isl: only apply main surface ccs pitch constraint with CCS
[mesa.git] / src / intel / isl / isl.h
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file
26 * @brief Intel Surface Layout
27 *
28 * Header Layout
29 * -------------
30 * The header is ordered as:
31 * - forward declarations
32 * - macros that may be overridden at compile-time for specific gens
33 * - enums and constants
34 * - structs and unions
35 * - functions
36 */
37
38 #ifndef ISL_H
39 #define ISL_H
40
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <stdint.h>
44
45 #include "c99_compat.h"
46 #include "util/macros.h"
47 #include "util/format/u_format.h"
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 struct gen_device_info;
54 struct brw_image_param;
55
56 #ifndef ISL_DEV_GEN
57 /**
58 * @brief Get the hardware generation of isl_device.
59 *
60 * You can define this as a compile-time constant in the CFLAGS. For example,
61 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
62 */
63 #define ISL_DEV_GEN(__dev) ((__dev)->info->gen)
64 #define ISL_DEV_GEN_SANITIZE(__dev)
65 #else
66 #define ISL_DEV_GEN_SANITIZE(__dev) \
67 (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen))
68 #endif
69
70 #ifndef ISL_DEV_IS_G4X
71 #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
72 #endif
73
74 #ifndef ISL_DEV_IS_HASWELL
75 /**
76 * @brief Get the hardware generation of isl_device.
77 *
78 * You can define this as a compile-time constant in the CFLAGS. For example,
79 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
80 */
81 #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
82 #endif
83
84 #ifndef ISL_DEV_IS_BAYTRAIL
85 #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
86 #endif
87
88 #ifndef ISL_DEV_USE_SEPARATE_STENCIL
89 /**
90 * You can define this as a compile-time constant in the CFLAGS. For example,
91 * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
92 */
93 #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
94 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
95 #else
96 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
97 (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
98 #endif
99
100 /**
101 * Hardware enumeration SURFACE_FORMAT.
102 *
103 * For the official list, see Broadwell PRM: Volume 2b: Command Reference:
104 * Enumerations: SURFACE_FORMAT.
105 */
106 enum isl_format {
107 ISL_FORMAT_R32G32B32A32_FLOAT = 0,
108 ISL_FORMAT_R32G32B32A32_SINT = 1,
109 ISL_FORMAT_R32G32B32A32_UINT = 2,
110 ISL_FORMAT_R32G32B32A32_UNORM = 3,
111 ISL_FORMAT_R32G32B32A32_SNORM = 4,
112 ISL_FORMAT_R64G64_FLOAT = 5,
113 ISL_FORMAT_R32G32B32X32_FLOAT = 6,
114 ISL_FORMAT_R32G32B32A32_SSCALED = 7,
115 ISL_FORMAT_R32G32B32A32_USCALED = 8,
116 ISL_FORMAT_R32G32B32A32_SFIXED = 32,
117 ISL_FORMAT_R64G64_PASSTHRU = 33,
118 ISL_FORMAT_R32G32B32_FLOAT = 64,
119 ISL_FORMAT_R32G32B32_SINT = 65,
120 ISL_FORMAT_R32G32B32_UINT = 66,
121 ISL_FORMAT_R32G32B32_UNORM = 67,
122 ISL_FORMAT_R32G32B32_SNORM = 68,
123 ISL_FORMAT_R32G32B32_SSCALED = 69,
124 ISL_FORMAT_R32G32B32_USCALED = 70,
125 ISL_FORMAT_R32G32B32_SFIXED = 80,
126 ISL_FORMAT_R16G16B16A16_UNORM = 128,
127 ISL_FORMAT_R16G16B16A16_SNORM = 129,
128 ISL_FORMAT_R16G16B16A16_SINT = 130,
129 ISL_FORMAT_R16G16B16A16_UINT = 131,
130 ISL_FORMAT_R16G16B16A16_FLOAT = 132,
131 ISL_FORMAT_R32G32_FLOAT = 133,
132 ISL_FORMAT_R32G32_SINT = 134,
133 ISL_FORMAT_R32G32_UINT = 135,
134 ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
135 ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
136 ISL_FORMAT_L32A32_FLOAT = 138,
137 ISL_FORMAT_R32G32_UNORM = 139,
138 ISL_FORMAT_R32G32_SNORM = 140,
139 ISL_FORMAT_R64_FLOAT = 141,
140 ISL_FORMAT_R16G16B16X16_UNORM = 142,
141 ISL_FORMAT_R16G16B16X16_FLOAT = 143,
142 ISL_FORMAT_A32X32_FLOAT = 144,
143 ISL_FORMAT_L32X32_FLOAT = 145,
144 ISL_FORMAT_I32X32_FLOAT = 146,
145 ISL_FORMAT_R16G16B16A16_SSCALED = 147,
146 ISL_FORMAT_R16G16B16A16_USCALED = 148,
147 ISL_FORMAT_R32G32_SSCALED = 149,
148 ISL_FORMAT_R32G32_USCALED = 150,
149 ISL_FORMAT_R32G32_FLOAT_LD = 151,
150 ISL_FORMAT_R32G32_SFIXED = 160,
151 ISL_FORMAT_R64_PASSTHRU = 161,
152 ISL_FORMAT_B8G8R8A8_UNORM = 192,
153 ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
154 ISL_FORMAT_R10G10B10A2_UNORM = 194,
155 ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
156 ISL_FORMAT_R10G10B10A2_UINT = 196,
157 ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
158 ISL_FORMAT_R8G8B8A8_UNORM = 199,
159 ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
160 ISL_FORMAT_R8G8B8A8_SNORM = 201,
161 ISL_FORMAT_R8G8B8A8_SINT = 202,
162 ISL_FORMAT_R8G8B8A8_UINT = 203,
163 ISL_FORMAT_R16G16_UNORM = 204,
164 ISL_FORMAT_R16G16_SNORM = 205,
165 ISL_FORMAT_R16G16_SINT = 206,
166 ISL_FORMAT_R16G16_UINT = 207,
167 ISL_FORMAT_R16G16_FLOAT = 208,
168 ISL_FORMAT_B10G10R10A2_UNORM = 209,
169 ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
170 ISL_FORMAT_R11G11B10_FLOAT = 211,
171 ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM = 213,
172 ISL_FORMAT_R32_SINT = 214,
173 ISL_FORMAT_R32_UINT = 215,
174 ISL_FORMAT_R32_FLOAT = 216,
175 ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
176 ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
177 ISL_FORMAT_L32_UNORM = 221,
178 ISL_FORMAT_A32_UNORM = 222,
179 ISL_FORMAT_L16A16_UNORM = 223,
180 ISL_FORMAT_I24X8_UNORM = 224,
181 ISL_FORMAT_L24X8_UNORM = 225,
182 ISL_FORMAT_A24X8_UNORM = 226,
183 ISL_FORMAT_I32_FLOAT = 227,
184 ISL_FORMAT_L32_FLOAT = 228,
185 ISL_FORMAT_A32_FLOAT = 229,
186 ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
187 ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
188 ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
189 ISL_FORMAT_B8G8R8X8_UNORM = 233,
190 ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
191 ISL_FORMAT_R8G8B8X8_UNORM = 235,
192 ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
193 ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
194 ISL_FORMAT_B10G10R10X2_UNORM = 238,
195 ISL_FORMAT_L16A16_FLOAT = 240,
196 ISL_FORMAT_R32_UNORM = 241,
197 ISL_FORMAT_R32_SNORM = 242,
198 ISL_FORMAT_R10G10B10X2_USCALED = 243,
199 ISL_FORMAT_R8G8B8A8_SSCALED = 244,
200 ISL_FORMAT_R8G8B8A8_USCALED = 245,
201 ISL_FORMAT_R16G16_SSCALED = 246,
202 ISL_FORMAT_R16G16_USCALED = 247,
203 ISL_FORMAT_R32_SSCALED = 248,
204 ISL_FORMAT_R32_USCALED = 249,
205 ISL_FORMAT_B5G6R5_UNORM = 256,
206 ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
207 ISL_FORMAT_B5G5R5A1_UNORM = 258,
208 ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
209 ISL_FORMAT_B4G4R4A4_UNORM = 260,
210 ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
211 ISL_FORMAT_R8G8_UNORM = 262,
212 ISL_FORMAT_R8G8_SNORM = 263,
213 ISL_FORMAT_R8G8_SINT = 264,
214 ISL_FORMAT_R8G8_UINT = 265,
215 ISL_FORMAT_R16_UNORM = 266,
216 ISL_FORMAT_R16_SNORM = 267,
217 ISL_FORMAT_R16_SINT = 268,
218 ISL_FORMAT_R16_UINT = 269,
219 ISL_FORMAT_R16_FLOAT = 270,
220 ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
221 ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
222 ISL_FORMAT_I16_UNORM = 273,
223 ISL_FORMAT_L16_UNORM = 274,
224 ISL_FORMAT_A16_UNORM = 275,
225 ISL_FORMAT_L8A8_UNORM = 276,
226 ISL_FORMAT_I16_FLOAT = 277,
227 ISL_FORMAT_L16_FLOAT = 278,
228 ISL_FORMAT_A16_FLOAT = 279,
229 ISL_FORMAT_L8A8_UNORM_SRGB = 280,
230 ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
231 ISL_FORMAT_B5G5R5X1_UNORM = 282,
232 ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
233 ISL_FORMAT_R8G8_SSCALED = 284,
234 ISL_FORMAT_R8G8_USCALED = 285,
235 ISL_FORMAT_R16_SSCALED = 286,
236 ISL_FORMAT_R16_USCALED = 287,
237 ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
238 ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
239 ISL_FORMAT_A1B5G5R5_UNORM = 292,
240 ISL_FORMAT_A4B4G4R4_UNORM = 293,
241 ISL_FORMAT_L8A8_UINT = 294,
242 ISL_FORMAT_L8A8_SINT = 295,
243 ISL_FORMAT_R8_UNORM = 320,
244 ISL_FORMAT_R8_SNORM = 321,
245 ISL_FORMAT_R8_SINT = 322,
246 ISL_FORMAT_R8_UINT = 323,
247 ISL_FORMAT_A8_UNORM = 324,
248 ISL_FORMAT_I8_UNORM = 325,
249 ISL_FORMAT_L8_UNORM = 326,
250 ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
251 ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
252 ISL_FORMAT_R8_SSCALED = 329,
253 ISL_FORMAT_R8_USCALED = 330,
254 ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
255 ISL_FORMAT_L8_UNORM_SRGB = 332,
256 ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
257 ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
258 ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
259 ISL_FORMAT_Y8_UNORM = 336,
260 ISL_FORMAT_L8_UINT = 338,
261 ISL_FORMAT_L8_SINT = 339,
262 ISL_FORMAT_I8_UINT = 340,
263 ISL_FORMAT_I8_SINT = 341,
264 ISL_FORMAT_DXT1_RGB_SRGB = 384,
265 ISL_FORMAT_R1_UNORM = 385,
266 ISL_FORMAT_YCRCB_NORMAL = 386,
