intel/isl/icl: Build and use gen11 surface state emit functions
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gen4.h"
32 #include "isl_gen6.h"
33 #include "isl_gen7.h"
34 #include "isl_gen8.h"
35 #include "isl_gen9.h"
36 #include "isl_priv.h"
37
38 void PRINTFLIKE(3, 4) UNUSED
39 __isl_finishme(const char *file, int line, const char *fmt, ...)
40 {
41 va_list ap;
42 char buf[512];
43
44 va_start(ap, fmt);
45 vsnprintf(buf, sizeof(buf), fmt, ap);
46 va_end(ap);
47
48 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
49 }
50
51 void
52 isl_device_init(struct isl_device *dev,
53 const struct gen_device_info *info,
54 bool has_bit6_swizzling)
55 {
56 dev->info = info;
57 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
58 dev->has_bit6_swizzling = has_bit6_swizzling;
59
60 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
61 * device properties at buildtime. Verify that the macros with the device
62 * properties chosen during runtime.
63 */
64 ISL_DEV_GEN_SANITIZE(dev);
65 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
66
67 /* Did we break hiz or stencil? */
68 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
69 assert(info->has_hiz_and_separate_stencil);
70 if (info->must_use_separate_stencil)
71 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
72
73 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
74 dev->ss.align = isl_align(dev->ss.size, 32);
75
76 dev->ss.clear_value_size =
77 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
78 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
79 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
80 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
81
82 dev->ss.clear_value_offset =
83 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
84
85 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
86 dev->ss.addr_offset =
87 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
88
89 /* The "Auxiliary Surface Base Address" field starts a bit higher up
90 * because the bottom 12 bits are used for other things. Round down to
91 * the nearest dword before.
92 */
93 dev->ss.aux_addr_offset =
94 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
95
96 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
97 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
98 dev->ds.depth_offset =
99 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
100
101 if (dev->use_separate_stencil) {
102 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
103 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
104 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
105
106 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
107 dev->ds.stencil_offset =
108 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
109 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
110
111 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
112 dev->ds.hiz_offset =
113 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
114 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
115 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
116 } else {
117 dev->ds.stencil_offset = 0;
118 dev->ds.hiz_offset = 0;
119 }
120 }
121
122 /**
123 * @brief Query the set of multisamples supported by the device.
124 *
125 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
126 * supported.
127 */
128 isl_sample_count_mask_t ATTRIBUTE_CONST
129 isl_device_get_sample_counts(struct isl_device *dev)
130 {
131 if (ISL_DEV_GEN(dev) >= 9) {
132 return ISL_SAMPLE_COUNT_1_BIT |
133 ISL_SAMPLE_COUNT_2_BIT |
134 ISL_SAMPLE_COUNT_4_BIT |
135 ISL_SAMPLE_COUNT_8_BIT |
136 ISL_SAMPLE_COUNT_16_BIT;
137 } else if (ISL_DEV_GEN(dev) >= 8) {
138 return ISL_SAMPLE_COUNT_1_BIT |
139 ISL_SAMPLE_COUNT_2_BIT |
140 ISL_SAMPLE_COUNT_4_BIT |
141 ISL_SAMPLE_COUNT_8_BIT;
142 } else if (ISL_DEV_GEN(dev) >= 7) {
143 return ISL_SAMPLE_COUNT_1_BIT |
144 ISL_SAMPLE_COUNT_4_BIT |
145 ISL_SAMPLE_COUNT_8_BIT;
146 } else if (ISL_DEV_GEN(dev) >= 6) {
147 return ISL_SAMPLE_COUNT_1_BIT |
148 ISL_SAMPLE_COUNT_4_BIT;
149 } else {
150 return ISL_SAMPLE_COUNT_1_BIT;
151 }
152 }
153
154 /**
155 * @param[out] info is written only on success
156 */
157 static void
158 isl_tiling_get_info(enum isl_tiling tiling,
159 uint32_t format_bpb,
160 struct isl_tile_info *tile_info)
161 {
162 const uint32_t bs = format_bpb / 8;
163 struct isl_extent2d logical_el, phys_B;
164
165 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
166 /* It is possible to have non-power-of-two formats in a tiled buffer.
167 * The easiest way to handle this is to treat the tile as if it is three
168 * times as wide. This way no pixel will ever cross a tile boundary.
169 * This really only works on legacy X and Y tiling formats.
170 */
171 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
172 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
173 isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
174 return;
175 }
176
177 switch (tiling) {
178 case ISL_TILING_LINEAR:
179 assert(bs > 0);
180 logical_el = isl_extent2d(1, 1);
181 phys_B = isl_extent2d(bs, 1);
182 break;
183
184 case ISL_TILING_X:
185 assert(bs > 0);
186 logical_el = isl_extent2d(512 / bs, 8);
187 phys_B = isl_extent2d(512, 8);
188 break;
189
190 case ISL_TILING_Y0:
191 assert(bs > 0);
192 logical_el = isl_extent2d(128 / bs, 32);
193 phys_B = isl_extent2d(128, 32);
194 break;
195
196 case ISL_TILING_W:
197 assert(bs == 1);
198 logical_el = isl_extent2d(64, 64);
199 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
200 *
201 * "If the surface is a stencil buffer (and thus has Tile Mode set
202 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
203 * computed based on width, as the stencil buffer is stored with two
204 * rows interleaved."
205 *
206 * This, together with the fact that stencil buffers are referred to as
207 * being Y-tiled in the PRMs for older hardware implies that the
208 * physical size of a W-tile is actually the same as for a Y-tile.
209 */
210 phys_B = isl_extent2d(128, 32);
211 break;
212
213 case ISL_TILING_Yf:
214 case ISL_TILING_Ys: {
215 bool is_Ys = tiling == ISL_TILING_Ys;
216
217 assert(bs > 0);
218 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
219 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
220
221 logical_el = isl_extent2d(width / bs, height);
222 phys_B = isl_extent2d(width, height);
223 break;
224 }
225
226 case ISL_TILING_HIZ:
227 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
228 * 128bpb format. The tiling has the same physical dimensions as
229 * Y-tiling but actually has two HiZ columns per Y-tiled column.
230 */
231 assert(bs == 16);
232 logical_el = isl_extent2d(16, 16);
233 phys_B = isl_extent2d(128, 32);
234 break;
235
236 case ISL_TILING_CCS:
237 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
238 * have a block size of 1 or 2 bits per block and each CCS element
239 * corresponds to one cache-line pair in the main surface. From the Sky
240 * Lake PRM Vol. 12 in the section on planes:
241 *
242 * "The Color Control Surface (CCS) contains the compression status
243 * of the cache-line pairs. The compression state of the cache-line
244 * pair is specified by 2 bits in the CCS. Each CCS cache-line
245 * represents an area on the main surface of 16x16 sets of 128 byte
246 * Y-tiled cache-line-pairs. CCS is always Y tiled."
247 *
248 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
249 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
250 * that yields total tile area of 128x128 cache-line pairs or CCS
251 * elements. On older hardware, each CCS element is 1 bit and the tile
252 * is 128x256 elements.
253 */
254 assert(format_bpb == 1 || format_bpb == 2);
255 logical_el = isl_extent2d(128, 256 / format_bpb);
256 phys_B = isl_extent2d(128, 32);
257 break;
258
259 default:
260 unreachable("not reached");
261 } /* end switch */
262
263 *tile_info = (struct isl_tile_info) {
264 .tiling = tiling,
265 .format_bpb = format_bpb,
266 .logical_extent_el = logical_el,
267 .phys_extent_B = phys_B,
268 };
269 }
270
271 bool
272 isl_color_value_is_zero_one(union isl_color_value value,
273 enum isl_format format)
274 {
275 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
276
277 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
278 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
279 return false
280
281 if (isl_format_has_int_channel(format)) {
282 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
283 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
284 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
285 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
286 } else {
287 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
288 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
289 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
290 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
291 }
292
293 #undef RETURN_FALSE_IF_NOT_0_1
294
295 return true;
296 }
297
298 /**
299 * @param[out] tiling is set only on success
300 */
301 static bool
302 isl_surf_choose_tiling(const struct isl_device *dev,
303 const struct isl_surf_init_info *restrict info,
304 enum isl_tiling *tiling)
305 {
306 isl_tiling_flags_t tiling_flags = info->tiling_flags;
307
308 /* HiZ surfaces always use the HiZ tiling */
309 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
310 assert(info->format == ISL_FORMAT_HIZ);
311 assert(tiling_flags == ISL_TILING_HIZ_BIT);
312 *tiling = ISL_TILING_HIZ;
313 return true;
314 }
315
316 /* CCS surfaces always use the CCS tiling */
317 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
318 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
319 assert(tiling_flags == ISL_TILING_CCS_BIT);
320 *tiling = ISL_TILING_CCS;
321 return true;
322 }
323
324 if (ISL_DEV_GEN(dev) >= 6) {
325 isl_gen6_filter_tiling(dev, info, &tiling_flags);
326 } else {
327 isl_gen4_filter_tiling(dev, info, &tiling_flags);
328 }
329
330 #define CHOOSE(__tiling) \
331 do { \
332 if (tiling_flags & (1u << (__tiling))) { \
333 *tiling = (__tiling); \
334 return true; \
335 } \
336 } while (0)
337
338 /* Of the tiling modes remaining, choose the one that offers the best
339 * performance.
