intel/isl: Allow creation of 1-D compressed textures
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "isl.h"
29 #include "isl_gen4.h"
30 #include "isl_gen6.h"
31 #include "isl_gen7.h"
32 #include "isl_gen8.h"
33 #include "isl_gen9.h"
34 #include "isl_priv.h"
35
36 void PRINTFLIKE(3, 4) UNUSED
37 __isl_finishme(const char *file, int line, const char *fmt, ...)
38 {
39 va_list ap;
40 char buf[512];
41
42 va_start(ap, fmt);
43 vsnprintf(buf, sizeof(buf), fmt, ap);
44 va_end(ap);
45
46 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
47 }
48
49 void
50 isl_device_init(struct isl_device *dev,
51 const struct gen_device_info *info,
52 bool has_bit6_swizzling)
53 {
54 dev->info = info;
55 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
56 dev->has_bit6_swizzling = has_bit6_swizzling;
57
58 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
59 * device properties at buildtime. Verify that the macros with the device
60 * properties chosen during runtime.
61 */
62 ISL_DEV_GEN_SANITIZE(dev);
63 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
64
65 /* Did we break hiz or stencil? */
66 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
67 assert(info->has_hiz_and_separate_stencil);
68 if (info->must_use_separate_stencil)
69 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
70 }
71
72 /**
73 * @brief Query the set of multisamples supported by the device.
74 *
75 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
76 * supported.
77 */
78 isl_sample_count_mask_t ATTRIBUTE_CONST
79 isl_device_get_sample_counts(struct isl_device *dev)
80 {
81 if (ISL_DEV_GEN(dev) >= 9) {
82 return ISL_SAMPLE_COUNT_1_BIT |
83 ISL_SAMPLE_COUNT_2_BIT |
84 ISL_SAMPLE_COUNT_4_BIT |
85 ISL_SAMPLE_COUNT_8_BIT |
86 ISL_SAMPLE_COUNT_16_BIT;
87 } else if (ISL_DEV_GEN(dev) >= 8) {
88 return ISL_SAMPLE_COUNT_1_BIT |
89 ISL_SAMPLE_COUNT_2_BIT |
90 ISL_SAMPLE_COUNT_4_BIT |
91 ISL_SAMPLE_COUNT_8_BIT;
92 } else if (ISL_DEV_GEN(dev) >= 7) {
93 return ISL_SAMPLE_COUNT_1_BIT |
94 ISL_SAMPLE_COUNT_4_BIT |
95 ISL_SAMPLE_COUNT_8_BIT;
96 } else if (ISL_DEV_GEN(dev) >= 6) {
97 return ISL_SAMPLE_COUNT_1_BIT |
98 ISL_SAMPLE_COUNT_4_BIT;
99 } else {
100 return ISL_SAMPLE_COUNT_1_BIT;
101 }
102 }
103
104 /**
105 * @param[out] info is written only on success
106 */
107 bool
108 isl_tiling_get_info(const struct isl_device *dev,
109 enum isl_tiling tiling,
110 uint32_t format_bpb,
111 struct isl_tile_info *tile_info)
112 {
113 const uint32_t bs = format_bpb / 8;
114 struct isl_extent2d logical_el, phys_B;
115
116 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
117 /* It is possible to have non-power-of-two formats in a tiled buffer.
118 * The easiest way to handle this is to treat the tile as if it is three
119 * times as wide. This way no pixel will ever cross a tile boundary.
120 * This really only works on legacy X and Y tiling formats.
121 */
122 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
123 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
124 return isl_tiling_get_info(dev, tiling, format_bpb / 3, tile_info);
125 }
126
127 switch (tiling) {
128 case ISL_TILING_LINEAR:
129 assert(bs > 0);
130 logical_el = isl_extent2d(1, 1);
131 phys_B = isl_extent2d(bs, 1);
132 break;
133
134 case ISL_TILING_X:
135 assert(bs > 0);
136 logical_el = isl_extent2d(512 / bs, 8);
137 phys_B = isl_extent2d(512, 8);
138 break;
139
140 case ISL_TILING_Y0:
141 assert(bs > 0);
142 logical_el = isl_extent2d(128 / bs, 32);
143 phys_B = isl_extent2d(128, 32);
144 break;
145
146 case ISL_TILING_W:
147 assert(bs == 1);
148 logical_el = isl_extent2d(64, 64);
149 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
150 *
151 * "If the surface is a stencil buffer (and thus has Tile Mode set
152 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
153 * computed based on width, as the stencil buffer is stored with two
154 * rows interleaved."
155 *
156 * This, together with the fact that stencil buffers are referred to as
157 * being Y-tiled in the PRMs for older hardware implies that the
158 * physical size of a W-tile is actually the same as for a Y-tile.
159 */
160 phys_B = isl_extent2d(128, 32);
161 break;
162
163 case ISL_TILING_Yf:
164 case ISL_TILING_Ys: {
165 if (ISL_DEV_GEN(dev) < 9)
166 return false;
167
168 if (!isl_is_pow2(bs))
169 return false;
170
171 bool is_Ys = tiling == ISL_TILING_Ys;
172
173 assert(bs > 0);
174 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
175 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
176
177 logical_el = isl_extent2d(width / bs, height);
178 phys_B = isl_extent2d(width, height);
179 break;
180 }
181
182 case ISL_TILING_HIZ:
183 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
184 * 128bpb format. The tiling has the same physical dimensions as
185 * Y-tiling but actually has two HiZ columns per Y-tiled column.
186 */
187 assert(bs == 16);
188 logical_el = isl_extent2d(16, 16);
189 phys_B = isl_extent2d(128, 32);
190 break;
191
192 case ISL_TILING_CCS:
193 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
194 * have a block size of 1 or 2 bits per block and each CCS element
195 * corresponds to one cache-line pair in the main surface. From the Sky
196 * Lake PRM Vol. 12 in the section on planes:
197 *
198 * "The Color Control Surface (CCS) contains the compression status
199 * of the cache-line pairs. The compression state of the cache-line
200 * pair is specified by 2 bits in the CCS. Each CCS cache-line
201 * represents an area on the main surface of 16x16 sets of 128 byte
202 * Y-tiled cache-line-pairs. CCS is always Y tiled."
203 *
204 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
205 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
206 * that yields total tile area of 128x128 cache-line pairs or CCS
207 * elements. On older hardware, each CCS element is 1 bit and the tile
208 * is 128x256 elements.
209 */
210 assert(format_bpb == 1 || format_bpb == 2);
211 logical_el = isl_extent2d(128, 256 / format_bpb);
212 phys_B = isl_extent2d(128, 32);
213 break;
214
215 default:
216 unreachable("not reached");
217 } /* end switch */
218
219 *tile_info = (struct isl_tile_info) {
220 .tiling = tiling,
221 .format_bpb = format_bpb,
222 .logical_extent_el = logical_el,
223 .phys_extent_B = phys_B,
224 };
225
226 return true;
227 }
228
229 /**
230 * @param[out] tiling is set only on success
231 */
232 bool
233 isl_surf_choose_tiling(const struct isl_device *dev,
234 const struct isl_surf_init_info *restrict info,
235 enum isl_tiling *tiling)
236 {
237 isl_tiling_flags_t tiling_flags = info->tiling_flags;
238
239 if (ISL_DEV_GEN(dev) >= 6) {
240 gen6_filter_tiling(dev, info, &tiling_flags);
241 } else {
242 isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
243 gen6_filter_tiling(dev, info, &tiling_flags);
244 }
245
246 #define CHOOSE(__tiling) \
247 do { \
248 if (tiling_flags & (1u << (__tiling))) { \
249 *tiling = (__tiling); \
250 return true; \
251 } \
252 } while (0)
253
254 /* Of the tiling modes remaining, choose the one that offers the best
255 * performance.
