev) >= 6) {
201 return ISL_SAMPLE_COUNT_1_BIT |
202 ISL_SAMPLE_COUNT_4_BIT;
203 } else {
204 return ISL_SAMPLE_COUNT_1_BIT;
205 }
206 }
207
208 /**
209 * @param[out] info is written only on success
210 */
211 static void
212 isl_tiling_get_info(enum isl_tiling tiling,
213 uint32_t format_bpb,
214 struct isl_tile_info *tile_info)
215 {
216 const uint32_t bs = format_bpb / 8;
217 struct isl_extent2d logical_el, phys_B;
218
219 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
220 /* It is possible to have non-power-of-two formats in a tiled buffer.
221 * The easiest way to handle this is to treat the tile as if it is three
222 * times as wide. This way no pixel will ever cross a tile boundary.
223 * This really only works on legacy X and Y tiling formats.
224 */
225 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
226 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
227 isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
228 return;
229 }
230
231 switch (tiling) {
232 case ISL_TILING_LINEAR:
233 assert(bs > 0);
234 logical_el = isl_extent2d(1, 1);
235 phys_B = isl_extent2d(bs, 1);
236 break;
237
238 case ISL_TILING_X:
239 assert(bs > 0);
240 logical_el = isl_extent2d(512 / bs, 8);
241 phys_B = isl_extent2d(512, 8);
242 break;
243
244 case ISL_TILING_Y0:
245 assert(bs > 0);
246 logical_el = isl_extent2d(128 / bs, 32);
247 phys_B = isl_extent2d(128, 32);
248 break;
249
250 case ISL_TILING_W:
251 assert(bs == 1);
252 logical_el = isl_extent2d(64, 64);
253 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
254 *
255 * "If the surface is a stencil buffer (and thus has Tile Mode set
256 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
257 * computed based on width, as the stencil buffer is stored with two
258 * rows interleaved."
259 *
260 * This, together with the fact that stencil buffers are referred to as
261 * being Y-tiled in the PRMs for older hardware implies that the
262 * physical size of a W-tile is actually the same as for a Y-tile.
263 */
264 phys_B = isl_extent2d(128, 32);
265 break;
266
267 case ISL_TILING_Yf:
268 case ISL_TILING_Ys: {
269 bool is_Ys = tiling == ISL_TILING_Ys;
270
271 assert(bs > 0);
272 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
273 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
274
275 logical_el = isl_extent2d(width / bs, height);
276 phys_B = isl_extent2d(width, height);
277 break;
278 }
279
280 case ISL_TILING_HIZ:
281 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
282 * 128bpb format. The tiling has the same physical dimensions as
283 * Y-tiling but actually has two HiZ columns per Y-tiled column.
284 */
285 assert(bs == 16);
286 logical_el = isl_extent2d(16, 16);
287 phys_B = isl_extent2d(128, 32);
288 break;
289
290 case ISL_TILING_CCS:
291 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
292 * have a block size of 1 or 2 bits per block and each CCS element
293 * corresponds to one cache-line pair in the main surface. From the Sky
294 * Lake PRM Vol. 12 in the section on planes:
295 *
296 * "The Color Control Surface (CCS) contains the compression status
297 * of the cache-line pairs. The compression state of the cache-line
298 * pair is specified by 2 bits in the CCS. Each CCS cache-line
299 * represents an area on the main surface of 16x16 sets of 128 byte
300 * Y-tiled cache-line-pairs. CCS is always Y tiled."
301 *
302 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
303 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
304 * that yields total tile area of 128x128 cache-line pairs or CCS
305 * elements. On older hardware, each CCS element is 1 bit and the tile
306 * is 128x256 elements.
307 */
308 assert(format_bpb == 1 || format_bpb == 2);
309 logical_el = isl_extent2d(128, 256 / format_bpb);
310 phys_B = isl_extent2d(128, 32);
311 break;
312
313 default:
314 unreachable("not reached");
315 } /* end switch */
316
317 *tile_info = (struct isl_tile_info) {
318 .tiling = tiling,
319 .format_bpb = format_bpb,
320 .logical_extent_el = logical_el,
321 .phys_extent_B = phys_B,
322 };
323 }
324
325 bool
326 isl_color_value_is_zero(union isl_color_value value,
327 enum isl_format format)
328 {
329 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
330
331 #define RETURN_FALSE_IF_NOT_0(c, i) \
332 if (fmtl->channels.c.bits && value.u32[i] != 0) \
333 return false
334
335 RETURN_FALSE_IF_NOT_0(r, 0);
336 RETURN_FALSE_IF_NOT_0(g, 1);
337 RETURN_FALSE_IF_NOT_0(b, 2);
338 RETURN_FALSE_IF_NOT_0(a, 3);
339
340 #undef RETURN_FALSE_IF_NOT_0
341
342 return true;
343 }
344
345 bool
346 isl_color_value_is_zero_one(union isl_color_value value,
347 enum isl_format format)
348 {
349 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
350
351 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
352 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
353 return false
354
355 if (isl_format_has_int_channel(format)) {
356 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
357 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
358 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
359 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
360 } else {
361 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
362 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
363 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
364 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
365 }
366
367 #undef RETURN_FALSE_IF_NOT_0_1
368
369 return true;
370 }
371
372 /**
373 * @param[out] tiling is set only on success
374 */
375 static bool
376 isl_surf_choose_tiling(const struct isl_device *dev,
377 const struct isl_surf_init_info *restrict info,
378 enum isl_tiling *tiling)
379 {
380 isl_tiling_flags_t tiling_flags = info->tiling_flags;
381
382 /* HiZ surfaces always use the HiZ tiling */
383 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
384 assert(info->format == ISL_FORMAT_HIZ);
385 assert(tiling_flags == ISL_TILING_HIZ_BIT);
386 *tiling = ISL_TILING_HIZ;
387 return true;
388 }
389
390 /* CCS surfaces always use the CCS tiling */
391 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
392 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
393 assert(tiling_flags == ISL_TILING_CCS_BIT);
394 *tiling = ISL_TILING_CCS;
395 return true;
396 }
397
398 if (ISL_DEV_GEN(dev) >= 6) {
399 isl_gen6_filter_tiling(dev, info, &tiling_flags);
400 } else {
401 isl_gen4_filter_tiling(dev, info, &tiling_flags);
402 }
403
404 #define CHOOSE(__tiling) \
405 do { \
406 if (tiling_flags & (1u << (__tiling))) { \
407 *tiling = (__tiling); \
408 return true; \
409 } \
410 } while (0)
411
412 /* Of the tiling modes remaining, choose the one that offers the best
413 * performance.
414 */
415
416 if (info->dim == ISL_SURF_DIM_1D) {
417 /* Prefer linear for 1D surfaces because they do not benefit from
418 * tiling. To the contrary, tiling leads to wasted memory and poor
419 * memory locality due to the swizzling and alignment restrictions
420 * required in tiled surfaces.
421 */
422 CHOOSE(ISL_TILING_LINEAR);
423 }
424
425 CHOOSE(ISL_TILING_Ys);
426 CHOOSE(ISL_TILING_Yf);
427 CHOOSE(ISL_TILING_Y0);
428 CHOOSE(ISL_TILING_X);
429 CHOOSE(ISL_TILING_W);
430 CHOOSE(ISL_TILING_LINEAR);
431
432 #undef CHOOSE
433
434 /* No tiling mode accomodates the inputs. */
435 return false;
436 }
437
438 static bool
439 isl_choose_msaa_layout(const struct isl_device *dev,
440 const struct isl_surf_init_info *info,
441 enum isl_tiling tiling,
442 enum isl_msaa_layout *msaa_layout)
443 {
444 if (ISL_DEV_GEN(dev) >= 8) {
445 return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
446 } else if (ISL_DEV_GEN(dev) >= 7) {
447 return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
448 } else if (ISL_DEV_GEN(dev) >= 6) {
449 return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
450 } else {
451 return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
452 }
453 }
454
455 struct isl_extent2d
456 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
457 {
458 assert(isl_is_pow2(samples));
459
460 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
461 * Sizes (p133):
462 *
463 * If the surface is multisampled and it is a depth or stencil surface
464 * or Multisampled Surface StorageFormat in SURFACE_STATE is
465 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
466 * proceeding: [...]
467 */
468 return (struct isl_extent2d) {
469 .width = 1 << ((ffs(samples) - 0) / 2),
470 .height = 1 << ((ffs(samples) - 1) / 2),
471 };
472 }
473
474 static void
475 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
476 uint32_t *width, uint32_t *height)
477 {
478 const struct isl_extent2d px_size_sa =
479 isl_get_interleaved_msaa_px_size_sa(samples);
480
481 if (width)
482 *width = isl_align(*width, 2) * px_size_sa.width;
483 if (height)
484 *height = isl_align(*height, 2) * px_size_sa.height;
485 }
486
487 static enum isl_array_pitch_span
488 isl_choose_array_pitch_span(const struct isl_device *dev,
489 const struct isl_surf_init_info *restrict info,
490 enum isl_dim_layout dim_layout,
491 const struct isl_extent4d *phys_level0_sa)
492 {
493 switch (dim_layout) {
494 case ISL_DIM_LAYOUT_GEN9_1D:
495 case ISL_DIM_LAYOUT_GEN4_2D:
496 if (ISL_DEV_GEN(dev) >= 8) {
497 /* QPitch becomes programmable in Broadwell. So choose the
498 * most compact QPitch possible in order to conserve memory.
499 *
500 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
501 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
502 *
503 * - Software must ensure that this field is set to a value
504 * sufficiently large such that the array slices in the surface
505 * do not overlap. Refer to the Memory Data Formats section for
506 * information on how surfaces are stored in memory.
