563bcfb04d6f82097f3c3f83c3c08ea9f889e588
[mesa.git] / src / intel / isl / isl.h
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file
26 * @brief Intel Surface Layout
27 *
28 * Header Layout
29 * -------------
30 * The header is ordered as:
31 * - forward declarations
32 * - macros that may be overridden at compile-time for specific gens
33 * - enums and constants
34 * - structs and unions
35 * - functions
36 */
37
38 #ifndef ISL_H
39 #define ISL_H
40
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <stdint.h>
44
45 #include "c99_compat.h"
46 #include "util/macros.h"
47
48 #ifdef __cplusplus
49 extern "C" {
50 #endif
51
52 struct gen_device_info;
53 struct brw_image_param;
54
55 #ifndef ISL_DEV_GEN
56 /**
57 * @brief Get the hardware generation of isl_device.
58 *
59 * You can define this as a compile-time constant in the CFLAGS. For example,
60 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
61 */
62 #define ISL_DEV_GEN(__dev) ((__dev)->info->gen)
63 #define ISL_DEV_GEN_SANITIZE(__dev)
64 #else
65 #define ISL_DEV_GEN_SANITIZE(__dev) \
66 (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen))
67 #endif
68
69 #ifndef ISL_DEV_IS_G4X
70 #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
71 #endif
72
73 #ifndef ISL_DEV_IS_HASWELL
74 /**
75 * @brief Get the hardware generation of isl_device.
76 *
77 * You can define this as a compile-time constant in the CFLAGS. For example,
78 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
79 */
80 #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
81 #endif
82
83 #ifndef ISL_DEV_IS_BAYTRAIL
84 #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
85 #endif
86
87 #ifndef ISL_DEV_USE_SEPARATE_STENCIL
88 /**
89 * You can define this as a compile-time constant in the CFLAGS. For example,
90 * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
91 */
92 #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
93 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
94 #else
95 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
96 (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
97 #endif
98
99 /**
100 * Hardware enumeration SURFACE_FORMAT.
101 *
102 * For the official list, see Broadwell PRM: Volume 2b: Command Reference:
103 * Enumerations: SURFACE_FORMAT.
104 */
105 enum isl_format {
106 ISL_FORMAT_R32G32B32A32_FLOAT = 0,
107 ISL_FORMAT_R32G32B32A32_SINT = 1,
108 ISL_FORMAT_R32G32B32A32_UINT = 2,
109 ISL_FORMAT_R32G32B32A32_UNORM = 3,
110 ISL_FORMAT_R32G32B32A32_SNORM = 4,
111 ISL_FORMAT_R64G64_FLOAT = 5,
112 ISL_FORMAT_R32G32B32X32_FLOAT = 6,
113 ISL_FORMAT_R32G32B32A32_SSCALED = 7,
114 ISL_FORMAT_R32G32B32A32_USCALED = 8,
115 ISL_FORMAT_R32G32B32A32_SFIXED = 32,
116 ISL_FORMAT_R64G64_PASSTHRU = 33,
117 ISL_FORMAT_R32G32B32_FLOAT = 64,
118 ISL_FORMAT_R32G32B32_SINT = 65,
119 ISL_FORMAT_R32G32B32_UINT = 66,
120 ISL_FORMAT_R32G32B32_UNORM = 67,
121 ISL_FORMAT_R32G32B32_SNORM = 68,
122 ISL_FORMAT_R32G32B32_SSCALED = 69,
123 ISL_FORMAT_R32G32B32_USCALED = 70,
124 ISL_FORMAT_R32G32B32_SFIXED = 80,
125 ISL_FORMAT_R16G16B16A16_UNORM = 128,
126 ISL_FORMAT_R16G16B16A16_SNORM = 129,
127 ISL_FORMAT_R16G16B16A16_SINT = 130,
128 ISL_FORMAT_R16G16B16A16_UINT = 131,
129 ISL_FORMAT_R16G16B16A16_FLOAT = 132,
130 ISL_FORMAT_R32G32_FLOAT = 133,
131 ISL_FORMAT_R32G32_SINT = 134,
132 ISL_FORMAT_R32G32_UINT = 135,
133 ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
134 ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
135 ISL_FORMAT_L32A32_FLOAT = 138,
136 ISL_FORMAT_R32G32_UNORM = 139,
137 ISL_FORMAT_R32G32_SNORM = 140,
138 ISL_FORMAT_R64_FLOAT = 141,
139 ISL_FORMAT_R16G16B16X16_UNORM = 142,
140 ISL_FORMAT_R16G16B16X16_FLOAT = 143,
141 ISL_FORMAT_A32X32_FLOAT = 144,
142 ISL_FORMAT_L32X32_FLOAT = 145,
143 ISL_FORMAT_I32X32_FLOAT = 146,
144 ISL_FORMAT_R16G16B16A16_SSCALED = 147,
145 ISL_FORMAT_R16G16B16A16_USCALED = 148,
146 ISL_FORMAT_R32G32_SSCALED = 149,
147 ISL_FORMAT_R32G32_USCALED = 150,
148 ISL_FORMAT_R32G32_FLOAT_LD = 151,
149 ISL_FORMAT_R32G32_SFIXED = 160,
150 ISL_FORMAT_R64_PASSTHRU = 161,
151 ISL_FORMAT_B8G8R8A8_UNORM = 192,
152 ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
153 ISL_FORMAT_R10G10B10A2_UNORM = 194,
154 ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
155 ISL_FORMAT_R10G10B10A2_UINT = 196,
156 ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
157 ISL_FORMAT_R8G8B8A8_UNORM = 199,
158 ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
159 ISL_FORMAT_R8G8B8A8_SNORM = 201,
160 ISL_FORMAT_R8G8B8A8_SINT = 202,
161 ISL_FORMAT_R8G8B8A8_UINT = 203,
162 ISL_FORMAT_R16G16_UNORM = 204,
163 ISL_FORMAT_R16G16_SNORM = 205,
164 ISL_FORMAT_R16G16_SINT = 206,
165 ISL_FORMAT_R16G16_UINT = 207,
166 ISL_FORMAT_R16G16_FLOAT = 208,
167 ISL_FORMAT_B10G10R10A2_UNORM = 209,
168 ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
169 ISL_FORMAT_R11G11B10_FLOAT = 211,
170 ISL_FORMAT_R32_SINT = 214,
171 ISL_FORMAT_R32_UINT = 215,
172 ISL_FORMAT_R32_FLOAT = 216,
173 ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
174 ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
175 ISL_FORMAT_L32_UNORM = 221,
176 ISL_FORMAT_A32_UNORM = 222,
177 ISL_FORMAT_L16A16_UNORM = 223,
178 ISL_FORMAT_I24X8_UNORM = 224,
179 ISL_FORMAT_L24X8_UNORM = 225,
180 ISL_FORMAT_A24X8_UNORM = 226,
181 ISL_FORMAT_I32_FLOAT = 227,
182 ISL_FORMAT_L32_FLOAT = 228,
183 ISL_FORMAT_A32_FLOAT = 229,
184 ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
185 ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
186 ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
187 ISL_FORMAT_B8G8R8X8_UNORM = 233,
188 ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
189 ISL_FORMAT_R8G8B8X8_UNORM = 235,
190 ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
191 ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
192 ISL_FORMAT_B10G10R10X2_UNORM = 238,
193 ISL_FORMAT_L16A16_FLOAT = 240,
194 ISL_FORMAT_R32_UNORM = 241,
195 ISL_FORMAT_R32_SNORM = 242,
196 ISL_FORMAT_R10G10B10X2_USCALED = 243,
197 ISL_FORMAT_R8G8B8A8_SSCALED = 244,
198 ISL_FORMAT_R8G8B8A8_USCALED = 245,
199 ISL_FORMAT_R16G16_SSCALED = 246,
200 ISL_FORMAT_R16G16_USCALED = 247,
201 ISL_FORMAT_R32_SSCALED = 248,
202 ISL_FORMAT_R32_USCALED = 249,
203 ISL_FORMAT_B5G6R5_UNORM = 256,
204 ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
205 ISL_FORMAT_B5G5R5A1_UNORM = 258,
206 ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
207 ISL_FORMAT_B4G4R4A4_UNORM = 260,
208 ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
209 ISL_FORMAT_R8G8_UNORM = 262,
210 ISL_FORMAT_R8G8_SNORM = 263,
211 ISL_FORMAT_R8G8_SINT = 264,
212 ISL_FORMAT_R8G8_UINT = 265,
213 ISL_FORMAT_R16_UNORM = 266,
214 ISL_FORMAT_R16_SNORM = 267,
215 ISL_FORMAT_R16_SINT = 268,
216 ISL_FORMAT_R16_UINT = 269,
217 ISL_FORMAT_R16_FLOAT = 270,
218 ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
