intel/isl: Add a separate ISL_AUX_USAGE_STC_CCS
[mesa.git] / src / intel / isl / isl.h
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file
26 * @brief Intel Surface Layout
27 *
28 * Header Layout
29 * -------------
30 * The header is ordered as:
31 * - forward declarations
32 * - macros that may be overridden at compile-time for specific gens
33 * - enums and constants
34 * - structs and unions
35 * - functions
36 */
37
38 #ifndef ISL_H
39 #define ISL_H
40
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <stdint.h>
44
45 #include "c99_compat.h"
46 #include "util/macros.h"
47 #include "util/format/u_format.h"
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 struct gen_device_info;
54 struct brw_image_param;
55
56 #ifndef ISL_DEV_GEN
57 /**
58 * @brief Get the hardware generation of isl_device.
59 *
60 * You can define this as a compile-time constant in the CFLAGS. For example,
61 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
62 */
63 #define ISL_DEV_GEN(__dev) ((__dev)->info->gen)
64 #define ISL_DEV_GEN_SANITIZE(__dev)
65 #else
66 #define ISL_DEV_GEN_SANITIZE(__dev) \
67 (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen))
68 #endif
69
70 #ifndef ISL_DEV_IS_G4X
71 #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
72 #endif
73
74 #ifndef ISL_DEV_IS_HASWELL
75 /**
76 * @brief Get the hardware generation of isl_device.
77 *
78 * You can define this as a compile-time constant in the CFLAGS. For example,
79 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
80 */
81 #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
82 #endif
83
84 #ifndef ISL_DEV_IS_BAYTRAIL
85 #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
86 #endif
87
88 #ifndef ISL_DEV_USE_SEPARATE_STENCIL
89 /**
90 * You can define this as a compile-time constant in the CFLAGS. For example,
91 * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
92 */
93 #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
94 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
95 #else
96 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
97 (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
98 #endif
99
100 /**
101 * Hardware enumeration SURFACE_FORMAT.
102 *
103 * For the official list, see Broadwell PRM: Volume 2b: Command Reference:
104 * Enumerations: SURFACE_FORMAT.
105 */
106 enum isl_format {
107 ISL_FORMAT_R32G32B32A32_FLOAT = 0,
108 ISL_FORMAT_R32G32B32A32_SINT = 1,
109 ISL_FORMAT_R32G32B32A32_UINT = 2,
110 ISL_FORMAT_R32G32B32A32_UNORM = 3,
111 ISL_FORMAT_R32G32B32A32_SNORM = 4,
112 ISL_FORMAT_R64G64_FLOAT = 5,
113 ISL_FORMAT_R32G32B32X32_FLOAT = 6,
114 ISL_FORMAT_R32G32B32A32_SSCALED = 7,
115 ISL_FORMAT_R32G32B32A32_USCALED = 8,
116 ISL_FORMAT_R32G32B32A32_SFIXED = 32,
117 ISL_FORMAT_R64G64_PASSTHRU = 33,
118 ISL_FORMAT_R32G32B32_FLOAT = 64,
119 ISL_FORMAT_R32G32B32_SINT = 65,
120 ISL_FORMAT_R32G32B32_UINT = 66,
121 ISL_FORMAT_R32G32B32_UNORM = 67,
122 ISL_FORMAT_R32G32B32_SNORM = 68,
123 ISL_FORMAT_R32G32B32_SSCALED = 69,
124 ISL_FORMAT_R32G32B32_USCALED = 70,
125 ISL_FORMAT_R32G32B32_SFIXED = 80,
126 ISL_FORMAT_R16G16B16A16_UNORM = 128,
127 ISL_FORMAT_R16G16B16A16_SNORM = 129,
128 ISL_FORMAT_R16G16B16A16_SINT = 130,
129 ISL_FORMAT_R16G16B16A16_UINT = 131,
130 ISL_FORMAT_R16G16B16A16_FLOAT = 132,
131 ISL_FORMAT_R32G32_FLOAT = 133,
132 ISL_FORMAT_R32G32_SINT = 134,
133 ISL_FORMAT_R32G32_UINT = 135,
134 ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