507 *
508 * - This field specifies the distance in rows between array
509 * slices. It is used only in the following cases:
510 *
511 * - Surface Array is enabled OR
512 * - Number of Mulitsamples is not NUMSAMPLES_1 and
513 * Multisampled Surface Storage Format set to MSFMT_MSS OR
514 * - Surface Type is SURFTYPE_CUBE
515 */
516 return ISL_ARRAY_PITCH_SPAN_COMPACT;
517 } else if (ISL_DEV_GEN(dev) >= 7) {
518 /* Note that Ivybridge introduces
519 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
520 * driver more control over the QPitch.
521 */
522
523 if (phys_level0_sa->array_len == 1) {
524 /* The hardware will never use the QPitch. So choose the most
525 * compact QPitch possible in order to conserve memory.
526 */
527 return ISL_ARRAY_PITCH_SPAN_COMPACT;
528 }
529
530 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
531 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
532 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
533 * Section 6.18.4.7: Surface Arrays (p112):
534 *
535 * If Surface Array Spacing is set to ARYSPC_FULL (note that
536 * the depth buffer and stencil buffer have an implied value of
537 * ARYSPC_FULL):
538 */
539 return ISL_ARRAY_PITCH_SPAN_FULL;
540 }
541
542 if (info->levels == 1) {
543 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
544 * to ARYSPC_LOD0.
545 */
546 return ISL_ARRAY_PITCH_SPAN_COMPACT;
547 }
548
549 return ISL_ARRAY_PITCH_SPAN_FULL;
550 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
551 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
552 isl_surf_usage_is_stencil(info->usage)) {
553 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
554 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
555 *
556 * The separate stencil buffer does not support mip mapping, thus
557 * the storage for LODs other than LOD 0 is not needed.
558 */
559 assert(info->levels == 1);
560 return ISL_ARRAY_PITCH_SPAN_COMPACT;
561 } else {
562 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
563 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
564 isl_surf_usage_is_stencil(info->usage)) {
565 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
566 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
567 *
568 * The separate stencil buffer does not support mip mapping,
569 * thus the storage for LODs other than LOD 0 is not needed.
570 */
571 assert(info->levels == 1);
572 assert(phys_level0_sa->array_len == 1);
573 return ISL_ARRAY_PITCH_SPAN_COMPACT;
574 }
575
576 if (phys_level0_sa->array_len == 1) {
577 /* The hardware will never use the QPitch. So choose the most
578 * compact QPitch possible in order to conserve memory.
579 */
580 return ISL_ARRAY_PITCH_SPAN_COMPACT;
581 }
582
583 return ISL_ARRAY_PITCH_SPAN_FULL;
584 }
585
586 case ISL_DIM_LAYOUT_GEN4_3D:
587 /* The hardware will never use the QPitch. So choose the most
588 * compact QPitch possible in order to conserve memory.
589 */
590 return ISL_ARRAY_PITCH_SPAN_COMPACT;
591
592 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
593 /* Each array image in the gen6 stencil of HiZ surface is compact in the
594 * sense that every LOD is a compact array of the same size as LOD0.
595 */
596 return ISL_ARRAY_PITCH_SPAN_COMPACT;
597 }
598
599 unreachable("bad isl_dim_layout");
600 return ISL_ARRAY_PITCH_SPAN_FULL;
601 }
602
603 static void
604 isl_choose_image_alignment_el(const struct isl_device *dev,
605 const struct isl_surf_init_info *restrict info,
606 enum isl_tiling tiling,
607 enum isl_dim_layout dim_layout,
608 enum isl_msaa_layout msaa_layout,
609 struct isl_extent3d *image_align_el)
610 {
611 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
612 if (fmtl->txc == ISL_TXC_MCS) {
613 assert(tiling == ISL_TILING_Y0);
614
615 /*
616 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
617 *
618 * Height, width, and layout of MCS buffer in this case must match with
619 * Render Target height, width, and layout. MCS buffer is tiledY.
620 *
621 * To avoid wasting memory, choose the smallest alignment possible:
622 * HALIGN_4 and VALIGN_4.
623 */
624 *image_align_el = isl_extent3d(4, 4, 1);
625 return;
626 } else if (info->format == ISL_FORMAT_HIZ) {
627 assert(ISL_DEV_GEN(dev) >= 6);
628 if (ISL_DEV_GEN(dev) == 6) {
629 /* HiZ surfaces on Sandy Bridge are packed tightly. */
630 *image_align_el = isl_extent3d(1, 1, 1);
631 } else {
632 /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
633 * primary surface which works out to 2x2 HiZ elments.
634 */
635 *image_align_el = isl_extent3d(2, 2, 1);
636 }
637 return;
638 }
639
640 if (ISL_DEV_GEN(dev) >= 9) {
641 isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
642 msaa_layout, image_align_el);
643 } else if (ISL_DEV_GEN(dev) >= 8) {
644 isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
645 msaa_layout, image_align_el);
646 } else if (ISL_DEV_GEN(dev) >= 7) {
647 isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
648 msaa_layout, image_align_el);
649 } else if (ISL_DEV_GEN(dev) >= 6) {
650 isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
651 msaa_layout, image_align_el);
652 } else {
653 isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
654 msaa_layout, image_align_el);
655 }
656 }
657
658 static enum isl_dim_layout
659 isl_surf_choose_dim_layout(const struct isl_device *dev,
660 enum isl_surf_dim logical_dim,
661 enum isl_tiling tiling,
662 isl_surf_usage_flags_t usage)
663 {
664 /* Sandy bridge needs a special layout for HiZ and stencil. */
665 if (ISL_DEV_GEN(dev) == 6 &&
666 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
667 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
668
669 if (ISL_DEV_GEN(dev) >= 9) {
670 switch (logical_dim) {
671 case ISL_SURF_DIM_1D:
672 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
673 *
674 * One-dimensional surfaces use a tiling mode of linear.
675 * Technically, they are not tiled resources, but the Tiled
676 * Resource Mode field in RENDER_SURFACE_STATE is still used to
677 * indicate the alignment requirements for this linear surface
678 * (See 1D Alignment requirements for how 4K and 64KB Tiled
679 * Resource Modes impact alignment). Alternatively, a 1D surface
680 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
681 * a height of 0.
682 *
683 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
684 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
685 */
686 if (tiling == ISL_TILING_LINEAR)
687 return ISL_DIM_LAYOUT_GEN9_1D;
688 else
689 return ISL_DIM_LAYOUT_GEN4_2D;
690 case ISL_SURF_DIM_2D:
691 case ISL_SURF_DIM_3D:
692 return ISL_DIM_LAYOUT_GEN4_2D;
693 }
694 } else {
695 switch (logical_dim) {
696 case ISL_SURF_DIM_1D:
697 case ISL_SURF_DIM_2D:
698 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
699 *
700 * The cube face textures are stored in the same way as 3D surfaces
701 * are stored (see section 6.17.5 for details). For cube surfaces,
702 * however, the depth is equal to the number of faces (always 6) and
703 * is not reduced for each MIP.
704 */
705 if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
706 return ISL_DIM_LAYOUT_GEN4_3D;
707
708 return ISL_DIM_LAYOUT_GEN4_2D;
709 case ISL_SURF_DIM_3D:
710 return ISL_DIM_LAYOUT_GEN4_3D;
711 }
712 }
713
714 unreachable("bad isl_surf_dim");
715 return ISL_DIM_LAYOUT_GEN4_2D;
716 }
717
718 /**
719 * Calculate the physical extent of the surface's first level, in units of
720 * surface samples. The result is aligned to the format's compression block.