219 ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
220 ISL_FORMAT_I16_UNORM = 273,
221 ISL_FORMAT_L16_UNORM = 274,
222 ISL_FORMAT_A16_UNORM = 275,
223 ISL_FORMAT_L8A8_UNORM = 276,
224 ISL_FORMAT_I16_FLOAT = 277,
225 ISL_FORMAT_L16_FLOAT = 278,
226 ISL_FORMAT_A16_FLOAT = 279,
227 ISL_FORMAT_L8A8_UNORM_SRGB = 280,
228 ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
229 ISL_FORMAT_B5G5R5X1_UNORM = 282,
230 ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
231 ISL_FORMAT_R8G8_SSCALED = 284,
232 ISL_FORMAT_R8G8_USCALED = 285,
233 ISL_FORMAT_R16_SSCALED = 286,
234 ISL_FORMAT_R16_USCALED = 287,
235 ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
236 ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
237 ISL_FORMAT_A1B5G5R5_UNORM = 292,
238 ISL_FORMAT_A4B4G4R4_UNORM = 293,
239 ISL_FORMAT_L8A8_UINT = 294,
240 ISL_FORMAT_L8A8_SINT = 295,
241 ISL_FORMAT_R8_UNORM = 320,
242 ISL_FORMAT_R8_SNORM = 321,
243 ISL_FORMAT_R8_SINT = 322,
244 ISL_FORMAT_R8_UINT = 323,
245 ISL_FORMAT_A8_UNORM = 324,
246 ISL_FORMAT_I8_UNORM = 325,
247 ISL_FORMAT_L8_UNORM = 326,
248 ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
249 ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
250 ISL_FORMAT_R8_SSCALED = 329,
251 ISL_FORMAT_R8_USCALED = 330,
252 ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
253 ISL_FORMAT_L8_UNORM_SRGB = 332,
254 ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
255 ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
256 ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
257 ISL_FORMAT_Y8_UNORM = 336,
258 ISL_FORMAT_L8_UINT = 338,
259 ISL_FORMAT_L8_SINT = 339,
260 ISL_FORMAT_I8_UINT = 340,
261 ISL_FORMAT_I8_SINT = 341,
262 ISL_FORMAT_DXT1_RGB_SRGB = 384,
263 ISL_FORMAT_R1_UNORM = 385,
264 ISL_FORMAT_YCRCB_NORMAL = 386,
265 ISL_FORMAT_YCRCB_SWAPUVY = 387,
266 ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
267 ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
268 ISL_FORMAT_BC1_UNORM = 390,
269 ISL_FORMAT_BC2_UNORM = 391,
270 ISL_FORMAT_BC3_UNORM = 392,
271 ISL_FORMAT_BC4_UNORM = 393,
272 ISL_FORMAT_BC5_UNORM = 394,
273 ISL_FORMAT_BC1_UNORM_SRGB = 395,
274 ISL_FORMAT_BC2_UNORM_SRGB = 396,
275 ISL_FORMAT_BC3_UNORM_SRGB = 397,
276 ISL_FORMAT_MONO8 = 398,
277 ISL_FORMAT_YCRCB_SWAPUV = 399,
278 ISL_FORMAT_YCRCB_SWAPY = 400,
279 ISL_FORMAT_DXT1_RGB = 401,
280 ISL_FORMAT_FXT1 = 402,
281 ISL_FORMAT_R8G8B8_UNORM = 403,
282 ISL_FORMAT_R8G8B8_SNORM = 404,
283 ISL_FORMAT_R8G8B8_SSCALED = 405,
284 ISL_FORMAT_R8G8B8_USCALED = 406,
285 ISL_FORMAT_R64G64B64A64_FLOAT = 407,
286 ISL_FORMAT_R64G64B64_FLOAT = 408,
287 ISL_FORMAT_BC4_SNORM = 409,
288 ISL_FORMAT_BC5_SNORM = 410,
289 ISL_FORMAT_R16G16B16_FLOAT = 411,
290 ISL_FORMAT_R16G16B16_UNORM = 412,
291 ISL_FORMAT_R16G16B16_SNORM = 413,
292 ISL_FORMAT_R16G16B16_SSCALED = 414,
293 ISL_FORMAT_R16G16B16_USCALED = 415,
294 ISL_FORMAT_BC6H_SF16 = 417,
295 ISL_FORMAT_BC7_UNORM = 418,
296 ISL_FORMAT_BC7_UNORM_SRGB = 419,
297 ISL_FORMAT_BC6H_UF16 = 420,
298 ISL_FORMAT_PLANAR_420_8 = 421,
299 ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
300 ISL_FORMAT_ETC1_RGB8 = 425,
301 ISL_FORMAT_ETC2_RGB8 = 426,
302 ISL_FORMAT_EAC_R11 = 427,
303 ISL_FORMAT_EAC_RG11 = 428,
304 ISL_FORMAT_EAC_SIGNED_R11 = 429,
305 ISL_FORMAT_EAC_SIGNED_RG11 = 430,
306 ISL_FORMAT_ETC2_SRGB8 = 431,
307 ISL_FORMAT_R16G16B16_UINT = 432,
308 ISL_FORMAT_R16G16B16_SINT = 433,
309 ISL_FORMAT_R32_SFIXED = 434,
310 ISL_FORMAT_R10G10B10A2_SNORM = 435,
311 ISL_FORMAT_R10G10B10A2_USCALED = 436,
312 ISL_FORMAT_R10G10B10A2_SSCALED = 437,
313 ISL_FORMAT_R10G10B10A2_SINT = 438,
314 ISL_FORMAT_B10G10R10A2_SNORM = 439,
315 ISL_FORMAT_B10G10R10A2_USCALED = 440,
316 ISL_FORMAT_B10G10R10A2_SSCALED = 441,
317 ISL_FORMAT_B10G10R10A2_UINT = 442,
318 ISL_FORMAT_B10G10R10A2_SINT = 443,
319 ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
320 ISL_FORMAT_R64G64B64_PASSTHRU = 445,
321 ISL_FORMAT_ETC2_RGB8_PTA = 448,
322 ISL_FORMAT_ETC2_SRGB8_PTA = 449,
323 ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
324 ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
325 ISL_FORMAT_R8G8B8_UINT = 456,
326 ISL_FORMAT_R8G8B8_SINT = 457,
327 ISL_FORMAT_RAW = 511,
328 ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
329 ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
330 ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
331 ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
332 ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
333 ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
334 ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
335 ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
336 ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
337 ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
338 ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
339 ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
340 ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
341 ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
342 ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
343 ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
344 ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
345 ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
346 ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
347 ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
348 ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
349 ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
350 ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
351 ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
352 ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
353 ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
354 ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
355 ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
356 ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
357 ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
358 ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
359 ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
360 ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
361 ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
362 ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
363 ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
364 ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
365 ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
366 ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
367 ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
368 ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
369 ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
370
371 /* The formats that follow are internal to ISL and as such don't have an
372 * explicit number. We'll just let the C compiler assign it for us. Any
373 * actual hardware formats *must* come before these in the list.