135 ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
136 ISL_FORMAT_L32A32_FLOAT = 138,
137 ISL_FORMAT_R32G32_UNORM = 139,
138 ISL_FORMAT_R32G32_SNORM = 140,
139 ISL_FORMAT_R64_FLOAT = 141,
140 ISL_FORMAT_R16G16B16X16_UNORM = 142,
141 ISL_FORMAT_R16G16B16X16_FLOAT = 143,
142 ISL_FORMAT_A32X32_FLOAT = 144,
143 ISL_FORMAT_L32X32_FLOAT = 145,
144 ISL_FORMAT_I32X32_FLOAT = 146,
145 ISL_FORMAT_R16G16B16A16_SSCALED = 147,
146 ISL_FORMAT_R16G16B16A16_USCALED = 148,
147 ISL_FORMAT_R32G32_SSCALED = 149,
148 ISL_FORMAT_R32G32_USCALED = 150,
149 ISL_FORMAT_R32G32_FLOAT_LD = 151,
150 ISL_FORMAT_R32G32_SFIXED = 160,
151 ISL_FORMAT_R64_PASSTHRU = 161,
152 ISL_FORMAT_B8G8R8A8_UNORM = 192,
153 ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
154 ISL_FORMAT_R10G10B10A2_UNORM = 194,
155 ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
156 ISL_FORMAT_R10G10B10A2_UINT = 196,
157 ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
158 ISL_FORMAT_R8G8B8A8_UNORM = 199,
159 ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
160 ISL_FORMAT_R8G8B8A8_SNORM = 201,
161 ISL_FORMAT_R8G8B8A8_SINT = 202,
162 ISL_FORMAT_R8G8B8A8_UINT = 203,
163 ISL_FORMAT_R16G16_UNORM = 204,
164 ISL_FORMAT_R16G16_SNORM = 205,
165 ISL_FORMAT_R16G16_SINT = 206,
166 ISL_FORMAT_R16G16_UINT = 207,
167 ISL_FORMAT_R16G16_FLOAT = 208,
168 ISL_FORMAT_B10G10R10A2_UNORM = 209,
169 ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
170 ISL_FORMAT_R11G11B10_FLOAT = 211,
171 ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM = 213,
172 ISL_FORMAT_R32_SINT = 214,
173 ISL_FORMAT_R32_UINT = 215,
174 ISL_FORMAT_R32_FLOAT = 216,
175 ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
176 ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
177 ISL_FORMAT_L32_UNORM = 221,
178 ISL_FORMAT_A32_UNORM = 222,
179 ISL_FORMAT_L16A16_UNORM = 223,
180 ISL_FORMAT_I24X8_UNORM = 224,
181 ISL_FORMAT_L24X8_UNORM = 225,
182 ISL_FORMAT_A24X8_UNORM = 226,
183 ISL_FORMAT_I32_FLOAT = 227,
184 ISL_FORMAT_L32_FLOAT = 228,
185 ISL_FORMAT_A32_FLOAT = 229,
186 ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
187 ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
188 ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
189 ISL_FORMAT_B8G8R8X8_UNORM = 233,
190 ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
191 ISL_FORMAT_R8G8B8X8_UNORM = 235,
192 ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
193 ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
194 ISL_FORMAT_B10G10R10X2_UNORM = 238,
195 ISL_FORMAT_L16A16_FLOAT = 240,
196 ISL_FORMAT_R32_UNORM = 241,
197 ISL_FORMAT_R32_SNORM = 242,
198 ISL_FORMAT_R10G10B10X2_USCALED = 243,
199 ISL_FORMAT_R8G8B8A8_SSCALED = 244,
200 ISL_FORMAT_R8G8B8A8_USCALED = 245,
201 ISL_FORMAT_R16G16_SSCALED = 246,
202 ISL_FORMAT_R16G16_USCALED = 247,
203 ISL_FORMAT_R32_SSCALED = 248,
204 ISL_FORMAT_R32_USCALED = 249,
205 ISL_FORMAT_B5G6R5_UNORM = 256,
206 ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
207 ISL_FORMAT_B5G5R5A1_UNORM = 258,
208 ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
209 ISL_FORMAT_B4G4R4A4_UNORM = 260,
210 ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
211 ISL_FORMAT_R8G8_UNORM = 262,
212 ISL_FORMAT_R8G8_SNORM = 263,
213 ISL_FORMAT_R8G8_SINT = 264,
214 ISL_FORMAT_R8G8_UINT = 265,
215 ISL_FORMAT_R16_UNORM = 266,
216 ISL_FORMAT_R16_SNORM = 267,
217 ISL_FORMAT_R16_SINT = 268,
218 ISL_FORMAT_R16_UINT = 269,
219 ISL_FORMAT_R16_FLOAT = 270,