721 */
722 static void
723 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
724 const struct isl_surf_init_info *restrict info,
725 enum isl_dim_layout dim_layout,
726 enum isl_tiling tiling,
727 enum isl_msaa_layout msaa_layout,
728 struct isl_extent4d *phys_level0_sa)
729 {
730 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
731
732 if (isl_format_is_yuv(info->format))
733 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
734
735 switch (info->dim) {
736 case ISL_SURF_DIM_1D:
737 assert(info->height == 1);
738 assert(info->depth == 1);
739 assert(info->samples == 1);
740
741 switch (dim_layout) {
742 case ISL_DIM_LAYOUT_GEN4_3D:
743 unreachable("bad isl_dim_layout");
744
745 case ISL_DIM_LAYOUT_GEN9_1D:
746 case ISL_DIM_LAYOUT_GEN4_2D:
747 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
748 *phys_level0_sa = (struct isl_extent4d) {
749 .w = isl_align_npot(info->width, fmtl->bw),
750 .h = fmtl->bh,
751 .d = 1,
752 .a = info->array_len,
753 };
754 break;
755 }
756 break;
757
758 case ISL_SURF_DIM_2D:
759 if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
760 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
761 else
762 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
763 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
764
765 if (tiling == ISL_TILING_Ys && info->samples > 1)
766 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
767
768 switch (msaa_layout) {
769 case ISL_MSAA_LAYOUT_NONE:
770 assert(info->depth == 1);
771 assert(info->samples == 1);
772
773 *phys_level0_sa = (struct isl_extent4d) {
774 .w = isl_align_npot(info->width, fmtl->bw),
775 .h = isl_align_npot(info->height, fmtl->bh),
776 .d = 1,
777 .a = info->array_len,
778 };
779 break;
780
781 case ISL_MSAA_LAYOUT_ARRAY:
782 assert(info->depth == 1);
783 assert(info->levels == 1);
784 assert(isl_format_supports_multisampling(dev->info, info->format));
785 assert(fmtl->bw == 1 && fmtl->bh == 1);
786
787 *phys_level0_sa = (struct isl_extent4d) {
788 .w = info->width,
789 .h = info->height,
790 .d = 1,
791 .a = info->array_len * info->samples,
792 };
793 break;
794
795 case ISL_MSAA_LAYOUT_INTERLEAVED:
796 assert(info->depth == 1);
797 assert(info->levels == 1);
798 assert(isl_format_supports_multisampling(dev->info, info->format));
799
800 *phys_level0_sa = (struct isl_extent4d) {
801 .w = info->width,
802 .h = info->height,
803 .d = 1,
804 .a = info->array_len,
805 };
806
807 isl_msaa_interleaved_scale_px_to_sa(info->samples,
808 &phys_level0_sa->w,
809 &phys_level0_sa->h);
810
811 phys_level0_sa->w = isl_align(phys_level0_sa->w, fmtl->bw);
812 phys_level0_sa->h = isl_align(phys_level0_sa->h, fmtl->bh);
813 break;
814 }
815 break;
816
817 case ISL_SURF_DIM_3D:
818 assert(info->array_len == 1);
819 assert(info->samples == 1);
820
821 if (fmtl->bd > 1) {
822 isl_finishme("%s:%s: compression block with depth > 1",
823 __FILE__, __func__);
824 }
825
826 switch (dim_layout) {
827 case ISL_DIM_LAYOUT_GEN9_1D:
828 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
829 unreachable("bad isl_dim_layout");
830
831 case ISL_DIM_LAYOUT_GEN4_2D:
832 assert(ISL_DEV_GEN(dev) >= 9);
833
834 *phys_level0_sa = (struct isl_extent4d) {
835 .w = isl_align_npot(info->width, fmtl->bw),
836 .h = isl_align_npot(info->height, fmtl->bh),
837 .d = 1,
838 .a = info->depth,
839 };
840 break;
841
842 case ISL_DIM_LAYOUT_GEN4_3D:
843 assert(ISL_DEV_GEN(dev) < 9);
844 *phys_level0_sa = (struct isl_extent4d) {
845 .w = isl_align(info->width, fmtl->bw),
846 .h = isl_align(info->height, fmtl->bh),
847 .d = info->depth,
848 .a = 1,
849 };
850 break;
851 }
852 break;
853 }
854 }
855
856 /**
857 * Calculate the pitch between physical array slices, in units of rows of
858 * surface elements.
859 */
860 static uint32_t
861 isl_calc_array_pitch_el_rows_gen4_2d(
862 const struct isl_device *dev,
863 const struct isl_surf_init_info *restrict info,
864 const struct isl_tile_info *tile_info,
865 const struct isl_extent3d *image_align_sa,
866 const struct isl_extent4d *phys_level0_sa,
867 enum isl_array_pitch_span array_pitch_span,
868 const struct isl_extent2d *phys_slice0_sa)
869 {
870 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
871 uint32_t pitch_sa_rows = 0;
872
873 switch (array_pitch_span) {
874 case ISL_ARRAY_PITCH_SPAN_COMPACT:
875 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
876 break;
877 case ISL_ARRAY_PITCH_SPAN_FULL: {
878 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
879 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
880 * Surfaces >> Surface Arrays.
881 */
882 uint32_t H0_sa = phys_level0_sa->h;
883 uint32_t H1_sa = isl_minify(H0_sa, 1);
884
885 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
886 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
887
888 uint32_t m;
889 if (ISL_DEV_GEN(dev) >= 7) {
890 /* The QPitch equation changed slightly in Ivybridge. */
891 m = 12;
892 } else {
893 m = 11;
894 }
895
896 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
897
898 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
899 (info->height % 4 == 1)) {
900 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
901 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
902 *
903 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
904 * the value calculated in the equation above , for every
905 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
906 *
907 * XXX(chadv): Is the errata natural corollary of the physical
908 * layout of interleaved samples?
909 */
910 pitch_sa_rows += 4;
911 }
912
913 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
914 } /* end case */
915 break;
916 }
917
918 assert(pitch_sa_rows % fmtl->bh == 0);
919 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
920
921 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
922 /*
923 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
924 *
925 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
926 * layout with these alignments in the RT space: Horizontal
927 * Alignment = 128 and Vertical Alignment = 64."
928 *
929 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
930 *
931 * "For non-multisampled render target's CCS auxiliary surface,
932 * QPitch must be computed with Horizontal Alignment = 128 and
933 * Surface Vertical Alignment = 256. These alignments are only for
934 * CCS buffer and not for associated render target."
935 *
936 * The first restriction is already handled by isl_choose_image_alignment_el
937 * but the second restriction, which is an extension of the first, only
938 * applies to qpitch and must be applied here.
939 */
940 assert(fmtl->bh == 4);
941 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
942 }
943
944 if (ISL_DEV_GEN(dev) >= 9 &&
945 info->dim == ISL_SURF_DIM_3D &&
946 tile_info->tiling != ISL_TILING_LINEAR) {
947 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
948 *
949 * Tile Mode != Linear: This field must be set to an integer multiple
950 * of the tile height
951 */
952 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
953 }
954
955 return pitch_el_rows;
956 }
957
958 /**
959 * A variant of isl_calc_phys_slice0_extent_sa() specific to
960 * ISL_DIM_LAYOUT_GEN4_2D.
961 */
962 static void
963 isl_calc_phys_slice0_extent_sa_gen4_2d(
964 const struct isl_device *dev,
965 const struct isl_surf_init_info *restrict info,
966 enum isl_msaa_layout msaa_layout,
967 const struct isl_extent3d *image_align_sa,
968 const struct isl_extent4d *phys_level0_sa,
969 struct isl_extent2d *phys_slice0_sa)
970 {
971 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
972
973 assert(phys_level0_sa->depth == 1);
974
975 if (info->levels == 1) {
976 /* Do not pad the surface to the image alignment. Instead, pad it only
977 * to the pixel format's block alignment.
978 *
979 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
980 * cycles on the below mipmap layout caluclations. Reducing the
981 * alignment here is safe because we later align the row pitch and array
982 * pitch to the tile boundary. It is safe even for
983 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
984 * to accomodate the interleaved samples.
985 *
986 * For linear surfaces, reducing the alignment here permits us to later
987 * choose an arbitrary, non-aligned row pitch. If the surface backs
988 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
989 * VkBufferImageCopy::bufferRowLength.
990 */
991 *phys_slice0_sa = (struct isl_extent2d) {
992 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
993 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
994 };
995 return;
996 }
997
998 uint32_t slice_top_w = 0;
999 uint32_t slice_bottom_w = 0;
1000 uint32_t slice_left_h = 0;
1001 uint32_t slice_right_h = 0;
1002
1003 uint32_t W0 = phys_level0_sa->w;
1004 uint32_t H0 = phys_level0_sa->h;
1005
1006 for (uint32_t l = 0; l < info->levels; ++l) {
1007 uint32_t W = isl_minify(W0, l);
1008 uint32_t H = isl_minify(H0, l);
1009
1010 uint32_t w = isl_align_npot(W, image_align_sa->w);
1011 uint32_t h = isl_align_npot(H, image_align_sa->h);
1012
1013 if (l == 0) {
1014 slice_top_w = w;
1015 slice_left_h = h;
1016 slice_right_h = h;
1017 } else if (l == 1) {
1018 slice_bottom_w = w;
1019 slice_left_h += h;
1020 } else if (l == 2) {
1021 slice_bottom_w += w;
1022 slice_right_h += h;
1023 } else {
1024 slice_right_h += h;
1025 }
1026 }
1027
1028 *phys_slice0_sa = (struct isl_extent2d) {
1029 .w = MAX(slice_top_w, slice_bottom_w),
1030 .h = MAX(slice_left_h, slice_right_h),
1031 };
1032 }
1033
1034 static void
1035 isl_calc_phys_total_extent_el_gen4_2d(
1036 const struct isl_device *dev,
1037 const struct isl_surf_init_info *restrict info,
1038 const struct isl_tile_info *tile_info,
1039 enum isl_msaa_layout msaa_layout,
1040 const struct isl_extent3d *image_align_sa,
1041 const struct isl_extent4d *phys_level0_sa,
1042 enum isl_array_pitch_span array_pitch_span,
1043 uint32_t *array_pitch_el_rows,
1044 struct isl_extent2d *total_extent_el)
1045 {
1046 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1047
1048 struct isl_extent2d phys_slice0_sa;
1049 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
1050 image_align_sa, phys_level0_sa,
1051 &phys_slice0_sa);
1052 *array_pitch_el_rows =
1053 isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
1054 image_align_sa, phys_level0_sa,
1055 array_pitch_span,
1056 &phys_slice0_sa);
1057 *total_extent_el = (struct isl_extent2d) {
1058 .w = isl_assert_div(phys_slice0_sa.w, fmtl->bw),
1059 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
1060 isl_assert_div(phys_slice0_sa.h, fmtl->bh),
1061 };
1062 }
1063
1064 /**
1065 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1066 * ISL_DIM_LAYOUT_GEN4_3D.
1067 */
1068 static void
1069 isl_calc_phys_total_extent_el_gen4_3d(
1070 const struct isl_device *dev,
1071 const struct isl_surf_init_info *restrict info,
1072 const struct isl_extent3d *image_align_sa,
1073 const struct isl_extent4d *phys_level0_sa,
1074 uint32_t *array_pitch_el_rows,
1075 struct isl_extent2d *phys_total_el)
1076 {
1077 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1078
1079 assert(info->samples == 1);
1080
1081 if (info->dim != ISL_SURF_DIM_3D) {
1082 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1083 *
1084 * The cube face textures are stored in the same way as 3D surfaces
1085 * are stored (see section 6.17.5 for details). For cube surfaces,
1086 * however, the depth is equal to the number of faces (always 6) and
1087 * is not reduced for each MIP.