340 */
341
342 if (info->dim == ISL_SURF_DIM_1D) {
343 /* Prefer linear for 1D surfaces because they do not benefit from
344 * tiling. To the contrary, tiling leads to wasted memory and poor
345 * memory locality due to the swizzling and alignment restrictions
346 * required in tiled surfaces.
347 */
348 CHOOSE(ISL_TILING_LINEAR);
349 }
350
351 CHOOSE(ISL_TILING_Ys);
352 CHOOSE(ISL_TILING_Yf);
353 CHOOSE(ISL_TILING_Y0);
354 CHOOSE(ISL_TILING_X);
355 CHOOSE(ISL_TILING_W);
356 CHOOSE(ISL_TILING_LINEAR);
357
358 #undef CHOOSE
359
360 /* No tiling mode accomodates the inputs. */
361 return false;
362 }
363
364 static bool
365 isl_choose_msaa_layout(const struct isl_device *dev,
366 const struct isl_surf_init_info *info,
367 enum isl_tiling tiling,
368 enum isl_msaa_layout *msaa_layout)
369 {
370 if (ISL_DEV_GEN(dev) >= 8) {
371 return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
372 } else if (ISL_DEV_GEN(dev) >= 7) {
373 return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
374 } else if (ISL_DEV_GEN(dev) >= 6) {
375 return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
376 } else {
377 return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
378 }
379 }
380
381 struct isl_extent2d
382 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
383 {
384 assert(isl_is_pow2(samples));
385
386 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
387 * Sizes (p133):
388 *
389 * If the surface is multisampled and it is a depth or stencil surface
390 * or Multisampled Surface StorageFormat in SURFACE_STATE is
391 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
392 * proceeding: [...]
393 */
394 return (struct isl_extent2d) {
395 .width = 1 << ((ffs(samples) - 0) / 2),
396 .height = 1 << ((ffs(samples) - 1) / 2),
397 };
398 }
399
400 static void
401 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
402 uint32_t *width, uint32_t *height)
403 {
404 const struct isl_extent2d px_size_sa =
405 isl_get_interleaved_msaa_px_size_sa(samples);
406
407 if (width)
408 *width = isl_align(*width, 2) * px_size_sa.width;
409 if (height)
410 *height = isl_align(*height, 2) * px_size_sa.height;
411 }
412
413 static enum isl_array_pitch_span
414 isl_choose_array_pitch_span(const struct isl_device *dev,
415 const struct isl_surf_init_info *restrict info,
416 enum isl_dim_layout dim_layout,
417 const struct isl_extent4d *phys_level0_sa)
418 {
419 switch (dim_layout) {
420 case ISL_DIM_LAYOUT_GEN9_1D:
421 case ISL_DIM_LAYOUT_GEN4_2D:
422 if (ISL_DEV_GEN(dev) >= 8) {
423 /* QPitch becomes programmable in Broadwell. So choose the
424 * most compact QPitch possible in order to conserve memory.
425 *
426 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
427 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
428 *
429 * - Software must ensure that this field is set to a value
430 * sufficiently large such that the array slices in the surface
431 * do not overlap. Refer to the Memory Data Formats section for
432 * information on how surfaces are stored in memory.
433 *
434 * - This field specifies the distance in rows between array
435 * slices. It is used only in the following cases:
436 *
437 * - Surface Array is enabled OR
438 * - Number of Mulitsamples is not NUMSAMPLES_1 and
439 * Multisampled Surface Storage Format set to MSFMT_MSS OR
440 * - Surface Type is SURFTYPE_CUBE
441 */
442 return ISL_ARRAY_PITCH_SPAN_COMPACT;
443 } else if (ISL_DEV_GEN(dev) >= 7) {
444 /* Note that Ivybridge introduces
445 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
446 * driver more control over the QPitch.
447 */
448
449 if (phys_level0_sa->array_len == 1) {
450 /* The hardware will never use the QPitch. So choose the most
451 * compact QPitch possible in order to conserve memory.
452 */
453 return ISL_ARRAY_PITCH_SPAN_COMPACT;
454 }
455
456 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
457 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
458 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
459 * Section 6.18.4.7: Surface Arrays (p112):
460 *
461 * If Surface Array Spacing is set to ARYSPC_FULL (note that
462 * the depth buffer and stencil buffer have an implied value of
463 * ARYSPC_FULL):
464 */
465 return ISL_ARRAY_PITCH_SPAN_FULL;
466 }
467
468 if (info->levels == 1) {
469 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
470 * to ARYSPC_LOD0.
471 */
472 return ISL_ARRAY_PITCH_SPAN_COMPACT;
473 }
474
475 return ISL_ARRAY_PITCH_SPAN_FULL;
476 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
477 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
478 isl_surf_usage_is_stencil(info->usage)) {
479 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
480 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
481 *
482 * The separate stencil buffer does not support mip mapping, thus
483 * the storage for LODs other than LOD 0 is not needed.
484 */
485 assert(info->levels == 1);
486 return ISL_ARRAY_PITCH_SPAN_COMPACT;
487 } else {
488 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
489 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
490 isl_surf_usage_is_stencil(info->usage)) {
491 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
492 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
493 *
494 * The separate stencil buffer does not support mip mapping,
495 * thus the storage for LODs other than LOD 0 is not needed.
496 */
497 assert(info->levels == 1);
498 assert(phys_level0_sa->array_len == 1);
499 return ISL_ARRAY_PITCH_SPAN_COMPACT;
500 }
501
502 if (phys_level0_sa->array_len == 1) {
503 /* The hardware will never use the QPitch. So choose the most
504 * compact QPitch possible in order to conserve memory.
505 */
506 return ISL_ARRAY_PITCH_SPAN_COMPACT;
507 }
508
509 return ISL_ARRAY_PITCH_SPAN_FULL;
510 }
511
512 case ISL_DIM_LAYOUT_GEN4_3D:
513 /* The hardware will never use the QPitch. So choose the most
514 * compact QPitch possible in order to conserve memory.
515 */
516 return ISL_ARRAY_PITCH_SPAN_COMPACT;
517
518 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
519 /* Each array image in the gen6 stencil of HiZ surface is compact in the
520 * sense that every LOD is a compact array of the same size as LOD0.
521 */
522 return ISL_ARRAY_PITCH_SPAN_COMPACT;
523 }
524
525 unreachable("bad isl_dim_layout");
526 return ISL_ARRAY_PITCH_SPAN_FULL;
527 }
528
529 static void
530 isl_choose_image_alignment_el(const struct isl_device *dev,
531 const struct isl_surf_init_info *restrict info,
532 enum isl_tiling tiling,
533 enum isl_dim_layout dim_layout,
534 enum isl_msaa_layout msaa_layout,
535 struct isl_extent3d *image_align_el)
536 {
537 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
538 if (fmtl->txc == ISL_TXC_MCS) {
539 assert(tiling == ISL_TILING_Y0);
540
541 /*
542 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
543 *
544 * Height, width, and layout of MCS buffer in this case must match with
545 * Render Target height, width, and layout. MCS buffer is tiledY.
546 *
547 * To avoid wasting memory, choose the smallest alignment possible:
548 * HALIGN_4 and VALIGN_4.
549 */
550 *image_align_el = isl_extent3d(4, 4, 1);
551 return;
552 } else if (info->format == ISL_FORMAT_HIZ) {
553 assert(ISL_DEV_GEN(dev) >= 6);
554 if (ISL_DEV_GEN(dev) == 6) {
555 /* HiZ surfaces on Sandy Bridge are packed tightly. */
556 *image_align_el = isl_extent3d(1, 1, 1);
557 } else {
558 /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
559 * primary surface which works out to 2x2 HiZ elments.
560 */
561 *image_align_el = isl_extent3d(2, 2, 1);
562 }
563 return;
564 }
565
566 if (ISL_DEV_GEN(dev) >= 9) {
567 isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
568 msaa_layout, image_align_el);
569 } else if (ISL_DEV_GEN(dev) >= 8) {
570 isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
571 msaa_layout, image_align_el);
572 } else if (ISL_DEV_GEN(dev) >= 7) {
573 isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
574 msaa_layout, image_align_el);
575 } else if (ISL_DEV_GEN(dev) >= 6) {
576 isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
577 msaa_layout, image_align_el);
578 } else {
579 isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
580 msaa_layout, image_align_el);
581 }
582 }
583
584 static enum isl_dim_layout
585 isl_surf_choose_dim_layout(const struct isl_device *dev,
586 enum isl_surf_dim logical_dim,
587 enum isl_tiling tiling,
588 isl_surf_usage_flags_t usage)
589 {
590 /* Sandy bridge needs a special layout for HiZ and stencil. */
591 if (ISL_DEV_GEN(dev) == 6 &&
592 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
593 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
594
595 if (ISL_DEV_GEN(dev) >= 9) {
596 switch (logical_dim) {
597 case ISL_SURF_DIM_1D:
598 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
599 *
600 * One-dimensional surfaces use a tiling mode of linear.
601 * Technically, they are not tiled resources, but the Tiled
602 * Resource Mode field in RENDER_SURFACE_STATE is still used to
603 * indicate the alignment requirements for this linear surface
604 * (See 1D Alignment requirements for how 4K and 64KB Tiled
605 * Resource Modes impact alignment). Alternatively, a 1D surface
606 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
607 * a height of 0.