374 */
375
376 /* Formats for auxiliary surfaces */
377 ISL_FORMAT_HIZ,
378 ISL_FORMAT_MCS_2X,
379 ISL_FORMAT_MCS_4X,
380 ISL_FORMAT_MCS_8X,
381 ISL_FORMAT_MCS_16X,
382 ISL_FORMAT_GEN7_CCS_32BPP_X,
383 ISL_FORMAT_GEN7_CCS_64BPP_X,
384 ISL_FORMAT_GEN7_CCS_128BPP_X,
385 ISL_FORMAT_GEN7_CCS_32BPP_Y,
386 ISL_FORMAT_GEN7_CCS_64BPP_Y,
387 ISL_FORMAT_GEN7_CCS_128BPP_Y,
388 ISL_FORMAT_GEN9_CCS_32BPP,
389 ISL_FORMAT_GEN9_CCS_64BPP,
390 ISL_FORMAT_GEN9_CCS_128BPP,
391
392 /* Hardware doesn't understand this out-of-band value */
393 ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
394 };
395
396 /**
397 * Numerical base type for channels of isl_format.
398 */
399 enum isl_base_type {
400 ISL_VOID,
401 ISL_RAW,
402 ISL_UNORM,
403 ISL_SNORM,
404 ISL_UFLOAT,
405 ISL_SFLOAT,
406 ISL_UFIXED,
407 ISL_SFIXED,
408 ISL_UINT,
409 ISL_SINT,
410 ISL_USCALED,
411 ISL_SSCALED,
412 };
413
414 /**
415 * Colorspace of isl_format.
416 */
417 enum isl_colorspace {
418 ISL_COLORSPACE_NONE = 0,
419 ISL_COLORSPACE_LINEAR,
420 ISL_COLORSPACE_SRGB,
421 ISL_COLORSPACE_YUV,
422 };
423
424 /**
425 * Texture compression mode of isl_format.
426 */
427 enum isl_txc {
428 ISL_TXC_NONE = 0,
429 ISL_TXC_DXT1,
430 ISL_TXC_DXT3,
431 ISL_TXC_DXT5,
432 ISL_TXC_FXT1,
433 ISL_TXC_RGTC1,
434 ISL_TXC_RGTC2,
435 ISL_TXC_BPTC,
436 ISL_TXC_ETC1,
437 ISL_TXC_ETC2,
438 ISL_TXC_ASTC,
439
440 /* Used for auxiliary surface formats */
441 ISL_TXC_HIZ,
442 ISL_TXC_MCS,
443 ISL_TXC_CCS,
444 };
445
446 /**
447 * @brief Hardware tile mode
448 *
449 * WARNING: These values differ from the hardware enum values, which are
450 * unstable across hardware generations.
451 *
452 * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
453 * clearly distinguish it from Yf and Ys.
454 */
455 enum isl_tiling {
456 ISL_TILING_LINEAR = 0,
457 ISL_TILING_W,
458 ISL_TILING_X,
459 ISL_TILING_Y0, /**< Legacy Y tiling */
460 ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
461 ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
462 ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
463 ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
464 };
465
466 /**
467 * @defgroup Tiling Flags
468 * @{
469 */
470 typedef uint32_t isl_tiling_flags_t;
471 #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
472 #define ISL_TILING_W_BIT (1u << ISL_TILING_W)
473 #define ISL_TILING_X_BIT (1u << ISL_TILING_X)
474 #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
475 #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
476 #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
477 #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
478 #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
479 #define ISL_TILING_ANY_MASK (~0u)
480 #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
481
482 /** Any Y tiling, including legacy Y tiling. */
483 #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
484 ISL_TILING_Yf_BIT | \
485 ISL_TILING_Ys_BIT)
486
487 /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
488 #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
489 ISL_TILING_Ys_BIT)
490 /** @} */
491
492 /**
493 * @brief Logical dimension of surface.
494 *
495 * Note: There is no dimension for cube map surfaces. ISL interprets cube maps
496 * as 2D array surfaces.
497 */
498 enum isl_surf_dim {
499 ISL_SURF_DIM_1D,
500 ISL_SURF_DIM_2D,
501 ISL_SURF_DIM_3D,
502 };
503
504 /**
505 * @brief Physical layout of the surface's dimensions.
506 */
507 enum isl_dim_layout {
508 /**
509 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
510 * 6.17.3: 2D Surfaces.
511 *
512 * On many gens, 1D surfaces share the same layout as 2D surfaces. From
513 * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
514 *
515 * One-dimensional surfaces are identical to 2D surfaces with height of
516 * one.
517 *
518 * @invariant isl_surf::phys_level0_sa::depth == 1
519 */
520 ISL_DIM_LAYOUT_GEN4_2D,
521
522 /**
523 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
524 * 6.17.5: 3D Surfaces.
525 *
526 * @invariant isl_surf::phys_level0_sa::array_len == 1
527 */
528 ISL_DIM_LAYOUT_GEN4_3D,
529
530 /**
531 * Special layout used for HiZ and stencil on Sandy Bridge to work around
532 * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
533 * work the same as on gen7+ except that they don't technically support
534 * mipmapping. That does not, however, stop us from doing it. As far as
535 * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
536 * single miplevel 2D (possibly array) image. The dimensions of that image
537 * are NOT minified.
538 *
539 * In order to implement HiZ and stencil on Sandy Bridge, we create one
540 * full-sized 2D (possibly array) image for every LOD with every image
541 * aligned to a page boundary. When the surface is used with the stencil
542 * or HiZ hardware, we manually offset to the image for the given LOD.
543 *
544 * As a memory saving measure, we pretend that the width of each miplevel
545 * is minified and we place LOD1 and above below LOD0 but horizontally
546 * adjacent to each other. When considered as full-sized images, LOD1 and
547 * above technically overlap. However, since we only write to part of that
548 * image, the hardware will never notice the overlap.
549 *
550 * This layout looks something like this:
551 *
552 * +---------+
553 * | |
554 * | |
555 * +---------+
556 * | |
557 * | |
558 * +---------+
559 *
560 * +----+ +-+ .
561 * | | +-+
562 * +----+
563 *
564 * +----+ +-+ .
565 * | | +-+
566 * +----+
567 */
568 ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
569
570 /**
571 * For details, see the Skylake BSpec >> Memory Views >> Common Surface
572 * Formats >> Surface Layout and Tiling >> » 1D Surfaces.
573 */
574 ISL_DIM_LAYOUT_GEN9_1D,
575 };
576
577 enum isl_aux_usage {
578 /** No Auxiliary surface is used */
579 ISL_AUX_USAGE_NONE,
580
581 /** The primary surface is a depth surface and the auxiliary surface is HiZ */
582 ISL_AUX_USAGE_HIZ,
583
584 /** The auxiliary surface is an MCS
585 *
586 * @invariant isl_surf::samples > 1
587 */
588 ISL_AUX_USAGE_MCS,
589
590 /** The auxiliary surface is a fast-clear-only compression surface
591 *
592 * @invariant isl_surf::samples == 1
593 */
594 ISL_AUX_USAGE_CCS_D,
595
596 /** The auxiliary surface provides full lossless color compression
597 *
598 * @invariant isl_surf::samples == 1
599 */
600 ISL_AUX_USAGE_CCS_E,
601 };
602
603 /**
604 * Enum for keeping track of the state an auxiliary compressed surface.
605 *
606 * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
607 * given slice (lod + array layer) can be in one of the six states described
608 * by this enum. Draw and resolve operations may cause the slice to change
609 * from one state to another. The six valid states are:
610 *
611 * 1) Clear: In this state, each block in the auxiliary surface contains a
612 * magic value that indicates that the block is in the clear state. If
613 * a block is in the clear state, it's values in the primary surface are
614 * ignored and the color of the samples in the block is taken either the
615 * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
616 * depth. Since neither the primary surface nor the auxiliary surface
617 * contains the clear value, the surface can be cleared to a different
618 * color by simply changing the clear color without modifying either
619 * surface.
620 *
621 * 2) Compressed w/ Clear: In this state, neither the auxiliary surface
622 * nor the primary surface has a complete representation of the data.
623 * Instead, both surfaces must be used together or else rendering
624 * corruption may occur. Depending on the auxiliary compression format
625 * and the data, any given block in the primary surface may contain all,
626 * some, or none of the data required to reconstruct the actual sample
627 * values. Blocks may also be in the clear state (see Clear) and have
628 * their value taken from outside the surface.