1088 */
1089 assert(ISL_DEV_GEN(dev) == 4);
1090 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1091 assert(phys_level0_sa->array_len == 6);
1092 } else {
1093 assert(phys_level0_sa->array_len == 1);
1094 }
1095
1096 uint32_t total_w = 0;
1097 uint32_t total_h = 0;
1098
1099 uint32_t W0 = phys_level0_sa->w;
1100 uint32_t H0 = phys_level0_sa->h;
1101 uint32_t D0 = phys_level0_sa->d;
1102 uint32_t A0 = phys_level0_sa->a;
1103
1104 for (uint32_t l = 0; l < info->levels; ++l) {
1105 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1106 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1107 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1108
1109 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1110 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1111
1112 total_w = MAX(total_w, level_w * max_layers_horiz);
1113 total_h += level_h * max_layers_vert;
1114 }
1115
1116 /* GEN4_3D layouts don't really have an array pitch since each LOD has a
1117 * different number of horizontal and vertical layers. We have to set it
1118 * to something, so at least make it true for LOD0.
1119 */
1120 *array_pitch_el_rows =
1121 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1122 *phys_total_el = (struct isl_extent2d) {
1123 .w = isl_assert_div(total_w, fmtl->bw),
1124 .h = isl_assert_div(total_h, fmtl->bh),
1125 };
1126 }
1127
1128 /**
1129 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1130 * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
1131 */
1132 static void
1133 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
1134 const struct isl_device *dev,
1135 const struct isl_surf_init_info *restrict info,
1136 const struct isl_tile_info *tile_info,
1137 const struct isl_extent3d *image_align_sa,
1138 const struct isl_extent4d *phys_level0_sa,
1139 uint32_t *array_pitch_el_rows,
1140 struct isl_extent2d *phys_total_el)
1141 {
1142 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1143
1144 const struct isl_extent2d tile_extent_sa = {
1145 .w = tile_info->logical_extent_el.w * fmtl->bw,
1146 .h = tile_info->logical_extent_el.h * fmtl->bh,
1147 };
1148 /* Tile size is a multiple of image alignment */
1149 assert(tile_extent_sa.w % image_align_sa->w == 0);
1150 assert(tile_extent_sa.h % image_align_sa->h == 0);
1151
1152 const uint32_t W0 = phys_level0_sa->w;
1153 const uint32_t H0 = phys_level0_sa->h;
1154
1155 /* Each image has the same height as LOD0 because the hardware thinks
1156 * everything is LOD0
1157 */
1158 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1159
1160 uint32_t total_top_w = 0;
1161 uint32_t total_bottom_w = 0;
1162 uint32_t total_h = 0;
1163
1164 for (uint32_t l = 0; l < info->levels; ++l) {
1165 const uint32_t W = isl_minify(W0, l);
1166
1167 const uint32_t w = isl_align(W, tile_extent_sa.w);
1168 const uint32_t h = isl_align(H, tile_extent_sa.h);
1169
1170 if (l == 0) {
1171 total_top_w = w;
1172 total_h = h;
1173 } else if (l == 1) {
1174 total_bottom_w = w;
1175 total_h += h;
1176 } else {
1177 total_bottom_w += w;
1178 }
1179 }
1180
1181 *array_pitch_el_rows =
1182 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1183 *phys_total_el = (struct isl_extent2d) {
1184 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1185 .h = isl_assert_div(total_h, fmtl->bh),
1186 };
1187 }
1188
1189 /**
1190 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1191 * ISL_DIM_LAYOUT_GEN9_1D.
1192 */
1193 static void
1194 isl_calc_phys_total_extent_el_gen9_1d(
1195 const struct isl_device *dev,
1196 const struct isl_surf_init_info *restrict info,
1197 const struct isl_extent3d *image_align_sa,
1198 const struct isl_extent4d *phys_level0_sa,
1199 uint32_t *array_pitch_el_rows,
1200 struct isl_extent2d *phys_total_el)
1201 {
1202 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1203
1204 assert(phys_level0_sa->height / fmtl->bh == 1);
1205 assert(phys_level0_sa->depth == 1);
1206 assert(info->samples == 1);
1207 assert(image_align_sa->w >= fmtl->bw);
1208
1209 uint32_t slice_w = 0;
1210 const uint32_t W0 = phys_level0_sa->w;
1211
1212 for (uint32_t l = 0; l < info->levels; ++l) {
1213 uint32_t W = isl_minify(W0, l);
1214 uint32_t w = isl_align_npot(W, image_align_sa->w);
1215
1216 slice_w += w;
1217 }
1218
1219 *array_pitch_el_rows = 1;
1220 *phys_total_el = (struct isl_extent2d) {
1221 .w = isl_assert_div(slice_w, fmtl->bw),
1222 .h = phys_level0_sa->array_len,
1223 };
1224 }
1225
1226 /**
1227 * Calculate the two-dimensional total physical extent of the surface, in
1228 * units of surface elements.
1229 */
1230 static void
1231 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1232 const struct isl_surf_init_info *restrict info,
1233 const struct isl_tile_info *tile_info,
1234 enum isl_dim_layout dim_layout,
1235 enum isl_msaa_layout msaa_layout,
1236 const struct isl_extent3d *image_align_sa,
1237 const struct isl_extent4d *phys_level0_sa,
1238 enum isl_array_pitch_span array_pitch_span,
1239 uint32_t *array_pitch_el_rows,
1240 struct isl_extent2d *total_extent_el)
1241 {
1242 switch (dim_layout) {
1243 case ISL_DIM_LAYOUT_GEN9_1D:
1244 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1245 isl_calc_phys_total_extent_el_gen9_1d(dev, info,
1246 image_align_sa, phys_level0_sa,
1247 array_pitch_el_rows,
1248 total_extent_el);
1249 return;
1250 case ISL_DIM_LAYOUT_GEN4_2D:
1251 isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
1252 image_align_sa, phys_level0_sa,
1253 array_pitch_span,
1254 array_pitch_el_rows,
1255 total_extent_el);
1256 return;
1257 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
1258 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1259 isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
1260 image_align_sa,
1261 phys_level0_sa,
1262 array_pitch_el_rows,
1263 total_extent_el);
1264 return;
1265 case ISL_DIM_LAYOUT_GEN4_3D:
1266 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1267 isl_calc_phys_total_extent_el_gen4_3d(dev, info,
1268 image_align_sa, phys_level0_sa,
1269 array_pitch_el_rows,
1270 total_extent_el);
1271 return;
1272 }
1273 }
1274
1275 static uint32_t
1276 isl_calc_row_pitch_alignment(const struct isl_surf_init_info *surf_info,
1277 const struct isl_tile_info *tile_info)
1278 {
1279 if (tile_info->tiling != ISL_TILING_LINEAR)
1280 return tile_info->phys_extent_B.width;
1281
1282 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1283 * RENDER_SURFACE_STATE Surface Pitch (p349):
1284 *
1285 * - For linear render target surfaces and surfaces accessed with the
1286 * typed data port messages, the pitch must be a multiple of the
1287 * element size for non-YUV surface formats. Pitch must be
1288 * a multiple of 2 * element size for YUV surface formats.
1289 *
1290 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1291 * ignore because isl doesn't do buffers.]
1292 *
1293 * - For other linear surfaces, the pitch can be any multiple of
1294 * bytes.
1295 */
1296 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1297 const uint32_t bs = fmtl->bpb / 8;
1298
1299 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1300 if (isl_format_is_yuv(surf_info->format)) {
1301 return 2 * bs;
1302 } else {
1303 return bs;
1304 }
1305 }
1306
1307 return 1;
1308 }
1309
1310 static uint32_t
1311 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1312 const struct isl_surf_init_info *info,
1313 const struct isl_extent2d *phys_total_el,
1314 uint32_t alignment_B)
1315 {
1316 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1317 const uint32_t bs = fmtl->bpb / 8;
1318
1319 return isl_align_npot(bs * phys_total_el->w, alignment_B);
1320 }
1321
1322 static uint32_t
1323 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1324 const struct isl_surf_init_info *surf_info,
1325 const struct isl_tile_info *tile_info,
1326 const struct isl_extent2d *phys_total_el,
1327 uint32_t alignment_B)
1328 {
1329 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1330
1331 assert(fmtl->bpb % tile_info->format_bpb == 0);
1332
1333 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1334 const uint32_t total_w_tl =
1335 isl_align_div(phys_total_el->w * tile_el_scale,
1336 tile_info->logical_extent_el.width);
1337
1338 assert(alignment_B == tile_info->phys_extent_B.width);
1339 return total_w_tl * tile_info->phys_extent_B.width;
1340 }
1341
1342 static uint32_t
1343 isl_calc_min_row_pitch(const struct isl_device *dev,
1344 const struct isl_surf_init_info *surf_info,
1345 const struct isl_tile_info *tile_info,
1346 const struct isl_extent2d *phys_total_el,
1347 uint32_t alignment_B)
1348 {
1349 if (tile_info->tiling == ISL_TILING_LINEAR) {
1350 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1351 alignment_B);
1352 } else {
1353 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1354 phys_total_el, alignment_B);
1355 }
1356 }
1357
1358 /**
1359 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1360 * size is `bits` bits?