267 ISL_FORMAT_YCRCB_SWAPUVY = 387,
268 ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
269 ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
270 ISL_FORMAT_BC1_UNORM = 390,
271 ISL_FORMAT_BC2_UNORM = 391,
272 ISL_FORMAT_BC3_UNORM = 392,
273 ISL_FORMAT_BC4_UNORM = 393,
274 ISL_FORMAT_BC5_UNORM = 394,
275 ISL_FORMAT_BC1_UNORM_SRGB = 395,
276 ISL_FORMAT_BC2_UNORM_SRGB = 396,
277 ISL_FORMAT_BC3_UNORM_SRGB = 397,
278 ISL_FORMAT_MONO8 = 398,
279 ISL_FORMAT_YCRCB_SWAPUV = 399,
280 ISL_FORMAT_YCRCB_SWAPY = 400,
281 ISL_FORMAT_DXT1_RGB = 401,
282 ISL_FORMAT_FXT1 = 402,
283 ISL_FORMAT_R8G8B8_UNORM = 403,
284 ISL_FORMAT_R8G8B8_SNORM = 404,
285 ISL_FORMAT_R8G8B8_SSCALED = 405,
286 ISL_FORMAT_R8G8B8_USCALED = 406,
287 ISL_FORMAT_R64G64B64A64_FLOAT = 407,
288 ISL_FORMAT_R64G64B64_FLOAT = 408,
289 ISL_FORMAT_BC4_SNORM = 409,
290 ISL_FORMAT_BC5_SNORM = 410,
291 ISL_FORMAT_R16G16B16_FLOAT = 411,
292 ISL_FORMAT_R16G16B16_UNORM = 412,
293 ISL_FORMAT_R16G16B16_SNORM = 413,
294 ISL_FORMAT_R16G16B16_SSCALED = 414,
295 ISL_FORMAT_R16G16B16_USCALED = 415,
296 ISL_FORMAT_BC6H_SF16 = 417,
297 ISL_FORMAT_BC7_UNORM = 418,
298 ISL_FORMAT_BC7_UNORM_SRGB = 419,
299 ISL_FORMAT_BC6H_UF16 = 420,
300 ISL_FORMAT_PLANAR_420_8 = 421,
301 ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
302 ISL_FORMAT_ETC1_RGB8 = 425,
303 ISL_FORMAT_ETC2_RGB8 = 426,
304 ISL_FORMAT_EAC_R11 = 427,
305 ISL_FORMAT_EAC_RG11 = 428,
306 ISL_FORMAT_EAC_SIGNED_R11 = 429,
307 ISL_FORMAT_EAC_SIGNED_RG11 = 430,
308 ISL_FORMAT_ETC2_SRGB8 = 431,
309 ISL_FORMAT_R16G16B16_UINT = 432,
310 ISL_FORMAT_R16G16B16_SINT = 433,
311 ISL_FORMAT_R32_SFIXED = 434,
312 ISL_FORMAT_R10G10B10A2_SNORM = 435,
313 ISL_FORMAT_R10G10B10A2_USCALED = 436,
314 ISL_FORMAT_R10G10B10A2_SSCALED = 437,
315 ISL_FORMAT_R10G10B10A2_SINT = 438,
316 ISL_FORMAT_B10G10R10A2_SNORM = 439,
317 ISL_FORMAT_B10G10R10A2_USCALED = 440,
318 ISL_FORMAT_B10G10R10A2_SSCALED = 441,
319 ISL_FORMAT_B10G10R10A2_UINT = 442,
320 ISL_FORMAT_B10G10R10A2_SINT = 443,
321 ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
322 ISL_FORMAT_R64G64B64_PASSTHRU = 445,
323 ISL_FORMAT_ETC2_RGB8_PTA = 448,
324 ISL_FORMAT_ETC2_SRGB8_PTA = 449,
325 ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
326 ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
327 ISL_FORMAT_R8G8B8_UINT = 456,
328 ISL_FORMAT_R8G8B8_SINT = 457,
329 ISL_FORMAT_RAW = 511,
330 ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
331 ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
332 ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
333 ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
334 ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
335 ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
336 ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
337 ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
338 ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
339 ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
340 ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
341 ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
342 ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
343 ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
344 ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
345 ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
346 ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
347 ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
348 ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
349 ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
350 ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
351 ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
352 ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
353 ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
354 ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
355 ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
356 ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
357 ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
358 ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
359 ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
360 ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
361 ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
362 ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
363 ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
364 ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
365 ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
366 ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
367 ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
368 ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
369 ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
370 ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
371 ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
372
373 /* The formats that follow are internal to ISL and as such don't have an
374 * explicit number. We'll just let the C compiler assign it for us. Any
375 * actual hardware formats *must* come before these in the list.
376 */
377
378 /* Formats for auxiliary surfaces */
379 ISL_FORMAT_HIZ,
380 ISL_FORMAT_MCS_2X,
381 ISL_FORMAT_MCS_4X,
382 ISL_FORMAT_MCS_8X,
383 ISL_FORMAT_MCS_16X,
384 ISL_FORMAT_GEN7_CCS_32BPP_X,
385 ISL_FORMAT_GEN7_CCS_64BPP_X,
386 ISL_FORMAT_GEN7_CCS_128BPP_X,
387 ISL_FORMAT_GEN7_CCS_32BPP_Y,
388 ISL_FORMAT_GEN7_CCS_64BPP_Y,
389 ISL_FORMAT_GEN7_CCS_128BPP_Y,
390 ISL_FORMAT_GEN9_CCS_32BPP,
391 ISL_FORMAT_GEN9_CCS_64BPP,
392 ISL_FORMAT_GEN9_CCS_128BPP,
393 ISL_FORMAT_GEN12_CCS_8BPP_Y0,
394 ISL_FORMAT_GEN12_CCS_16BPP_Y0,
395 ISL_FORMAT_GEN12_CCS_32BPP_Y0,
396 ISL_FORMAT_GEN12_CCS_64BPP_Y0,
397 ISL_FORMAT_GEN12_CCS_128BPP_Y0,
398
399 /* An upper bound on the supported format enumerations */
400 ISL_NUM_FORMATS,
401
402 /* Hardware doesn't understand this out-of-band value */
403 ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
404 };
405
406 /**
407 * Numerical base type for channels of isl_format.
408 */
409 enum isl_base_type {
410 ISL_VOID,
411 ISL_RAW,
412 ISL_UNORM,
413 ISL_SNORM,
414 ISL_UFLOAT,
415 ISL_SFLOAT,
416 ISL_UFIXED,
417 ISL_SFIXED,
418 ISL_UINT,
419 ISL_SINT,
420 ISL_USCALED,
421 ISL_SSCALED,
422 };
423
424 /**
425 * Colorspace of isl_format.
426 */
427 enum isl_colorspace {
428 ISL_COLORSPACE_NONE = 0,
429 ISL_COLORSPACE_LINEAR,
430 ISL_COLORSPACE_SRGB,
431 ISL_COLORSPACE_YUV,
432 };
433
434 /**
435 * Texture compression mode of isl_format.
436 */
437 enum isl_txc {
438 ISL_TXC_NONE = 0,
439 ISL_TXC_DXT1,
440 ISL_TXC_DXT3,
441 ISL_TXC_DXT5,
442 ISL_TXC_FXT1,
443 ISL_TXC_RGTC1,
444 ISL_TXC_RGTC2,
445 ISL_TXC_BPTC,
446 ISL_TXC_ETC1,
447 ISL_TXC_ETC2,
448 ISL_TXC_ASTC,
449
450 /* Used for auxiliary surface formats */
451 ISL_TXC_HIZ,
452 ISL_TXC_MCS,
453 ISL_TXC_CCS,
454 };
455
456 /**
457 * @brief Hardware tile mode
458 *
459 * WARNING: These values differ from the hardware enum values, which are
460 * unstable across hardware generations.
461 *
462 * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
463 * clearly distinguish it from Yf and Ys.
464 */
465 enum isl_tiling {
466 ISL_TILING_LINEAR = 0,
467 ISL_TILING_W,
468 ISL_TILING_X,
469 ISL_TILING_Y0, /**< Legacy Y tiling */
470 ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
471 ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
472 ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
473 ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
474 ISL_TILING_GEN12_CCS, /**< Tiling format for Gen12 CCS surfaces */
475 };
476
477 /**
478 * @defgroup Tiling Flags
479 * @{
480 */
481 typedef uint32_t isl_tiling_flags_t;
482 #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
483 #define ISL_TILING_W_BIT (1u << ISL_TILING_W)
484 #define ISL_TILING_X_BIT (1u << ISL_TILING_X)
485 #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
486 #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
487 #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
488 #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
489 #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
490 #define ISL_TILING_GEN12_CCS_BIT (1u << ISL_TILING_GEN12_CCS)
491 #define ISL_TILING_ANY_MASK (~0u)
492 #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
493
494 /** Any Y tiling, including legacy Y tiling. */
495 #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
496 ISL_TILING_Yf_BIT | \
497 ISL_TILING_Ys_BIT)
498
499 /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
500 #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
501 ISL_TILING_Ys_BIT)
502 /** @} */
503
504 /**
505 * @brief Logical dimension of surface.
506 *
507 * Note: There is no dimension for cube map surfaces. ISL interprets cube maps
508 * as 2D array surfaces.