629 *
630 * 3) Compressed w/o Clear: This state is identical to the state above
631 * except that no blocks are in the clear state. In this state, all of
632 * the data required to reconstruct the final sample values is contained
633 * in the auxiliary and primary surface and the clear value is not
634 * considered.
635 *
636 * 4) Resolved: In this state, the primary surface contains 100% of the
637 * data. The auxiliary surface is also valid so the surface can be
638 * validly used with or without aux enabled. The auxiliary surface may,
639 * however, contain non-trivial data and any update to the primary
640 * surface with aux disabled will cause the two to get out of sync.
641 *
642 * 5) Pass-through: In this state, the primary surface contains 100% of the
643 * data and every block in the auxiliary surface contains a magic value
644 * which indicates that the auxiliary surface should be ignored and the
645 * only the primary surface should be considered. Updating the primary
646 * surface without aux works fine and can be done repeatedly in this
647 * mode. Writing to a surface in pass-through mode with aux enabled may
648 * cause the auxiliary buffer to contain non-trivial data and no longer
649 * be in the pass-through state.
650 *
651 * 5) Aux Invalid: In this state, the primary surface contains 100% of the
652 * data and the auxiliary surface is completely bogus. Any attempt to
653 * use the auxiliary surface is liable to result in rendering
654 * corruption. The only thing that one can do to re-enable aux once
655 * this state is reached is to use an ambiguate pass to transition into
656 * the pass-through state.
657 *
658 * Drawing with or without aux enabled may implicitly cause the surface to
659 * transition between these states. There are also four types of auxiliary
660 * compression operations which cause an explicit transition:
661 *
662 * 1) Fast Clear: This operation writes the magic "clear" value to the
663 * auxiliary surface. This operation will safely transition any slice
664 * of a surface from any state to the clear state so long as the entire
665 * slice is fast cleared at once.
666 *
667 * 2) Full Resolve: This operation combines the auxiliary surface data
668 * with the primary surface data and writes the result to the primary.
669 * For HiZ, the docs call this a depth resolve. For CCS, the hardware
670 * full resolve operation does both a full resolve and an ambiguate so
671 * it actually takes you all the way to the pass-through state.
672 *
673 * 3) Partial Resolve: This operation considers blocks which are in the
674 * "clear" state and writes the clear value directly into the primary or
675 * auxiliary surface. Once this operation completes, the surface is
676 * still compressed but no longer references the clear color. This
677 * operation is only available for CCS.
678 *
679 * 4) Ambiguate: This operation throws away the current auxiliary data and
680 * replaces it with the magic pass-through value. If an ambiguate
681 * operation is performed when the primary surface does not contain 100%
682 * of the data, data will be lost. This operation is only implemented
683 * in hardware for depth where it is called a HiZ resolve.
684 *
685 * Not all operations are valid or useful in all states. The diagram below
686 * contains a complete description of the states and all valid and useful
687 * transitions except clear.
688 *
689 * Draw w/ Aux
690 * +----------+
691 * | |
692 * | +-------------+ Draw w/ Aux +-------------+
693 * +------>| Compressed |<---------------------| Clear |
694 * | w/ Clear | | |
695 * +-------------+ +-------------+
696 * | | |
697 * Partial | | |
698 * Resolve | | Full Resolve |
699 * | +----------------------------+ | Full
700 * | | | Resolve
701 * Draw w/ aux | | |
702 * +----------+ | | |
703 * | | \|/ \|/ \|/
704 * | +-------------+ Full Resolve +-------------+
705 * +------>| Compressed |--------------------->| Resolved |
706 * | w/o Clear |<---------------------| |
707 * +-------------+ Draw w/ Aux +-------------+
708 * /|\ | |
709 * | Draw | | Draw
710 * | w/ Aux | | w/o Aux
711 * | Ambiguate | |
712 * | +----------------------------+ |
713 * Draw w/o Aux | | | Draw w/o Aux
714 * +----------+ | | | +----------+
715 * | | | \|/ \|/ | |
716 * | +-------------+ Ambiguate +-------------+ |
717 * +------>| Pass- |<---------------------| Aux |<------+
718 * | through | | Invalid |
719 * +-------------+ +-------------+
720 *
721 *
722 * While the above general theory applies to all forms of auxiliary
723 * compression on Intel hardware, not all states and operations are available
724 * on all compression types. However, each of the auxiliary states and
725 * operations can be fairly easily mapped onto the above diagram:
726 *
727 * HiZ: Hierarchical depth compression is capable of being in any of the
728 * states above. Hardware provides three HiZ operations: "Depth
729 * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
730 * Clear", "Full Resolve", and "Ambiguate" respectively. The
731 * hardware provides no HiZ partial resolve operation so the only way
732 * to get into the "Compressed w/o Clear" state is to render with HiZ
733 * when the surface is in the resolved or pass-through states.
734 *
735 * MCS: Multisample compression is technically capable of being in any of
736 * the states above except that most of them aren't useful. Both the
737 * render engine and the sampler support MCS compression and, apart
738 * from clear color, MCS is format-unaware so we leave the surface
739 * compressed 100% of the time. The hardware provides no MCS
740 * operations.
741 *
742 * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
743 * the simplest forms of compression since they don't do anything
744 * beyond clear color tracking. They really only support three of
745 * the six states: Clear, Compressed w/ Clear, and Pass-through. The
746 * only CCS_D operation is "Resolve" which maps to a full resolve
747 * followed by an ambiguate.
748 *
749 * CCS_E: Single-sample render target compression (also called CCS_E in ISL)
750 * is capable of being in almost all of the above states. THe only
751 * exception is that it does not have separate resolved and pass-
752 * through states. Instead, the CCS_E full resolve operation does
753 * both a resolve and an ambiguate so it goes directly into the
754 * pass-through state. CCS_E also provides fast clear and partial
755 * resolve operations which work as described above.
756 *
757 * While it is technically possible to perform a CCS_E ambiguate, it
758 * is not provided by Sky Lake hardware so we choose to avoid the aux
759 * invalid state. If the aux invalid state were determined to be
760 * useful, a CCS ambiguate could be done by carefully rendering to
761 * the CCS and filling it with zeros.
762 */
763 enum isl_aux_state {
764 ISL_AUX_STATE_CLEAR = 0,
765 ISL_AUX_STATE_COMPRESSED_CLEAR,
766 ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
767 ISL_AUX_STATE_RESOLVED,
768 ISL_AUX_STATE_PASS_THROUGH,
769 ISL_AUX_STATE_AUX_INVALID,
770 };
771
772 /* TODO(chadv): Explain */
773 enum isl_array_pitch_span {
774 ISL_ARRAY_PITCH_SPAN_FULL,
775 ISL_ARRAY_PITCH_SPAN_COMPACT,
776 };
777
778 /**
779 * @defgroup Surface Usage
780 * @{
781 */
782 typedef uint64_t isl_surf_usage_flags_t;
783 #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
784 #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
785 #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
786 #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
787 #define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
788 #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
789 #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
790 #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
791 #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
792 #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
793 #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
794 #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
795 #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
796 #define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
797 #define ISL_SURF_USAGE_MCS_BIT (1u << 14)
798 #define ISL_SURF_USAGE_CCS_BIT (1u << 15)
799 /** @} */
800
801 /**
802 * @defgroup Channel Mask
803 *
804 * These #define values are chosen to match the values of
805 * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
806 *
807 * @{
808 */
809 typedef uint8_t isl_channel_mask_t;
810 #define ISL_CHANNEL_BLUE_BIT (1 << 0)
811 #define ISL_CHANNEL_GREEN_BIT (1 << 1)
812 #define ISL_CHANNEL_RED_BIT (1 << 2)
813 #define ISL_CHANNEL_ALPHA_BIT (1 << 3)
814 /** @} */
815
816 /**
817 * @brief A channel select (also known as texture swizzle) value
818 */
819 enum isl_channel_select {
820 ISL_CHANNEL_SELECT_ZERO = 0,
821 ISL_CHANNEL_SELECT_ONE = 1,
822 ISL_CHANNEL_SELECT_RED = 4,
823 ISL_CHANNEL_SELECT_GREEN = 5,
824 ISL_CHANNEL_SELECT_BLUE = 6,
825 ISL_CHANNEL_SELECT_ALPHA = 7,
826 };
827
828 /**
829 * Identical to VkSampleCountFlagBits.