1361 *
1362 * Hardware pitch fields are offset by 1. For example, if the size of
1363 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1364 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1365 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1366 */
1367 static bool
1368 pitch_in_range(uint32_t n, uint32_t bits)
1369 {
1370 assert(n != 0);
1371 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1372 }
1373
1374 static bool
1375 isl_calc_row_pitch(const struct isl_device *dev,
1376 const struct isl_surf_init_info *surf_info,
1377 const struct isl_tile_info *tile_info,
1378 enum isl_dim_layout dim_layout,
1379 const struct isl_extent2d *phys_total_el,
1380 uint32_t *out_row_pitch_B)
1381 {
1382 uint32_t alignment_B =
1383 isl_calc_row_pitch_alignment(surf_info, tile_info);
1384
1385 const uint32_t min_row_pitch_B =
1386 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1387 alignment_B);
1388
1389 uint32_t row_pitch_B = min_row_pitch_B;
1390
1391 if (surf_info->row_pitch_B != 0) {
1392 row_pitch_B = surf_info->row_pitch_B;
1393
1394 if (row_pitch_B < min_row_pitch_B)
1395 return false;
1396
1397 if (row_pitch_B % alignment_B != 0)
1398 return false;
1399 }
1400
1401 const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width;
1402
1403 if (row_pitch_B == 0)
1404 return false;
1405
1406 if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
1407 /* SurfacePitch is ignored for this layout. */
1408 goto done;
1409 }
1410
1411 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1412 ISL_SURF_USAGE_TEXTURE_BIT |
1413 ISL_SURF_USAGE_STORAGE_BIT)) &&
1414 !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1415 return false;
1416
1417 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1418 ISL_SURF_USAGE_MCS_BIT)) &&
1419 !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1420 return false;
1421
1422 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1423 !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1424 return false;
1425
1426 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1427 !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1428 return false;
1429
1430 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1431 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1432 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1433
1434 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1435 !pitch_in_range(row_pitch_B, stencil_pitch_bits))
1436 return false;
1437
1438 done:
1439 *out_row_pitch_B = row_pitch_B;
1440 return true;
1441 }
1442
1443 bool
1444 isl_surf_init_s(const struct isl_device *dev,
1445 struct isl_surf *surf,
1446 const struct isl_surf_init_info *restrict info)
1447 {
1448 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1449
1450 const struct isl_extent4d logical_level0_px = {
1451 .w = info->width,
1452 .h = info->height,
1453 .d = info->depth,
1454 .a = info->array_len,
1455 };
1456
1457 enum isl_tiling tiling;
1458 if (!isl_surf_choose_tiling(dev, info, &tiling))
1459 return false;
1460
1461 struct isl_tile_info tile_info;
1462 isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
1463
1464 const enum isl_dim_layout dim_layout =
1465 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1466
1467 enum isl_msaa_layout msaa_layout;
1468 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1469 return false;
1470
1471 struct isl_extent3d image_align_el;
1472 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1473 &image_align_el);
1474
1475 struct isl_extent3d image_align_sa =
1476 isl_extent3d_el_to_sa(info->format, image_align_el);
1477
1478 struct isl_extent4d phys_level0_sa;
1479 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1480 &phys_level0_sa);
1481 assert(phys_level0_sa.w % fmtl->bw == 0);
1482 assert(phys_level0_sa.h % fmtl->bh == 0);
1483
1484 enum isl_array_pitch_span array_pitch_span =
1485 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1486
1487 uint32_t array_pitch_el_rows;
1488 struct isl_extent2d phys_total_el;
1489 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1490 dim_layout, msaa_layout,
1491 &image_align_sa, &phys_level0_sa,
1492 array_pitch_span, &array_pitch_el_rows,
1493 &phys_total_el);
1494
1495 uint32_t row_pitch_B;
1496 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1497 &phys_total_el, &row_pitch_B))
1498 return false;
1499
1500 uint32_t base_alignment_B;
1501 uint64_t size_B;
1502 if (tiling == ISL_TILING_LINEAR) {
1503 size_B = (uint64_t) row_pitch_B * phys_total_el.h;
1504
1505 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1506 *
1507 * "The Base Address for linear render target surfaces and surfaces
1508 * accessed with the typed surface read/write data port messages must
1509 * be element-size aligned, for non-YUV surface formats, or a
1510 * multiple of 2 element-sizes for YUV surface formats. Other linear
1511 * surfaces have no alignment requirements (byte alignment is
1512 * sufficient.)"
1513 */
1514 base_alignment_B = MAX(1, info->min_alignment_B);
1515 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1516 if (isl_format_is_yuv(info->format)) {
1517 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 4);
1518 } else {
1519 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 8);
1520 }
1521 }
1522 base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B);
1523
1524 /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride:
1525 *
1526 * "For Linear memory, this field specifies the stride in chunks of
1527 * 64 bytes (1 cache line)."
1528 */
1529 if (isl_surf_usage_is_display(info->usage))
1530 base_alignment_B = MAX(base_alignment_B, 64);
1531 } else {
1532 const uint32_t total_h_tl =
1533 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1534
1535 size_B = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch_B;
1536
1537 const uint32_t tile_size_B = tile_info.phys_extent_B.width *
1538 tile_info.phys_extent_B.height;
1539 assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B));
1540 base_alignment_B = MAX(info->min_alignment_B, tile_size_B);
1541 }
1542
1543 if (ISL_DEV_GEN(dev) < 9) {
1544 /* From the Broadwell PRM Vol 5, Surface Layout:
1545 *
1546 * "In addition to restrictions on maximum height, width, and depth,
1547 * surfaces are also restricted to a maximum size in bytes. This
1548 * maximum is 2 GB for all products and all surface types."
1549 *
1550 * This comment is applicable to all Pre-gen9 platforms.
1551 */
1552 if (size_B > (uint64_t) 1 << 31)
1553 return false;
1554 } else if (ISL_DEV_GEN(dev) < 11) {
1555 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1556 * "In addition to restrictions on maximum height, width, and depth,
1557 * surfaces are also restricted to a maximum size of 2^38 bytes.
1558 * All pixels within the surface must be contained within 2^38 bytes
1559 * of the base address."
1560 */
1561 if (size_B > (uint64_t) 1 << 38)
1562 return false;
1563 } else {
1564 /* gen11+ platforms raised this limit to 2^44 bytes. */
1565 if (size_B > (uint64_t) 1 << 44)
1566 return false;
1567 }
1568
1569 *surf = (struct isl_surf) {
1570 .dim = info->dim,
1571 .dim_layout = dim_layout,
1572 .msaa_layout = msaa_layout,
1573 .tiling = tiling,
1574 .format = info->format,
1575
1576 .levels = info->levels,
1577 .samples = info->samples,
1578
1579 .image_alignment_el = image_align_el,
1580 .logical_level0_px = logical_level0_px,
1581 .phys_level0_sa = phys_level0_sa,
1582
1583 .size_B = size_B,
1584 .alignment_B = base_alignment_B,
1585 .row_pitch_B = row_pitch_B,
1586 .array_pitch_el_rows = array_pitch_el_rows,
1587 .array_pitch_span = array_pitch_span,
1588
1589 .usage = info->usage,
1590 };
1591
1592 return true;
1593 }
1594
1595 void
1596 isl_surf_get_tile_info(const struct isl_surf *surf,
1597 struct isl_tile_info *tile_info)
1598 {
1599 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1600 isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
1601 }
1602
1603 bool
1604 isl_surf_get_hiz_surf(const struct isl_device *dev,
1605 const struct isl_surf *surf,
1606 struct isl_surf *hiz_surf)
1607 {
1608 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1609
1610 /* Multisampled depth is always interleaved */
1611 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1612 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1613
1614 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
1615 *
1616 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
1617 * Target View Extent, and Depth Coordinate Offset X/Y of the
1618 * hierarchical depth buffer are inherited from the depth buffer. The
1619 * height and width of the hierarchical depth buffer that must be
1620 * allocated are computed by the following formulas, where HZ is the
1621 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
1622 * Z_Width, and Z_Depth values given in these formulas are those present
1623 * in 3DSTATE_DEPTH_BUFFER incremented by one.
1624 *
1625 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
1626 * being applied to the table below if Number of Multisamples is set to
1627 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
1628 * Z_Width must be multiplied by 4 before being applied to the table
1629 * below if Number of Multisamples is set to NUMSAMPLES_8."
1630 *
1631 * In the Sky Lake PRM, the second paragraph is replaced with this:
1632 *
1633 * "The Z_Height and Z_Width values must equal those present in
1634 * 3DSTATE_DEPTH_BUFFER incremented by one."
1635 *
1636 * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
1637 * block corresponds to a region of 8x4 samples in the primary depth
1638 * surface. On Sky Lake, on the other hand, each HiZ block corresponds to
1639 * a region of 8x4 pixels in the primary depth surface regardless of the
1640 * number of samples. The dimensions of a HiZ block in both pixels and
1641 * samples are given in the table below:
1642 *
1643 * | SNB - BDW | SKL+
1644 * ------+-----------+-------------
1645 * 1x | 8 x 4 sa | 8 x 4 sa
1646 * MSAA | 8 x 4 px | 8 x 4 px
1647 * ------+-----------+-------------
1648 * 2x | 8 x 4 sa | 16 x 4 sa
1649 * MSAA | 4 x 4 px | 8 x 4 px
1650 * ------+-----------+-------------
1651 * 4x | 8 x 4 sa | 16 x 8 sa
1652 * MSAA | 4 x 2 px | 8 x 4 px
1653 * ------+-----------+-------------
1654 * 8x | 8 x 4 sa | 32 x 8 sa
1655 * MSAA | 2 x 2 px | 8 x 4 px
1656 * ------+-----------+-------------
1657 * 16x | N/A | 32 x 16 sa
1658 * MSAA | N/A | 8 x 4 px
1659 * ------+-----------+-------------
1660 *
1661 * There are a number of different ways that this discrepency could be
1662 * handled. The way we have chosen is to simply make MSAA HiZ have the
1663 * same number of samples as the parent surface pre-Sky Lake and always be
1664 * single-sampled on Sky Lake and above. Since the block sizes of
1665 * compressed formats are given in samples, this neatly handles everything
1666 * without the need for additional HiZ formats with different block sizes
1667 * on SKL+.