256 */
257
258 if (info->dim == ISL_SURF_DIM_1D) {
259 /* Prefer linear for 1D surfaces because they do not benefit from
260 * tiling. To the contrary, tiling leads to wasted memory and poor
261 * memory locality due to the swizzling and alignment restrictions
262 * required in tiled surfaces.
263 */
264 CHOOSE(ISL_TILING_LINEAR);
265 }
266
267 CHOOSE(ISL_TILING_CCS);
268 CHOOSE(ISL_TILING_HIZ);
269 CHOOSE(ISL_TILING_Ys);
270 CHOOSE(ISL_TILING_Yf);
271 CHOOSE(ISL_TILING_Y0);
272 CHOOSE(ISL_TILING_X);
273 CHOOSE(ISL_TILING_W);
274 CHOOSE(ISL_TILING_LINEAR);
275
276 #undef CHOOSE
277
278 /* No tiling mode accomodates the inputs. */
279 return false;
280 }
281
282 static bool
283 isl_choose_msaa_layout(const struct isl_device *dev,
284 const struct isl_surf_init_info *info,
285 enum isl_tiling tiling,
286 enum isl_msaa_layout *msaa_layout)
287 {
288 if (ISL_DEV_GEN(dev) >= 8) {
289 return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
290 } else if (ISL_DEV_GEN(dev) >= 7) {
291 return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
292 } else if (ISL_DEV_GEN(dev) >= 6) {
293 return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
294 } else {
295 return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
296 }
297 }
298
299 struct isl_extent2d
300 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
301 {
302 assert(isl_is_pow2(samples));
303
304 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
305 * Sizes (p133):
306 *
307 * If the surface is multisampled and it is a depth or stencil surface
308 * or Multisampled Surface StorageFormat in SURFACE_STATE is
309 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
310 * proceeding: [...]
311 */
312 return (struct isl_extent2d) {
313 .width = 1 << ((ffs(samples) - 0) / 2),
314 .height = 1 << ((ffs(samples) - 1) / 2),
315 };
316 }
317
318 static void
319 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
320 uint32_t *width, uint32_t *height)
321 {
322 const struct isl_extent2d px_size_sa =
323 isl_get_interleaved_msaa_px_size_sa(samples);
324
325 if (width)
326 *width = isl_align(*width, 2) * px_size_sa.width;
327 if (height)
328 *height = isl_align(*height, 2) * px_size_sa.width;
329 }
330
331 static enum isl_array_pitch_span
332 isl_choose_array_pitch_span(const struct isl_device *dev,
333 const struct isl_surf_init_info *restrict info,
334 enum isl_dim_layout dim_layout,
335 const struct isl_extent4d *phys_level0_sa)
336 {
337 switch (dim_layout) {
338 case ISL_DIM_LAYOUT_GEN9_1D:
339 case ISL_DIM_LAYOUT_GEN4_2D:
340 if (ISL_DEV_GEN(dev) >= 8) {
341 /* QPitch becomes programmable in Broadwell. So choose the
342 * most compact QPitch possible in order to conserve memory.
343 *
344 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
345 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
346 *
347 * - Software must ensure that this field is set to a value
348 * sufficiently large such that the array slices in the surface
349 * do not overlap. Refer to the Memory Data Formats section for
350 * information on how surfaces are stored in memory.
351 *
352 * - This field specifies the distance in rows between array
353 * slices. It is used only in the following cases:
354 *
355 * - Surface Array is enabled OR
356 * - Number of Mulitsamples is not NUMSAMPLES_1 and
357 * Multisampled Surface Storage Format set to MSFMT_MSS OR
358 * - Surface Type is SURFTYPE_CUBE
359 */
360 return ISL_ARRAY_PITCH_SPAN_COMPACT;
361 } else if (ISL_DEV_GEN(dev) >= 7) {
362 /* Note that Ivybridge introduces
363 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
364 * driver more control over the QPitch.
365 */
366
367 if (phys_level0_sa->array_len == 1) {
368 /* The hardware will never use the QPitch. So choose the most
369 * compact QPitch possible in order to conserve memory.
370 */
371 return ISL_ARRAY_PITCH_SPAN_COMPACT;
372 }
373
374 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
375 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
376 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
377 * Section 6.18.4.7: Surface Arrays (p112):
378 *
379 * If Surface Array Spacing is set to ARYSPC_FULL (note that
380 * the depth buffer and stencil buffer have an implied value of
381 * ARYSPC_FULL):
382 */
383 return ISL_ARRAY_PITCH_SPAN_FULL;
384 }
385
386 if (info->levels == 1) {
387 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
388 * to ARYSPC_LOD0.
389 */
390 return ISL_ARRAY_PITCH_SPAN_COMPACT;
391 }
392
393 return ISL_ARRAY_PITCH_SPAN_FULL;
394 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
395 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
396 isl_surf_usage_is_stencil(info->usage)) {
397 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
398 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
399 *
400 * The separate stencil buffer does not support mip mapping, thus
401 * the storage for LODs other than LOD 0 is not needed.
402 */
403 assert(info->levels == 1);
404 assert(phys_level0_sa->array_len == 1);
405 return ISL_ARRAY_PITCH_SPAN_COMPACT;
406 } else {
407 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
408 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
409 isl_surf_usage_is_stencil(info->usage)) {
410 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
411 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
412 *
413 * The separate stencil buffer does not support mip mapping,
414 * thus the storage for LODs other than LOD 0 is not needed.
415 */
416 assert(info->levels == 1);
417 assert(phys_level0_sa->array_len == 1);
418 return ISL_ARRAY_PITCH_SPAN_COMPACT;
419 }
420
421 if (phys_level0_sa->array_len == 1) {
422 /* The hardware will never use the QPitch. So choose the most
423 * compact QPitch possible in order to conserve memory.
424 */
425 return ISL_ARRAY_PITCH_SPAN_COMPACT;
426 }
427
428 return ISL_ARRAY_PITCH_SPAN_FULL;
429 }
430
431 case ISL_DIM_LAYOUT_GEN4_3D:
432 /* The hardware will never use the QPitch. So choose the most
433 * compact QPitch possible in order to conserve memory.
434 */
435 return ISL_ARRAY_PITCH_SPAN_COMPACT;
436 }
437
438 unreachable("bad isl_dim_layout");
439 return ISL_ARRAY_PITCH_SPAN_FULL;
440 }
441
442 static void
443 isl_choose_image_alignment_el(const struct isl_device *dev,
444 const struct isl_surf_init_info *restrict info,
445 enum isl_tiling tiling,
446 enum isl_dim_layout dim_layout,
447 enum isl_msaa_layout msaa_layout,
448 struct isl_extent3d *image_align_el)
449 {
450 if (info->format == ISL_FORMAT_HIZ) {
451 assert(ISL_DEV_GEN(dev) >= 6);
452 /* HiZ surfaces are always aligned to 16x8 pixels in the primary surface
453 * which works out to 2x2 HiZ elments.