608 *
609 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
610 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
611 */
612 if (tiling == ISL_TILING_LINEAR)
613 return ISL_DIM_LAYOUT_GEN9_1D;
614 else
615 return ISL_DIM_LAYOUT_GEN4_2D;
616 case ISL_SURF_DIM_2D:
617 case ISL_SURF_DIM_3D:
618 return ISL_DIM_LAYOUT_GEN4_2D;
619 }
620 } else {
621 switch (logical_dim) {
622 case ISL_SURF_DIM_1D:
623 case ISL_SURF_DIM_2D:
624 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
625 *
626 * The cube face textures are stored in the same way as 3D surfaces
627 * are stored (see section 6.17.5 for details). For cube surfaces,
628 * however, the depth is equal to the number of faces (always 6) and
629 * is not reduced for each MIP.
630 */
631 if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
632 return ISL_DIM_LAYOUT_GEN4_3D;
633
634 return ISL_DIM_LAYOUT_GEN4_2D;
635 case ISL_SURF_DIM_3D:
636 return ISL_DIM_LAYOUT_GEN4_3D;
637 }
638 }
639
640 unreachable("bad isl_surf_dim");
641 return ISL_DIM_LAYOUT_GEN4_2D;
642 }
643
644 /**
645 * Calculate the physical extent of the surface's first level, in units of
646 * surface samples. The result is aligned to the format's compression block.
647 */
648 static void
649 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
650 const struct isl_surf_init_info *restrict info,
651 enum isl_dim_layout dim_layout,
652 enum isl_tiling tiling,
653 enum isl_msaa_layout msaa_layout,
654 struct isl_extent4d *phys_level0_sa)
655 {
656 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
657
658 if (isl_format_is_yuv(info->format))
659 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
660
661 switch (info->dim) {
662 case ISL_SURF_DIM_1D:
663 assert(info->height == 1);
664 assert(info->depth == 1);
665 assert(info->samples == 1);
666
667 switch (dim_layout) {
668 case ISL_DIM_LAYOUT_GEN4_3D:
669 unreachable("bad isl_dim_layout");
670
671 case ISL_DIM_LAYOUT_GEN9_1D:
672 case ISL_DIM_LAYOUT_GEN4_2D:
673 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
674 *phys_level0_sa = (struct isl_extent4d) {
675 .w = isl_align_npot(info->width, fmtl->bw),
676 .h = fmtl->bh,
677 .d = 1,
678 .a = info->array_len,
679 };
680 break;
681 }
682 break;
683
684 case ISL_SURF_DIM_2D:
685 if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
686 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
687 else
688 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
689 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
690
691 if (tiling == ISL_TILING_Ys && info->samples > 1)
692 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
693
694 switch (msaa_layout) {
695 case ISL_MSAA_LAYOUT_NONE:
696 assert(info->depth == 1);
697 assert(info->samples == 1);
698
699 *phys_level0_sa = (struct isl_extent4d) {
700 .w = isl_align_npot(info->width, fmtl->bw),
701 .h = isl_align_npot(info->height, fmtl->bh),
702 .d = 1,
703 .a = info->array_len,
704 };
705 break;
706
707 case ISL_MSAA_LAYOUT_ARRAY:
708 assert(info->depth == 1);
709 assert(info->levels == 1);
710 assert(isl_format_supports_multisampling(dev->info, info->format));
711 assert(fmtl->bw == 1 && fmtl->bh == 1);
712
713 *phys_level0_sa = (struct isl_extent4d) {
714 .w = info->width,
715 .h = info->height,
716 .d = 1,
717 .a = info->array_len * info->samples,
718 };
719 break;
720
721 case ISL_MSAA_LAYOUT_INTERLEAVED:
722 assert(info->depth == 1);
723 assert(info->levels == 1);
724 assert(isl_format_supports_multisampling(dev->info, info->format));
725
726 *phys_level0_sa = (struct isl_extent4d) {
727 .w = info->width,
728 .h = info->height,
729 .d = 1,
730 .a = info->array_len,
731 };
732
733 isl_msaa_interleaved_scale_px_to_sa(info->samples,
734 &phys_level0_sa->w,
735 &phys_level0_sa->h);
736
737 phys_level0_sa->w = isl_align(phys_level0_sa->w, fmtl->bw);
738 phys_level0_sa->h = isl_align(phys_level0_sa->h, fmtl->bh);
739 break;
740 }
741 break;
742
743 case ISL_SURF_DIM_3D:
744 assert(info->array_len == 1);
745 assert(info->samples == 1);
746
747 if (fmtl->bd > 1) {
748 isl_finishme("%s:%s: compression block with depth > 1",
749 __FILE__, __func__);
750 }
751
752 switch (dim_layout) {
753 case ISL_DIM_LAYOUT_GEN9_1D:
754 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
755 unreachable("bad isl_dim_layout");
756
757 case ISL_DIM_LAYOUT_GEN4_2D:
758 assert(ISL_DEV_GEN(dev) >= 9);
759
760 *phys_level0_sa = (struct isl_extent4d) {
761 .w = isl_align_npot(info->width, fmtl->bw),
762 .h = isl_align_npot(info->height, fmtl->bh),
763 .d = 1,
764 .a = info->depth,
765 };
766 break;
767
768 case ISL_DIM_LAYOUT_GEN4_3D:
769 assert(ISL_DEV_GEN(dev) < 9);
770 *phys_level0_sa = (struct isl_extent4d) {
771 .w = isl_align(info->width, fmtl->bw),
772 .h = isl_align(info->height, fmtl->bh),
773 .d = info->depth,
774 .a = 1,
775 };
776 break;
777 }
778 break;
779 }
780 }
781
782 /**
783 * Calculate the pitch between physical array slices, in units of rows of
784 * surface elements.
785 */
786 static uint32_t
787 isl_calc_array_pitch_el_rows_gen4_2d(
788 const struct isl_device *dev,
789 const struct isl_surf_init_info *restrict info,
790 const struct isl_tile_info *tile_info,
791 const struct isl_extent3d *image_align_sa,
792 const struct isl_extent4d *phys_level0_sa,
793 enum isl_array_pitch_span array_pitch_span,
794 const struct isl_extent2d *phys_slice0_sa)
795 {
796 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
797 uint32_t pitch_sa_rows = 0;
798
799 switch (array_pitch_span) {
800 case ISL_ARRAY_PITCH_SPAN_COMPACT:
801 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
802 break;
803 case ISL_ARRAY_PITCH_SPAN_FULL: {
804 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
805 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
806 * Surfaces >> Surface Arrays.
807 */
808 uint32_t H0_sa = phys_level0_sa->h;
809 uint32_t H1_sa = isl_minify(H0_sa, 1);
810
811 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
812 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
813
814 uint32_t m;
815 if (ISL_DEV_GEN(dev) >= 7) {
816 /* The QPitch equation changed slightly in Ivybridge. */
817 m = 12;
818 } else {
819 m = 11;
820 }
821
822 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
823
824 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
825 (info->height % 4 == 1)) {
826 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
827 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
828 *
829 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
830 * the value calculated in the equation above , for every
831 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
832 *
833 * XXX(chadv): Is the errata natural corollary of the physical
834 * layout of interleaved samples?
835 */
836 pitch_sa_rows += 4;
837 }
838
839 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
840 } /* end case */
841 break;
842 }
843
844 assert(pitch_sa_rows % fmtl->bh == 0);
845 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
846
847 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
848 /*
849 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
850 *
851 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
852 * layout with these alignments in the RT space: Horizontal
853 * Alignment = 128 and Vertical Alignment = 64."
854 *
855 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
856 *
857 * "For non-multisampled render target's CCS auxiliary surface,
858 * QPitch must be computed with Horizontal Alignment = 128 and
859 * Surface Vertical Alignment = 256. These alignments are only for
860 * CCS buffer and not for associated render target."
861 *
862 * The first restriction is already handled by isl_choose_image_alignment_el
863 * but the second restriction, which is an extension of the first, only
864 * applies to qpitch and must be applied here.
865 */
866 assert(fmtl->bh == 4);
867 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
868 }
869
870 if (ISL_DEV_GEN(dev) >= 9 &&
871 info->dim == ISL_SURF_DIM_3D &&
872 tile_info->tiling != ISL_TILING_LINEAR) {
873 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
874 *
875 * Tile Mode != Linear: This field must be set to an integer multiple
876 * of the tile height
877 */
878 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
879 }
880
881 return pitch_el_rows;
882 }
883
884 /**
885 * A variant of isl_calc_phys_slice0_extent_sa() specific to
886 * ISL_DIM_LAYOUT_GEN4_2D.
887 */
888 static void
889 isl_calc_phys_slice0_extent_sa_gen4_2d(
890 const struct isl_device *dev,
891 const struct isl_surf_init_info *restrict info,
892 enum isl_msaa_layout msaa_layout,
893 const struct isl_extent3d *image_align_sa,
894 const struct isl_extent4d *phys_level0_sa,
895 struct isl_extent2d *phys_slice0_sa)
896 {
897 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
898
899 assert(phys_level0_sa->depth == 1);
900
901 if (info->levels == 1) {
902 /* Do not pad the surface to the image alignment. Instead, pad it only
903 * to the pixel format's block alignment.
904 *
905 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
906 * cycles on the below mipmap layout caluclations. Reducing the
907 * alignment here is safe because we later align the row pitch and array
908 * pitch to the tile boundary. It is safe even for
909 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
910 * to accomodate the interleaved samples.