220 ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
221 ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
222 ISL_FORMAT_I16_UNORM = 273,
223 ISL_FORMAT_L16_UNORM = 274,
224 ISL_FORMAT_A16_UNORM = 275,
225 ISL_FORMAT_L8A8_UNORM = 276,
226 ISL_FORMAT_I16_FLOAT = 277,
227 ISL_FORMAT_L16_FLOAT = 278,
228 ISL_FORMAT_A16_FLOAT = 279,
229 ISL_FORMAT_L8A8_UNORM_SRGB = 280,
230 ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
231 ISL_FORMAT_B5G5R5X1_UNORM = 282,
232 ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
233 ISL_FORMAT_R8G8_SSCALED = 284,
234 ISL_FORMAT_R8G8_USCALED = 285,
235 ISL_FORMAT_R16_SSCALED = 286,
236 ISL_FORMAT_R16_USCALED = 287,
237 ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
238 ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
239 ISL_FORMAT_A1B5G5R5_UNORM = 292,
240 ISL_FORMAT_A4B4G4R4_UNORM = 293,
241 ISL_FORMAT_L8A8_UINT = 294,
242 ISL_FORMAT_L8A8_SINT = 295,
243 ISL_FORMAT_R8_UNORM = 320,
244 ISL_FORMAT_R8_SNORM = 321,
245 ISL_FORMAT_R8_SINT = 322,
246 ISL_FORMAT_R8_UINT = 323,
247 ISL_FORMAT_A8_UNORM = 324,
248 ISL_FORMAT_I8_UNORM = 325,
249 ISL_FORMAT_L8_UNORM = 326,
250 ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
251 ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
252 ISL_FORMAT_R8_SSCALED = 329,
253 ISL_FORMAT_R8_USCALED = 330,
254 ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
255 ISL_FORMAT_L8_UNORM_SRGB = 332,
256 ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
257 ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
258 ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
259 ISL_FORMAT_Y8_UNORM = 336,
260 ISL_FORMAT_L8_UINT = 338,
261 ISL_FORMAT_L8_SINT = 339,
262 ISL_FORMAT_I8_UINT = 340,
263 ISL_FORMAT_I8_SINT = 341,
264 ISL_FORMAT_DXT1_RGB_SRGB = 384,
265 ISL_FORMAT_R1_UNORM = 385,
266 ISL_FORMAT_YCRCB_NORMAL = 386,
267 ISL_FORMAT_YCRCB_SWAPUVY = 387,
268 ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
269 ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
270 ISL_FORMAT_BC1_UNORM = 390,
271 ISL_FORMAT_BC2_UNORM = 391,
272 ISL_FORMAT_BC3_UNORM = 392,
273 ISL_FORMAT_BC4_UNORM = 393,
274 ISL_FORMAT_BC5_UNORM = 394,
275 ISL_FORMAT_BC1_UNORM_SRGB = 395,
276 ISL_FORMAT_BC2_UNORM_SRGB = 396,
277 ISL_FORMAT_BC3_UNORM_SRGB = 397,
278 ISL_FORMAT_MONO8 = 398,
279 ISL_FORMAT_YCRCB_SWAPUV = 399,
280 ISL_FORMAT_YCRCB_SWAPY = 400,
281 ISL_FORMAT_DXT1_RGB = 401,
282 ISL_FORMAT_FXT1 = 402,
283 ISL_FORMAT_R8G8B8_UNORM = 403,
284 ISL_FORMAT_R8G8B8_SNORM = 404,
285 ISL_FORMAT_R8G8B8_SSCALED = 405,
286 ISL_FORMAT_R8G8B8_USCALED = 406,
287 ISL_FORMAT_R64G64B64A64_FLOAT = 407,
288 ISL_FORMAT_R64G64B64_FLOAT = 408,
289 ISL_FORMAT_BC4_SNORM = 409,
290 ISL_FORMAT_BC5_SNORM = 410,
291 ISL_FORMAT_R16G16B16_FLOAT = 411,
292 ISL_FORMAT_R16G16B16_UNORM = 412,
293 ISL_FORMAT_R16G16B16_SNORM = 413,
294 ISL_FORMAT_R16G16B16_SSCALED = 414,
295 ISL_FORMAT_R16G16B16_USCALED = 415,
296 ISL_FORMAT_BC6H_SF16 = 417,
297 ISL_FORMAT_BC7_UNORM = 418,
298 ISL_FORMAT_BC7_UNORM_SRGB = 419,
299 ISL_FORMAT_BC6H_UF16 = 420,
300 ISL_FORMAT_PLANAR_420_8 = 421,
301 ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
302 ISL_FORMAT_ETC1_RGB8 = 425,
303 ISL_FORMAT_ETC2_RGB8 = 426,
304 ISL_FORMAT_EAC_R11 = 427,
305 ISL_FORMAT_EAC_RG11 = 428,
306 ISL_FORMAT_EAC_SIGNED_R11 = 429,
307 ISL_FORMAT_EAC_SIGNED_RG11 = 430,
308 ISL_FORMAT_ETC2_SRGB8 = 431,
309 ISL_FORMAT_R16G16B16_UINT = 432,
310 ISL_FORMAT_R16G16B16_SINT = 433,