454 */
455 *image_align_el = isl_extent3d(2, 2, 1);
456 return;
457 }
458
459 if (ISL_DEV_GEN(dev) >= 9) {
460 gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
461 msaa_layout, image_align_el);
462 } else if (ISL_DEV_GEN(dev) >= 8) {
463 gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
464 msaa_layout, image_align_el);
465 } else if (ISL_DEV_GEN(dev) >= 7) {
466 gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
467 msaa_layout, image_align_el);
468 } else if (ISL_DEV_GEN(dev) >= 6) {
469 gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
470 msaa_layout, image_align_el);
471 } else {
472 gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
473 msaa_layout, image_align_el);
474 }
475 }
476
477 static enum isl_dim_layout
478 isl_surf_choose_dim_layout(const struct isl_device *dev,
479 enum isl_surf_dim logical_dim,
480 enum isl_tiling tiling)
481 {
482 if (ISL_DEV_GEN(dev) >= 9) {
483 switch (logical_dim) {
484 case ISL_SURF_DIM_1D:
485 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
486 *
487 * One-dimensional surfaces use a tiling mode of linear.
488 * Technically, they are not tiled resources, but the Tiled
489 * Resource Mode field in RENDER_SURFACE_STATE is still used to
490 * indicate the alignment requirements for this linear surface
491 * (See 1D Alignment requirements for how 4K and 64KB Tiled
492 * Resource Modes impact alignment). Alternatively, a 1D surface
493 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
494 * a height of 0.
495 *
496 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
497 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
498 */
499 if (tiling == ISL_TILING_LINEAR)
500 return ISL_DIM_LAYOUT_GEN9_1D;
501 else
502 return ISL_DIM_LAYOUT_GEN4_2D;
503 case ISL_SURF_DIM_2D:
504 case ISL_SURF_DIM_3D:
505 return ISL_DIM_LAYOUT_GEN4_2D;
506 }
507 } else {
508 switch (logical_dim) {
509 case ISL_SURF_DIM_1D:
510 case ISL_SURF_DIM_2D:
511 return ISL_DIM_LAYOUT_GEN4_2D;
512 case ISL_SURF_DIM_3D:
513 return ISL_DIM_LAYOUT_GEN4_3D;
514 }
515 }
516
517 unreachable("bad isl_surf_dim");
518 return ISL_DIM_LAYOUT_GEN4_2D;
519 }
520
521 /**
522 * Calculate the physical extent of the surface's first level, in units of
523 * surface samples. The result is aligned to the format's compression block.
524 */
525 static void
526 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
527 const struct isl_surf_init_info *restrict info,
528 enum isl_dim_layout dim_layout,
529 enum isl_tiling tiling,
530 enum isl_msaa_layout msaa_layout,
531 struct isl_extent4d *phys_level0_sa)
532 {
533 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
534
535 if (isl_format_is_yuv(info->format))
536 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
537
538 switch (info->dim) {
539 case ISL_SURF_DIM_1D:
540 assert(info->height == 1);
541 assert(info->depth == 1);
542 assert(info->samples == 1);
543
544 switch (dim_layout) {
545 case ISL_DIM_LAYOUT_GEN4_3D:
546 unreachable("bad isl_dim_layout");
547
548 case ISL_DIM_LAYOUT_GEN9_1D:
549 case ISL_DIM_LAYOUT_GEN4_2D:
550 *phys_level0_sa = (struct isl_extent4d) {
551 .w = isl_align_npot(info->width, fmtl->bw),
552 .h = fmtl->bh,
553 .d = 1,
554 .a = info->array_len,
555 };
556 break;
557 }
558 break;
559
560 case ISL_SURF_DIM_2D:
561 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
562
563 if (tiling == ISL_TILING_Ys && info->samples > 1)
564 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
565
566 switch (msaa_layout) {
567 case ISL_MSAA_LAYOUT_NONE:
568 assert(info->depth == 1);
569 assert(info->samples == 1);
570
571 *phys_level0_sa = (struct isl_extent4d) {
572 .w = isl_align_npot(info->width, fmtl->bw),
573 .h = isl_align_npot(info->height, fmtl->bh),
574 .d = 1,
575 .a = info->array_len,
576 };
577 break;
578
579 case ISL_MSAA_LAYOUT_ARRAY:
580 assert(info->depth == 1);
581 assert(info->levels == 1);
582 assert(isl_format_supports_multisampling(dev->info, info->format));
583 assert(fmtl->bw == 1 && fmtl->bh == 1);
584
585 *phys_level0_sa = (struct isl_extent4d) {
586 .w = info->width,
587 .h = info->height,
588 .d = 1,
589 .a = info->array_len * info->samples,
590 };
591 break;
592
593 case ISL_MSAA_LAYOUT_INTERLEAVED:
594 assert(info->depth == 1);
595 assert(info->levels == 1);
596 assert(isl_format_supports_multisampling(dev->info, info->format));
597 assert(fmtl->bw == 1 && fmtl->bh == 1);
598
599 *phys_level0_sa = (struct isl_extent4d) {
600 .w = info->width,
601 .h = info->height,
602 .d = 1,
603 .a = info->array_len,
604 };
605
606 isl_msaa_interleaved_scale_px_to_sa(info->samples,
607 &phys_level0_sa->w,
608 &phys_level0_sa->h);
609 break;
610 }
611 break;
612
613 case ISL_SURF_DIM_3D:
614 assert(info->array_len == 1);
615 assert(info->samples == 1);
616
617 if (fmtl->bd > 1) {
618 isl_finishme("%s:%s: compression block with depth > 1",
619 __FILE__, __func__);
620 }
621
622 switch (dim_layout) {
623 case ISL_DIM_LAYOUT_GEN9_1D:
624 unreachable("bad isl_dim_layout");
625
626 case ISL_DIM_LAYOUT_GEN4_2D:
627 assert(ISL_DEV_GEN(dev) >= 9);
628
629 *phys_level0_sa = (struct isl_extent4d) {
630 .w = isl_align_npot(info->width, fmtl->bw),
631 .h = isl_align_npot(info->height, fmtl->bh),
632 .d = 1,
633 .a = info->depth,
634 };
635 break;
636
637 case ISL_DIM_LAYOUT_GEN4_3D:
638 assert(ISL_DEV_GEN(dev) < 9);
639 *phys_level0_sa = (struct isl_extent4d) {
640 .w = isl_align(info->width, fmtl->bw),
641 .h = isl_align(info->height, fmtl->bh),
642 .d = info->depth,
643 .a = 1,
644 };
645 break;
646 }
647 break;
648 }
649 }
650
651 /**
652 * A variant of isl_calc_phys_slice0_extent_sa() specific to
653 * ISL_DIM_LAYOUT_GEN4_2D.
654 */
655 static void
656 isl_calc_phys_slice0_extent_sa_gen4_2d(
657 const struct isl_device *dev,
658 const struct isl_surf_init_info *restrict info,
659 enum isl_msaa_layout msaa_layout,
660 const struct isl_extent3d *image_align_sa,
661 const struct isl_extent4d *phys_level0_sa,
662 struct isl_extent2d *phys_slice0_sa)
663 {
664 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
665
666 assert(phys_level0_sa->depth == 1);
667
668 if (info->levels == 1) {
669 /* Do not pad the surface to the image alignment. Instead, pad it only
670 * to the pixel format's block alignment.
671 *
672 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
673 * cycles on the below mipmap layout caluclations. Reducing the
674 * alignment here is safe because we later align the row pitch and array
675 * pitch to the tile boundary. It is safe even for
676 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
677 * to accomodate the interleaved samples.
678 *
679 * For linear surfaces, reducing the alignment here permits us to later
680 * choose an arbitrary, non-aligned row pitch. If the surface backs
681 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
682 * VkBufferImageCopy::bufferRowLength.