911 *
912 * For linear surfaces, reducing the alignment here permits us to later
913 * choose an arbitrary, non-aligned row pitch. If the surface backs
914 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
915 * VkBufferImageCopy::bufferRowLength.
916 */
917 *phys_slice0_sa = (struct isl_extent2d) {
918 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
919 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
920 };
921 return;
922 }
923
924 uint32_t slice_top_w = 0;
925 uint32_t slice_bottom_w = 0;
926 uint32_t slice_left_h = 0;
927 uint32_t slice_right_h = 0;
928
929 uint32_t W0 = phys_level0_sa->w;
930 uint32_t H0 = phys_level0_sa->h;
931
932 for (uint32_t l = 0; l < info->levels; ++l) {
933 uint32_t W = isl_minify(W0, l);
934 uint32_t H = isl_minify(H0, l);
935
936 uint32_t w = isl_align_npot(W, image_align_sa->w);
937 uint32_t h = isl_align_npot(H, image_align_sa->h);
938
939 if (l == 0) {
940 slice_top_w = w;
941 slice_left_h = h;
942 slice_right_h = h;
943 } else if (l == 1) {
944 slice_bottom_w = w;
945 slice_left_h += h;
946 } else if (l == 2) {
947 slice_bottom_w += w;
948 slice_right_h += h;
949 } else {
950 slice_right_h += h;
951 }
952 }
953
954 *phys_slice0_sa = (struct isl_extent2d) {
955 .w = MAX(slice_top_w, slice_bottom_w),
956 .h = MAX(slice_left_h, slice_right_h),
957 };
958 }
959
960 static void
961 isl_calc_phys_total_extent_el_gen4_2d(
962 const struct isl_device *dev,
963 const struct isl_surf_init_info *restrict info,
964 const struct isl_tile_info *tile_info,
965 enum isl_msaa_layout msaa_layout,
966 const struct isl_extent3d *image_align_sa,
967 const struct isl_extent4d *phys_level0_sa,
968 enum isl_array_pitch_span array_pitch_span,
969 uint32_t *array_pitch_el_rows,
970 struct isl_extent2d *total_extent_el)
971 {
972 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
973
974 struct isl_extent2d phys_slice0_sa;
975 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
976 image_align_sa, phys_level0_sa,
977 &phys_slice0_sa);
978 *array_pitch_el_rows =
979 isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
980 image_align_sa, phys_level0_sa,
981 array_pitch_span,
982 &phys_slice0_sa);
983 *total_extent_el = (struct isl_extent2d) {
984 .w = isl_assert_div(phys_slice0_sa.w, fmtl->bw),
985 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
986 isl_assert_div(phys_slice0_sa.h, fmtl->bh),
987 };
988 }
989
990 /**
991 * A variant of isl_calc_phys_slice0_extent_sa() specific to
992 * ISL_DIM_LAYOUT_GEN4_3D.
993 */
994 static void
995 isl_calc_phys_total_extent_el_gen4_3d(
996 const struct isl_device *dev,
997 const struct isl_surf_init_info *restrict info,
998 const struct isl_extent3d *image_align_sa,
999 const struct isl_extent4d *phys_level0_sa,
1000 uint32_t *array_pitch_el_rows,
1001 struct isl_extent2d *phys_total_el)
1002 {
1003 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1004
1005 assert(info->samples == 1);
1006
1007 if (info->dim != ISL_SURF_DIM_3D) {
1008 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1009 *
1010 * The cube face textures are stored in the same way as 3D surfaces
1011 * are stored (see section 6.17.5 for details). For cube surfaces,
1012 * however, the depth is equal to the number of faces (always 6) and
1013 * is not reduced for each MIP.
1014 */
1015 assert(ISL_DEV_GEN(dev) == 4);
1016 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1017 assert(phys_level0_sa->array_len == 6);
1018 } else {
1019 assert(phys_level0_sa->array_len == 1);
1020 }
1021
1022 uint32_t total_w = 0;
1023 uint32_t total_h = 0;
1024
1025 uint32_t W0 = phys_level0_sa->w;
1026 uint32_t H0 = phys_level0_sa->h;
1027 uint32_t D0 = phys_level0_sa->d;
1028 uint32_t A0 = phys_level0_sa->a;
1029
1030 for (uint32_t l = 0; l < info->levels; ++l) {
1031 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1032 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1033 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1034
1035 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1036 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1037
1038 total_w = MAX(total_w, level_w * max_layers_horiz);
1039 total_h += level_h * max_layers_vert;
1040 }
1041
1042 /* GEN4_3D layouts don't really have an array pitch since each LOD has a
1043 * different number of horizontal and vertical layers. We have to set it
1044 * to something, so at least make it true for LOD0.
1045 */
1046 *array_pitch_el_rows =
1047 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1048 *phys_total_el = (struct isl_extent2d) {
1049 .w = isl_assert_div(total_w, fmtl->bw),
1050 .h = isl_assert_div(total_h, fmtl->bh),
1051 };
1052 }
1053
1054 /**
1055 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1056 * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
1057 */
1058 static void
1059 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
1060 const struct isl_device *dev,
1061 const struct isl_surf_init_info *restrict info,
1062 const struct isl_tile_info *tile_info,
1063 const struct isl_extent3d *image_align_sa,
1064 const struct isl_extent4d *phys_level0_sa,
1065 uint32_t *array_pitch_el_rows,
1066 struct isl_extent2d *phys_total_el)
1067 {
1068 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1069
1070 const struct isl_extent2d tile_extent_sa = {
1071 .w = tile_info->logical_extent_el.w * fmtl->bw,
1072 .h = tile_info->logical_extent_el.h * fmtl->bh,
1073 };
1074 /* Tile size is a multiple of image alignment */
1075 assert(tile_extent_sa.w % image_align_sa->w == 0);
1076 assert(tile_extent_sa.h % image_align_sa->h == 0);
1077
1078 const uint32_t W0 = phys_level0_sa->w;
1079 const uint32_t H0 = phys_level0_sa->h;
1080
1081 /* Each image has the same height as LOD0 because the hardware thinks
1082 * everything is LOD0
1083 */
1084 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1085
1086 uint32_t total_top_w = 0;
1087 uint32_t total_bottom_w = 0;
1088 uint32_t total_h = 0;
1089
1090 for (uint32_t l = 0; l < info->levels; ++l) {
1091 const uint32_t W = isl_minify(W0, l);
1092
1093 const uint32_t w = isl_align(W, tile_extent_sa.w);
1094 const uint32_t h = isl_align(H, tile_extent_sa.h);
1095
1096 if (l == 0) {
1097 total_top_w = w;
1098 total_h = h;
1099 } else if (l == 1) {
1100 total_bottom_w = w;
1101 total_h += h;
1102 } else {
1103 total_bottom_w += w;
1104 }
1105 }
1106
1107 *array_pitch_el_rows =
1108 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1109 *phys_total_el = (struct isl_extent2d) {
1110 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1111 .h = isl_assert_div(total_h, fmtl->bh),
1112 };
1113 }
1114
1115 /**
1116 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1117 * ISL_DIM_LAYOUT_GEN9_1D.
1118 */
1119 static void
1120 isl_calc_phys_total_extent_el_gen9_1d(
1121 const struct isl_device *dev,
1122 const struct isl_surf_init_info *restrict info,
1123 const struct isl_extent3d *image_align_sa,
1124 const struct isl_extent4d *phys_level0_sa,
1125 uint32_t *array_pitch_el_rows,
1126 struct isl_extent2d *phys_total_el)
1127 {
1128 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1129
1130 assert(phys_level0_sa->height / fmtl->bh == 1);
1131 assert(phys_level0_sa->depth == 1);
1132 assert(info->samples == 1);
1133 assert(image_align_sa->w >= fmtl->bw);
1134
1135 uint32_t slice_w = 0;
1136 const uint32_t W0 = phys_level0_sa->w;
1137
1138 for (uint32_t l = 0; l < info->levels; ++l) {
1139 uint32_t W = isl_minify(W0, l);
1140 uint32_t w = isl_align_npot(W, image_align_sa->w);
1141
1142 slice_w += w;
1143 }
1144
1145 *array_pitch_el_rows = 1;
1146 *phys_total_el = (struct isl_extent2d) {
1147 .w = isl_assert_div(slice_w, fmtl->bw),
1148 .h = phys_level0_sa->array_len,
1149 };
1150 }
1151
1152 /**
1153 * Calculate the two-dimensional total physical extent of the surface, in
1154 * units of surface elements.