509 */
510 enum isl_surf_dim {
511 ISL_SURF_DIM_1D,
512 ISL_SURF_DIM_2D,
513 ISL_SURF_DIM_3D,
514 };
515
516 /**
517 * @brief Physical layout of the surface's dimensions.
518 */
519 enum isl_dim_layout {
520 /**
521 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
522 * 6.17.3: 2D Surfaces.
523 *
524 * On many gens, 1D surfaces share the same layout as 2D surfaces. From
525 * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
526 *
527 * One-dimensional surfaces are identical to 2D surfaces with height of
528 * one.
529 *
530 * @invariant isl_surf::phys_level0_sa::depth == 1
531 */
532 ISL_DIM_LAYOUT_GEN4_2D,
533
534 /**
535 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
536 * 6.17.5: 3D Surfaces.
537 *
538 * @invariant isl_surf::phys_level0_sa::array_len == 1
539 */
540 ISL_DIM_LAYOUT_GEN4_3D,
541
542 /**
543 * Special layout used for HiZ and stencil on Sandy Bridge to work around
544 * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
545 * work the same as on gen7+ except that they don't technically support
546 * mipmapping. That does not, however, stop us from doing it. As far as
547 * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
548 * single miplevel 2D (possibly array) image. The dimensions of that image
549 * are NOT minified.
550 *
551 * In order to implement HiZ and stencil on Sandy Bridge, we create one
552 * full-sized 2D (possibly array) image for every LOD with every image
553 * aligned to a page boundary. When the surface is used with the stencil
554 * or HiZ hardware, we manually offset to the image for the given LOD.
555 *
556 * As a memory saving measure, we pretend that the width of each miplevel
557 * is minified and we place LOD1 and above below LOD0 but horizontally
558 * adjacent to each other. When considered as full-sized images, LOD1 and
559 * above technically overlap. However, since we only write to part of that
560 * image, the hardware will never notice the overlap.
561 *
562 * This layout looks something like this:
563 *
564 * +---------+
565 * | |
566 * | |
567 * +---------+
568 * | |
569 * | |
570 * +---------+
571 *
572 * +----+ +-+ .
573 * | | +-+
574 * +----+
575 *
576 * +----+ +-+ .
577 * | | +-+
578 * +----+
579 */
580 ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
581
582 /**
583 * For details, see the Skylake BSpec >> Memory Views >> Common Surface
584 * Formats >> Surface Layout and Tiling >> » 1D Surfaces.
585 */
586 ISL_DIM_LAYOUT_GEN9_1D,
587 };
588
589 enum isl_aux_usage {
590 /** No Auxiliary surface is used */
591 ISL_AUX_USAGE_NONE,
592
593 /** The primary surface is a depth surface and the auxiliary surface is HiZ */
594 ISL_AUX_USAGE_HIZ,
595
596 /** The auxiliary surface is an MCS
597 *
598 * @invariant isl_surf::samples > 1
599 */
600 ISL_AUX_USAGE_MCS,
601
602 /** The auxiliary surface is a fast-clear-only compression surface
603 *
604 * @invariant isl_surf::samples == 1
605 */
606 ISL_AUX_USAGE_CCS_D,
607
608 /** The auxiliary surface provides full lossless color compression
609 *
610 * @invariant isl_surf::samples == 1
611 */
612 ISL_AUX_USAGE_CCS_E,
613
614 /** The auxiliary surface provides full lossless media color compression
615 *
616 * @invariant isl_surf::samples == 1
617 */
618 ISL_AUX_USAGE_MC,
619
620 /** The auxiliary surface is a HiZ surface operating in write-through mode
621 * and CCS is also enabled
622 *
623 * In this mode, the HiZ and CCS surfaces act as a single fused compression
624 * surface where resolves and ambiguates operate on both surfaces at the
625 * same time. In this mode, the HiZ surface operates in write-through
626 * mode where it is only used for accelerating depth testing and not for
627 * actual compression. The CCS-compressed surface contains valid data at
628 * all times.
629 *
630 * @invariant isl_surf::samples == 1
631 */
632 ISL_AUX_USAGE_HIZ_CCS_WT,
633
634 /** The auxiliary surface is a HiZ surface with and CCS is also enabled
635 *
636 * In this mode, the HiZ and CCS surfaces act as a single fused compression
637 * surface where resolves and ambiguates operate on both surfaces at the
638 * same time. In this mode, full HiZ compression is enabled and the
639 * CCS-compressed main surface may not contain valid data. The only way to
640 * read the surface outside of the depth hardware is to do a full resolve
641 * which resolves both HiZ and CCS so the surface is in the pass-through
642 * state.
643 */
644 ISL_AUX_USAGE_HIZ_CCS,
645
646 /** The auxiliary surface is an MCS and CCS is also enabled
647 *
648 * @invariant isl_surf::samples > 1
649 */
650 ISL_AUX_USAGE_MCS_CCS,
651
652 /** CCS auxiliary data is used to compress a stencil buffer
653 *
654 * @invariant isl_surf::samples == 1
655 */
656 ISL_AUX_USAGE_STC_CCS,
657 };
658
659 /**
660 * Enum for keeping track of the state an auxiliary compressed surface.
661 *
662 * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
663 * given slice (lod + array layer) can be in one of the six states described
664 * by this enum. Draw and resolve operations may cause the slice to change
665 * from one state to another. The six valid states are:
666 *
667 * 1) Clear: In this state, each block in the auxiliary surface contains a
668 * magic value that indicates that the block is in the clear state. If
669 * a block is in the clear state, it's values in the primary surface are
670 * ignored and the color of the samples in the block is taken either the
671 * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
672 * depth. Since neither the primary surface nor the auxiliary surface
673 * contains the clear value, the surface can be cleared to a different
674 * color by simply changing the clear color without modifying either
675 * surface.
676 *
677 * 2) Partial Clear: In this state, each block in the auxiliary surface
678 * contains either the magic clear or pass-through value. See Clear and
679 * Pass-through for more details.
680 *
681 * 3) Compressed w/ Clear: In this state, neither the auxiliary surface
682 * nor the primary surface has a complete representation of the data.
683 * Instead, both surfaces must be used together or else rendering
684 * corruption may occur. Depending on the auxiliary compression format
685 * and the data, any given block in the primary surface may contain all,
686 * some, or none of the data required to reconstruct the actual sample
687 * values. Blocks may also be in the clear state (see Clear) and have
688 * their value taken from outside the surface.
689 *
690 * 4) Compressed w/o Clear: This state is identical to the state above
691 * except that no blocks are in the clear state. In this state, all of
692 * the data required to reconstruct the final sample values is contained
693 * in the auxiliary and primary surface and the clear value is not
694 * considered.
695 *
696 * 5) Resolved: In this state, the primary surface contains 100% of the
697 * data. The auxiliary surface is also valid so the surface can be
698 * validly used with or without aux enabled. The auxiliary surface may,
699 * however, contain non-trivial data and any update to the primary
700 * surface with aux disabled will cause the two to get out of sync.
701 *
702 * 6) Pass-through: In this state, the primary surface contains 100% of the
703 * data and every block in the auxiliary surface contains a magic value
704 * which indicates that the auxiliary surface should be ignored and the
705 * only the primary surface should be considered. Updating the primary
706 * surface without aux works fine and can be done repeatedly in this
707 * mode. Writing to a surface in pass-through mode with aux enabled may
708 * cause the auxiliary buffer to contain non-trivial data and no longer
709 * be in the pass-through state.
710 *
711 * 7) Aux Invalid: In this state, the primary surface contains 100% of the
712 * data and the auxiliary surface is completely bogus. Any attempt to
713 * use the auxiliary surface is liable to result in rendering
714 * corruption. The only thing that one can do to re-enable aux once
715 * this state is reached is to use an ambiguate pass to transition into
716 * the pass-through state.
717 *
718 * Drawing with or without aux enabled may implicitly cause the surface to
719 * transition between these states. There are also four types of auxiliary
720 * compression operations which cause an explicit transition which are
721 * described by the isl_aux_op enum below.
722 *
723 * Not all operations are valid or useful in all states. The diagram below
724 * contains a complete description of the states and all valid and useful
725 * transitions except clear.
726 *
727 * Draw w/ Aux
728 * +----------+
729 * | |
730 * | +-------------+ Draw w/ Aux +-------------+
731 * +------>| Compressed |<-------------------| Clear |
732 * | w/ Clear |----->----+ | |
733 * +-------------+ | +-------------+
734 * | /|\ | | |
735 * | | | | |
736 * | | +------<-----+ | Draw w/
737 * | | | | Clear Only
738 * | | Full | | +----------+
739 * Partial | | Resolve | \|/ | |
740 * Resolve | | | +-------------+ |
741 * | | | | Partial |<------+
742 * | | | | Clear |<----------+
743 * | | | +-------------+ |
744 * | | | | |
745 * | | +------>---------+ Full |
746 * | | | Resolve |
747 * Draw w/ aux | | Partial Fast Clear | |
748 * +----------+ | +--------------------------+ | |
749 * | | \|/ | \|/ |
750 * | +-------------+ Full Resolve +-------------+ |
751 * +------>| Compressed |------------------->| Resolved | |
752 * | w/o Clear |<-------------------| | |
753 * +-------------+ Draw w/ Aux +-------------+ |
754 * /|\ | | |
755 * | Draw | | Draw |
756 * | w/ Aux | | w/o Aux |
757 * | Ambiguate | | |
758 * | +--------------------------+ | |
759 * Draw w/o Aux | | | Draw w/o Aux |
760 * +----------+ | | | +----------+ |
761 * | | | \|/ \|/ | | |
762 * | +-------------+ Ambiguate +-------------+ | |
763 * +------>| Pass- |<-------------------| Aux |<------+ |
764 * +------>| through | | Invalid | |
765 * | +-------------+ +-------------+ |
766 * | | | |
767 * +----------+ +-----------------------------------------------------+
768 * Draw w/ Partial Fast Clear
769 * Clear Only
770 *
771 *
772 * While the above general theory applies to all forms of auxiliary
773 * compression on Intel hardware, not all states and operations are available
774 * on all compression types. However, each of the auxiliary states and
775 * operations can be fairly easily mapped onto the above diagram:
776 *
777 * HiZ: Hierarchical depth compression is capable of being in any of the
778 * states above. Hardware provides three HiZ operations: "Depth
779 * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
780 * Clear", "Full Resolve", and "Ambiguate" respectively. The
781 * hardware provides no HiZ partial resolve operation so the only way
782 * to get into the "Compressed w/o Clear" state is to render with HiZ
783 * when the surface is in the resolved or pass-through states.