1668 */
1669 const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
1670
1671 return isl_surf_init(dev, hiz_surf,
1672 .dim = surf->dim,
1673 .format = ISL_FORMAT_HIZ,
1674 .width = surf->logical_level0_px.width,
1675 .height = surf->logical_level0_px.height,
1676 .depth = surf->logical_level0_px.depth,
1677 .levels = surf->levels,
1678 .array_len = surf->logical_level0_px.array_len,
1679 .samples = samples,
1680 .usage = ISL_SURF_USAGE_HIZ_BIT,
1681 .tiling_flags = ISL_TILING_HIZ_BIT);
1682 }
1683
1684 bool
1685 isl_surf_get_mcs_surf(const struct isl_device *dev,
1686 const struct isl_surf *surf,
1687 struct isl_surf *mcs_surf)
1688 {
1689 /* The following are true of all multisampled surfaces */
1690 assert(surf->samples > 1);
1691 assert(surf->dim == ISL_SURF_DIM_2D);
1692 assert(surf->levels == 1);
1693 assert(surf->logical_level0_px.depth == 1);
1694
1695 /* It must be multisampled with an array layout */
1696 if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY)
1697 return false;
1698
1699 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
1700 *
1701 * This field must be set to 0 for all SINT MSRTs when all RT channels
1702 * are not written
1703 *
1704 * In practice this means that we have to disable MCS for all signed
1705 * integer MSAA buffers. The alternative, to disable MCS only when one
1706 * of the render target channels is disabled, is impractical because it
1707 * would require converting between CMS and UMS MSAA layouts on the fly,
1708 * which is expensive.
1709 */
1710 if (ISL_DEV_GEN(dev) == 7 && isl_format_has_sint_channel(surf->format))
1711 return false;
1712
1713 /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
1714 * bits which means the maximum pitch of a compression surface is 512
1715 * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is
1716 * 64bpp, this gives us a maximum width of 8192 pixels. We can create
1717 * larger multisampled surfaces, we just can't compress them. For 2x, 4x,
1718 * and 8x, we have enough room for the full 16k supported by the hardware.
1719 */
1720 if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
1721 return false;
1722
1723 enum isl_format mcs_format;
1724 switch (surf->samples) {
1725 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1726 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1727 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1728 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1729 default:
1730 unreachable("Invalid sample count");
1731 }
1732
1733 return isl_surf_init(dev, mcs_surf,
1734 .dim = ISL_SURF_DIM_2D,
1735 .format = mcs_format,
1736 .width = surf->logical_level0_px.width,
1737 .height = surf->logical_level0_px.height,
1738 .depth = 1,
1739 .levels = 1,
1740 .array_len = surf->logical_level0_px.array_len,
1741 .samples = 1, /* MCS surfaces are really single-sampled */
1742 .usage = ISL_SURF_USAGE_MCS_BIT,
1743 .tiling_flags = ISL_TILING_Y0_BIT);
1744 }
1745
1746 bool
1747 isl_surf_get_ccs_surf(const struct isl_device *dev,
1748 const struct isl_surf *surf,
1749 struct isl_surf *ccs_surf,
1750 uint32_t row_pitch_B)
1751 {
1752 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1753 assert(ISL_DEV_GEN(dev) >= 7);
1754
1755 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
1756 return false;
1757
1758 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
1759 * work for 3D textures until gen9 where the layout of 3D textures changes
1760 * to match 2D array textures.
1761 */
1762 if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
1763 return false;
1764
1765 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
1766 * Non-MultiSampler Render Target Restrictions):
1767 *
1768 * "Support is for non-mip-mapped and non-array surface types only."
1769 *
1770 * This restriction is lifted on gen8+. Technically, it may be possible to
1771 * create a CCS for an arrayed or mipmapped image and only enable CCS_D
1772 * when rendering to the base slice. However, there is no documentation
1773 * tell us what the hardware would do in that case or what it does if you
1774 * walk off the bases slice. (Does it ignore CCS or does it start
1775 * scribbling over random memory?) We play it safe and just follow the
1776 * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
1777 */
1778 if (ISL_DEV_GEN(dev) <= 7 &&
1779 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
1780 return false;
1781
1782 if (isl_format_is_compressed(surf->format))
1783 return false;
1784
1785 /* TODO: More conditions where it can fail. */
1786
1787 enum isl_format ccs_format;
1788 if (ISL_DEV_GEN(dev) >= 9) {
1789 if (!isl_tiling_is_any_y(surf->tiling))
1790 return false;
1791
1792 switch (isl_format_get_layout(surf->format)->bpb) {
1793 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1794 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1795 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1796 default:
1797 return false;
1798 }
1799 } else if (surf->tiling == ISL_TILING_Y0) {
1800 switch (isl_format_get_layout(surf->format)->bpb) {
1801 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1802 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1803 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1804 default:
1805 return false;
1806 }
1807 } else if (surf->tiling == ISL_TILING_X) {
1808 switch (isl_format_get_layout(surf->format)->bpb) {
1809 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1810 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1811 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1812 default:
1813 return false;
1814 }
1815 } else {
1816 return false;
1817 }
1818
1819 return isl_surf_init(dev, ccs_surf,
1820 .dim = surf->dim,
1821 .format = ccs_format,
1822 .width = surf->logical_level0_px.width,
1823 .height = surf->logical_level0_px.height,
1824 .depth = surf->logical_level0_px.depth,
1825 .levels = surf->levels,
1826 .array_len = surf->logical_level0_px.array_len,
1827 .samples = 1,
1828 .row_pitch_B = row_pitch_B,
1829 .usage = ISL_SURF_USAGE_CCS_BIT,
1830 .tiling_flags = ISL_TILING_CCS_BIT);
1831 }
1832
1833 #define isl_genX_call(dev, func, ...) \
1834 switch (ISL_DEV_GEN(dev)) { \
1835 case 4: \
1836 /* G45 surface state is the same as gen5 */ \
1837 if (ISL_DEV_IS_G4X(dev)) { \
1838 isl_gen5_##func(__VA_ARGS__); \
1839 } else { \
1840 isl_gen4_##func(__VA_ARGS__); \
1841 } \
1842 break; \
1843 case 5: \
1844 isl_gen5_##func(__VA_ARGS__); \
1845 break; \
1846 case 6: \
1847 isl_gen6_##func(__VA_ARGS__); \
1848 break; \
1849 case 7: \
1850 if (ISL_DEV_IS_HASWELL(dev)) { \
1851 isl_gen75_##func(__VA_ARGS__); \
1852 } else { \
1853 isl_gen7_##func(__VA_ARGS__); \
1854 } \
1855 break; \
1856 case 8: \
1857 isl_gen8_##func(__VA_ARGS__); \
1858 break; \
1859 case 9: \
1860 isl_gen9_##func(__VA_ARGS__); \
1861 break; \
1862 case 10: \
1863 isl_gen10_##func(__VA_ARGS__); \
1864 break; \
1865 case 11: \
1866 isl_gen11_##func(__VA_ARGS__); \
1867 break; \
1868 default: \
1869 assert(!"Unknown hardware generation"); \
1870 }
1871
1872 void
1873 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1874 const struct isl_surf_fill_state_info *restrict info)
1875 {
1876 #ifndef NDEBUG
1877 isl_surf_usage_flags_t _base_usage =
1878 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1879 ISL_SURF_USAGE_TEXTURE_BIT |
1880 ISL_SURF_USAGE_STORAGE_BIT);
1881 /* They may only specify one of the above bits at a time */
1882 assert(__builtin_popcount(_base_usage) == 1);
1883 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1884 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1885 #endif
1886
1887 if (info->surf->dim == ISL_SURF_DIM_3D) {
1888 assert(info->view->base_array_layer + info->view->array_len <=
1889 info->surf->logical_level0_px.depth);
1890 } else {
1891 assert(info->view->base_array_layer + info->view->array_len <=
1892 info->surf->logical_level0_px.array_len);
1893 }
1894
1895 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
1896 }
1897
1898 void
1899 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1900 const struct isl_buffer_fill_state_info *restrict info)
1901 {
1902 isl_genX_call(dev, buffer_fill_state_s, state, info);
1903 }
1904
1905 void
1906 isl_null_fill_state(const struct isl_device *dev, void *state,
1907 struct isl_extent3d size)
1908 {
1909 isl_genX_call(dev, null_fill_state, state, size);
1910 }
1911
1912 void
1913 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
1914 const struct isl_depth_stencil_hiz_emit_info *restrict info)
1915 {
1916 if (info->depth_surf && info->stencil_surf) {
1917 if (!dev->info->has_hiz_and_separate_stencil) {
1918 assert(info->depth_surf == info->stencil_surf);
1919 assert(info->depth_address == info->stencil_address);
1920 }
1921 assert(info->depth_surf->dim == info->stencil_surf->dim);
1922 }
1923
1924 if (info->depth_surf) {
1925 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
1926 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
1927 assert(info->view->base_array_layer + info->view->array_len <=
1928 info->depth_surf->logical_level0_px.depth);
1929 } else {
1930 assert(info->view->base_array_layer + info->view->array_len <=
1931 info->depth_surf->logical_level0_px.array_len);
1932 }
1933 }
1934
1935 if (info->stencil_surf) {
1936 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
1937 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
1938 assert(info->view->base_array_layer + info->view->array_len <=
1939 info->stencil_surf->logical_level0_px.depth);
1940 } else {
1941 assert(info->view->base_array_layer + info->view->array_len <=
1942 info->stencil_surf->logical_level0_px.array_len);
1943 }
1944 }
1945
1946 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
1947 }
1948
1949 /**
1950 * A variant of isl_surf_get_image_offset_sa() specific to
1951 * ISL_DIM_LAYOUT_GEN4_2D.