1155 */
1156 static void
1157 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1158 const struct isl_surf_init_info *restrict info,
1159 const struct isl_tile_info *tile_info,
1160 enum isl_dim_layout dim_layout,
1161 enum isl_msaa_layout msaa_layout,
1162 const struct isl_extent3d *image_align_sa,
1163 const struct isl_extent4d *phys_level0_sa,
1164 enum isl_array_pitch_span array_pitch_span,
1165 uint32_t *array_pitch_el_rows,
1166 struct isl_extent2d *total_extent_el)
1167 {
1168 switch (dim_layout) {
1169 case ISL_DIM_LAYOUT_GEN9_1D:
1170 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1171 isl_calc_phys_total_extent_el_gen9_1d(dev, info,
1172 image_align_sa, phys_level0_sa,
1173 array_pitch_el_rows,
1174 total_extent_el);
1175 return;
1176 case ISL_DIM_LAYOUT_GEN4_2D:
1177 isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
1178 image_align_sa, phys_level0_sa,
1179 array_pitch_span,
1180 array_pitch_el_rows,
1181 total_extent_el);
1182 return;
1183 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
1184 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1185 isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
1186 image_align_sa,
1187 phys_level0_sa,
1188 array_pitch_el_rows,
1189 total_extent_el);
1190 return;
1191 case ISL_DIM_LAYOUT_GEN4_3D:
1192 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1193 isl_calc_phys_total_extent_el_gen4_3d(dev, info,
1194 image_align_sa, phys_level0_sa,
1195 array_pitch_el_rows,
1196 total_extent_el);
1197 return;
1198 }
1199 }
1200
1201 static uint32_t
1202 isl_calc_row_pitch_alignment(const struct isl_surf_init_info *surf_info,
1203 const struct isl_tile_info *tile_info)
1204 {
1205 if (tile_info->tiling != ISL_TILING_LINEAR)
1206 return tile_info->phys_extent_B.width;
1207
1208 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1209 * RENDER_SURFACE_STATE Surface Pitch (p349):
1210 *
1211 * - For linear render target surfaces and surfaces accessed with the
1212 * typed data port messages, the pitch must be a multiple of the
1213 * element size for non-YUV surface formats. Pitch must be
1214 * a multiple of 2 * element size for YUV surface formats.
1215 *
1216 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1217 * ignore because isl doesn't do buffers.]
1218 *
1219 * - For other linear surfaces, the pitch can be any multiple of
1220 * bytes.
1221 */
1222 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1223 const uint32_t bs = fmtl->bpb / 8;
1224
1225 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1226 if (isl_format_is_yuv(surf_info->format)) {
1227 return 2 * bs;
1228 } else {
1229 return bs;
1230 }
1231 }
1232
1233 return 1;
1234 }
1235
1236 static uint32_t
1237 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1238 const struct isl_surf_init_info *info,
1239 const struct isl_extent2d *phys_total_el,
1240 uint32_t alignment)
1241 {
1242 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1243 const uint32_t bs = fmtl->bpb / 8;
1244
1245 return isl_align_npot(bs * phys_total_el->w, alignment);
1246 }
1247
1248 static uint32_t
1249 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1250 const struct isl_surf_init_info *surf_info,
1251 const struct isl_tile_info *tile_info,
1252 const struct isl_extent2d *phys_total_el,
1253 uint32_t alignment)
1254 {
1255 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1256
1257 assert(fmtl->bpb % tile_info->format_bpb == 0);
1258
1259 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1260 const uint32_t total_w_tl =
1261 isl_align_div(phys_total_el->w * tile_el_scale,
1262 tile_info->logical_extent_el.width);
1263
1264 assert(alignment == tile_info->phys_extent_B.width);
1265 return total_w_tl * tile_info->phys_extent_B.width;
1266 }
1267
1268 static uint32_t
1269 isl_calc_min_row_pitch(const struct isl_device *dev,
1270 const struct isl_surf_init_info *surf_info,
1271 const struct isl_tile_info *tile_info,
1272 const struct isl_extent2d *phys_total_el,
1273 uint32_t alignment)
1274 {
1275 if (tile_info->tiling == ISL_TILING_LINEAR) {
1276 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1277 alignment);
1278 } else {
1279 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1280 phys_total_el, alignment);
1281 }
1282 }
1283
1284 /**
1285 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1286 * size is `bits` bits?
1287 *
1288 * Hardware pitch fields are offset by 1. For example, if the size of
1289 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1290 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1291 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1292 */
1293 static bool
1294 pitch_in_range(uint32_t n, uint32_t bits)
1295 {
1296 assert(n != 0);
1297 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1298 }
1299
1300 static bool
1301 isl_calc_row_pitch(const struct isl_device *dev,
1302 const struct isl_surf_init_info *surf_info,
1303 const struct isl_tile_info *tile_info,
1304 enum isl_dim_layout dim_layout,
1305 const struct isl_extent2d *phys_total_el,
1306 uint32_t *out_row_pitch)
1307 {
1308 uint32_t alignment =
1309 isl_calc_row_pitch_alignment(surf_info, tile_info);
1310
1311 /* If pitch isn't given and it can be chosen freely, align it by cache line
1312 * allowing one to use blit engine on the surface.
1313 */
1314 if (surf_info->row_pitch == 0 && tile_info->tiling == ISL_TILING_LINEAR) {
1315 /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
1316 *
1317 * "Base address of the destination surface: X=0, Y=0. Lower 32bits
1318 * of the 48bit addressing. When Src Tiling is enabled (Bit_15
1319 * enabled), this address must be 4KB-aligned. When Tiling is not
1320 * enabled, this address should be CL (64byte) aligned."
1321 */
1322 alignment = MAX2(alignment, 64);
1323 }
1324
1325 const uint32_t min_row_pitch =
1326 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1327 alignment);
1328
1329 uint32_t row_pitch = min_row_pitch;
1330
1331 if (surf_info->row_pitch != 0) {
1332 row_pitch = surf_info->row_pitch;
1333
1334 if (row_pitch < min_row_pitch)
1335 return false;
1336
1337 if (row_pitch % alignment != 0)
1338 return false;
1339 }
1340
1341 const uint32_t row_pitch_tiles = row_pitch / tile_info->phys_extent_B.width;
1342
1343 if (row_pitch == 0)
1344 return false;
1345
1346 if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
1347 /* SurfacePitch is ignored for this layout. */
1348 goto done;
1349 }
1350
1351 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1352 ISL_SURF_USAGE_TEXTURE_BIT |
1353 ISL_SURF_USAGE_STORAGE_BIT)) &&
1354 !pitch_in_range(row_pitch, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1355 return false;
1356
1357 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1358 ISL_SURF_USAGE_MCS_BIT)) &&
1359 !pitch_in_range(row_pitch_tiles, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1360 return false;
1361
1362 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1363 !pitch_in_range(row_pitch, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1364 return false;
1365
1366 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1367 !pitch_in_range(row_pitch, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1368 return false;
1369
1370 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1371 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1372 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1373
1374 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1375 !pitch_in_range(row_pitch, stencil_pitch_bits))
1376 return false;
1377
1378 done:
1379 *out_row_pitch = row_pitch;
1380 return true;
1381 }
1382
1383 bool
1384 isl_surf_init_s(const struct isl_device *dev,
1385 struct isl_surf *surf,
1386 const struct isl_surf_init_info *restrict info)
1387 {
1388 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1389
1390 const struct isl_extent4d logical_level0_px = {
1391 .w = info->width,
1392 .h = info->height,
1393 .d = info->depth,
1394 .a = info->array_len,
1395 };
1396
1397 enum isl_tiling tiling;
1398 if (!isl_surf_choose_tiling(dev, info, &tiling))
1399 return false;
1400
1401 struct isl_tile_info tile_info;
1402 isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
1403
1404 const enum isl_dim_layout dim_layout =
1405 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1406
1407 enum isl_msaa_layout msaa_layout;
1408 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1409 return false;
1410
1411 struct isl_extent3d image_align_el;
1412 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1413 &image_align_el);
1414
1415 struct isl_extent3d image_align_sa =
1416 isl_extent3d_el_to_sa(info->format, image_align_el);
1417
1418 struct isl_extent4d phys_level0_sa;
1419 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1420 &phys_level0_sa);
1421 assert(phys_level0_sa.w % fmtl->bw == 0);
1422 assert(phys_level0_sa.h % fmtl->bh == 0);
1423
1424 enum isl_array_pitch_span array_pitch_span =
1425 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1426
1427 uint32_t array_pitch_el_rows;
1428 struct isl_extent2d phys_total_el;
1429 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1430 dim_layout, msaa_layout,
1431 &image_align_sa, &phys_level0_sa,
1432 array_pitch_span, &array_pitch_el_rows,
1433 &phys_total_el);
1434
1435 uint32_t row_pitch;
1436 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1437 &phys_total_el, &row_pitch))
1438 return false;
1439
1440 uint32_t base_alignment;
1441 uint64_t size;
1442 if (tiling == ISL_TILING_LINEAR) {
1443 size = (uint64_t) row_pitch * phys_total_el.h;
1444
1445 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1446 *
1447 * "The Base Address for linear render target surfaces and surfaces
1448 * accessed with the typed surface read/write data port messages must
1449 * be element-size aligned, for non-YUV surface formats, or a
1450 * multiple of 2 element-sizes for YUV surface formats. Other linear
1451 * surfaces have no alignment requirements (byte alignment is
1452 * sufficient.)"
1453 */
1454 base_alignment = MAX(1, info->min_alignment);
1455 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1456 if (isl_format_is_yuv(info->format)) {
1457 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1458 } else {
1459 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1460 }
1461 }
1462 base_alignment = isl_round_up_to_power_of_two(base_alignment);
1463 } else {
1464 const uint32_t total_h_tl =
1465 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1466
1467 size = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1468
1469 const uint32_t tile_size = tile_info.phys_extent_B.width *
1470 tile_info.phys_extent_B.height;
1471 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1472 base_alignment = MAX(info->min_alignment, tile_size);
1473 }
1474
1475 if (ISL_DEV_GEN(dev) < 9) {
1476 /* From the Broadwell PRM Vol 5, Surface Layout:
1477 *
1478 * "In addition to restrictions on maximum height, width, and depth,
1479 * surfaces are also restricted to a maximum size in bytes. This
1480 * maximum is 2 GB for all products and all surface types."