784 *
785 * MCS: Multisample compression is technically capable of being in any of
786 * the states above except that most of them aren't useful. Both the
787 * render engine and the sampler support MCS compression and, apart
788 * from clear color, MCS is format-unaware so we leave the surface
789 * compressed 100% of the time. The hardware provides no MCS
790 * operations.
791 *
792 * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
793 * the simplest forms of compression since they don't do anything
794 * beyond clear color tracking. They really only support three of
795 * the six states: Clear, Partial Clear, and Pass-through. The
796 * only CCS_D operation is "Resolve" which maps to a full resolve
797 * followed by an ambiguate.
798 *
799 * CCS_E: Single-sample render target compression (also called CCS_E in ISL)
800 * is capable of being in almost all of the above states. THe only
801 * exception is that it does not have separate resolved and pass-
802 * through states. Instead, the CCS_E full resolve operation does
803 * both a resolve and an ambiguate so it goes directly into the
804 * pass-through state. CCS_E also provides fast clear and partial
805 * resolve operations which work as described above.
806 *
807 * While it is technically possible to perform a CCS_E ambiguate, it
808 * is not provided by Sky Lake hardware so we choose to avoid the aux
809 * invalid state. If the aux invalid state were determined to be
810 * useful, a CCS ambiguate could be done by carefully rendering to
811 * the CCS and filling it with zeros.
812 */
813 enum isl_aux_state {
814 #ifdef IN_UNIT_TEST
815 ISL_AUX_STATE_ASSERT,
816 #endif
817 ISL_AUX_STATE_CLEAR,
818 ISL_AUX_STATE_PARTIAL_CLEAR,
819 ISL_AUX_STATE_COMPRESSED_CLEAR,
820 ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
821 ISL_AUX_STATE_RESOLVED,
822 ISL_AUX_STATE_PASS_THROUGH,
823 ISL_AUX_STATE_AUX_INVALID,
824 };
825
826 /**
827 * Enum which describes explicit aux transition operations.
828 */
829 enum isl_aux_op {
830 #ifdef IN_UNIT_TEST
831 ISL_AUX_OP_ASSERT,
832 #endif
833
834 ISL_AUX_OP_NONE,
835
836 /** Fast Clear
837 *
838 * This operation writes the magic "clear" value to the auxiliary surface.
839 * This operation will safely transition any slice of a surface from any
840 * state to the clear state so long as the entire slice is fast cleared at
841 * once. A fast clear that only covers part of a slice of a surface is
842 * called a partial fast clear.
843 */
844 ISL_AUX_OP_FAST_CLEAR,
845
846 /** Full Resolve
847 *
848 * This operation combines the auxiliary surface data with the primary
849 * surface data and writes the result to the primary. For HiZ, the docs
850 * call this a depth resolve. For CCS, the hardware full resolve operation
851 * does both a full resolve and an ambiguate so it actually takes you all
852 * the way to the pass-through state.
853 */
854 ISL_AUX_OP_FULL_RESOLVE,
855
856 /** Partial Resolve
857 *
858 * This operation considers blocks which are in the "clear" state and
859 * writes the clear value directly into the primary or auxiliary surface.
860 * Once this operation completes, the surface is still compressed but no
861 * longer references the clear color. This operation is only available
862 * for CCS_E.
863 */
864 ISL_AUX_OP_PARTIAL_RESOLVE,
865
866 /** Ambiguate
867 *
868 * This operation throws away the current auxiliary data and replaces it
869 * with the magic pass-through value. If an ambiguate operation is
870 * performed when the primary surface does not contain 100% of the data,
871 * data will be lost. This operation is only implemented in hardware for
872 * depth where it is called a HiZ resolve.
873 */
874 ISL_AUX_OP_AMBIGUATE,
875 };
876
877 /* TODO(chadv): Explain */
878 enum isl_array_pitch_span {
879 ISL_ARRAY_PITCH_SPAN_FULL,
880 ISL_ARRAY_PITCH_SPAN_COMPACT,
881 };
882
883 /**
884 * @defgroup Surface Usage
885 * @{
886 */
887 typedef uint64_t isl_surf_usage_flags_t;
888 #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
889 #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
890 #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
891 #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
892 #define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
893 #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
894 #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
895 #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
896 #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
897 #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
898 #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
899 #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
900 #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
901 #define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
902 #define ISL_SURF_USAGE_MCS_BIT (1u << 14)
903 #define ISL_SURF_USAGE_CCS_BIT (1u << 15)
904 /** @} */
905
906 /**
907 * @defgroup Channel Mask
908 *
909 * These #define values are chosen to match the values of
910 * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
911 *
912 * @{
913 */
914 typedef uint8_t isl_channel_mask_t;
915 #define ISL_CHANNEL_BLUE_BIT (1 << 0)
916 #define ISL_CHANNEL_GREEN_BIT (1 << 1)
917 #define ISL_CHANNEL_RED_BIT (1 << 2)
918 #define ISL_CHANNEL_ALPHA_BIT (1 << 3)
919 /** @} */
920
921 /**
922 * @brief A channel select (also known as texture swizzle) value
923 */
924 enum PACKED isl_channel_select {
925 ISL_CHANNEL_SELECT_ZERO = 0,
926 ISL_CHANNEL_SELECT_ONE = 1,
927 ISL_CHANNEL_SELECT_RED = 4,
928 ISL_CHANNEL_SELECT_GREEN = 5,
929 ISL_CHANNEL_SELECT_BLUE = 6,
930 ISL_CHANNEL_SELECT_ALPHA = 7,
931 };
932
933 /**
934 * Identical to VkSampleCountFlagBits.
935 */
936 enum isl_sample_count {
937 ISL_SAMPLE_COUNT_1_BIT = 1u,
938 ISL_SAMPLE_COUNT_2_BIT = 2u,
939 ISL_SAMPLE_COUNT_4_BIT = 4u,
940 ISL_SAMPLE_COUNT_8_BIT = 8u,
941 ISL_SAMPLE_COUNT_16_BIT = 16u,
942 };
943 typedef uint32_t isl_sample_count_mask_t;
944
945 /**
946 * @brief Multisample Format
947 */
948 enum isl_msaa_layout {
949 /**
950 * @brief Suface is single-sampled.
951 */
952 ISL_MSAA_LAYOUT_NONE,
953
954 /**
955 * @brief [SNB+] Interleaved Multisample Format
956 *
957 * In this format, multiple samples are interleaved into each cacheline.
958 * In other words, the sample index is swizzled into the low 6 bits of the
959 * surface's virtual address space.
960 *
961 * For example, suppose the surface is legacy Y tiled, is 4x multisampled,
962 * and its pixel format is 32bpp. Then the first cacheline is arranged
963 * thus:
964 *
965 * (0,0,0) (0,1,0) (0,0,1) (1,0,1)
966 * (1,0,0) (1,1,0) (0,1,1) (1,1,1)
967 *
968 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
969 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
970 *
971 * The hardware docs refer to this format with multiple terms. In
972 * Sandybridge, this is the only multisample format; so no term is used.
973 * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
974 * Multisample Surface). Later hardware docs additionally refer to this
975 * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
976 * color surfaces).
977 *
978 * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
979 * Surface Behavior".
980 *
981 * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
982 * Multisampled Surfaces".
983 */
984 ISL_MSAA_LAYOUT_INTERLEAVED,
985
986 /**
987 * @brief [IVB+] Array Multisample Format
988 *
989 * In this format, the surface's physical layout resembles that of a
990 * 2D array surface.
991 *
992 * Suppose the multisample surface's logical extent is (w, h) and its
993 * sample count is N. Then surface's physical extent is the same as
994 * a singlesample 2D surface whose logical extent is (w, h) and array
995 * length is N. Array slice `i` contains the pixel values for sample
996 * index `i`.
997 *
998 * The Ivybridge docs refer to surfaces in this format as UMS
999 * (Uncompressed Multsample Layout) and CMS (Compressed Multisample
1000 * Surface). The Broadwell docs additionally refer to this format as
1001 * MSFMT_MSS (MSS=Multisample Surface Storage).
1002 *
1003 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
1004 * Multisample Surfaces".
1005 *
1006 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
1007 * Multisample Surfaces".
1008 */
1009 ISL_MSAA_LAYOUT_ARRAY,
1010 };
1011
1012 typedef enum {
1013 ISL_MEMCPY = 0,
1014 ISL_MEMCPY_BGRA8,
1015 ISL_MEMCPY_STREAMING_LOAD,
1016 ISL_MEMCPY_INVALID,
1017 } isl_memcpy_type;
1018
1019 struct isl_device {
1020 const struct gen_device_info *info;
1021 bool use_separate_stencil;
1022 bool has_bit6_swizzling;
1023
1024 /**
1025 * Describes the layout of a RENDER_SURFACE_STATE structure for the
1026 * current gen.
1027 */
1028 struct {
1029 uint8_t size;
1030 uint8_t align;
1031 uint8_t addr_offset;
1032 uint8_t aux_addr_offset;
1033
1034 /* Rounded up to the nearest dword to simplify GPU memcpy operations. */
1035
1036 /* size of the state buffer used to store the clear color + extra
1037 * additional space used by the hardware */
1038 uint8_t clear_color_state_size;
1039 uint8_t clear_color_state_offset;
1040 /* size of the clear color itself - used to copy it to/from a BO */
1041 uint8_t clear_value_size;
1042 uint8_t clear_value_offset;
1043 } ss;
1044
1045 /**
1046 * Describes the layout of the depth/stencil/hiz commands as emitted by
1047 * isl_emit_depth_stencil_hiz.