830 */
831 enum isl_sample_count {
832 ISL_SAMPLE_COUNT_1_BIT = 1u,
833 ISL_SAMPLE_COUNT_2_BIT = 2u,
834 ISL_SAMPLE_COUNT_4_BIT = 4u,
835 ISL_SAMPLE_COUNT_8_BIT = 8u,
836 ISL_SAMPLE_COUNT_16_BIT = 16u,
837 };
838 typedef uint32_t isl_sample_count_mask_t;
839
840 /**
841 * @brief Multisample Format
842 */
843 enum isl_msaa_layout {
844 /**
845 * @brief Suface is single-sampled.
846 */
847 ISL_MSAA_LAYOUT_NONE,
848
849 /**
850 * @brief [SNB+] Interleaved Multisample Format
851 *
852 * In this format, multiple samples are interleaved into each cacheline.
853 * In other words, the sample index is swizzled into the low 6 bits of the
854 * surface's virtual address space.
855 *
856 * For example, suppose the surface is legacy Y tiled, is 4x multisampled,
857 * and its pixel format is 32bpp. Then the first cacheline is arranged
858 * thus:
859 *
860 * (0,0,0) (0,1,0) (0,0,1) (1,0,1)
861 * (1,0,0) (1,1,0) (0,1,1) (1,1,1)
862 *
863 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
864 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
865 *
866 * The hardware docs refer to this format with multiple terms. In
867 * Sandybridge, this is the only multisample format; so no term is used.
868 * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
869 * Multisample Surface). Later hardware docs additionally refer to this
870 * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
871 * color surfaces).
872 *
873 * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
874 * Surface Behavior".
875 *
876 * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
877 * Multisampled Surfaces".
878 */
879 ISL_MSAA_LAYOUT_INTERLEAVED,
880
881 /**
882 * @brief [IVB+] Array Multisample Format
883 *
884 * In this format, the surface's physical layout resembles that of a
885 * 2D array surface.
886 *
887 * Suppose the multisample surface's logical extent is (w, h) and its
888 * sample count is N. Then surface's physical extent is the same as
889 * a singlesample 2D surface whose logical extent is (w, h) and array
890 * length is N. Array slice `i` contains the pixel values for sample
891 * index `i`.
892 *
893 * The Ivybridge docs refer to surfaces in this format as UMS
894 * (Uncompressed Multsample Layout) and CMS (Compressed Multisample
895 * Surface). The Broadwell docs additionally refer to this format as
896 * MSFMT_MSS (MSS=Multisample Surface Storage).
897 *
898 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
899 * Multisample Surfaces".
900 *
901 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
902 * Multisample Surfaces".
903 */
904 ISL_MSAA_LAYOUT_ARRAY,
905 };
906
907
908 struct isl_device {
909 const struct gen_device_info *info;
910 bool use_separate_stencil;
911 bool has_bit6_swizzling;
912
913 /**
914 * Describes the layout of a RENDER_SURFACE_STATE structure for the
915 * current gen.
916 */
917 struct {
918 uint8_t size;
919 uint8_t align;
920 uint8_t addr_offset;
921 uint8_t aux_addr_offset;
922 } ss;
923
924 /**
925 * Describes the layout of the depth/stencil/hiz commands as emitted by
926 * isl_emit_depth_stencil_hiz.
927 */
928 struct {
929 uint8_t size;
930 uint8_t depth_offset;
931 uint8_t stencil_offset;
932 uint8_t hiz_offset;
933 } ds;
934 };
935
936 struct isl_extent2d {
937 union { uint32_t w, width; };
938 union { uint32_t h, height; };
939 };
940
941 struct isl_extent3d {
942 union { uint32_t w, width; };
943 union { uint32_t h, height; };
944 union { uint32_t d, depth; };
945 };
946
947 struct isl_extent4d {
948 union { uint32_t w, width; };
949 union { uint32_t h, height; };
950 union { uint32_t d, depth; };
951 union { uint32_t a, array_len; };
952 };
953
954 struct isl_channel_layout {
955 enum isl_base_type type;
956 uint8_t bits; /**< Size in bits */
957 };
958
959 /**
960 * Each format has 3D block extent (width, height, depth). The block extent of
961 * compressed formats is that of the format's compression block. For example,
962 * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block
963 * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is
964 * is (w=1, h=1, d=1).
965 */
966 struct isl_format_layout {
967 enum isl_format format;
968 const char *name;
969
970 uint16_t bpb; /**< Bits per block */
971 uint8_t bw; /**< Block width, in pixels */
972 uint8_t bh; /**< Block height, in pixels */
973 uint8_t bd; /**< Block depth, in pixels */
974
975 struct {
976 struct isl_channel_layout r; /**< Red channel */
977 struct isl_channel_layout g; /**< Green channel */
978 struct isl_channel_layout b; /**< Blue channel */
979 struct isl_channel_layout a; /**< Alpha channel */
980 struct isl_channel_layout l; /**< Luminance channel */
981 struct isl_channel_layout i; /**< Intensity channel */
982 struct isl_channel_layout p; /**< Palette channel */
983 } channels;
984
985 enum isl_colorspace colorspace;
986 enum isl_txc txc;
987 };
988
989 struct isl_tile_info {
990 enum isl_tiling tiling;
991
992 /* The size (in bits per block) of a single surface element
993 *
994 * For surfaces with power-of-two formats, this is the same as
995 * isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
996 * The logical_extent_el field is in terms of elements of this size.
997 *
998 * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
999 * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
1000 * of the tiling formats can actually hold an integer number of 96-bit
1001 * surface elements so isl_tiling_get_info returns an isl_tile_info for a
1002 * 32-bit element size. It is the responsibility of the caller to
1003 * recognize that 32 != 96 ad adjust accordingly. For instance, to compute
1004 * the width of a surface in tiles, you would do:
1005 *
1006 * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
1007 * tile_info.logical_extent_el.width);
1008 */
1009 uint32_t format_bpb;
1010
1011 /** The logical size of the tile in units of format_bpb size elements
1012 *
1013 * This field determines how a given surface is cut up into tiles. It is
1014 * used to compute the size of a surface in tiles and can be used to
1015 * determine the location of the tile containing any given surface element.
1016 * The exact value of this field depends heavily on the bits-per-block of
1017 * the format being used.
1018 */
1019 struct isl_extent2d logical_extent_el;
1020
1021 /** The physical size of the tile in bytes and rows of bytes
1022 *
1023 * This field determines how the tiles of a surface are physically layed
1024 * out in memory. The logical and physical tile extent are frequently the
1025 * same but this is not always the case. For instance, a W-tile (which is
1026 * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
1027 * its physical size is 128B x 32rows, the same as a Y-tile.
1028 *
1029 * @see isl_surf::row_pitch
1030 */
1031 struct isl_extent2d phys_extent_B;
1032 };
1033
1034 /**
1035 * Metadata about a DRM format modifier.
1036 */
1037 struct isl_drm_modifier_info {
1038 uint64_t modifier;
1039
1040 /** Text name of the modifier */
1041 const char *name;
1042
1043 /** ISL tiling implied by this modifier */
1044 enum isl_tiling tiling;
1045
1046 /** ISL aux usage implied by this modifier */
1047 enum isl_aux_usage aux_usage;
1048
1049 /** Whether or not this modifier supports clear color */
1050 bool supports_clear_color;
1051 };
1052
1053 /**
1054 * @brief Input to surface initialization
1055 *
1056 * @invariant width >= 1
1057 * @invariant height >= 1
1058 * @invariant depth >= 1
1059 * @invariant levels >= 1
1060 * @invariant samples >= 1
1061 * @invariant array_len >= 1
1062 *
1063 * @invariant if 1D then height == 1 and depth == 1 and samples == 1
1064 * @invariant if 2D then depth == 1
1065 * @invariant if 3D then array_len == 1 and samples == 1
1066 */
1067 struct isl_surf_init_info {
1068 enum isl_surf_dim dim;
1069 enum isl_format format;
1070
1071 uint32_t width;
1072 uint32_t height;
1073 uint32_t depth;
1074 uint32_t levels;
1075 uint32_t array_len;
1076 uint32_t samples;
1077
1078 /** Lower bound for isl_surf::alignment, in bytes. */
1079 uint32_t min_alignment;
1080
1081 /**
1082 * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
1083 * will fail if this is misaligned or out of bounds.