1481 *
1482 * This comment is applicable to all Pre-gen9 platforms.
1483 */
1484 if (size > (uint64_t) 1 << 31)
1485 return false;
1486 } else if (ISL_DEV_GEN(dev) < 11) {
1487 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1488 * "In addition to restrictions on maximum height, width, and depth,
1489 * surfaces are also restricted to a maximum size of 2^38 bytes.
1490 * All pixels within the surface must be contained within 2^38 bytes
1491 * of the base address."
1492 */
1493 if (size > (uint64_t) 1 << 38)
1494 return false;
1495 } else {
1496 /* gen11+ platforms raised this limit to 2^44 bytes. */
1497 if (size > (uint64_t) 1 << 44)
1498 return false;
1499 }
1500
1501 *surf = (struct isl_surf) {
1502 .dim = info->dim,
1503 .dim_layout = dim_layout,
1504 .msaa_layout = msaa_layout,
1505 .tiling = tiling,
1506 .format = info->format,
1507
1508 .levels = info->levels,
1509 .samples = info->samples,
1510
1511 .image_alignment_el = image_align_el,
1512 .logical_level0_px = logical_level0_px,
1513 .phys_level0_sa = phys_level0_sa,
1514
1515 .size = size,
1516 .alignment = base_alignment,
1517 .row_pitch = row_pitch,
1518 .array_pitch_el_rows = array_pitch_el_rows,
1519 .array_pitch_span = array_pitch_span,
1520
1521 .usage = info->usage,
1522 };
1523
1524 return true;
1525 }
1526
1527 void
1528 isl_surf_get_tile_info(const struct isl_surf *surf,
1529 struct isl_tile_info *tile_info)
1530 {
1531 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1532 isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
1533 }
1534
1535 bool
1536 isl_surf_get_hiz_surf(const struct isl_device *dev,
1537 const struct isl_surf *surf,
1538 struct isl_surf *hiz_surf)
1539 {
1540 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1541
1542 /* Multisampled depth is always interleaved */
1543 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1544 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1545
1546 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
1547 *
1548 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
1549 * Target View Extent, and Depth Coordinate Offset X/Y of the
1550 * hierarchical depth buffer are inherited from the depth buffer. The
1551 * height and width of the hierarchical depth buffer that must be
1552 * allocated are computed by the following formulas, where HZ is the
1553 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
1554 * Z_Width, and Z_Depth values given in these formulas are those present
1555 * in 3DSTATE_DEPTH_BUFFER incremented by one.
1556 *
1557 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
1558 * being applied to the table below if Number of Multisamples is set to
1559 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
1560 * Z_Width must be multiplied by 4 before being applied to the table
1561 * below if Number of Multisamples is set to NUMSAMPLES_8."
1562 *
1563 * In the Sky Lake PRM, the second paragraph is replaced with this:
1564 *
1565 * "The Z_Height and Z_Width values must equal those present in
1566 * 3DSTATE_DEPTH_BUFFER incremented by one."
1567 *
1568 * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
1569 * block corresponds to a region of 8x4 samples in the primary depth
1570 * surface. On Sky Lake, on the other hand, each HiZ block corresponds to
1571 * a region of 8x4 pixels in the primary depth surface regardless of the
1572 * number of samples. The dimensions of a HiZ block in both pixels and
1573 * samples are given in the table below:
1574 *
1575 * | SNB - BDW | SKL+
1576 * ------+-----------+-------------
1577 * 1x | 8 x 4 sa | 8 x 4 sa
1578 * MSAA | 8 x 4 px | 8 x 4 px
1579 * ------+-----------+-------------
1580 * 2x | 8 x 4 sa | 16 x 4 sa
1581 * MSAA | 4 x 4 px | 8 x 4 px
1582 * ------+-----------+-------------
1583 * 4x | 8 x 4 sa | 16 x 8 sa
1584 * MSAA | 4 x 2 px | 8 x 4 px
1585 * ------+-----------+-------------
1586 * 8x | 8 x 4 sa | 32 x 8 sa
1587 * MSAA | 2 x 2 px | 8 x 4 px
1588 * ------+-----------+-------------
1589 * 16x | N/A | 32 x 16 sa
1590 * MSAA | N/A | 8 x 4 px
1591 * ------+-----------+-------------
1592 *
1593 * There are a number of different ways that this discrepency could be
1594 * handled. The way we have chosen is to simply make MSAA HiZ have the
1595 * same number of samples as the parent surface pre-Sky Lake and always be
1596 * single-sampled on Sky Lake and above. Since the block sizes of
1597 * compressed formats are given in samples, this neatly handles everything
1598 * without the need for additional HiZ formats with different block sizes
1599 * on SKL+.
1600 */
1601 const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
1602
1603 return isl_surf_init(dev, hiz_surf,
1604 .dim = surf->dim,
1605 .format = ISL_FORMAT_HIZ,
1606 .width = surf->logical_level0_px.width,
1607 .height = surf->logical_level0_px.height,
1608 .depth = surf->logical_level0_px.depth,
1609 .levels = surf->levels,
1610 .array_len = surf->logical_level0_px.array_len,
1611 .samples = samples,
1612 .usage = ISL_SURF_USAGE_HIZ_BIT,
1613 .tiling_flags = ISL_TILING_HIZ_BIT);
1614 }
1615
1616 bool
1617 isl_surf_get_mcs_surf(const struct isl_device *dev,
1618 const struct isl_surf *surf,
1619 struct isl_surf *mcs_surf)
1620 {
1621 /* It must be multisampled with an array layout */
1622 assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1623
1624 /* The following are true of all multisampled surfaces */
1625 assert(surf->dim == ISL_SURF_DIM_2D);
1626 assert(surf->levels == 1);
1627 assert(surf->logical_level0_px.depth == 1);
1628
1629 /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
1630 * bits which means the maximum pitch of a compression surface is 512
1631 * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is
1632 * 64bpp, this gives us a maximum width of 8192 pixels. We can create
1633 * larger multisampled surfaces, we just can't compress them. For 2x, 4x,
1634 * and 8x, we have enough room for the full 16k supported by the hardware.
1635 */
1636 if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
1637 return false;
1638
1639 enum isl_format mcs_format;
1640 switch (surf->samples) {
1641 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1642 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1643 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1644 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1645 default:
1646 unreachable("Invalid sample count");
1647 }
1648
1649 return isl_surf_init(dev, mcs_surf,
1650 .dim = ISL_SURF_DIM_2D,
1651 .format = mcs_format,
1652 .width = surf->logical_level0_px.width,
1653 .height = surf->logical_level0_px.height,
1654 .depth = 1,
1655 .levels = 1,
1656 .array_len = surf->logical_level0_px.array_len,
1657 .samples = 1, /* MCS surfaces are really single-sampled */
1658 .usage = ISL_SURF_USAGE_MCS_BIT,
1659 .tiling_flags = ISL_TILING_Y0_BIT);
1660 }
1661
1662 bool
1663 isl_surf_get_ccs_surf(const struct isl_device *dev,
1664 const struct isl_surf *surf,
1665 struct isl_surf *ccs_surf,
1666 uint32_t row_pitch)
1667 {
1668 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1669 assert(ISL_DEV_GEN(dev) >= 7);
1670
1671 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
1672 return false;
1673
1674 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
1675 * work for 3D textures until gen9 where the layout of 3D textures changes
1676 * to match 2D array textures.
1677 */
1678 if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
1679 return false;
1680
1681 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
1682 * Non-MultiSampler Render Target Restrictions):
1683 *
1684 * "Support is for non-mip-mapped and non-array surface types only."