683 */
684 *phys_slice0_sa = (struct isl_extent2d) {
685 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
686 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
687 };
688 return;
689 }
690
691 uint32_t slice_top_w = 0;
692 uint32_t slice_bottom_w = 0;
693 uint32_t slice_left_h = 0;
694 uint32_t slice_right_h = 0;
695
696 uint32_t W0 = phys_level0_sa->w;
697 uint32_t H0 = phys_level0_sa->h;
698
699 for (uint32_t l = 0; l < info->levels; ++l) {
700 uint32_t W = isl_minify(W0, l);
701 uint32_t H = isl_minify(H0, l);
702
703 uint32_t w = isl_align_npot(W, image_align_sa->w);
704 uint32_t h = isl_align_npot(H, image_align_sa->h);
705
706 if (l == 0) {
707 slice_top_w = w;
708 slice_left_h = h;
709 slice_right_h = h;
710 } else if (l == 1) {
711 slice_bottom_w = w;
712 slice_left_h += h;
713 } else if (l == 2) {
714 slice_bottom_w += w;
715 slice_right_h += h;
716 } else {
717 slice_right_h += h;
718 }
719 }
720
721 *phys_slice0_sa = (struct isl_extent2d) {
722 .w = MAX(slice_top_w, slice_bottom_w),
723 .h = MAX(slice_left_h, slice_right_h),
724 };
725 }
726
727 /**
728 * A variant of isl_calc_phys_slice0_extent_sa() specific to
729 * ISL_DIM_LAYOUT_GEN4_3D.
730 */
731 static void
732 isl_calc_phys_slice0_extent_sa_gen4_3d(
733 const struct isl_device *dev,
734 const struct isl_surf_init_info *restrict info,
735 const struct isl_extent3d *image_align_sa,
736 const struct isl_extent4d *phys_level0_sa,
737 struct isl_extent2d *phys_slice0_sa)
738 {
739 assert(info->samples == 1);
740 assert(phys_level0_sa->array_len == 1);
741
742 uint32_t slice_w = 0;
743 uint32_t slice_h = 0;
744
745 uint32_t W0 = phys_level0_sa->w;
746 uint32_t H0 = phys_level0_sa->h;
747 uint32_t D0 = phys_level0_sa->d;
748
749 for (uint32_t l = 0; l < info->levels; ++l) {
750 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
751 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
752 uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
753
754 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
755 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
756
757 slice_w = MAX(slice_w, level_w * max_layers_horiz);
758 slice_h += level_h * max_layers_vert;
759 }
760
761 *phys_slice0_sa = (struct isl_extent2d) {
762 .w = slice_w,
763 .h = slice_h,
764 };
765 }
766
767 /**
768 * A variant of isl_calc_phys_slice0_extent_sa() specific to
769 * ISL_DIM_LAYOUT_GEN9_1D.
770 */
771 static void
772 isl_calc_phys_slice0_extent_sa_gen9_1d(
773 const struct isl_device *dev,
774 const struct isl_surf_init_info *restrict info,
775 const struct isl_extent3d *image_align_sa,
776 const struct isl_extent4d *phys_level0_sa,
777 struct isl_extent2d *phys_slice0_sa)
778 {
779 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
780
781 assert(phys_level0_sa->height == 1);
782 assert(phys_level0_sa->depth == 1);
783 assert(info->samples == 1);
784 assert(image_align_sa->w >= fmtl->bw);
785
786 uint32_t slice_w = 0;
787 const uint32_t W0 = phys_level0_sa->w;
788
789 for (uint32_t l = 0; l < info->levels; ++l) {
790 uint32_t W = isl_minify(W0, l);
791 uint32_t w = isl_align_npot(W, image_align_sa->w);
792
793 slice_w += w;
794 }
795
796 *phys_slice0_sa = isl_extent2d(slice_w, 1);
797 }
798
799 /**
800 * Calculate the physical extent of the surface's first array slice, in units
801 * of surface samples. If the surface is multi-leveled, then the result will
802 * be aligned to \a image_align_sa.
803 */
804 static void
805 isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
806 const struct isl_surf_init_info *restrict info,
807 enum isl_dim_layout dim_layout,
808 enum isl_msaa_layout msaa_layout,
809 const struct isl_extent3d *image_align_sa,
810 const struct isl_extent4d *phys_level0_sa,
811 struct isl_extent2d *phys_slice0_sa)
812 {
813 switch (dim_layout) {
814 case ISL_DIM_LAYOUT_GEN9_1D:
815 isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
816 image_align_sa, phys_level0_sa,
817 phys_slice0_sa);
818 return;
819 case ISL_DIM_LAYOUT_GEN4_2D:
820 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
821 image_align_sa, phys_level0_sa,
822 phys_slice0_sa);
823 return;
824 case ISL_DIM_LAYOUT_GEN4_3D:
825 isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
826 phys_level0_sa, phys_slice0_sa);
827 return;
828 }
829 }
830
831 /**
832 * Calculate the pitch between physical array slices, in units of rows of
833 * surface elements.
834 */
835 static uint32_t
836 isl_calc_array_pitch_el_rows(const struct isl_device *dev,
837 const struct isl_surf_init_info *restrict info,
838 const struct isl_tile_info *tile_info,
839 enum isl_dim_layout dim_layout,
840 enum isl_array_pitch_span array_pitch_span,
841 const struct isl_extent3d *image_align_sa,
842 const struct isl_extent4d *phys_level0_sa,
843 const struct isl_extent2d *phys_slice0_sa)
844 {
845 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
846 uint32_t pitch_sa_rows = 0;
847
848 switch (dim_layout) {
849 case ISL_DIM_LAYOUT_GEN9_1D:
850 /* Each row is an array slice */
851 pitch_sa_rows = 1;
852 break;
853 case ISL_DIM_LAYOUT_GEN4_2D:
854 switch (array_pitch_span) {
855 case ISL_ARRAY_PITCH_SPAN_COMPACT:
856 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
857 break;
858 case ISL_ARRAY_PITCH_SPAN_FULL: {
859 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
860 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
861 * Surfaces >> Surface Arrays.
862 */
863 uint32_t H0_sa = phys_level0_sa->h;
864 uint32_t H1_sa = isl_minify(H0_sa, 1);
865
866 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
867 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
868
869 uint32_t m;
870 if (ISL_DEV_GEN(dev) >= 7) {
871 /* The QPitch equation changed slightly in Ivybridge. */
872 m = 12;
873 } else {
874 m = 11;
875 }
876
877 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
878
879 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
880 (info->height % 4 == 1)) {
881 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
882 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
883 *
884 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
885 * the value calculated in the equation above , for every
886 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
887 *
888 * XXX(chadv): Is the errata natural corollary of the physical
889 * layout of interleaved samples?
890 */
891 pitch_sa_rows += 4;
892 }
893
894 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
895 } /* end case */
896 break;
897 }
898 break;
899 case ISL_DIM_LAYOUT_GEN4_3D:
900 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
901 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
902 break;
903 default:
904 unreachable("bad isl_dim_layout");
905 break;
906 }
907
908 assert(pitch_sa_rows % fmtl->bh == 0);
909 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
910
911 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
912 /*
913 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
914 *
915 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
916 * layout with these alignments in the RT space: Horizontal
917 * Alignment = 128 and Vertical Alignment = 64."
918 *
919 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
920 *
921 * "For non-multisampled render target's CCS auxiliary surface,
922 * QPitch must be computed with Horizontal Alignment = 128 and
923 * Surface Vertical Alignment = 256. These alignments are only for
924 * CCS buffer and not for associated render target."