1048 */
1049 struct {
1050 uint8_t size;
1051 uint8_t depth_offset;
1052 uint8_t stencil_offset;
1053 uint8_t hiz_offset;
1054 } ds;
1055
1056 struct {
1057 uint32_t internal;
1058 uint32_t external;
1059 } mocs;
1060 };
1061
1062 struct isl_extent2d {
1063 union { uint32_t w, width; };
1064 union { uint32_t h, height; };
1065 };
1066
1067 struct isl_extent3d {
1068 union { uint32_t w, width; };
1069 union { uint32_t h, height; };
1070 union { uint32_t d, depth; };
1071 };
1072
1073 struct isl_extent4d {
1074 union { uint32_t w, width; };
1075 union { uint32_t h, height; };
1076 union { uint32_t d, depth; };
1077 union { uint32_t a, array_len; };
1078 };
1079
1080 struct isl_channel_layout {
1081 enum isl_base_type type;
1082 uint8_t start_bit; /**< Bit at which this channel starts */
1083 uint8_t bits; /**< Size in bits */
1084 };
1085
1086 /**
1087 * Each format has 3D block extent (width, height, depth). The block extent of
1088 * compressed formats is that of the format's compression block. For example,
1089 * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block
1090 * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is
1091 * is (w=1, h=1, d=1).
1092 */
1093 struct isl_format_layout {
1094 enum isl_format format;
1095 const char *name;
1096
1097 uint16_t bpb; /**< Bits per block */
1098 uint8_t bw; /**< Block width, in pixels */
1099 uint8_t bh; /**< Block height, in pixels */
1100 uint8_t bd; /**< Block depth, in pixels */
1101
1102 union {
1103 struct {
1104 struct isl_channel_layout r; /**< Red channel */
1105 struct isl_channel_layout g; /**< Green channel */
1106 struct isl_channel_layout b; /**< Blue channel */
1107 struct isl_channel_layout a; /**< Alpha channel */
1108 struct isl_channel_layout l; /**< Luminance channel */
1109 struct isl_channel_layout i; /**< Intensity channel */
1110 struct isl_channel_layout p; /**< Palette channel */
1111 } channels;
1112 struct isl_channel_layout channels_array[7];
1113 };
1114
1115 enum isl_colorspace colorspace;
1116 enum isl_txc txc;
1117 };
1118
1119 struct isl_tile_info {
1120 enum isl_tiling tiling;
1121
1122 /* The size (in bits per block) of a single surface element
1123 *
1124 * For surfaces with power-of-two formats, this is the same as
1125 * isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
1126 * The logical_extent_el field is in terms of elements of this size.
1127 *
1128 * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
1129 * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
1130 * of the tiling formats can actually hold an integer number of 96-bit
1131 * surface elements so isl_tiling_get_info returns an isl_tile_info for a
1132 * 32-bit element size. It is the responsibility of the caller to
1133 * recognize that 32 != 96 ad adjust accordingly. For instance, to compute
1134 * the width of a surface in tiles, you would do:
1135 *
1136 * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
1137 * tile_info.logical_extent_el.width);
1138 */
1139 uint32_t format_bpb;
1140
1141 /** The logical size of the tile in units of format_bpb size elements
1142 *
1143 * This field determines how a given surface is cut up into tiles. It is
1144 * used to compute the size of a surface in tiles and can be used to
1145 * determine the location of the tile containing any given surface element.
1146 * The exact value of this field depends heavily on the bits-per-block of
1147 * the format being used.
1148 */
1149 struct isl_extent2d logical_extent_el;
1150
1151 /** The physical size of the tile in bytes and rows of bytes
1152 *
1153 * This field determines how the tiles of a surface are physically layed
1154 * out in memory. The logical and physical tile extent are frequently the
1155 * same but this is not always the case. For instance, a W-tile (which is
1156 * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
1157 * its physical size is 128B x 32rows, the same as a Y-tile.
1158 *
1159 * @see isl_surf::row_pitch_B
1160 */
1161 struct isl_extent2d phys_extent_B;
1162 };
1163
1164 /**
1165 * Metadata about a DRM format modifier.
1166 */
1167 struct isl_drm_modifier_info {
1168 uint64_t modifier;
1169
1170 /** Text name of the modifier */
1171 const char *name;
1172
1173 /** ISL tiling implied by this modifier */
1174 enum isl_tiling tiling;
1175
1176 /** ISL aux usage implied by this modifier */
1177 enum isl_aux_usage aux_usage;
1178
1179 /** Whether or not this modifier supports clear color */
1180 bool supports_clear_color;
1181 };
1182
1183 /**
1184 * @brief Input to surface initialization
1185 *
1186 * @invariant width >= 1
1187 * @invariant height >= 1
1188 * @invariant depth >= 1
1189 * @invariant levels >= 1
1190 * @invariant samples >= 1
1191 * @invariant array_len >= 1
1192 *
1193 * @invariant if 1D then height == 1 and depth == 1 and samples == 1
1194 * @invariant if 2D then depth == 1
1195 * @invariant if 3D then array_len == 1 and samples == 1
1196 */
1197 struct isl_surf_init_info {
1198 enum isl_surf_dim dim;
1199 enum isl_format format;
1200
1201 uint32_t width;
1202 uint32_t height;
1203 uint32_t depth;
1204 uint32_t levels;
1205 uint32_t array_len;
1206 uint32_t samples;
1207
1208 /** Lower bound for isl_surf::alignment, in bytes. */
1209 uint32_t min_alignment_B;
1210
1211 /**
1212 * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
1213 * will fail if this is misaligned or out of bounds.
1214 */
1215 uint32_t row_pitch_B;
1216
1217 isl_surf_usage_flags_t usage;
1218
1219 /** Flags that alter how ISL selects isl_surf::tiling. */
1220 isl_tiling_flags_t tiling_flags;
1221 };
1222
1223 struct isl_surf {
1224 enum isl_surf_dim dim;
1225 enum isl_dim_layout dim_layout;
1226 enum isl_msaa_layout msaa_layout;
1227 enum isl_tiling tiling;
1228 enum isl_format format;
1229
1230 /**
1231 * Alignment of the upper-left sample of each subimage, in units of surface
1232 * elements.
1233 */
1234 struct isl_extent3d image_alignment_el;
1235
1236 /**
1237 * Logical extent of the surface's base level, in units of pixels. This is
1238 * identical to the extent defined in isl_surf_init_info.
1239 */
1240 struct isl_extent4d logical_level0_px;
1241
1242 /**
1243 * Physical extent of the surface's base level, in units of physical
1244 * surface samples.
1245 *
1246 * Consider isl_dim_layout as an operator that transforms a logical surface
1247 * layout to a physical surface layout. Then
1248 *
1249 * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
1250 * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
1251 */
1252 struct isl_extent4d phys_level0_sa;
1253
1254 uint32_t levels;
1255 uint32_t samples;
1256
1257 /** Total size of the surface, in bytes. */
1258 uint64_t size_B;
1259
1260 /** Required alignment for the surface's base address. */
1261 uint32_t alignment_B;
1262
1263 /**
1264 * The interpretation of this field depends on the value of
1265 * isl_tile_info::physical_extent_B. In particular, the width of the
1266 * surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
1267 * and the distance in bytes between vertically adjacent tiles in the image
1268 * is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
1269 *
1270 * For linear images where isl_tile_info::physical_extent_B.height == 1,
1271 * this cleanly reduces to being the distance, in bytes, between vertically
1272 * adjacent surface elements.
1273 *
1274 * @see isl_tile_info::phys_extent_B;
1275 */
1276 uint32_t row_pitch_B;
1277
1278 /**
1279 * Pitch between physical array slices, in rows of surface elements.
1280 */
1281 uint32_t array_pitch_el_rows;
1282
1283 enum isl_array_pitch_span array_pitch_span;
1284
1285 /** Copy of isl_surf_init_info::usage. */
1286 isl_surf_usage_flags_t usage;
1287 };
1288
1289 struct isl_swizzle {
1290 enum isl_channel_select r:4;
1291 enum isl_channel_select g:4;
1292 enum isl_channel_select b:4;
1293 enum isl_channel_select a:4;
1294 };
1295
1296 #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
1297 .r = ISL_CHANNEL_SELECT_##R, \
1298 .g = ISL_CHANNEL_SELECT_##G, \
1299 .b = ISL_CHANNEL_SELECT_##B, \
1300 .a = ISL_CHANNEL_SELECT_##A, \
1301 })
1302
1303 #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
1304
1305 struct isl_view {
1306 /**
1307 * Indicates the usage of the particular view
1308 *
1309 * Normally, this is one bit. However, for a cube map texture, it
1310 * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
1311 */
1312 isl_surf_usage_flags_t usage;
1313
1314 /**
1315 * The format to use in the view
1316 *
1317 * This may differ from the format of the actual isl_surf but must have
1318 * the same block size.
1319 */
1320 enum isl_format format;
1321
1322 uint32_t base_level;
1323 uint32_t levels;
1324
1325 /**
1326 * Base array layer
1327 *
1328 * For cube maps, both base_array_layer and array_len should be
1329 * specified in terms of 2-D layers and must be a multiple of 6.
1330 *
1331 * 3-D textures are effectively treated as 2-D arrays when used as a
1332 * storage image or render target. If `usage` contains
1333 * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
1334 * base_array_layer and array_len are applied. If the surface is only used
1335 * for texturing, they are ignored.
1336 */
1337 uint32_t base_array_layer;
1338
1339 /**
1340 * Array Length
1341 *
1342 * Indicates the number of array elements starting at Base Array Layer.
1343 */
1344 uint32_t array_len;
1345
1346 struct isl_swizzle swizzle;
1347 };
1348
1349 union isl_color_value {
1350 float f32[4];
1351 uint32_t u32[4];
1352 int32_t i32[4];
1353 };
1354
1355 struct isl_surf_fill_state_info {
1356 const struct isl_surf *surf;
1357 const struct isl_view *view;
1358
1359 /**
1360 * The address of the surface in GPU memory.
1361 */
1362 uint64_t address;
1363
1364 /**
1365 * The Memory Object Control state for the filled surface state.