311 ISL_FORMAT_R32_SFIXED = 434,
312 ISL_FORMAT_R10G10B10A2_SNORM = 435,
313 ISL_FORMAT_R10G10B10A2_USCALED = 436,
314 ISL_FORMAT_R10G10B10A2_SSCALED = 437,
315 ISL_FORMAT_R10G10B10A2_SINT = 438,
316 ISL_FORMAT_B10G10R10A2_SNORM = 439,
317 ISL_FORMAT_B10G10R10A2_USCALED = 440,
318 ISL_FORMAT_B10G10R10A2_SSCALED = 441,
319 ISL_FORMAT_B10G10R10A2_UINT = 442,
320 ISL_FORMAT_B10G10R10A2_SINT = 443,
321 ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
322 ISL_FORMAT_R64G64B64_PASSTHRU = 445,
323 ISL_FORMAT_ETC2_RGB8_PTA = 448,
324 ISL_FORMAT_ETC2_SRGB8_PTA = 449,
325 ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
326 ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
327 ISL_FORMAT_R8G8B8_UINT = 456,
328 ISL_FORMAT_R8G8B8_SINT = 457,
329 ISL_FORMAT_RAW = 511,
330 ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
331 ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
332 ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
333 ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
334 ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
335 ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
336 ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
337 ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
338 ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
339 ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
340 ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
341 ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
342 ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
343 ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
344 ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
345 ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
346 ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
347 ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
348 ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
349 ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
350 ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
351 ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
352 ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
353 ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
354 ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
355 ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
356 ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
357 ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
358 ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
359 ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
360 ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
361 ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
362 ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
363 ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
364 ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
365 ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
366 ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
367 ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
368 ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
369 ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
370 ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
371 ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
372
373 /* The formats that follow are internal to ISL and as such don't have an
374 * explicit number. We'll just let the C compiler assign it for us. Any
375 * actual hardware formats *must* come before these in the list.