1084 */
1085 uint32_t row_pitch;
1086
1087 isl_surf_usage_flags_t usage;
1088
1089 /** Flags that alter how ISL selects isl_surf::tiling. */
1090 isl_tiling_flags_t tiling_flags;
1091 };
1092
1093 struct isl_surf {
1094 enum isl_surf_dim dim;
1095 enum isl_dim_layout dim_layout;
1096 enum isl_msaa_layout msaa_layout;
1097 enum isl_tiling tiling;
1098 enum isl_format format;
1099
1100 /**
1101 * Alignment of the upper-left sample of each subimage, in units of surface
1102 * elements.
1103 */
1104 struct isl_extent3d image_alignment_el;
1105
1106 /**
1107 * Logical extent of the surface's base level, in units of pixels. This is
1108 * identical to the extent defined in isl_surf_init_info.
1109 */
1110 struct isl_extent4d logical_level0_px;
1111
1112 /**
1113 * Physical extent of the surface's base level, in units of physical
1114 * surface samples and aligned to the format's compression block.
1115 *
1116 * Consider isl_dim_layout as an operator that transforms a logical surface
1117 * layout to a physical surface layout. Then
1118 *
1119 * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
1120 * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
1121 */
1122 struct isl_extent4d phys_level0_sa;
1123
1124 uint32_t levels;
1125 uint32_t samples;
1126
1127 /** Total size of the surface, in bytes. */
1128 uint64_t size;
1129
1130 /** Required alignment for the surface's base address. */
1131 uint32_t alignment;
1132
1133 /**
1134 * The interpretation of this field depends on the value of
1135 * isl_tile_info::physical_extent_B. In particular, the width of the
1136 * surface in tiles is row_pitch / isl_tile_info::physical_extent_B.width
1137 * and the distance in bytes between vertically adjacent tiles in the image
1138 * is given by row_pitch * isl_tile_info::physical_extent_B.height.
1139 *
1140 * For linear images where isl_tile_info::physical_extent_B.height == 1,
1141 * this cleanly reduces to being the distance, in bytes, between vertically
1142 * adjacent surface elements.
1143 *
1144 * @see isl_tile_info::phys_extent_B;
1145 */
1146 uint32_t row_pitch;
1147
1148 /**
1149 * Pitch between physical array slices, in rows of surface elements.
1150 */
1151 uint32_t array_pitch_el_rows;
1152
1153 enum isl_array_pitch_span array_pitch_span;
1154
1155 /** Copy of isl_surf_init_info::usage. */
1156 isl_surf_usage_flags_t usage;
1157 };
1158
1159 struct isl_swizzle {
1160 enum isl_channel_select r:4;
1161 enum isl_channel_select g:4;
1162 enum isl_channel_select b:4;
1163 enum isl_channel_select a:4;
1164 };
1165
1166 #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
1167 .r = ISL_CHANNEL_SELECT_##R, \
1168 .g = ISL_CHANNEL_SELECT_##G, \
1169 .b = ISL_CHANNEL_SELECT_##B, \
1170 .a = ISL_CHANNEL_SELECT_##A, \
1171 })
1172
1173 #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
1174
1175 struct isl_view {
1176 /**
1177 * Indicates the usage of the particular view
1178 *
1179 * Normally, this is one bit. However, for a cube map texture, it
1180 * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
1181 */
1182 isl_surf_usage_flags_t usage;
1183
1184 /**
1185 * The format to use in the view
1186 *
1187 * This may differ from the format of the actual isl_surf but must have
1188 * the same block size.
1189 */
1190 enum isl_format format;
1191
1192 uint32_t base_level;
1193 uint32_t levels;
1194
1195 /**
1196 * Base array layer
1197 *
1198 * For cube maps, both base_array_layer and array_len should be
1199 * specified in terms of 2-D layers and must be a multiple of 6.
1200 *
1201 * 3-D textures are effectively treated as 2-D arrays when used as a
1202 * storage image or render target. If `usage` contains
1203 * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
1204 * base_array_layer and array_len are applied. If the surface is only used
1205 * for texturing, they are ignored.
1206 */
1207 uint32_t base_array_layer;
1208
1209 /**
1210 * Array Length
1211 *
1212 * Indicates the number of array elements starting at Base Array Layer.
1213 */
1214 uint32_t array_len;
1215
1216 struct isl_swizzle swizzle;
1217 };
1218
1219 union isl_color_value {
1220 float f32[4];
1221 uint32_t u32[4];
1222 int32_t i32[4];
1223 };
1224
1225 struct isl_surf_fill_state_info {
1226 const struct isl_surf *surf;
1227 const struct isl_view *view;
1228
1229 /**
1230 * The address of the surface in GPU memory.
1231 */
1232 uint64_t address;
1233
1234 /**
1235 * The Memory Object Control state for the filled surface state.
1236 *
1237 * The exact format of this value depends on hardware generation.
1238 */
1239 uint32_t mocs;
1240
1241 /**
1242 * The auxilary surface or NULL if no auxilary surface is to be used.
1243 */
1244 const struct isl_surf *aux_surf;
1245 enum isl_aux_usage aux_usage;
1246 uint64_t aux_address;
1247
1248 /**
1249 * The clear color for this surface
1250 *
1251 * Valid values depend on hardware generation.
1252 */
1253 union isl_color_value clear_color;
1254
1255 /**
1256 * Surface write disables for gen4-5
1257 */
1258 isl_channel_mask_t write_disables;
1259
1260 /* Intra-tile offset */
1261 uint16_t x_offset_sa, y_offset_sa;
1262 };
1263
1264 struct isl_buffer_fill_state_info {
1265 /**
1266 * The address of the surface in GPU memory.
1267 */
1268 uint64_t address;
1269
1270 /**
1271 * The size of the buffer
1272 */
1273 uint64_t size;
1274
1275 /**
1276 * The Memory Object Control state for the filled surface state.
1277 *
1278 * The exact format of this value depends on hardware generation.
1279 */
1280 uint32_t mocs;
1281
1282 /**
1283 * The format to use in the surface state
1284 *
1285 * This may differ from the format of the actual isl_surf but have the
1286 * same block size.
1287 */
1288 enum isl_format format;
1289
1290 uint32_t stride;
1291 };
1292
1293 struct isl_depth_stencil_hiz_emit_info {
1294 /**
1295 * The depth surface
1296 */
1297 const struct isl_surf *depth_surf;
1298
1299 /**
1300 * The stencil surface
1301 *
1302 * If separate stencil is not available, this must point to the same
1303 * isl_surf as depth_surf.
1304 */
1305 const struct isl_surf *stencil_surf;
1306
1307 /**
1308 * The view into the depth and stencil surfaces.
1309 *
1310 * This view applies to both surfaces simultaneously.
1311 */
1312 const struct isl_view *view;
1313
1314 /**
1315 * The address of the depth surface in GPU memory
1316 */
1317 uint64_t depth_address;
1318
1319 /**
1320 * The address of the stencil surface in GPU memory
1321 *
1322 * If separate stencil is not available, this must have the same value as
1323 * depth_address.
1324 */
1325 uint64_t stencil_address;
1326
1327 /**
1328 * The Memory Object Control state for depth and stencil buffers
1329 *
1330 * Both depth and stencil will get the same MOCS value. The exact format
1331 * of this value depends on hardware generation.
1332 */
1333 uint32_t mocs;
1334
1335 /**
1336 * The HiZ surface or NULL if HiZ is disabled.