925 *
926 * The first restriction is already handled by isl_choose_image_alignment_el
927 * but the second restriction, which is an extension of the first, only
928 * applies to qpitch and must be applied here.
929 */
930 assert(fmtl->bh == 4);
931 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
932 }
933
934 if (ISL_DEV_GEN(dev) >= 9 &&
935 info->dim == ISL_SURF_DIM_3D &&
936 tile_info->tiling != ISL_TILING_LINEAR) {
937 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
938 *
939 * Tile Mode != Linear: This field must be set to an integer multiple
940 * of the tile height
941 */
942 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
943 }
944
945 return pitch_el_rows;
946 }
947
948 /**
949 * Calculate the pitch of each surface row, in bytes.
950 */
951 static uint32_t
952 isl_calc_linear_row_pitch(const struct isl_device *dev,
953 const struct isl_surf_init_info *restrict info,
954 const struct isl_extent2d *phys_slice0_sa)
955 {
956 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
957
958 uint32_t row_pitch = info->min_pitch;
959
960 /* First, align the surface to a cache line boundary, as the PRM explains
961 * below.
962 *
963 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
964 * Formats >> Surface Padding Requirements >> Render Target and Media
965 * Surfaces:
966 *
967 * The data port accesses data (pixels) outside of the surface if they
968 * are contained in the same cache request as pixels that are within the
969 * surface. These pixels will not be returned by the requesting message,
970 * however if these pixels lie outside of defined pages in the GTT,
971 * a GTT error will result when the cache request is processed. In order
972 * to avoid these GTT errors, “padding” at the bottom of the surface is
973 * sometimes necessary.
974 *
975 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
976 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
977 *
978 * The sampling engine accesses texels outside of the surface if they
979 * are contained in the same cache line as texels that are within the
980 * surface. These texels will not participate in any calculation
981 * performed by the sampling engine and will not affect the result of
982 * any sampling engine operation, however if these texels lie outside of
983 * defined pages in the GTT, a GTT error will result when the cache line
984 * is accessed. In order to avoid these GTT errors, “padding” at the
985 * bottom and right side of a sampling engine surface is sometimes
986 * necessary.
987 *
988 * It is possible that a cache line will straddle a page boundary if the
989 * base address or pitch is not aligned. All pages included in the cache
990 * lines that are part of the surface must map to valid GTT entries to
991 * avoid errors. To determine the necessary padding on the bottom and
992 * right side of the surface, refer to the table in Alignment Unit Size
993 * section for the i and j parameters for the surface format in use. The
994 * surface must then be extended to the next multiple of the alignment
995 * unit size in each dimension, and all texels contained in this
996 * extended surface must have valid GTT entries.
997 *
998 * For example, suppose the surface size is 15 texels by 10 texels and
999 * the alignment parameters are i=4 and j=2. In this case, the extended
1000 * surface would be 16 by 10. Note that these calculations are done in
1001 * texels, and must be converted to bytes based on the surface format
1002 * being used to determine whether additional pages need to be defined.
1003 */
1004 assert(phys_slice0_sa->w % fmtl->bw == 0);
1005 const uint32_t bs = fmtl->bpb / 8;
1006 row_pitch = MAX(row_pitch, bs * (phys_slice0_sa->w / fmtl->bw));
1007
1008 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1009 * RENDER_SURFACE_STATE Surface Pitch (p349):
1010 *
1011 * - For linear render target surfaces and surfaces accessed with the
1012 * typed data port messages, the pitch must be a multiple of the
1013 * element size for non-YUV surface formats. Pitch must be
1014 * a multiple of 2 * element size for YUV surface formats.
1015 *
1016 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1017 * ignore because isl doesn't do buffers.]
1018 *
1019 * - For other linear surfaces, the pitch can be any multiple of
1020 * bytes.
1021 */
1022 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1023 if (isl_format_is_yuv(info->format)) {
1024 row_pitch = isl_align_npot(row_pitch, 2 * bs);
1025 } else {
1026 row_pitch = isl_align_npot(row_pitch, bs);
1027 }
1028 }
1029
1030 return row_pitch;
1031 }
1032
1033 /**
1034 * Calculate and apply any padding required for the surface.
1035 *
1036 * @param[inout] total_h_el is updated with the new height
1037 * @param[out] pad_bytes is overwritten with additional padding requirements.
1038 */
1039 static void
1040 isl_apply_surface_padding(const struct isl_device *dev,
1041 const struct isl_surf_init_info *restrict info,
1042 const struct isl_tile_info *tile_info,
1043 uint32_t *total_h_el,
1044 uint32_t *pad_bytes)
1045 {
1046 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1047
1048 *pad_bytes = 0;
1049
1050 /* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1051 * Formats >> Surface Padding Requirements >> Render Target and Media
1052 * Surfaces:
1053 *
1054 * The data port accesses data (pixels) outside of the surface if they
1055 * are contained in the same cache request as pixels that are within the
1056 * surface. These pixels will not be returned by the requesting message,
1057 * however if these pixels lie outside of defined pages in the GTT,
1058 * a GTT error will result when the cache request is processed. In
1059 * order to avoid these GTT errors, “padding” at the bottom of the
1060 * surface is sometimes necessary.
1061 *
1062 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1063 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
1064 *
1065 * ... Lots of padding requirements, all listed separately below.
1066 */
1067
1068 /* We can safely ignore the first padding requirement, quoted below,
1069 * because isl doesn't do buffers.
1070 *
1071 * - [pre-BDW] For buffers, which have no inherent “height,” padding
1072 * requirements are different. A buffer must be padded to the next
1073 * multiple of 256 array elements, with an additional 16 bytes added
1074 * beyond that to account for the L1 cache line.
1075 */
1076
1077 /*
1078 * - For compressed textures [...], padding at the bottom of the surface
1079 * is to an even compressed row.
1080 */
1081 if (isl_format_is_compressed(info->format))
1082 *total_h_el = isl_align(*total_h_el, 2);
1083
1084 /*
1085 * - For cube surfaces, an additional two rows of padding are required
1086 * at the bottom of the surface.
1087 */
1088 if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
1089 *total_h_el += 2;
1090
1091 /*
1092 * - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
1093 * additional padding is required. These surfaces require an extra row
1094 * plus 16 bytes of padding at the bottom in addition to the general
1095 * padding requirements.
1096 */
1097 if (isl_format_is_yuv(info->format) &&
1098 (fmtl->bpb == 96 || fmtl->bpb == 48|| fmtl->bpb == 24)) {
1099 *total_h_el += 1;
1100 *pad_bytes += 16;
1101 }
1102
1103 /*
1104 * - For linear surfaces, additional padding of 64 bytes is required at
1105 * the bottom of the surface. This is in addition to the padding
1106 * required above.
1107 */
1108 if (tile_info->tiling == ISL_TILING_LINEAR)
1109 *pad_bytes += 64;
1110
1111 /* The below text weakens, not strengthens, the padding requirements for
1112 * linear surfaces. Therefore we can safely ignore it.
1113 *
1114 * - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
1115 * non-MSAA, non-mip-mapped surfaces in linear memory, the only
1116 * padding requirement is to the next aligned 64-byte boundary beyond
1117 * the end of the surface. The rest of the padding requirements
1118 * documented above do not apply to these surfaces.
1119 */
1120
1121 /*
1122 * - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
1123 * height % 4 != 0, the surface must be padded with
1124 * 4-(height % 4)*Surface Pitch # of bytes.