376 */
377
378 /* Formats for auxiliary surfaces */
379 ISL_FORMAT_HIZ,
380 ISL_FORMAT_MCS_2X,
381 ISL_FORMAT_MCS_4X,
382 ISL_FORMAT_MCS_8X,
383 ISL_FORMAT_MCS_16X,
384 ISL_FORMAT_GEN7_CCS_32BPP_X,
385 ISL_FORMAT_GEN7_CCS_64BPP_X,
386 ISL_FORMAT_GEN7_CCS_128BPP_X,
387 ISL_FORMAT_GEN7_CCS_32BPP_Y,
388 ISL_FORMAT_GEN7_CCS_64BPP_Y,
389 ISL_FORMAT_GEN7_CCS_128BPP_Y,
390 ISL_FORMAT_GEN9_CCS_32BPP,
391 ISL_FORMAT_GEN9_CCS_64BPP,
392 ISL_FORMAT_GEN9_CCS_128BPP,
393 ISL_FORMAT_GEN12_CCS_8BPP_Y0,
394 ISL_FORMAT_GEN12_CCS_16BPP_Y0,
395 ISL_FORMAT_GEN12_CCS_32BPP_Y0,
396 ISL_FORMAT_GEN12_CCS_64BPP_Y0,
397 ISL_FORMAT_GEN12_CCS_128BPP_Y0,
398
399 /* An upper bound on the supported format enumerations */
400 ISL_NUM_FORMATS,
401
402 /* Hardware doesn't understand this out-of-band value */
403 ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
404 };
405
406 /**
407 * Numerical base type for channels of isl_format.
408 */
409 enum isl_base_type {
410 ISL_VOID,
411 ISL_RAW,
412 ISL_UNORM,
413 ISL_SNORM,
414 ISL_UFLOAT,
415 ISL_SFLOAT,
416 ISL_UFIXED,
417 ISL_SFIXED,
418 ISL_UINT,
419 ISL_SINT,
420 ISL_USCALED,
421 ISL_SSCALED,
422 };
423
424 /**
425 * Colorspace of isl_format.
426 */
427 enum isl_colorspace {
428 ISL_COLORSPACE_NONE = 0,
429 ISL_COLORSPACE_LINEAR,
430 ISL_COLORSPACE_SRGB,
431 ISL_COLORSPACE_YUV,
432 };
433
434 /**
435 * Texture compression mode of isl_format.
436 */
437 enum isl_txc {
438 ISL_TXC_NONE = 0,
439 ISL_TXC_DXT1,
440 ISL_TXC_DXT3,
441 ISL_TXC_DXT5,
442 ISL_TXC_FXT1,
443 ISL_TXC_RGTC1,
444 ISL_TXC_RGTC2,
445 ISL_TXC_BPTC,
446 ISL_TXC_ETC1,
447 ISL_TXC_ETC2,
448 ISL_TXC_ASTC,
449
450 /* Used for auxiliary surface formats */
451 ISL_TXC_HIZ,
452 ISL_TXC_MCS,
453 ISL_TXC_CCS,
454 };
455
456 /**
457 * @brief Hardware tile mode
458 *
459 * WARNING: These values differ from the hardware enum values, which are
460 * unstable across hardware generations.
461 *
462 * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
463 * clearly distinguish it from Yf and Ys.
464 */
465 enum isl_tiling {
466 ISL_TILING_LINEAR = 0,
467 ISL_TILING_W,
468 ISL_TILING_X,
469 ISL_TILING_Y0, /**< Legacy Y tiling */
470 ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
471 ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
472 ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
473 ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
474 ISL_TILING_GEN12_CCS, /**< Tiling format for Gen12 CCS surfaces */
475 };
476
477 /**
478 * @defgroup Tiling Flags
479 * @{
480 */
481 typedef uint32_t isl_tiling_flags_t;
482 #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
483 #define ISL_TILING_W_BIT (1u << ISL_TILING_W)
484 #define ISL_TILING_X_BIT (1u << ISL_TILING_X)
485 #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
486 #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
487 #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
488 #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
489 #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
490 #define ISL_TILING_GEN12_CCS_BIT (1u << ISL_TILING_GEN12_CCS)
491 #define ISL_TILING_ANY_MASK (~0u)
492 #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
493
494 /** Any Y tiling, including legacy Y tiling. */
495 #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
496 ISL_TILING_Yf_BIT | \
497 ISL_TILING_Ys_BIT)
498
499 /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
500 #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
501 ISL_TILING_Ys_BIT)
502 /** @} */
503
504 /**
505 * @brief Logical dimension of surface.