1952 */
1953 static void
1954 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1955 uint32_t level, uint32_t logical_array_layer,
1956 uint32_t *x_offset_sa,
1957 uint32_t *y_offset_sa)
1958 {
1959 assert(level < surf->levels);
1960 if (surf->dim == ISL_SURF_DIM_3D)
1961 assert(logical_array_layer < surf->logical_level0_px.depth);
1962 else
1963 assert(logical_array_layer < surf->logical_level0_px.array_len);
1964
1965 const struct isl_extent3d image_align_sa =
1966 isl_surf_get_image_alignment_sa(surf);
1967
1968 const uint32_t W0 = surf->phys_level0_sa.width;
1969 const uint32_t H0 = surf->phys_level0_sa.height;
1970
1971 const uint32_t phys_layer = logical_array_layer *
1972 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1973
1974 uint32_t x = 0;
1975 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1976
1977 for (uint32_t l = 0; l < level; ++l) {
1978 if (l == 1) {
1979 uint32_t W = isl_minify(W0, l);
1980 x += isl_align_npot(W, image_align_sa.w);
1981 } else {
1982 uint32_t H = isl_minify(H0, l);
1983 y += isl_align_npot(H, image_align_sa.h);
1984 }
1985 }
1986
1987 *x_offset_sa = x;
1988 *y_offset_sa = y;
1989 }
1990
1991 /**
1992 * A variant of isl_surf_get_image_offset_sa() specific to
1993 * ISL_DIM_LAYOUT_GEN4_3D.
1994 */
1995 static void
1996 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1997 uint32_t level, uint32_t logical_z_offset_px,
1998 uint32_t *x_offset_sa,
1999 uint32_t *y_offset_sa)
2000 {
2001 assert(level < surf->levels);
2002 if (surf->dim == ISL_SURF_DIM_3D) {
2003 assert(surf->phys_level0_sa.array_len == 1);
2004 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
2005 } else {
2006 assert(surf->dim == ISL_SURF_DIM_2D);
2007 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
2008 assert(surf->phys_level0_sa.array_len == 6);
2009 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
2010 }
2011
2012 const struct isl_extent3d image_align_sa =
2013 isl_surf_get_image_alignment_sa(surf);
2014
2015 const uint32_t W0 = surf->phys_level0_sa.width;
2016 const uint32_t H0 = surf->phys_level0_sa.height;
2017 const uint32_t D0 = surf->phys_level0_sa.depth;
2018 const uint32_t AL = surf->phys_level0_sa.array_len;
2019
2020 uint32_t x = 0;
2021 uint32_t y = 0;
2022
2023 for (uint32_t l = 0; l < level; ++l) {
2024 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
2025 const uint32_t level_d =
2026 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
2027 image_align_sa.d);
2028 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
2029
2030 y += level_h * max_layers_vert;
2031 }
2032
2033 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
2034 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
2035 const uint32_t level_d =
2036 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
2037 image_align_sa.d);
2038
2039 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
2040
2041 x += level_w * (logical_z_offset_px % max_layers_horiz);
2042 y += level_h * (logical_z_offset_px / max_layers_horiz);
2043
2044 *x_offset_sa = x;
2045 *y_offset_sa = y;
2046 }
2047
2048 static void
2049 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
2050 uint32_t level,
2051 uint32_t logical_array_layer,
2052 uint32_t *x_offset_sa,
2053 uint32_t *y_offset_sa)
2054 {
2055 assert(level < surf->levels);
2056 assert(surf->logical_level0_px.depth == 1);
2057 assert(logical_array_layer < surf->logical_level0_px.array_len);
2058
2059 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2060
2061 const struct isl_extent3d image_align_sa =
2062 isl_surf_get_image_alignment_sa(surf);
2063
2064 struct isl_tile_info tile_info;
2065 isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
2066 const struct isl_extent2d tile_extent_sa = {
2067 .w = tile_info.logical_extent_el.w * fmtl->bw,
2068 .h = tile_info.logical_extent_el.h * fmtl->bh,
2069 };
2070 /* Tile size is a multiple of image alignment */
2071 assert(tile_extent_sa.w % image_align_sa.w == 0);
2072 assert(tile_extent_sa.h % image_align_sa.h == 0);
2073
2074 const uint32_t W0 = surf->phys_level0_sa.w;
2075 const uint32_t H0 = surf->phys_level0_sa.h;
2076
2077 /* Each image has the same height as LOD0 because the hardware thinks
2078 * everything is LOD0
2079 */
2080 const uint32_t H = isl_align(H0, image_align_sa.h);
2081
2082 /* Quick sanity check for consistency */
2083 if (surf->phys_level0_sa.array_len > 1)
2084 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2085
2086 uint32_t x = 0, y = 0;
2087 for (uint32_t l = 0; l < level; ++l) {
2088 const uint32_t W = isl_minify(W0, l);
2089
2090 const uint32_t w = isl_align(W, tile_extent_sa.w);
2091 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2092 tile_extent_sa.h);
2093
2094 if (l == 0) {
2095 y += h;
2096 } else {
2097 x += w;
2098 }
2099 }
2100
2101 y += H * logical_array_layer;
2102
2103 *x_offset_sa = x;
2104 *y_offset_sa = y;
2105 }
2106
2107 /**
2108 * A variant of isl_surf_get_image_offset_sa() specific to
2109 * ISL_DIM_LAYOUT_GEN9_1D.
2110 */
2111 static void
2112 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
2113 uint32_t level, uint32_t layer,
2114 uint32_t *x_offset_sa,
2115 uint32_t *y_offset_sa)
2116 {
2117 assert(level < surf->levels);
2118 assert(layer < surf->phys_level0_sa.array_len);
2119 assert(surf->phys_level0_sa.height == 1);
2120 assert(surf->phys_level0_sa.depth == 1);
2121 assert(surf->samples == 1);
2122
2123 const uint32_t W0 = surf->phys_level0_sa.width;
2124 const struct isl_extent3d image_align_sa =
2125 isl_surf_get_image_alignment_sa(surf);
2126
2127 uint32_t x = 0;
2128
2129 for (uint32_t l = 0; l < level; ++l) {
2130 uint32_t W = isl_minify(W0, l);
2131 uint32_t w = isl_align_npot(W, image_align_sa.w);
2132
2133 x += w;
2134 }
2135
2136 *x_offset_sa = x;
2137 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2138 }
2139
2140 /**
2141 * Calculate the offset, in units of surface samples, to a subimage in the
2142 * surface.
2143 *
2144 * @invariant level < surface levels
2145 * @invariant logical_array_layer < logical array length of surface
2146 * @invariant logical_z_offset_px < logical depth of surface at level
2147 */
2148 void
2149 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2150 uint32_t level,
2151 uint32_t logical_array_layer,
2152 uint32_t logical_z_offset_px,
2153 uint32_t *x_offset_sa,
2154 uint32_t *y_offset_sa)
2155 {
2156 assert(level < surf->levels);
2157 assert(logical_array_layer < surf->logical_level0_px.array_len);
2158 assert(logical_z_offset_px
2159 < isl_minify(surf->logical_level0_px.depth, level));
2160
2161 switch (surf->dim_layout) {
2162 case ISL_DIM_LAYOUT_GEN9_1D:
2163 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
2164 x_offset_sa, y_offset_sa);
2165 break;
2166 case ISL_DIM_LAYOUT_GEN4_2D:
2167 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
2168 + logical_z_offset_px,
2169 x_offset_sa, y_offset_sa);
2170 break;
2171 case ISL_DIM_LAYOUT_GEN4_3D:
2172 get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
2173 logical_z_offset_px,
2174 x_offset_sa, y_offset_sa);
2175 break;
2176 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
2177 get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
2178 logical_z_offset_px,
2179 x_offset_sa, y_offset_sa);
2180 break;
2181
2182 default:
2183 unreachable("not reached");
2184 }
2185 }
2186
2187 void
2188 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2189 uint32_t level,
2190 uint32_t logical_array_layer,
2191 uint32_t logical_z_offset_px,
2192 uint32_t *x_offset_el,
2193 uint32_t *y_offset_el)
2194 {
2195 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2196
2197 assert(level < surf->levels);
2198 assert(logical_array_layer < surf->logical_level0_px.array_len);
2199 assert(logical_z_offset_px
2200 < isl_minify(surf->logical_level0_px.depth, level));
2201
2202 uint32_t x_offset_sa, y_offset_sa;
2203 isl_surf_get_image_offset_sa(surf, level,
2204 logical_array_layer,
2205 logical_z_offset_px,
2206 &x_offset_sa,
2207 &y_offset_sa);
2208
2209 *x_offset_el = x_offset_sa / fmtl->bw;
2210 *y_offset_el = y_offset_sa / fmtl->bh;
2211 }
2212
2213 void
2214 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2215 uint32_t level,
2216 uint32_t logical_array_layer,
2217 uint32_t logical_z_offset_px,
2218 uint32_t *offset_B,
2219 uint32_t *x_offset_sa,
2220 uint32_t *y_offset_sa)
2221 {
2222 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2223
2224 uint32_t total_x_offset_el, total_y_offset_el;
2225 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2226 logical_z_offset_px,
2227 &total_x_offset_el,
2228 &total_y_offset_el);
2229
2230 uint32_t x_offset_el, y_offset_el;
2231 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2232 surf->row_pitch_B,
2233 total_x_offset_el,
2234 total_y_offset_el,
2235 offset_B,
2236 &x_offset_el,
2237 &y_offset_el);
2238
2239 if (x_offset_sa) {
2240 *x_offset_sa = x_offset_el * fmtl->bw;
2241 } else {
2242 assert(x_offset_el == 0);
2243 }
2244
2245 if (y_offset_sa) {
2246 *y_offset_sa = y_offset_el * fmtl->bh;
2247 } else {
2248 assert(y_offset_el == 0);
2249 }
2250 }
2251
2252 void
2253 isl_surf_get_image_surf(const struct isl_device *dev,
2254 const struct isl_surf *surf,
2255 uint32_t level,
2256 uint32_t logical_array_layer,
2257 uint32_t logical_z_offset_px,
2258 struct isl_surf *image_surf,
2259 uint32_t *offset_B,
2260 uint32_t *x_offset_sa,
2261 uint32_t *y_offset_sa)
2262 {
2263 isl_surf_get_image_offset_B_tile_sa(surf,
2264 level,
2265 logical_array_layer,
2266 logical_z_offset_px,
2267 offset_B,
2268 x_offset_sa,
2269 y_offset_sa);
2270
2271 /* Even for cube maps there will be only single face, therefore drop the
2272 * corresponding flag if present.