1366 *
1367 * The exact format of this value depends on hardware generation.
1368 */
1369 uint32_t mocs;
1370
1371 /**
1372 * The auxilary surface or NULL if no auxilary surface is to be used.
1373 */
1374 const struct isl_surf *aux_surf;
1375 enum isl_aux_usage aux_usage;
1376 uint64_t aux_address;
1377
1378 /**
1379 * The clear color for this surface
1380 *
1381 * Valid values depend on hardware generation.
1382 */
1383 union isl_color_value clear_color;
1384
1385 /**
1386 * Send only the clear value address
1387 *
1388 * If set, we only pass the clear address to the GPU and it will fetch it
1389 * from wherever it is.
1390 */
1391 bool use_clear_address;
1392 uint64_t clear_address;
1393
1394 /**
1395 * Surface write disables for gen4-5
1396 */
1397 isl_channel_mask_t write_disables;
1398
1399 /* Intra-tile offset */
1400 uint16_t x_offset_sa, y_offset_sa;
1401 };
1402
1403 struct isl_buffer_fill_state_info {
1404 /**
1405 * The address of the surface in GPU memory.
1406 */
1407 uint64_t address;
1408
1409 /**
1410 * The size of the buffer
1411 */
1412 uint64_t size_B;
1413
1414 /**
1415 * The Memory Object Control state for the filled surface state.
1416 *
1417 * The exact format of this value depends on hardware generation.
1418 */
1419 uint32_t mocs;
1420
1421 /**
1422 * The format to use in the surface state
1423 *
1424 * This may differ from the format of the actual isl_surf but have the
1425 * same block size.
1426 */
1427 enum isl_format format;
1428
1429 /**
1430 * The swizzle to use in the surface state
1431 */
1432 struct isl_swizzle swizzle;
1433
1434 uint32_t stride_B;
1435 };
1436
1437 struct isl_depth_stencil_hiz_emit_info {
1438 /**
1439 * The depth surface
1440 */
1441 const struct isl_surf *depth_surf;
1442
1443 /**
1444 * The stencil surface
1445 *
1446 * If separate stencil is not available, this must point to the same
1447 * isl_surf as depth_surf.
1448 */
1449 const struct isl_surf *stencil_surf;
1450
1451 /**
1452 * The view into the depth and stencil surfaces.
1453 *
1454 * This view applies to both surfaces simultaneously.
1455 */
1456 const struct isl_view *view;
1457
1458 /**
1459 * The address of the depth surface in GPU memory
1460 */
1461 uint64_t depth_address;
1462
1463 /**
1464 * The address of the stencil surface in GPU memory
1465 *
1466 * If separate stencil is not available, this must have the same value as
1467 * depth_address.
1468 */
1469 uint64_t stencil_address;
1470
1471 /**
1472 * The Memory Object Control state for depth and stencil buffers
1473 *
1474 * Both depth and stencil will get the same MOCS value. The exact format
1475 * of this value depends on hardware generation.
1476 */
1477 uint32_t mocs;
1478
1479 /**
1480 * The HiZ surface or NULL if HiZ is disabled.
1481 */
1482 const struct isl_surf *hiz_surf;
1483 enum isl_aux_usage hiz_usage;
1484 uint64_t hiz_address;
1485
1486 /**
1487 * The depth clear value
1488 */
1489 float depth_clear_value;
1490
1491 /**
1492 * Track stencil aux usage for Gen >= 12
1493 */
1494 enum isl_aux_usage stencil_aux_usage;
1495 };
1496
1497 extern const struct isl_format_layout isl_format_layouts[];
1498
1499 void
1500 isl_device_init(struct isl_device *dev,
1501 const struct gen_device_info *info,
1502 bool has_bit6_swizzling);
1503
1504 isl_sample_count_mask_t ATTRIBUTE_CONST
1505 isl_device_get_sample_counts(struct isl_device *dev);
1506
1507 static inline const struct isl_format_layout * ATTRIBUTE_CONST
1508 isl_format_get_layout(enum isl_format fmt)
1509 {
1510 assert(fmt != ISL_FORMAT_UNSUPPORTED);
1511 assert(fmt < ISL_NUM_FORMATS);
1512 return &isl_format_layouts[fmt];
1513 }
1514
1515 bool isl_format_is_valid(enum isl_format);
1516
1517 static inline const char * ATTRIBUTE_CONST
1518 isl_format_get_name(enum isl_format fmt)
1519 {
1520 return isl_format_get_layout(fmt)->name;
1521 }
1522
1523 enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
1524
1525 bool isl_format_supports_rendering(const struct gen_device_info *devinfo,
1526 enum isl_format format);
1527 bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo,
1528 enum isl_format format);
1529 bool isl_format_supports_sampling(const struct gen_device_info *devinfo,
1530 enum isl_format format);
1531 bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
1532 enum isl_format format);
1533 bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
1534 enum isl_format format);
1535 bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
1536 enum isl_format format);
1537 bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
1538 enum isl_format format);
1539 bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
1540 enum isl_format format);
1541 bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
1542 enum isl_format format);
1543 bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
1544 enum isl_format format);
1545
1546 bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
1547 enum isl_format format1,
1548 enum isl_format format2);
1549 uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
1550
1551 bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1552 bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1553 bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1554 bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1555 bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1556 bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1557
1558 static inline bool
1559 isl_format_has_normalized_channel(enum isl_format fmt)
1560 {
1561 return isl_format_has_unorm_channel(fmt) ||
1562 isl_format_has_snorm_channel(fmt);
1563 }
1564
1565 static inline bool
1566 isl_format_has_float_channel(enum isl_format fmt)
1567 {
1568 return isl_format_has_ufloat_channel(fmt) ||
1569 isl_format_has_sfloat_channel(fmt);
1570 }
1571
1572 static inline bool
1573 isl_format_has_int_channel(enum isl_format fmt)
1574 {
1575 return isl_format_has_uint_channel(fmt) ||
1576 isl_format_has_sint_channel(fmt);
1577 }
1578
1579 bool isl_format_has_color_component(enum isl_format fmt,
1580 int component) ATTRIBUTE_CONST;
1581
1582 unsigned isl_format_get_num_channels(enum isl_format fmt);
1583
1584 uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
1585
1586 static inline bool
1587 isl_format_is_compressed(enum isl_format fmt)
1588 {
1589 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1590
1591 return fmtl->txc != ISL_TXC_NONE;
1592 }
1593
1594 static inline bool
1595 isl_format_has_bc_compression(enum isl_format fmt)
1596 {
1597 switch (isl_format_get_layout(fmt)->txc) {
1598 case ISL_TXC_DXT1:
1599 case ISL_TXC_DXT3:
1600 case ISL_TXC_DXT5:
1601 return true;
1602 case ISL_TXC_NONE:
1603 case ISL_TXC_FXT1:
1604 case ISL_TXC_RGTC1:
1605 case ISL_TXC_RGTC2:
1606 case ISL_TXC_BPTC:
1607 case ISL_TXC_ETC1:
1608 case ISL_TXC_ETC2:
1609 case ISL_TXC_ASTC:
1610 return false;
1611
1612 case ISL_TXC_HIZ:
1613 case ISL_TXC_MCS:
1614 case ISL_TXC_CCS:
1615 unreachable("Should not be called on an aux surface");
1616 }
1617
1618 unreachable("bad texture compression mode");
1619 return false;
1620 }
1621
1622 static inline bool
1623 isl_format_is_yuv(enum isl_format fmt)
1624 {
1625 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1626
1627 return fmtl->colorspace == ISL_COLORSPACE_YUV;
1628 }
1629
1630 static inline bool
1631 isl_format_block_is_1x1x1(enum isl_format fmt)
1632 {
1633 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1634
1635 return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
1636 }
1637
1638 static inline bool
1639 isl_format_is_srgb(enum isl_format fmt)
1640 {
1641 return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
1642 }
1643
1644 enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
1645
1646 static inline bool
1647 isl_format_is_rgb(enum isl_format fmt)
1648 {
1649 if (isl_format_is_yuv(fmt))
1650 return false;
1651
1652 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1653
1654 return fmtl->channels.r.bits > 0 &&
1655 fmtl->channels.g.bits > 0 &&
1656 fmtl->channels.b.bits > 0 &&
1657 fmtl->channels.a.bits == 0;
1658 }
1659
1660 static inline bool
1661 isl_format_is_rgbx(enum isl_format fmt)
1662 {
1663 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1664
1665 return fmtl->channels.r.bits > 0 &&
1666 fmtl->channels.g.bits > 0 &&
1667 fmtl->channels.b.bits > 0 &&
1668 fmtl->channels.a.bits > 0 &&
1669 fmtl->channels.a.type == ISL_VOID;
1670 }
1671
1672 enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1673 enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
1674 enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1675
1676 void isl_color_value_pack(const union isl_color_value *value,
1677 enum isl_format format,
1678 uint32_t *data_out);
1679 void isl_color_value_unpack(union isl_color_value *value,
1680 enum isl_format format,
1681 const uint32_t *data_in);
1682
1683 bool isl_is_storage_image_format(enum isl_format fmt);
1684
1685 enum isl_format
1686 isl_lower_storage_image_format(const struct gen_device_info *devinfo,
1687 enum isl_format fmt);
1688
1689 /* Returns true if this hardware supports typed load/store on a format with
1690 * the same size as the given format.
1691 */
1692 bool
1693 isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo,
1694 enum isl_format fmt);
1695
1696 static inline enum isl_tiling
1697 isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
1698 {
1699 assert(__builtin_popcount(flag) == 1);
1700 return (enum isl_tiling) (__builtin_ffs(flag) - 1);
1701 }
1702
1703 static inline bool
1704 isl_tiling_is_any_y(enum isl_tiling tiling)
1705 {
1706 return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
1707 }
1708
1709 static inline bool
1710 isl_tiling_is_std_y(enum isl_tiling tiling)
1711 {
1712 return (1u << tiling) & ISL_TILING_STD_Y_MASK;
1713 }
1714
1715 uint32_t
1716 isl_tiling_to_i915_tiling(enum isl_tiling tiling);
1717
1718 enum isl_tiling
1719 isl_tiling_from_i915_tiling(uint32_t tiling);
1720
1721 /**
1722 * Return an isl_aux_op needed to enable an access to occur in an
1723 * isl_aux_state suitable for the isl_aux_usage.