1125 */
1126 if (ISL_DEV_GEN(dev) >= 9 &&
1127 tile_info->tiling == ISL_TILING_LINEAR &&
1128 (info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
1129 *total_h_el = isl_align(*total_h_el, 4);
1130 }
1131
1132 /*
1133 * - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
1134 * to 4 times the Surface Pitch # of bytes
1135 */
1136 if (ISL_DEV_GEN(dev) >= 9 &&
1137 tile_info->tiling == ISL_TILING_LINEAR &&
1138 info->dim == ISL_SURF_DIM_1D) {
1139 *total_h_el += 4;
1140 }
1141 }
1142
1143 bool
1144 isl_surf_init_s(const struct isl_device *dev,
1145 struct isl_surf *surf,
1146 const struct isl_surf_init_info *restrict info)
1147 {
1148 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1149
1150 const struct isl_extent4d logical_level0_px = {
1151 .w = info->width,
1152 .h = info->height,
1153 .d = info->depth,
1154 .a = info->array_len,
1155 };
1156
1157 enum isl_tiling tiling;
1158 if (!isl_surf_choose_tiling(dev, info, &tiling))
1159 return false;
1160
1161 struct isl_tile_info tile_info;
1162 if (!isl_tiling_get_info(dev, tiling, fmtl->bpb, &tile_info))
1163 return false;
1164
1165 const enum isl_dim_layout dim_layout =
1166 isl_surf_choose_dim_layout(dev, info->dim, tiling);
1167
1168 enum isl_msaa_layout msaa_layout;
1169 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1170 return false;
1171
1172 struct isl_extent3d image_align_el;
1173 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1174 &image_align_el);
1175
1176 struct isl_extent3d image_align_sa =
1177 isl_extent3d_el_to_sa(info->format, image_align_el);
1178
1179 struct isl_extent4d phys_level0_sa;
1180 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1181 &phys_level0_sa);
1182 assert(phys_level0_sa.w % fmtl->bw == 0);
1183 assert(phys_level0_sa.h % fmtl->bh == 0);
1184
1185 enum isl_array_pitch_span array_pitch_span =
1186 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1187
1188 struct isl_extent2d phys_slice0_sa;
1189 isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
1190 &image_align_sa, &phys_level0_sa,
1191 &phys_slice0_sa);
1192 assert(phys_slice0_sa.w % fmtl->bw == 0);
1193 assert(phys_slice0_sa.h % fmtl->bh == 0);
1194
1195 const uint32_t array_pitch_el_rows =
1196 isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
1197 array_pitch_span, &image_align_sa,
1198 &phys_level0_sa, &phys_slice0_sa);
1199
1200 uint32_t total_h_el = phys_level0_sa.array_len * array_pitch_el_rows;
1201
1202 uint32_t pad_bytes;
1203 isl_apply_surface_padding(dev, info, &tile_info, &total_h_el, &pad_bytes);
1204
1205 uint32_t row_pitch, size, base_alignment;
1206 if (tiling == ISL_TILING_LINEAR) {
1207 row_pitch = isl_calc_linear_row_pitch(dev, info, &phys_slice0_sa);
1208 size = row_pitch * total_h_el + pad_bytes;
1209
1210 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1211 *
1212 * "The Base Address for linear render target surfaces and surfaces
1213 * accessed with the typed surface read/write data port messages must
1214 * be element-size aligned, for non-YUV surface formats, or a
1215 * multiple of 2 element-sizes for YUV surface formats. Other linear
1216 * surfaces have no alignment requirements (byte alignment is
1217 * sufficient.)"
1218 */
1219 base_alignment = MAX(1, info->min_alignment);
1220 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1221 if (isl_format_is_yuv(info->format)) {
1222 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1223 } else {
1224 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1225 }
1226 }
1227 base_alignment = isl_round_up_to_power_of_two(base_alignment);
1228 } else {
1229 assert(fmtl->bpb % tile_info.format_bpb == 0);
1230 const uint32_t tile_el_scale = fmtl->bpb / tile_info.format_bpb;
1231
1232 assert(phys_slice0_sa.w % fmtl->bw == 0);
1233 const uint32_t total_w_el = phys_slice0_sa.width / fmtl->bw;
1234 const uint32_t total_w_tl =
1235 isl_align_div(total_w_el * tile_el_scale,
1236 tile_info.logical_extent_el.width);
1237
1238 row_pitch = total_w_tl * tile_info.phys_extent_B.width;
1239 if (row_pitch < info->min_pitch) {
1240 row_pitch = isl_align_npot(info->min_pitch,
1241 tile_info.phys_extent_B.width);
1242 }
1243
1244 total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
1245 const uint32_t total_h_tl =
1246 isl_align_div(total_h_el, tile_info.logical_extent_el.height);
1247
1248 size = total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1249
1250 const uint32_t tile_size = tile_info.phys_extent_B.width *
1251 tile_info.phys_extent_B.height;
1252 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1253 base_alignment = MAX(info->min_alignment, tile_size);
1254 }
1255
1256 *surf = (struct isl_surf) {
1257 .dim = info->dim,
1258 .dim_layout = dim_layout,
1259 .msaa_layout = msaa_layout,
1260 .tiling = tiling,
1261 .format = info->format,
1262
1263 .levels = info->levels,
1264 .samples = info->samples,
1265
1266 .image_alignment_el = image_align_el,
1267 .logical_level0_px = logical_level0_px,
1268 .phys_level0_sa = phys_level0_sa,
1269
1270 .size = size,
1271 .alignment = base_alignment,
1272 .row_pitch = row_pitch,
1273 .array_pitch_el_rows = array_pitch_el_rows,
1274 .array_pitch_span = array_pitch_span,
1275
1276 .usage = info->usage,
1277 };
1278
1279 return true;
1280 }
1281
1282 void
1283 isl_surf_get_tile_info(const struct isl_device *dev,
1284 const struct isl_surf *surf,
1285 struct isl_tile_info *tile_info)
1286 {
1287 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1288 isl_tiling_get_info(dev, surf->tiling, fmtl->bpb, tile_info);
1289 }
1290
1291 void
1292 isl_surf_get_hiz_surf(const struct isl_device *dev,
1293 const struct isl_surf *surf,
1294 struct isl_surf *hiz_surf)
1295 {
1296 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1297
1298 /* Multisampled depth is always interleaved */
1299 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1300 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1301
1302 isl_surf_init(dev, hiz_surf,
1303 .dim = ISL_SURF_DIM_2D,
1304 .format = ISL_FORMAT_HIZ,
1305 .width = surf->logical_level0_px.width,
1306 .height = surf->logical_level0_px.height,
1307 .depth = 1,
1308 .levels = surf->levels,
1309 .array_len = surf->logical_level0_px.array_len,
1310 /* On SKL+, HiZ is always single-sampled */
1311 .samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples,
1312 .usage = ISL_SURF_USAGE_HIZ_BIT,
1313 .tiling_flags = ISL_TILING_HIZ_BIT);
1314 }
1315
1316 void
1317 isl_surf_get_mcs_surf(const struct isl_device *dev,
1318 const struct isl_surf *surf,
1319 struct isl_surf *mcs_surf)
1320 {
1321 /* It must be multisampled with an array layout */
1322 assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1323
1324 /* The following are true of all multisampled surfaces */