2273 */
2274 const isl_surf_usage_flags_t usage =
2275 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2276
2277 bool ok UNUSED;
2278 ok = isl_surf_init(dev, image_surf,
2279 .dim = ISL_SURF_DIM_2D,
2280 .format = surf->format,
2281 .width = isl_minify(surf->logical_level0_px.w, level),
2282 .height = isl_minify(surf->logical_level0_px.h, level),
2283 .depth = 1,
2284 .levels = 1,
2285 .array_len = 1,
2286 .samples = surf->samples,
2287 .row_pitch_B = surf->row_pitch_B,
2288 .usage = usage,
2289 .tiling_flags = (1 << surf->tiling));
2290 assert(ok);
2291 }
2292
2293 void
2294 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2295 uint32_t bpb,
2296 uint32_t row_pitch_B,
2297 uint32_t total_x_offset_el,
2298 uint32_t total_y_offset_el,
2299 uint32_t *base_address_offset,
2300 uint32_t *x_offset_el,
2301 uint32_t *y_offset_el)
2302 {
2303 if (tiling == ISL_TILING_LINEAR) {
2304 assert(bpb % 8 == 0);
2305 *base_address_offset = total_y_offset_el * row_pitch_B +
2306 total_x_offset_el * (bpb / 8);
2307 *x_offset_el = 0;
2308 *y_offset_el = 0;
2309 return;
2310 }
2311
2312 struct isl_tile_info tile_info;
2313 isl_tiling_get_info(tiling, bpb, &tile_info);
2314
2315 assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
2316
2317 /* For non-power-of-two formats, we need the address to be both tile and
2318 * element-aligned. The easiest way to achieve this is to work with a tile
2319 * that is three times as wide as the regular tile.
2320 *
2321 * The tile info returned by get_tile_info has a logical size that is an
2322 * integer number of tile_info.format_bpb size elements. To scale the
2323 * tile, we scale up the physical width and then treat the logical tile
2324 * size as if it has bpb size elements.
2325 */
2326 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
2327 tile_info.phys_extent_B.width *= tile_el_scale;
2328
2329 /* Compute the offset into the tile */
2330 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
2331 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
2332
2333 /* Compute the offset of the tile in units of whole tiles */
2334 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
2335 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
2336
2337 *base_address_offset =
2338 y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B +
2339 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
2340 }
2341
2342 uint32_t
2343 isl_surf_get_depth_format(const struct isl_device *dev,
2344 const struct isl_surf *surf)
2345 {
2346 /* Support for separate stencil buffers began in gen5. Support for
2347 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
2348 * those that supported separate and interleaved stencil, were gen5 and
2349 * gen6.
2350 *
2351 * For a list of all available formats, see the Sandybridge PRM >> Volume
2352 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
2353 * Format (p321).
2354 */
2355
2356 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
2357
2358 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
2359
2360 if (has_stencil)
2361 assert(ISL_DEV_GEN(dev) < 7);
2362
2363 switch (surf->format) {
2364 default:
2365 unreachable("bad isl depth format");
2366 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
2367 assert(ISL_DEV_GEN(dev) < 7);
2368 return 0; /* D32_FLOAT_S8X24_UINT */
2369 case ISL_FORMAT_R32_FLOAT:
2370 assert(!has_stencil);
2371 return 1; /* D32_FLOAT */
2372 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
2373 if (has_stencil) {
2374 assert(ISL_DEV_GEN(dev) < 7);
2375 return 2; /* D24_UNORM_S8_UINT */
2376 } else {
2377 assert(ISL_DEV_GEN(dev) >= 5);
2378 return 3; /* D24_UNORM_X8_UINT */
2379 }
2380 case ISL_FORMAT_R16_UNORM:
2381 assert(!has_stencil);
2382 return 5; /* D16_UNORM */
2383 }
2384 }
2385
2386 bool
2387 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
2388 struct isl_swizzle swizzle)
2389 {
2390 if (devinfo->is_haswell) {
2391 /* From the Haswell PRM,
2392 * RENDER_SURFACE_STATE::Shader Channel Select Red
2393 *
2394 * "The Shader channel selects also define which shader channels are
2395 * written to which surface channel. If the Shader channel select is
2396 * SCS_ZERO or SCS_ONE then it is not written to the surface. If the
2397 * shader channel select is SCS_RED it is written to the surface red
2398 * channel and so on. If more than one shader channel select is set
2399 * to the same surface channel only the first shader channel in RGBA
2400 * order will be written."
2401 */
2402 return true;
2403 } else if (devinfo->gen <= 7) {
2404 /* Ivy Bridge and early doesn't have any swizzling */
2405 return isl_swizzle_is_identity(swizzle);
2406 } else {
2407 /* From the Sky Lake PRM Vol. 2d,
2408 * RENDER_SURFACE_STATE::Shader Channel Select Red
2409 *
2410 * "For Render Target, Red, Green and Blue Shader Channel Selects
2411 * MUST be such that only valid components can be swapped i.e. only
2412 * change the order of components in the pixel. Any other values for
2413 * these Shader Channel Select fields are not valid for Render
2414 * Targets. This also means that there MUST not be multiple shader
2415 * channels mapped to the same RT channel."
2416 *
2417 * From the Sky Lake PRM Vol. 2d,
2418 * RENDER_SURFACE_STATE::Shader Channel Select Alpha
2419 *
2420 * "For Render Target, this field MUST be programmed to
2421 * value = SCS_ALPHA."
2422 */
2423 return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
2424 swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
2425 swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
2426 (swizzle.g == ISL_CHANNEL_SELECT_RED ||
2427 swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
2428 swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
2429 (swizzle.b == ISL_CHANNEL_SELECT_RED ||
2430 swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
2431 swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
2432 swizzle.r != swizzle.g &&
2433 swizzle.r != swizzle.b &&
2434 swizzle.g != swizzle.b &&
2435 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
2436 }
2437 }
2438
2439 static enum isl_channel_select
2440 swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
2441 {
2442 switch (chan) {
2443 case ISL_CHANNEL_SELECT_ZERO:
2444 case ISL_CHANNEL_SELECT_ONE:
2445 return chan;
2446 case ISL_CHANNEL_SELECT_RED:
2447 return swizzle.r;
2448 case ISL_CHANNEL_SELECT_GREEN:
2449 return swizzle.g;
2450 case ISL_CHANNEL_SELECT_BLUE:
2451 return swizzle.b;
2452 case ISL_CHANNEL_SELECT_ALPHA:
2453 return swizzle.a;
2454 default:
2455 unreachable("Invalid swizzle component");
2456 }
2457 }
2458
2459 /**
2460 * Returns the single swizzle that is equivalent to applying the two given
2461 * swizzles in sequence.
2462 */
2463 struct isl_swizzle
2464 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
2465 {
2466 return (struct isl_swizzle) {
2467 .r = swizzle_select(first.r, second),
2468 .g = swizzle_select(first.g, second),
2469 .b = swizzle_select(first.b, second),
2470 .a = swizzle_select(first.a, second),
2471 };
2472 }
2473
2474 /**
2475 * Returns a swizzle that is the pseudo-inverse of this swizzle.
2476 */
2477 struct isl_swizzle
2478 isl_swizzle_invert(struct isl_swizzle swizzle)
2479 {
2480 /* Default to zero for channels which do not show up in the swizzle */
2481 enum isl_channel_select chans[4] = {
2482 ISL_CHANNEL_SELECT_ZERO,
2483 ISL_CHANNEL_SELECT_ZERO,
2484 ISL_CHANNEL_SELECT_ZERO,
2485 ISL_CHANNEL_SELECT_ZERO,
2486 };
2487
2488 /* We go in ABGR order so that, if there are any duplicates, the first one
2489 * is taken if you look at it in RGBA order. This is what Haswell hardware
2490 * does for render target swizzles.
2491 */
2492 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
2493 chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
2494 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
2495 chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
2496 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
2497 chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
2498 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
2499 chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
2500
2501 return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
2502 }