1724 *
1725 * NOTE: If the access will invalidate the main surface, this function should
1726 * not be called and the isl_aux_op of NONE should be used instead.
1727 * Otherwise, an extra (but still lossless) ambiguate may occur.
1728 *
1729 * @invariant initial_state is possible with an isl_aux_usage compatible with
1730 * the given usage. Two usages are compatible if it's possible to
1731 * switch between them (e.g. CCS_E <-> CCS_D).
1732 * @invariant fast_clear is false if the aux doesn't support fast clears.
1733 */
1734 enum isl_aux_op
1735 isl_aux_prepare_access(enum isl_aux_state initial_state,
1736 enum isl_aux_usage usage,
1737 bool fast_clear_supported);
1738
1739 /**
1740 * Return the isl_aux_state entered after performing an isl_aux_op.
1741 *
1742 * @invariant initial_state is possible with the given usage.
1743 * @invariant op is possible with the given usage.
1744 * @invariant op must not cause HW to read from an invalid aux.
1745 */
1746 enum isl_aux_state
1747 isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
1748 enum isl_aux_usage usage,
1749 enum isl_aux_op op);
1750
1751 /**
1752 * Return the isl_aux_state entered after performing a write.
1753 *
1754 * NOTE: full_surface should be true if the write covers the entire
1755 * slice. Setting it to false in this case will still result in a
1756 * correct (but imprecise) aux state.
1757 *
1758 * @invariant if usage is not ISL_AUX_USAGE_NONE, then initial_state is
1759 * possible with the given usage.
1760 * @invariant usage can be ISL_AUX_USAGE_NONE iff:
1761 * * the main surface is valid, or
1762 * * the main surface is being invalidated/replaced.
1763 */
1764 enum isl_aux_state
1765 isl_aux_state_transition_write(enum isl_aux_state initial_state,
1766 enum isl_aux_usage usage,
1767 bool full_surface);
1768
1769 bool
1770 isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
1771
1772 static inline bool
1773 isl_aux_usage_has_hiz(enum isl_aux_usage usage)
1774 {
1775 return usage == ISL_AUX_USAGE_HIZ ||
1776 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1777 usage == ISL_AUX_USAGE_HIZ_CCS;
1778 }
1779
1780 static inline bool
1781 isl_aux_usage_has_mcs(enum isl_aux_usage usage)
1782 {
1783 return usage == ISL_AUX_USAGE_MCS ||
1784 usage == ISL_AUX_USAGE_MCS_CCS;
1785 }
1786
1787 static inline bool
1788 isl_aux_usage_has_ccs(enum isl_aux_usage usage)
1789 {
1790 return usage == ISL_AUX_USAGE_CCS_D ||
1791 usage == ISL_AUX_USAGE_CCS_E ||
1792 usage == ISL_AUX_USAGE_MC ||
1793 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1794 usage == ISL_AUX_USAGE_HIZ_CCS ||
1795 usage == ISL_AUX_USAGE_MCS_CCS ||
1796 usage == ISL_AUX_USAGE_STC_CCS;
1797 }
1798
1799 static inline bool
1800 isl_aux_state_has_valid_primary(enum isl_aux_state state)
1801 {
1802 return state == ISL_AUX_STATE_RESOLVED ||
1803 state == ISL_AUX_STATE_PASS_THROUGH ||
1804 state == ISL_AUX_STATE_AUX_INVALID;
1805 }
1806
1807 static inline bool
1808 isl_aux_state_has_valid_aux(enum isl_aux_state state)
1809 {
1810 return state != ISL_AUX_STATE_AUX_INVALID;
1811 }
1812
1813 const struct isl_drm_modifier_info * ATTRIBUTE_CONST
1814 isl_drm_modifier_get_info(uint64_t modifier);
1815
1816 static inline bool
1817 isl_drm_modifier_has_aux(uint64_t modifier)
1818 {
1819 return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE;
1820 }
1821
1822 /** Returns the default isl_aux_state for the given modifier.
1823 *
1824 * If we have a modifier which supports compression, then the auxiliary data
1825 * could be in state other than ISL_AUX_STATE_AUX_INVALID. In particular, it
1826 * can be in any of the following:
1827 *
1828 * - ISL_AUX_STATE_CLEAR
1829 * - ISL_AUX_STATE_PARTIAL_CLEAR
1830 * - ISL_AUX_STATE_COMPRESSED_CLEAR
1831 * - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
1832 * - ISL_AUX_STATE_RESOLVED
1833 * - ISL_AUX_STATE_PASS_THROUGH
1834 *
1835 * If the modifier does not support fast-clears, then we are guaranteed
1836 * that the surface is at least partially resolved and the first three not
1837 * possible. We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
1838 * supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
1839 * because they are the least common denominator of the set of possible aux
1840 * states and will yield a valid interpretation of the aux data.
1841 *
1842 * For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
1843 */
1844 static inline enum isl_aux_state
1845 isl_drm_modifier_get_default_aux_state(uint64_t modifier)
1846 {
1847 const struct isl_drm_modifier_info *mod_info =
1848 isl_drm_modifier_get_info(modifier);
1849
1850 if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE)
1851 return ISL_AUX_STATE_AUX_INVALID;
1852
1853 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1854 return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1855 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1856 }
1857
1858 struct isl_extent2d ATTRIBUTE_CONST
1859 isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
1860
1861 static inline bool
1862 isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
1863 {
1864 return usage & ISL_SURF_USAGE_DISPLAY_BIT;
1865 }
1866
1867 static inline bool
1868 isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
1869 {
1870 return usage & ISL_SURF_USAGE_DEPTH_BIT;
1871 }
1872
1873 static inline bool
1874 isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
1875 {
1876 return usage & ISL_SURF_USAGE_STENCIL_BIT;
1877 }
1878
1879 static inline bool
1880 isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
1881 {
1882 return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1883 (usage & ISL_SURF_USAGE_STENCIL_BIT);
1884 }
1885
1886 static inline bool
1887 isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
1888 {
1889 return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
1890 }
1891
1892 static inline bool
1893 isl_surf_info_is_z16(const struct isl_surf_init_info *info)
1894 {
1895 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1896 (info->format == ISL_FORMAT_R16_UNORM);
1897 }
1898
1899 static inline bool
1900 isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
1901 {
1902 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1903 (info->format == ISL_FORMAT_R32_FLOAT);
1904 }
1905
1906 static inline struct isl_extent2d
1907 isl_extent2d(uint32_t width, uint32_t height)
1908 {
1909 struct isl_extent2d e = { { 0 } };
1910
1911 e.width = width;
1912 e.height = height;
1913
1914 return e;
1915 }
1916
1917 static inline struct isl_extent3d
1918 isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
1919 {
1920 struct isl_extent3d e = { { 0 } };
1921
1922 e.width = width;
1923 e.height = height;
1924 e.depth = depth;
1925
1926 return e;
1927 }
1928
1929 static inline struct isl_extent4d
1930 isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
1931 uint32_t array_len)
1932 {
1933 struct isl_extent4d e = { { 0 } };
1934
1935 e.width = width;
1936 e.height = height;
1937 e.depth = depth;
1938 e.array_len = array_len;
1939
1940 return e;
1941 }
1942
1943 bool isl_color_value_is_zero(union isl_color_value value,
1944 enum isl_format format);
1945
1946 bool isl_color_value_is_zero_one(union isl_color_value value,
1947 enum isl_format format);
1948
1949 static inline bool
1950 isl_swizzle_is_identity(struct isl_swizzle swizzle)
1951 {
1952 return swizzle.r == ISL_CHANNEL_SELECT_RED &&
1953 swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
1954 swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
1955 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
1956 }
1957
1958 bool
1959 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
1960 struct isl_swizzle swizzle);
1961
1962 struct isl_swizzle
1963 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
1964 struct isl_swizzle
1965 isl_swizzle_invert(struct isl_swizzle swizzle);
1966
1967 #define isl_surf_init(dev, surf, ...) \
1968 isl_surf_init_s((dev), (surf), \
1969 &(struct isl_surf_init_info) { __VA_ARGS__ });
1970
1971 bool
1972 isl_surf_init_s(const struct isl_device *dev,
1973 struct isl_surf *surf,
1974 const struct isl_surf_init_info *restrict info);
1975
1976 void
1977 isl_surf_get_tile_info(const struct isl_surf *surf,
1978 struct isl_tile_info *tile_info);
1979
1980 bool
1981 isl_surf_get_hiz_surf(const struct isl_device *dev,
1982 const struct isl_surf *surf,
1983 struct isl_surf *hiz_surf);
1984
1985 bool
1986 isl_surf_get_mcs_surf(const struct isl_device *dev,
1987 const struct isl_surf *surf,
1988 struct isl_surf *mcs_surf);
1989
1990 bool
1991 isl_surf_get_ccs_surf(const struct isl_device *dev,
1992 const struct isl_surf *surf,
1993 struct isl_surf *aux_surf,
1994 struct isl_surf *extra_aux_surf,
1995 uint32_t row_pitch_B /**< Ignored if 0 */);
1996
1997 #define isl_surf_fill_state(dev, state, ...) \
1998 isl_surf_fill_state_s((dev), (state), \
1999 &(struct isl_surf_fill_state_info) { __VA_ARGS__ });
2000
2001 void
2002 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
2003 const struct isl_surf_fill_state_info *restrict info);
2004
2005 #define isl_buffer_fill_state(dev, state, ...) \
2006 isl_buffer_fill_state_s((dev), (state), \
2007 &(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
2008
2009 void
2010 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
2011 const struct isl_buffer_fill_state_info *restrict info);
2012
2013 void
2014 isl_null_fill_state(const struct isl_device *dev, void *state,
2015 struct isl_extent3d size);
2016
2017 #define isl_emit_depth_stencil_hiz(dev, batch, ...) \
2018 isl_emit_depth_stencil_hiz_s((dev), (batch), \
2019 &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
2020
2021 void
2022 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
2023 const struct isl_depth_stencil_hiz_emit_info *restrict info);
2024
2025 void
2026 isl_surf_fill_image_param(const struct isl_device *dev,
2027 struct brw_image_param *param,
2028 const struct isl_surf *surf,
2029 const struct isl_view *view);
2030
2031 void
2032 isl_buffer_fill_image_param(const struct isl_device *dev,
2033 struct brw_image_param *param,
2034 enum isl_format format,
2035 uint64_t size);
2036
2037 /**
2038 * Alignment of the upper-left sample of each subimage, in units of surface
2039 * elements.