1685 *
1686 * This restriction is lifted on gen8+. Technically, it may be possible to
1687 * create a CCS for an arrayed or mipmapped image and only enable CCS_D
1688 * when rendering to the base slice. However, there is no documentation
1689 * tell us what the hardware would do in that case or what it does if you
1690 * walk off the bases slice. (Does it ignore CCS or does it start
1691 * scribbling over random memory?) We play it safe and just follow the
1692 * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
1693 */
1694 if (ISL_DEV_GEN(dev) <= 7 &&
1695 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
1696 return false;
1697
1698 if (isl_format_is_compressed(surf->format))
1699 return false;
1700
1701 /* TODO: More conditions where it can fail. */
1702
1703 enum isl_format ccs_format;
1704 if (ISL_DEV_GEN(dev) >= 9) {
1705 if (!isl_tiling_is_any_y(surf->tiling))
1706 return false;
1707
1708 switch (isl_format_get_layout(surf->format)->bpb) {
1709 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1710 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1711 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1712 default:
1713 return false;
1714 }
1715 } else if (surf->tiling == ISL_TILING_Y0) {
1716 switch (isl_format_get_layout(surf->format)->bpb) {
1717 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1718 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1719 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1720 default:
1721 return false;
1722 }
1723 } else if (surf->tiling == ISL_TILING_X) {
1724 switch (isl_format_get_layout(surf->format)->bpb) {
1725 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1726 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1727 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1728 default:
1729 return false;
1730 }
1731 } else {
1732 return false;
1733 }
1734
1735 return isl_surf_init(dev, ccs_surf,
1736 .dim = surf->dim,
1737 .format = ccs_format,
1738 .width = surf->logical_level0_px.width,
1739 .height = surf->logical_level0_px.height,
1740 .depth = surf->logical_level0_px.depth,
1741 .levels = surf->levels,
1742 .array_len = surf->logical_level0_px.array_len,
1743 .samples = 1,
1744 .row_pitch = row_pitch,
1745 .usage = ISL_SURF_USAGE_CCS_BIT,
1746 .tiling_flags = ISL_TILING_CCS_BIT);
1747 }
1748
1749 #define isl_genX_call(dev, func, ...) \
1750 switch (ISL_DEV_GEN(dev)) { \
1751 case 4: \
1752 /* G45 surface state is the same as gen5 */ \
1753 if (ISL_DEV_IS_G4X(dev)) { \
1754 isl_gen5_##func(__VA_ARGS__); \
1755 } else { \
1756 isl_gen4_##func(__VA_ARGS__); \
1757 } \
1758 break; \
1759 case 5: \
1760 isl_gen5_##func(__VA_ARGS__); \
1761 break; \
1762 case 6: \
1763 isl_gen6_##func(__VA_ARGS__); \
1764 break; \
1765 case 7: \
1766 if (ISL_DEV_IS_HASWELL(dev)) { \
1767 isl_gen75_##func(__VA_ARGS__); \
1768 } else { \
1769 isl_gen7_##func(__VA_ARGS__); \
1770 } \
1771 break; \
1772 case 8: \
1773 isl_gen8_##func(__VA_ARGS__); \
1774 break; \
1775 case 9: \
1776 isl_gen9_##func(__VA_ARGS__); \
1777 break; \
1778 case 10: \
1779 isl_gen10_##func(__VA_ARGS__); \
1780 break; \
1781 case 11: \
1782 isl_gen11_##func(__VA_ARGS__); \
1783 break; \
1784 default: \
1785 assert(!"Unknown hardware generation"); \
1786 }
1787
1788 void
1789 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1790 const struct isl_surf_fill_state_info *restrict info)
1791 {
1792 #ifndef NDEBUG
1793 isl_surf_usage_flags_t _base_usage =
1794 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1795 ISL_SURF_USAGE_TEXTURE_BIT |
1796 ISL_SURF_USAGE_STORAGE_BIT);
1797 /* They may only specify one of the above bits at a time */
1798 assert(__builtin_popcount(_base_usage) == 1);
1799 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1800 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1801 #endif
1802
1803 if (info->surf->dim == ISL_SURF_DIM_3D) {
1804 assert(info->view->base_array_layer + info->view->array_len <=
1805 info->surf->logical_level0_px.depth);
1806 } else {
1807 assert(info->view->base_array_layer + info->view->array_len <=
1808 info->surf->logical_level0_px.array_len);
1809 }
1810
1811 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
1812 }
1813
1814 void
1815 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1816 const struct isl_buffer_fill_state_info *restrict info)
1817 {
1818 isl_genX_call(dev, buffer_fill_state_s, state, info);
1819 }
1820
1821 void
1822 isl_null_fill_state(const struct isl_device *dev, void *state,
1823 struct isl_extent3d size)
1824 {
1825 isl_genX_call(dev, null_fill_state, state, size);
1826 }
1827
1828 void
1829 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
1830 const struct isl_depth_stencil_hiz_emit_info *restrict info)
1831 {
1832 if (info->depth_surf && info->stencil_surf) {
1833 if (!dev->info->has_hiz_and_separate_stencil) {
1834 assert(info->depth_surf == info->stencil_surf);
1835 assert(info->depth_address == info->stencil_address);
1836 }
1837 assert(info->depth_surf->dim == info->stencil_surf->dim);
1838 }
1839
1840 if (info->depth_surf) {
1841 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
1842 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
1843 assert(info->view->base_array_layer + info->view->array_len <=
1844 info->depth_surf->logical_level0_px.depth);
1845 } else {
1846 assert(info->view->base_array_layer + info->view->array_len <=
1847 info->depth_surf->logical_level0_px.array_len);
1848 }
1849 }
1850
1851 if (info->stencil_surf) {
1852 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
1853 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
1854 assert(info->view->base_array_layer + info->view->array_len <=
1855 info->stencil_surf->logical_level0_px.depth);
1856 } else {
1857 assert(info->view->base_array_layer + info->view->array_len <=
1858 info->stencil_surf->logical_level0_px.array_len);
1859 }
1860 }
1861
1862 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
1863 }
1864
1865 /**
1866 * A variant of isl_surf_get_image_offset_sa() specific to
1867 * ISL_DIM_LAYOUT_GEN4_2D.
1868 */
1869 static void
1870 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1871 uint32_t level, uint32_t logical_array_layer,
1872 uint32_t *x_offset_sa,
1873 uint32_t *y_offset_sa)
1874 {
1875 assert(level < surf->levels);
1876 if (surf->dim == ISL_SURF_DIM_3D)
1877 assert(logical_array_layer < surf->logical_level0_px.depth);
1878 else
1879 assert(logical_array_layer < surf->logical_level0_px.array_len);
1880
1881 const struct isl_extent3d image_align_sa =
1882 isl_surf_get_image_alignment_sa(surf);
1883
1884 const uint32_t W0 = surf->phys_level0_sa.width;
1885 const uint32_t H0 = surf->phys_level0_sa.height;
1886
1887 const uint32_t phys_layer = logical_array_layer *
1888 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1889
1890 uint32_t x = 0;
1891 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1892
1893 for (uint32_t l = 0; l < level; ++l) {
1894 if (l == 1) {
1895 uint32_t W = isl_minify(W0, l);
1896 x += isl_align_npot(W, image_align_sa.w);
1897 } else {
1898 uint32_t H = isl_minify(H0, l);
1899 y += isl_align_npot(H, image_align_sa.h);
1900 }
1901 }
1902
1903 *x_offset_sa = x;
1904 *y_offset_sa = y;
1905 }
1906
1907 /**
1908 * A variant of isl_surf_get_image_offset_sa() specific to
1909 * ISL_DIM_LAYOUT_GEN4_3D.
1910 */
1911 static void
1912 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1913 uint32_t level, uint32_t logical_z_offset_px,
1914 uint32_t *x_offset_sa,
1915 uint32_t *y_offset_sa)
1916 {
1917 assert(level < surf->levels);
1918 if (surf->dim == ISL_SURF_DIM_3D) {
1919 assert(surf->phys_level0_sa.array_len == 1);
1920 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1921 } else {
1922 assert(surf->dim == ISL_SURF_DIM_2D);
1923 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
1924 assert(surf->phys_level0_sa.array_len == 6);
1925 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
1926 }
1927
1928 const struct isl_extent3d image_align_sa =
1929 isl_surf_get_image_alignment_sa(surf);
1930
1931 const uint32_t W0 = surf->phys_level0_sa.width;
1932 const uint32_t H0 = surf->phys_level0_sa.height;
1933 const uint32_t D0 = surf->phys_level0_sa.depth;
1934 const uint32_t AL = surf->phys_level0_sa.array_len;
1935
1936 uint32_t x = 0;
1937 uint32_t y = 0;
1938
1939 for (uint32_t l = 0; l < level; ++l) {
1940 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1941 const uint32_t level_d =
1942 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
1943 image_align_sa.d);
1944 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1945
1946 y += level_h * max_layers_vert;
1947 }
1948
1949 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1950 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1951 const uint32_t level_d =
1952 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
1953 image_align_sa.d);
1954
1955 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1956
1957 x += level_w * (logical_z_offset_px % max_layers_horiz);
1958 y += level_h * (logical_z_offset_px / max_layers_horiz);
1959
1960 *x_offset_sa = x;
1961 *y_offset_sa = y;
1962 }
1963
1964 static void
1965 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
1966 uint32_t level,
1967 uint32_t logical_array_layer,
1968 uint32_t *x_offset_sa,
1969 uint32_t *y_offset_sa)
1970 {
1971 assert(level < surf->levels);
1972 assert(surf->logical_level0_px.depth == 1);
1973 assert(logical_array_layer < surf->logical_level0_px.array_len);
1974
1975 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1976
1977 const struct isl_extent3d image_align_sa =
1978 isl_surf_get_image_alignment_sa(surf);
1979
1980 struct isl_tile_info tile_info;
1981 isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
1982 const struct isl_extent2d tile_extent_sa = {
1983 .w = tile_info.logical_extent_el.w * fmtl->bw,
1984 .h = tile_info.logical_extent_el.h * fmtl->bh,
1985 };
1986 /* Tile size is a multiple of image alignment */
1987 assert(tile_extent_sa.w % image_align_sa.w == 0);
1988 assert(tile_extent_sa.h % image_align_sa.h == 0);
1989
1990 const uint32_t W0 = surf->phys_level0_sa.w;
1991 const uint32_t H0 = surf->phys_level0_sa.h;
1992
1993 /* Each image has the same height as LOD0 because the hardware thinks
1994 * everything is LOD0
1995 */
1996 const uint32_t H = isl_align(H0, image_align_sa.h);
1997
1998 /* Quick sanity check for consistency */
1999 if (surf->phys_level0_sa.array_len > 1)
2000 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2001
2002 uint32_t x = 0, y = 0;
2003 for (uint32_t l = 0; l < level; ++l) {
2004 const uint32_t W = isl_minify(W0, l);
2005
2006 const uint32_t w = isl_align(W, tile_extent_sa.w);
2007 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2008 tile_extent_sa.h);
2009
2010 if (l == 0) {
2011 y += h;
2012 } else {
2013 x += w;
2014 }
2015 }
2016
2017 y += H * logical_array_layer;
2018
2019 *x_offset_sa = x;
2020 *y_offset_sa = y;
2021 }
2022
2023 /**
2024 * A variant of isl_surf_get_image_offset_sa() specific to
2025 * ISL_DIM_LAYOUT_GEN9_1D.