1337 */
1338 const struct isl_surf *hiz_surf;
1339 enum isl_aux_usage hiz_usage;
1340 uint64_t hiz_address;
1341
1342 /**
1343 * The depth clear value
1344 */
1345 float depth_clear_value;
1346 };
1347
1348 extern const struct isl_format_layout isl_format_layouts[];
1349
1350 void
1351 isl_device_init(struct isl_device *dev,
1352 const struct gen_device_info *info,
1353 bool has_bit6_swizzling);
1354
1355 isl_sample_count_mask_t ATTRIBUTE_CONST
1356 isl_device_get_sample_counts(struct isl_device *dev);
1357
1358 static inline const struct isl_format_layout * ATTRIBUTE_CONST
1359 isl_format_get_layout(enum isl_format fmt)
1360 {
1361 return &isl_format_layouts[fmt];
1362 }
1363
1364 static inline const char * ATTRIBUTE_CONST
1365 isl_format_get_name(enum isl_format fmt)
1366 {
1367 return isl_format_layouts[fmt].name;
1368 }
1369
1370 bool isl_format_supports_rendering(const struct gen_device_info *devinfo,
1371 enum isl_format format);
1372 bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo,
1373 enum isl_format format);
1374 bool isl_format_supports_sampling(const struct gen_device_info *devinfo,
1375 enum isl_format format);
1376 bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
1377 enum isl_format format);
1378 bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
1379 enum isl_format format);
1380 bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
1381 enum isl_format format);
1382 bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
1383 enum isl_format format);
1384 bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
1385 enum isl_format format);
1386 bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
1387 enum isl_format format);
1388 bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
1389 enum isl_format format);
1390
1391 bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
1392 enum isl_format format1,
1393 enum isl_format format2);
1394
1395 bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1396 bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1397 bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1398 bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1399 bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1400 bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1401
1402 static inline bool
1403 isl_format_has_normalized_channel(enum isl_format fmt)
1404 {
1405 return isl_format_has_unorm_channel(fmt) ||
1406 isl_format_has_snorm_channel(fmt);
1407 }
1408
1409 static inline bool
1410 isl_format_has_float_channel(enum isl_format fmt)
1411 {
1412 return isl_format_has_ufloat_channel(fmt) ||
1413 isl_format_has_sfloat_channel(fmt);
1414 }
1415
1416 static inline bool
1417 isl_format_has_int_channel(enum isl_format fmt)
1418 {
1419 return isl_format_has_uint_channel(fmt) ||
1420 isl_format_has_sint_channel(fmt);
1421 }
1422
1423 unsigned isl_format_get_num_channels(enum isl_format fmt);
1424
1425 uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
1426
1427 static inline bool
1428 isl_format_is_compressed(enum isl_format fmt)
1429 {
1430 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1431
1432 return fmtl->txc != ISL_TXC_NONE;
1433 }
1434
1435 static inline bool
1436 isl_format_has_bc_compression(enum isl_format fmt)
1437 {
1438 switch (isl_format_get_layout(fmt)->txc) {
1439 case ISL_TXC_DXT1:
1440 case ISL_TXC_DXT3:
1441 case ISL_TXC_DXT5:
1442 return true;
1443 case ISL_TXC_NONE:
1444 case ISL_TXC_FXT1:
1445 case ISL_TXC_RGTC1:
1446 case ISL_TXC_RGTC2:
1447 case ISL_TXC_BPTC:
1448 case ISL_TXC_ETC1:
1449 case ISL_TXC_ETC2:
1450 case ISL_TXC_ASTC:
1451 return false;
1452
1453 case ISL_TXC_HIZ:
1454 case ISL_TXC_MCS:
1455 case ISL_TXC_CCS:
1456 unreachable("Should not be called on an aux surface");
1457 }
1458
1459 unreachable("bad texture compression mode");
1460 return false;
1461 }
1462
1463 static inline bool
1464 isl_format_is_yuv(enum isl_format fmt)
1465 {
1466 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1467
1468 return fmtl->colorspace == ISL_COLORSPACE_YUV;
1469 }
1470
1471 static inline bool
1472 isl_format_block_is_1x1x1(enum isl_format fmt)
1473 {
1474 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1475
1476 return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
1477 }
1478
1479 static inline bool
1480 isl_format_is_rgb(enum isl_format fmt)
1481 {
1482 return isl_format_layouts[fmt].channels.r.bits > 0 &&
1483 isl_format_layouts[fmt].channels.g.bits > 0 &&
1484 isl_format_layouts[fmt].channels.b.bits > 0 &&
1485 isl_format_layouts[fmt].channels.a.bits == 0;
1486 }
1487
1488 enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1489 enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
1490
1491 bool isl_is_storage_image_format(enum isl_format fmt);
1492
1493 enum isl_format
1494 isl_lower_storage_image_format(const struct gen_device_info *devinfo,
1495 enum isl_format fmt);
1496
1497 /* Returns true if this hardware supports typed load/store on a format with
1498 * the same size as the given format.
1499 */
1500 bool
1501 isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo,
1502 enum isl_format fmt);
1503
1504 static inline bool
1505 isl_tiling_is_any_y(enum isl_tiling tiling)
1506 {
1507 return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
1508 }
1509
1510 static inline bool
1511 isl_tiling_is_std_y(enum isl_tiling tiling)
1512 {
1513 return (1u << tiling) & ISL_TILING_STD_Y_MASK;
1514 }
1515
1516 const struct isl_drm_modifier_info * ATTRIBUTE_CONST
1517 isl_drm_modifier_get_info(uint64_t modifier);
1518
1519 struct isl_extent2d ATTRIBUTE_CONST
1520 isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
1521
1522 static inline bool
1523 isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
1524 {
1525 return usage & ISL_SURF_USAGE_DISPLAY_BIT;
1526 }
1527
1528 static inline bool
1529 isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
1530 {
1531 return usage & ISL_SURF_USAGE_DEPTH_BIT;
1532 }
1533
1534 static inline bool
1535 isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
1536 {
1537 return usage & ISL_SURF_USAGE_STENCIL_BIT;
1538 }
1539
1540 static inline bool
1541 isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
1542 {
1543 return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1544 (usage & ISL_SURF_USAGE_STENCIL_BIT);
1545 }
1546
1547 static inline bool
1548 isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
1549 {
1550 return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
1551 }
1552
1553 static inline bool
1554 isl_surf_info_is_z16(const struct isl_surf_init_info *info)
1555 {
1556 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1557 (info->format == ISL_FORMAT_R16_UNORM);
1558 }
1559
1560 static inline bool
1561 isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
1562 {
1563 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1564 (info->format == ISL_FORMAT_R32_FLOAT);
1565 }
1566
1567 static inline struct isl_extent2d
1568 isl_extent2d(uint32_t width, uint32_t height)
1569 {
1570 struct isl_extent2d e = { { 0 } };
1571
1572 e.width = width;
1573 e.height = height;
1574
1575 return e;
1576 }
1577
1578 static inline struct isl_extent3d
1579 isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
1580 {
1581 struct isl_extent3d e = { { 0 } };
1582
1583 e.width = width;
1584 e.height = height;
1585 e.depth = depth;
1586
1587 return e;
1588 }
1589
1590 static inline struct isl_extent4d
1591 isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
1592 uint32_t array_len)
1593 {
1594 struct isl_extent4d e = { { 0 } };
1595
1596 e.width = width;
1597 e.height = height;
1598 e.depth = depth;
1599 e.array_len = array_len;
1600
1601 return e;
1602 }
1603
1604 #define isl_surf_init(dev, surf, ...) \
1605 isl_surf_init_s((dev), (surf), \
1606 &(struct isl_surf_init_info) { __VA_ARGS__ });
1607
1608 bool
1609 isl_surf_init_s(const struct isl_device *dev,
1610 struct isl_surf *surf,
1611 const struct isl_surf_init_info *restrict info);
1612
1613 void
1614 isl_surf_get_tile_info(const struct isl_surf *surf,
1615 struct isl_tile_info *tile_info);
1616
1617 bool
1618 isl_surf_get_hiz_surf(const struct isl_device *dev,
1619 const struct isl_surf *surf,
1620 struct isl_surf *hiz_surf);
1621
1622 bool
1623 isl_surf_get_mcs_surf(const struct isl_device *dev,
1624 const struct isl_surf *surf,
1625 struct isl_surf *mcs_surf);
1626
1627 bool
1628 isl_surf_get_ccs_surf(const struct isl_device *dev,
1629 const struct isl_surf *surf,
1630 struct isl_surf *ccs_surf);
1631
1632 #define isl_surf_fill_state(dev, state, ...) \
1633 isl_surf_fill_state_s((dev), (state), \
1634 &(struct isl_surf_fill_state_info) { __VA_ARGS__ });
1635
1636 void
1637 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1638 const struct isl_surf_fill_state_info *restrict info);
1639
1640 #define isl_buffer_fill_state(dev, state, ...) \
1641 isl_buffer_fill_state_s((dev), (state), \
1642 &(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
1643
1644 void
1645 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1646 const struct isl_buffer_fill_state_info *restrict info);
1647
1648 #define isl_emit_depth_stencil_hiz(dev, batch, ...) \
1649 isl_emit_depth_stencil_hiz_s((dev), (batch), \
1650 &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
1651
1652 void
1653 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
1654 const struct isl_depth_stencil_hiz_emit_info *restrict info);
1655
1656 void
1657 isl_surf_fill_image_param(const struct isl_device *dev,
1658 struct brw_image_param *param,
1659 const struct isl_surf *surf,
1660 const struct isl_view *view);
1661
1662 void
1663 isl_buffer_fill_image_param(const struct isl_device *dev,
1664 struct brw_image_param *param,
1665 enum isl_format format,
1666 uint64_t size);
1667
1668 /**
1669 * Alignment of the upper-left sample of each subimage, in units of surface
1670 * elements.