1325 assert(surf->dim == ISL_SURF_DIM_2D);
1326 assert(surf->levels == 1);
1327 assert(surf->logical_level0_px.depth == 1);
1328
1329 enum isl_format mcs_format;
1330 switch (surf->samples) {
1331 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1332 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1333 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1334 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1335 default:
1336 unreachable("Invalid sample count");
1337 }
1338
1339 isl_surf_init(dev, mcs_surf,
1340 .dim = ISL_SURF_DIM_2D,
1341 .format = mcs_format,
1342 .width = surf->logical_level0_px.width,
1343 .height = surf->logical_level0_px.height,
1344 .depth = 1,
1345 .levels = 1,
1346 .array_len = surf->logical_level0_px.array_len,
1347 .samples = 1, /* MCS surfaces are really single-sampled */
1348 .usage = ISL_SURF_USAGE_MCS_BIT,
1349 .tiling_flags = ISL_TILING_Y0_BIT);
1350 }
1351
1352 bool
1353 isl_surf_get_ccs_surf(const struct isl_device *dev,
1354 const struct isl_surf *surf,
1355 struct isl_surf *ccs_surf)
1356 {
1357 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1358 assert(ISL_DEV_GEN(dev) >= 7);
1359
1360 assert(ISL_DEV_GEN(dev) >= 8 || surf->dim == ISL_SURF_DIM_2D);
1361
1362 assert(surf->logical_level0_px.depth == 1);
1363
1364 /* TODO: More conditions where it can fail. */
1365
1366 enum isl_format ccs_format;
1367 if (ISL_DEV_GEN(dev) >= 9) {
1368 if (!isl_tiling_is_any_y(surf->tiling))
1369 return false;
1370
1371 switch (isl_format_get_layout(surf->format)->bpb) {
1372 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1373 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1374 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1375 default:
1376 return false;
1377 }
1378 } else if (surf->tiling == ISL_TILING_Y0) {
1379 switch (isl_format_get_layout(surf->format)->bpb) {
1380 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1381 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1382 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1383 default:
1384 return false;
1385 }
1386 } else if (surf->tiling == ISL_TILING_X) {
1387 switch (isl_format_get_layout(surf->format)->bpb) {
1388 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1389 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1390 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1391 default:
1392 return false;
1393 }
1394 } else {
1395 return false;
1396 }
1397
1398 isl_surf_init(dev, ccs_surf,
1399 .dim = ISL_SURF_DIM_2D,
1400 .format = ccs_format,
1401 .width = surf->logical_level0_px.width,
1402 .height = surf->logical_level0_px.height,
1403 .depth = 1,
1404 .levels = surf->levels,
1405 .array_len = surf->logical_level0_px.array_len,
1406 .samples = 1,
1407 .usage = ISL_SURF_USAGE_CCS_BIT,
1408 .tiling_flags = ISL_TILING_CCS_BIT);
1409
1410 return true;
1411 }
1412
1413 void
1414 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1415 const struct isl_surf_fill_state_info *restrict info)
1416 {
1417 #ifndef NDEBUG
1418 isl_surf_usage_flags_t _base_usage =
1419 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1420 ISL_SURF_USAGE_TEXTURE_BIT |
1421 ISL_SURF_USAGE_STORAGE_BIT);
1422 /* They may only specify one of the above bits at a time */
1423 assert(__builtin_popcount(_base_usage) == 1);
1424 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1425 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1426 #endif
1427
1428 if (info->surf->dim == ISL_SURF_DIM_3D) {
1429 assert(info->view->base_array_layer + info->view->array_len <=
1430 info->surf->logical_level0_px.depth);
1431 } else {
1432 assert(info->view->base_array_layer + info->view->array_len <=
1433 info->surf->logical_level0_px.array_len);
1434 }
1435
1436 switch (ISL_DEV_GEN(dev)) {
1437 case 4:
1438 if (ISL_DEV_IS_G4X(dev)) {
1439 /* G45 surface state is the same as gen5 */
1440 isl_gen5_surf_fill_state_s(dev, state, info);
1441 } else {
1442 isl_gen4_surf_fill_state_s(dev, state, info);
1443 }
1444 break;
1445 case 5:
1446 isl_gen5_surf_fill_state_s(dev, state, info);
1447 break;
1448 case 6:
1449 isl_gen6_surf_fill_state_s(dev, state, info);
1450 break;
1451 case 7:
1452 if (ISL_DEV_IS_HASWELL(dev)) {
1453 isl_gen75_surf_fill_state_s(dev, state, info);
1454 } else {
1455 isl_gen7_surf_fill_state_s(dev, state, info);
1456 }
1457 break;
1458 case 8:
1459 isl_gen8_surf_fill_state_s(dev, state, info);
1460 break;
1461 case 9:
1462 isl_gen9_surf_fill_state_s(dev, state, info);
1463 break;
1464 default:
1465 assert(!"Cannot fill surface state for this gen");
1466 }
1467 }
1468
1469 void
1470 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1471 const struct isl_buffer_fill_state_info *restrict info)
1472 {
1473 switch (ISL_DEV_GEN(dev)) {
1474 case 4:
1475 case 5:
1476 /* Gen 4-5 are all the same when it comes to buffer surfaces */
1477 isl_gen5_buffer_fill_state_s(state, info);
1478 break;
1479 case 6:
1480 isl_gen6_buffer_fill_state_s(state, info);
1481 break;
1482 case 7:
1483 if (ISL_DEV_IS_HASWELL(dev)) {
1484 isl_gen75_buffer_fill_state_s(state, info);
1485 } else {
1486 isl_gen7_buffer_fill_state_s(state, info);
1487 }
1488 break;
1489 case 8:
1490 isl_gen8_buffer_fill_state_s(state, info);
1491 break;
1492 case 9:
1493 isl_gen9_buffer_fill_state_s(state, info);
1494 break;
1495 default:
1496 assert(!"Cannot fill surface state for this gen");
1497 }
1498 }
1499
1500 /**
1501 * A variant of isl_surf_get_image_offset_sa() specific to
1502 * ISL_DIM_LAYOUT_GEN4_2D.
1503 */
1504 static void
1505 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1506 uint32_t level, uint32_t logical_array_layer,
1507 uint32_t *x_offset_sa,
1508 uint32_t *y_offset_sa)
1509 {
1510 assert(level < surf->levels);
1511 if (surf->dim == ISL_SURF_DIM_3D)
1512 assert(logical_array_layer < surf->logical_level0_px.depth);
1513 else
1514 assert(logical_array_layer < surf->logical_level0_px.array_len);
1515
1516 const struct isl_extent3d image_align_sa =
1517 isl_surf_get_image_alignment_sa(surf);
1518
1519 const uint32_t W0 = surf->phys_level0_sa.width;
1520 const uint32_t H0 = surf->phys_level0_sa.height;
1521
1522 const uint32_t phys_layer = logical_array_layer *
1523 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1524
1525 uint32_t x = 0;
1526 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1527
1528 for (uint32_t l = 0; l < level; ++l) {
1529 if (l == 1) {
1530 uint32_t W = isl_minify(W0, l);
1531 x += isl_align_npot(W, image_align_sa.w);
1532 } else {
1533 uint32_t H = isl_minify(H0, l);
1534 y += isl_align_npot(H, image_align_sa.h);
1535 }
1536 }
1537
1538 *x_offset_sa = x;
1539 *y_offset_sa = y;
1540 }
1541
1542 /**
1543 * A variant of isl_surf_get_image_offset_sa() specific to
1544 * ISL_DIM_LAYOUT_GEN4_3D.