2026 */
2027 static void
2028 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
2029 uint32_t level, uint32_t layer,
2030 uint32_t *x_offset_sa,
2031 uint32_t *y_offset_sa)
2032 {
2033 assert(level < surf->levels);
2034 assert(layer < surf->phys_level0_sa.array_len);
2035 assert(surf->phys_level0_sa.height == 1);
2036 assert(surf->phys_level0_sa.depth == 1);
2037 assert(surf->samples == 1);
2038
2039 const uint32_t W0 = surf->phys_level0_sa.width;
2040 const struct isl_extent3d image_align_sa =
2041 isl_surf_get_image_alignment_sa(surf);
2042
2043 uint32_t x = 0;
2044
2045 for (uint32_t l = 0; l < level; ++l) {
2046 uint32_t W = isl_minify(W0, l);
2047 uint32_t w = isl_align_npot(W, image_align_sa.w);
2048
2049 x += w;
2050 }
2051
2052 *x_offset_sa = x;
2053 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2054 }
2055
2056 /**
2057 * Calculate the offset, in units of surface samples, to a subimage in the
2058 * surface.
2059 *
2060 * @invariant level < surface levels
2061 * @invariant logical_array_layer < logical array length of surface
2062 * @invariant logical_z_offset_px < logical depth of surface at level
2063 */
2064 void
2065 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2066 uint32_t level,
2067 uint32_t logical_array_layer,
2068 uint32_t logical_z_offset_px,
2069 uint32_t *x_offset_sa,
2070 uint32_t *y_offset_sa)
2071 {
2072 assert(level < surf->levels);
2073 assert(logical_array_layer < surf->logical_level0_px.array_len);
2074 assert(logical_z_offset_px
2075 < isl_minify(surf->logical_level0_px.depth, level));
2076
2077 switch (surf->dim_layout) {
2078 case ISL_DIM_LAYOUT_GEN9_1D:
2079 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
2080 x_offset_sa, y_offset_sa);
2081 break;
2082 case ISL_DIM_LAYOUT_GEN4_2D:
2083 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
2084 + logical_z_offset_px,
2085 x_offset_sa, y_offset_sa);
2086 break;
2087 case ISL_DIM_LAYOUT_GEN4_3D:
2088 get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
2089 logical_z_offset_px,
2090 x_offset_sa, y_offset_sa);
2091 break;
2092 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
2093 get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
2094 logical_z_offset_px,
2095 x_offset_sa, y_offset_sa);
2096 break;
2097
2098 default:
2099 unreachable("not reached");
2100 }
2101 }
2102
2103 void
2104 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2105 uint32_t level,
2106 uint32_t logical_array_layer,
2107 uint32_t logical_z_offset_px,
2108 uint32_t *x_offset_el,
2109 uint32_t *y_offset_el)
2110 {
2111 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2112
2113 assert(level < surf->levels);
2114 assert(logical_array_layer < surf->logical_level0_px.array_len);
2115 assert(logical_z_offset_px
2116 < isl_minify(surf->logical_level0_px.depth, level));
2117
2118 uint32_t x_offset_sa, y_offset_sa;
2119 isl_surf_get_image_offset_sa(surf, level,
2120 logical_array_layer,
2121 logical_z_offset_px,
2122 &x_offset_sa,
2123 &y_offset_sa);
2124
2125 *x_offset_el = x_offset_sa / fmtl->bw;
2126 *y_offset_el = y_offset_sa / fmtl->bh;
2127 }
2128
2129 void
2130 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2131 uint32_t level,
2132 uint32_t logical_array_layer,
2133 uint32_t logical_z_offset_px,
2134 uint32_t *offset_B,
2135 uint32_t *x_offset_sa,
2136 uint32_t *y_offset_sa)
2137 {
2138 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2139
2140 uint32_t total_x_offset_el, total_y_offset_el;
2141 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2142 logical_z_offset_px,
2143 &total_x_offset_el,
2144 &total_y_offset_el);
2145
2146 uint32_t x_offset_el, y_offset_el;
2147 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2148 surf->row_pitch,
2149 total_x_offset_el,
2150 total_y_offset_el,
2151 offset_B,
2152 &x_offset_el,
2153 &y_offset_el);
2154
2155 if (x_offset_sa) {
2156 *x_offset_sa = x_offset_el * fmtl->bw;
2157 } else {
2158 assert(x_offset_el == 0);
2159 }
2160
2161 if (y_offset_sa) {
2162 *y_offset_sa = y_offset_el * fmtl->bh;
2163 } else {
2164 assert(y_offset_el == 0);
2165 }
2166 }
2167
2168 void
2169 isl_surf_get_image_surf(const struct isl_device *dev,
2170 const struct isl_surf *surf,
2171 uint32_t level,
2172 uint32_t logical_array_layer,
2173 uint32_t logical_z_offset_px,
2174 struct isl_surf *image_surf,
2175 uint32_t *offset_B,
2176 uint32_t *x_offset_sa,
2177 uint32_t *y_offset_sa)
2178 {
2179 isl_surf_get_image_offset_B_tile_sa(surf,
2180 level,
2181 logical_array_layer,
2182 logical_z_offset_px,
2183 offset_B,
2184 x_offset_sa,
2185 y_offset_sa);
2186
2187 /* Even for cube maps there will be only single face, therefore drop the
2188 * corresponding flag if present.
2189 */
2190 const isl_surf_usage_flags_t usage =
2191 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2192
2193 bool ok UNUSED;
2194 ok = isl_surf_init(dev, image_surf,
2195 .dim = ISL_SURF_DIM_2D,
2196 .format = surf->format,
2197 .width = isl_minify(surf->logical_level0_px.w, level),
2198 .height = isl_minify(surf->logical_level0_px.h, level),
2199 .depth = 1,
2200 .levels = 1,
2201 .array_len = 1,
2202 .samples = surf->samples,
2203 .row_pitch = surf->row_pitch,
2204 .usage = usage,
2205 .tiling_flags = (1 << surf->tiling));
2206 assert(ok);
2207 }
2208
2209 void
2210 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2211 uint32_t bpb,
2212 uint32_t row_pitch,
2213 uint32_t total_x_offset_el,
2214 uint32_t total_y_offset_el,
2215 uint32_t *base_address_offset,
2216 uint32_t *x_offset_el,
2217 uint32_t *y_offset_el)
2218 {
2219 if (tiling == ISL_TILING_LINEAR) {
2220 assert(bpb % 8 == 0);
2221 *base_address_offset = total_y_offset_el * row_pitch +
2222 total_x_offset_el * (bpb / 8);
2223 *x_offset_el = 0;
2224 *y_offset_el = 0;
2225 return;
2226 }
2227
2228 struct isl_tile_info tile_info;
2229 isl_tiling_get_info(tiling, bpb, &tile_info);
2230
2231 assert(row_pitch % tile_info.phys_extent_B.width == 0);
2232
2233 /* For non-power-of-two formats, we need the address to be both tile and
2234 * element-aligned. The easiest way to achieve this is to work with a tile
2235 * that is three times as wide as the regular tile.
2236 *
2237 * The tile info returned by get_tile_info has a logical size that is an
2238 * integer number of tile_info.format_bpb size elements. To scale the
2239 * tile, we scale up the physical width and then treat the logical tile
2240 * size as if it has bpb size elements.
2241 */
2242 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
2243 tile_info.phys_extent_B.width *= tile_el_scale;
2244
2245 /* Compute the offset into the tile */
2246 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
2247 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
2248
2249 /* Compute the offset of the tile in units of whole tiles */
2250 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
2251 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
2252
2253 *base_address_offset =
2254 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
2255 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
2256 }
2257
2258 uint32_t
2259 isl_surf_get_depth_format(const struct isl_device *dev,
2260 const struct isl_surf *surf)
2261 {
2262 /* Support for separate stencil buffers began in gen5. Support for
2263 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
2264 * those that supported separate and interleaved stencil, were gen5 and
2265 * gen6.
2266 *
2267 * For a list of all available formats, see the Sandybridge PRM >> Volume
2268 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
2269 * Format (p321).
2270 */
2271
2272 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
2273
2274 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
2275
2276 if (has_stencil)
2277 assert(ISL_DEV_GEN(dev) < 7);
2278
2279 switch (surf->format) {
2280 default:
2281 unreachable("bad isl depth format");
2282 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
2283 assert(ISL_DEV_GEN(dev) < 7);
2284 return 0; /* D32_FLOAT_S8X24_UINT */
2285 case ISL_FORMAT_R32_FLOAT:
2286 assert(!has_stencil);
2287 return 1; /* D32_FLOAT */
2288 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
2289 if (has_stencil) {
2290 assert(ISL_DEV_GEN(dev) < 7);
2291 return 2; /* D24_UNORM_S8_UINT */
2292 } else {
2293 assert(ISL_DEV_GEN(dev) >= 5);
2294 return 3; /* D24_UNORM_X8_UINT */
2295 }
2296 case ISL_FORMAT_R16_UNORM:
2297 assert(!has_stencil);
2298 return 5; /* D16_UNORM */
2299 }
2300 }