1671 */
1672 static inline struct isl_extent3d
1673 isl_surf_get_image_alignment_el(const struct isl_surf *surf)
1674 {
1675 return surf->image_alignment_el;
1676 }
1677
1678 /**
1679 * Alignment of the upper-left sample of each subimage, in units of surface
1680 * samples.
1681 */
1682 static inline struct isl_extent3d
1683 isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
1684 {
1685 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1686
1687 return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
1688 fmtl->bh * surf->image_alignment_el.h,
1689 fmtl->bd * surf->image_alignment_el.d);
1690 }
1691
1692 /**
1693 * Pitch between vertically adjacent surface elements, in bytes.
1694 */
1695 static inline uint32_t
1696 isl_surf_get_row_pitch(const struct isl_surf *surf)
1697 {
1698 return surf->row_pitch;
1699 }
1700
1701 /**
1702 * Pitch between vertically adjacent surface elements, in units of surface elements.
1703 */
1704 static inline uint32_t
1705 isl_surf_get_row_pitch_el(const struct isl_surf *surf)
1706 {
1707 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1708
1709 assert(surf->row_pitch % (fmtl->bpb / 8) == 0);
1710 return surf->row_pitch / (fmtl->bpb / 8);
1711 }
1712
1713 /**
1714 * Pitch between physical array slices, in rows of surface elements.
1715 */
1716 static inline uint32_t
1717 isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
1718 {
1719 return surf->array_pitch_el_rows;
1720 }
1721
1722 /**
1723 * Pitch between physical array slices, in units of surface elements.
1724 */
1725 static inline uint32_t
1726 isl_surf_get_array_pitch_el(const struct isl_surf *surf)
1727 {
1728 return isl_surf_get_array_pitch_el_rows(surf) *
1729 isl_surf_get_row_pitch_el(surf);
1730 }
1731
1732 /**
1733 * Pitch between physical array slices, in rows of surface samples.
1734 */
1735 static inline uint32_t
1736 isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
1737 {
1738 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1739 return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
1740 }
1741
1742 /**
1743 * Pitch between physical array slices, in bytes.
1744 */
1745 static inline uint32_t
1746 isl_surf_get_array_pitch(const struct isl_surf *surf)
1747 {
1748 return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch;
1749 }
1750
1751 /**
1752 * Calculate the offset, in units of surface samples, to a subimage in the
1753 * surface.
1754 *
1755 * @invariant level < surface levels
1756 * @invariant logical_array_layer < logical array length of surface
1757 * @invariant logical_z_offset_px < logical depth of surface at level
1758 */
1759 void
1760 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
1761 uint32_t level,
1762 uint32_t logical_array_layer,
1763 uint32_t logical_z_offset_px,
1764 uint32_t *x_offset_sa,
1765 uint32_t *y_offset_sa);
1766
1767 /**
1768 * Calculate the offset, in units of surface elements, to a subimage in the
1769 * surface.
1770 *
1771 * @invariant level < surface levels
1772 * @invariant logical_array_layer < logical array length of surface
1773 * @invariant logical_z_offset_px < logical depth of surface at level
1774 */
1775 void
1776 isl_surf_get_image_offset_el(const struct isl_surf *surf,
1777 uint32_t level,
1778 uint32_t logical_array_layer,
1779 uint32_t logical_z_offset_px,
1780 uint32_t *x_offset_el,
1781 uint32_t *y_offset_el);
1782
1783 /**
1784 * Calculate the offset, in bytes and intratile surface samples, to a
1785 * subimage in the surface.
1786 *
1787 * This is equivalent to calling isl_surf_get_image_offset_el, passing the
1788 * result to isl_tiling_get_intratile_offset_el, and converting the tile
1789 * offsets to samples.
1790 *
1791 * @invariant level < surface levels
1792 * @invariant logical_array_layer < logical array length of surface
1793 * @invariant logical_z_offset_px < logical depth of surface at level
1794 */
1795 void
1796 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
1797 uint32_t level,
1798 uint32_t logical_array_layer,
1799 uint32_t logical_z_offset_px,
1800 uint32_t *offset_B,
1801 uint32_t *x_offset_sa,
1802 uint32_t *y_offset_sa);
1803
1804 /**
1805 * @brief Calculate the intratile offsets to a surface.
1806 *
1807 * In @a base_address_offset return the offset from the base of the surface to
1808 * the base address of the first tile of the subimage. In @a x_offset_B and
1809 * @a y_offset_rows, return the offset, in units of bytes and rows, from the
1810 * tile's base to the subimage's first surface element. The x and y offsets
1811 * are intratile offsets; that is, they do not exceed the boundary of the
1812 * surface's tiling format.
1813 */
1814 void
1815 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
1816 uint32_t bpb,
1817 uint32_t row_pitch,
1818 uint32_t total_x_offset_el,
1819 uint32_t total_y_offset_el,
1820 uint32_t *base_address_offset,
1821 uint32_t *x_offset_el,
1822 uint32_t *y_offset_el);
1823
1824 static inline void
1825 isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
1826 enum isl_format format,
1827 uint32_t row_pitch,
1828 uint32_t total_x_offset_sa,
1829 uint32_t total_y_offset_sa,
1830 uint32_t *base_address_offset,
1831 uint32_t *x_offset_sa,
1832 uint32_t *y_offset_sa)
1833 {
1834 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1835
1836 /* For computing the intratile offsets, we actually want a strange unit
1837 * which is samples for multisampled surfaces but elements for compressed
1838 * surfaces.
1839 */
1840 assert(total_x_offset_sa % fmtl->bw == 0);
1841 assert(total_y_offset_sa % fmtl->bh == 0);
1842 const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
1843 const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
1844
1845 isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch,
1846 total_x_offset, total_y_offset,
1847 base_address_offset,
1848 x_offset_sa, y_offset_sa);
1849 *x_offset_sa *= fmtl->bw;
1850 *y_offset_sa *= fmtl->bh;
1851 }
1852
1853 /**
1854 * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
1855 *
1856 * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
1857 * @pre surf->format must be a valid format for depth surfaces
1858 */
1859 uint32_t
1860 isl_surf_get_depth_format(const struct isl_device *dev,
1861 const struct isl_surf *surf);
1862
1863 #ifdef __cplusplus
1864 }
1865 #endif
1866
1867 #endif /* ISL_H */