1545 */
1546 static void
1547 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1548 uint32_t level, uint32_t logical_z_offset_px,
1549 uint32_t *x_offset_sa,
1550 uint32_t *y_offset_sa)
1551 {
1552 assert(level < surf->levels);
1553 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1554 assert(surf->phys_level0_sa.array_len == 1);
1555
1556 const struct isl_extent3d image_align_sa =
1557 isl_surf_get_image_alignment_sa(surf);
1558
1559 const uint32_t W0 = surf->phys_level0_sa.width;
1560 const uint32_t H0 = surf->phys_level0_sa.height;
1561 const uint32_t D0 = surf->phys_level0_sa.depth;
1562
1563 uint32_t x = 0;
1564 uint32_t y = 0;
1565
1566 for (uint32_t l = 0; l < level; ++l) {
1567 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1568 const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
1569 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1570
1571 y += level_h * max_layers_vert;
1572 }
1573
1574 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1575 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1576 const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
1577
1578 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1579
1580 x += level_w * (logical_z_offset_px % max_layers_horiz);
1581 y += level_h * (logical_z_offset_px / max_layers_horiz);
1582
1583 *x_offset_sa = x;
1584 *y_offset_sa = y;
1585 }
1586
1587 /**
1588 * A variant of isl_surf_get_image_offset_sa() specific to
1589 * ISL_DIM_LAYOUT_GEN9_1D.
1590 */
1591 static void
1592 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
1593 uint32_t level, uint32_t layer,
1594 uint32_t *x_offset_sa,
1595 uint32_t *y_offset_sa)
1596 {
1597 assert(level < surf->levels);
1598 assert(layer < surf->phys_level0_sa.array_len);
1599 assert(surf->phys_level0_sa.height == 1);
1600 assert(surf->phys_level0_sa.depth == 1);
1601 assert(surf->samples == 1);
1602
1603 const uint32_t W0 = surf->phys_level0_sa.width;
1604 const struct isl_extent3d image_align_sa =
1605 isl_surf_get_image_alignment_sa(surf);
1606
1607 uint32_t x = 0;
1608
1609 for (uint32_t l = 0; l < level; ++l) {
1610 uint32_t W = isl_minify(W0, l);
1611 uint32_t w = isl_align_npot(W, image_align_sa.w);
1612
1613 x += w;
1614 }
1615
1616 *x_offset_sa = x;
1617 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
1618 }
1619
1620 /**
1621 * Calculate the offset, in units of surface samples, to a subimage in the
1622 * surface.
1623 *
1624 * @invariant level < surface levels
1625 * @invariant logical_array_layer < logical array length of surface
1626 * @invariant logical_z_offset_px < logical depth of surface at level
1627 */
1628 void
1629 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
1630 uint32_t level,
1631 uint32_t logical_array_layer,
1632 uint32_t logical_z_offset_px,
1633 uint32_t *x_offset_sa,
1634 uint32_t *y_offset_sa)
1635 {
1636 assert(level < surf->levels);
1637 assert(logical_array_layer < surf->logical_level0_px.array_len);
1638 assert(logical_z_offset_px
1639 < isl_minify(surf->logical_level0_px.depth, level));
1640
1641 switch (surf->dim_layout) {
1642 case ISL_DIM_LAYOUT_GEN9_1D:
1643 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
1644 x_offset_sa, y_offset_sa);
1645 break;
1646 case ISL_DIM_LAYOUT_GEN4_2D:
1647 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
1648 + logical_z_offset_px,
1649 x_offset_sa, y_offset_sa);
1650 break;
1651 case ISL_DIM_LAYOUT_GEN4_3D:
1652 get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
1653 x_offset_sa, y_offset_sa);
1654 break;
1655
1656 default:
1657 unreachable("not reached");
1658 }
1659 }
1660
1661 void
1662 isl_surf_get_image_offset_el(const struct isl_surf *surf,
1663 uint32_t level,
1664 uint32_t logical_array_layer,
1665 uint32_t logical_z_offset_px,
1666 uint32_t *x_offset_el,
1667 uint32_t *y_offset_el)
1668 {
1669 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1670
1671 assert(level < surf->levels);
1672 assert(logical_array_layer < surf->logical_level0_px.array_len);
1673 assert(logical_z_offset_px
1674 < isl_minify(surf->logical_level0_px.depth, level));
1675
1676 uint32_t x_offset_sa, y_offset_sa;
1677 isl_surf_get_image_offset_sa(surf, level,
1678 logical_array_layer,
1679 logical_z_offset_px,
1680 &x_offset_sa,
1681 &y_offset_sa);
1682
1683 *x_offset_el = x_offset_sa / fmtl->bw;
1684 *y_offset_el = y_offset_sa / fmtl->bh;
1685 }
1686
1687 void
1688 isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
1689 enum isl_tiling tiling,
1690 uint8_t bs,
1691 uint32_t row_pitch,
1692 uint32_t total_x_offset_el,
1693 uint32_t total_y_offset_el,
1694 uint32_t *base_address_offset,
1695 uint32_t *x_offset_el,
1696 uint32_t *y_offset_el)
1697 {
1698 if (tiling == ISL_TILING_LINEAR) {
1699 *base_address_offset = total_y_offset_el * row_pitch +
1700 total_x_offset_el * bs;
1701 *x_offset_el = 0;
1702 *y_offset_el = 0;
1703 return;
1704 }
1705
1706 const uint32_t bpb = bs * 8;
1707
1708 struct isl_tile_info tile_info;
1709 isl_tiling_get_info(dev, tiling, bpb, &tile_info);
1710
1711 assert(row_pitch % tile_info.phys_extent_B.width == 0);
1712
1713 /* For non-power-of-two formats, we need the address to be both tile and
1714 * element-aligned. The easiest way to achieve this is to work with a tile
1715 * that is three times as wide as the regular tile.
1716 *
1717 * The tile info returned by get_tile_info has a logical size that is an
1718 * integer number of tile_info.format_bpb size elements. To scale the
1719 * tile, we scale up the physical width and then treat the logical tile
1720 * size as if it has bpb size elements.
1721 */
1722 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
1723 tile_info.phys_extent_B.width *= tile_el_scale;
1724
1725 /* Compute the offset into the tile */
1726 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
1727 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
1728
1729 /* Compute the offset of the tile in units of whole tiles */
1730 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
1731 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
1732
1733 *base_address_offset =
1734 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
1735 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
1736 }
1737
1738 uint32_t
1739 isl_surf_get_depth_format(const struct isl_device *dev,
1740 const struct isl_surf *surf)
1741 {
1742 /* Support for separate stencil buffers began in gen5. Support for
1743 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
1744 * those that supported separate and interleaved stencil, were gen5 and
1745 * gen6.
1746 *
1747 * For a list of all available formats, see the Sandybridge PRM >> Volume
1748 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
1749 * Format (p321).
1750 */
1751
1752 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
1753
1754 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
1755
1756 if (has_stencil)
1757 assert(ISL_DEV_GEN(dev) < 7);
1758
1759 switch (surf->format) {
1760 default:
1761 unreachable("bad isl depth format");
1762 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1763 assert(ISL_DEV_GEN(dev) < 7);
1764 return 0; /* D32_FLOAT_S8X24_UINT */
1765 case ISL_FORMAT_R32_FLOAT:
1766 assert(!has_stencil);
1767 return 1; /* D32_FLOAT */
1768 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1769 if (has_stencil) {
1770 assert(ISL_DEV_GEN(dev) < 7);
1771 return 2; /* D24_UNORM_S8_UINT */
1772 } else {
1773 assert(ISL_DEV_GEN(dev) >= 5);
1774 return 3; /* D24_UNORM_X8_UINT */
1775 }
1776 case ISL_FORMAT_R16_UNORM:
1777 assert(!has_stencil);
1778 return 5; /* D16_UNORM */
1779 }
1780 }