2040 */
2041 static inline struct isl_extent3d
2042 isl_surf_get_image_alignment_el(const struct isl_surf *surf)
2043 {
2044 return surf->image_alignment_el;
2045 }
2046
2047 /**
2048 * Alignment of the upper-left sample of each subimage, in units of surface
2049 * samples.
2050 */
2051 static inline struct isl_extent3d
2052 isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
2053 {
2054 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2055
2056 return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
2057 fmtl->bh * surf->image_alignment_el.h,
2058 fmtl->bd * surf->image_alignment_el.d);
2059 }
2060
2061 /**
2062 * Logical extent of level 0 in units of surface elements.
2063 */
2064 static inline struct isl_extent4d
2065 isl_surf_get_logical_level0_el(const struct isl_surf *surf)
2066 {
2067 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2068
2069 return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
2070 DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
2071 DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
2072 surf->logical_level0_px.a);
2073 }
2074
2075 /**
2076 * Physical extent of level 0 in units of surface elements.
2077 */
2078 static inline struct isl_extent4d
2079 isl_surf_get_phys_level0_el(const struct isl_surf *surf)
2080 {
2081 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2082
2083 return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
2084 DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
2085 DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
2086 surf->phys_level0_sa.a);
2087 }
2088
2089 /**
2090 * Pitch between vertically adjacent surface elements, in bytes.
2091 */
2092 static inline uint32_t
2093 isl_surf_get_row_pitch_B(const struct isl_surf *surf)
2094 {
2095 return surf->row_pitch_B;
2096 }
2097
2098 /**
2099 * Pitch between vertically adjacent surface elements, in units of surface elements.
2100 */
2101 static inline uint32_t
2102 isl_surf_get_row_pitch_el(const struct isl_surf *surf)
2103 {
2104 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2105
2106 assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
2107 return surf->row_pitch_B / (fmtl->bpb / 8);
2108 }
2109
2110 /**
2111 * Pitch between physical array slices, in rows of surface elements.
2112 */
2113 static inline uint32_t
2114 isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
2115 {
2116 return surf->array_pitch_el_rows;
2117 }
2118
2119 /**
2120 * Pitch between physical array slices, in units of surface elements.
2121 */
2122 static inline uint32_t
2123 isl_surf_get_array_pitch_el(const struct isl_surf *surf)
2124 {
2125 return isl_surf_get_array_pitch_el_rows(surf) *
2126 isl_surf_get_row_pitch_el(surf);
2127 }
2128
2129 /**
2130 * Pitch between physical array slices, in rows of surface samples.
2131 */
2132 static inline uint32_t
2133 isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
2134 {
2135 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2136 return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
2137 }
2138
2139 /**
2140 * Pitch between physical array slices, in bytes.
2141 */
2142 static inline uint32_t
2143 isl_surf_get_array_pitch(const struct isl_surf *surf)
2144 {
2145 return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
2146 }
2147
2148 /**
2149 * Calculate the offset, in units of surface samples, to a subimage in the
2150 * surface.
2151 *
2152 * @invariant level < surface levels
2153 * @invariant logical_array_layer < logical array length of surface
2154 * @invariant logical_z_offset_px < logical depth of surface at level
2155 */
2156 void
2157 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2158 uint32_t level,
2159 uint32_t logical_array_layer,
2160 uint32_t logical_z_offset_px,
2161 uint32_t *x_offset_sa,
2162 uint32_t *y_offset_sa);
2163
2164 /**
2165 * Calculate the offset, in units of surface elements, to a subimage in the
2166 * surface.
2167 *
2168 * @invariant level < surface levels
2169 * @invariant logical_array_layer < logical array length of surface
2170 * @invariant logical_z_offset_px < logical depth of surface at level
2171 */
2172 void
2173 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2174 uint32_t level,
2175 uint32_t logical_array_layer,
2176 uint32_t logical_z_offset_px,
2177 uint32_t *x_offset_el,
2178 uint32_t *y_offset_el);
2179
2180 /**
2181 * Calculate the offset, in bytes and intratile surface samples, to a
2182 * subimage in the surface.
2183 *
2184 * This is equivalent to calling isl_surf_get_image_offset_el, passing the
2185 * result to isl_tiling_get_intratile_offset_el, and converting the tile
2186 * offsets to samples.
2187 *
2188 * @invariant level < surface levels
2189 * @invariant logical_array_layer < logical array length of surface
2190 * @invariant logical_z_offset_px < logical depth of surface at level
2191 */
2192 void
2193 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2194 uint32_t level,
2195 uint32_t logical_array_layer,
2196 uint32_t logical_z_offset_px,
2197 uint32_t *offset_B,
2198 uint32_t *x_offset_sa,
2199 uint32_t *y_offset_sa);
2200
2201 /**
2202 * Calculate the range in bytes occupied by a subimage, to the nearest tile.
2203 *
2204 * The range returned will be the smallest memory range in which the give
2205 * subimage fits, rounded to even tiles. Intel images do not usually have a
2206 * direct subimage -> range mapping so the range returned may contain data
2207 * from other sub-images. The returned range is a half-open interval where
2208 * all of the addresses within the subimage are < end_tile_B.
2209 *
2210 * @invariant level < surface levels
2211 * @invariant logical_array_layer < logical array length of surface
2212 * @invariant logical_z_offset_px < logical depth of surface at level
2213 */
2214 void
2215 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2216 uint32_t level,
2217 uint32_t logical_array_layer,
2218 uint32_t logical_z_offset_px,
2219 uint32_t *start_tile_B,
2220 uint32_t *end_tile_B);
2221
2222 /**
2223 * Create an isl_surf that represents a particular subimage in the surface.
2224 *
2225 * The newly created surface will have a single miplevel and array slice. The
2226 * surface lives at the returned byte and intratile offsets, in samples.
2227 *
2228 * It is safe to call this function with surf == image_surf.
2229 *
2230 * @invariant level < surface levels
2231 * @invariant logical_array_layer < logical array length of surface
2232 * @invariant logical_z_offset_px < logical depth of surface at level
2233 */
2234 void
2235 isl_surf_get_image_surf(const struct isl_device *dev,
2236 const struct isl_surf *surf,
2237 uint32_t level,
2238 uint32_t logical_array_layer,
2239 uint32_t logical_z_offset_px,
2240 struct isl_surf *image_surf,
2241 uint32_t *offset_B,
2242 uint32_t *x_offset_sa,
2243 uint32_t *y_offset_sa);
2244
2245 /**
2246 * @brief Calculate the intratile offsets to a surface.
2247 *
2248 * In @a base_address_offset return the offset from the base of the surface to
2249 * the base address of the first tile of the subimage. In @a x_offset_B and
2250 * @a y_offset_rows, return the offset, in units of bytes and rows, from the
2251 * tile's base to the subimage's first surface element. The x and y offsets
2252 * are intratile offsets; that is, they do not exceed the boundary of the
2253 * surface's tiling format.
2254 */
2255 void
2256 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2257 uint32_t bpb,
2258 uint32_t row_pitch_B,
2259 uint32_t total_x_offset_el,
2260 uint32_t total_y_offset_el,
2261 uint32_t *base_address_offset,
2262 uint32_t *x_offset_el,
2263 uint32_t *y_offset_el);
2264
2265 static inline void
2266 isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
2267 enum isl_format format,
2268 uint32_t row_pitch_B,
2269 uint32_t total_x_offset_sa,
2270 uint32_t total_y_offset_sa,
2271 uint32_t *base_address_offset,
2272 uint32_t *x_offset_sa,
2273 uint32_t *y_offset_sa)
2274 {
2275 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2276
2277 /* For computing the intratile offsets, we actually want a strange unit
2278 * which is samples for multisampled surfaces but elements for compressed
2279 * surfaces.
2280 */
2281 assert(total_x_offset_sa % fmtl->bw == 0);
2282 assert(total_y_offset_sa % fmtl->bh == 0);
2283 const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
2284 const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
2285
2286 isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch_B,
2287 total_x_offset, total_y_offset,
2288 base_address_offset,
2289 x_offset_sa, y_offset_sa);
2290 *x_offset_sa *= fmtl->bw;
2291 *y_offset_sa *= fmtl->bh;
2292 }
2293
2294 /**
2295 * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
2296 *
2297 * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
2298 * @pre surf->format must be a valid format for depth surfaces
2299 */
2300 uint32_t
2301 isl_surf_get_depth_format(const struct isl_device *dev,
2302 const struct isl_surf *surf);
2303
2304 /**
2305 * @brief performs a copy from linear to tiled surface
2306 *
2307 */
2308 void
2309 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
2310 uint32_t yt1, uint32_t yt2,
2311 char *dst, const char *src,
2312 uint32_t dst_pitch, int32_t src_pitch,
2313 bool has_swizzling,
2314 enum isl_tiling tiling,
2315 isl_memcpy_type copy_type);
2316
2317 /**
2318 * @brief performs a copy from tiled to linear surface
2319 *
2320 */
2321 void
2322 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
2323 uint32_t yt1, uint32_t yt2,
2324 char *dst, const char *src,
2325 int32_t dst_pitch, uint32_t src_pitch,
2326 bool has_swizzling,
2327 enum isl_tiling tiling,
2328 isl_memcpy_type copy_type);
2329
2330 #ifdef __cplusplus
2331 }
2332 #endif
2333
2334 #endif /* ISL_H */