506 *
507 * Note: There is no dimension for cube map surfaces. ISL interprets cube maps
508 * as 2D array surfaces.
509 */
510 enum isl_surf_dim {
511 ISL_SURF_DIM_1D,
512 ISL_SURF_DIM_2D,
513 ISL_SURF_DIM_3D,
514 };
515
516 /**
517 * @brief Physical layout of the surface's dimensions.
518 */
519 enum isl_dim_layout {
520 /**
521 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
522 * 6.17.3: 2D Surfaces.
523 *
524 * On many gens, 1D surfaces share the same layout as 2D surfaces. From
525 * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
526 *
527 * One-dimensional surfaces are identical to 2D surfaces with height of
528 * one.
529 *
530 * @invariant isl_surf::phys_level0_sa::depth == 1
531 */
532 ISL_DIM_LAYOUT_GEN4_2D,
533
534 /**
535 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
536 * 6.17.5: 3D Surfaces.
537 *
538 * @invariant isl_surf::phys_level0_sa::array_len == 1
539 */
540 ISL_DIM_LAYOUT_GEN4_3D,
541
542 /**
543 * Special layout used for HiZ and stencil on Sandy Bridge to work around
544 * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
545 * work the same as on gen7+ except that they don't technically support
546 * mipmapping. That does not, however, stop us from doing it. As far as
547 * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
548 * single miplevel 2D (possibly array) image. The dimensions of that image
549 * are NOT minified.
550 *
551 * In order to implement HiZ and stencil on Sandy Bridge, we create one
552 * full-sized 2D (possibly array) image for every LOD with every image
553 * aligned to a page boundary. When the surface is used with the stencil
554 * or HiZ hardware, we manually offset to the image for the given LOD.
555 *
556 * As a memory saving measure, we pretend that the width of each miplevel
557 * is minified and we place LOD1 and above below LOD0 but horizontally
558 * adjacent to each other. When considered as full-sized images, LOD1 and
559 * above technically overlap. However, since we only write to part of that
560 * image, the hardware will never notice the overlap.
561 *
562 * This layout looks something like this:
563 *
564 * +---------+
565 * | |
566 * | |
567 * +---------+
568 * | |
569 * | |
570 * +---------+
571 *
572 * +----+ +-+ .
573 * | | +-+
574 * +----+
575 *
576 * +----+ +-+ .
577 * | | +-+
578 * +----+
579 */
580 ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
581
582 /**
583 * For details, see the Skylake BSpec >> Memory Views >> Common Surface
584 * Formats >> Surface Layout and Tiling >> » 1D Surfaces.
585 */
586 ISL_DIM_LAYOUT_GEN9_1D,
587 };
588
589 enum isl_aux_usage {
590 /** No Auxiliary surface is used */
591 ISL_AUX_USAGE_NONE,
592
593 /** The primary surface is a depth surface and the auxiliary surface is HiZ */
594 ISL_AUX_USAGE_HIZ,
595
596 /** The auxiliary surface is an MCS
597 *
598 * @invariant isl_surf::samples > 1
599 */
600 ISL_AUX_USAGE_MCS,
601
602 /** The auxiliary surface is a fast-clear-only compression surface
603 *
604 * @invariant isl_surf::samples == 1
605 */
606 ISL_AUX_USAGE_CCS_D,
607
608 /** The auxiliary surface provides full lossless color compression
609 *
610 * @invariant isl_surf::samples == 1
611 */
612 ISL_AUX_USAGE_CCS_E,
613
614 /** The auxiliary surface provides full lossless media color compression
615 *
616 * @invariant isl_surf::samples == 1
617 */
618 ISL_AUX_USAGE_MC,
619
620 /** The auxiliary surface is a HiZ surface operating in write-through mode
621 * and CCS is also enabled
622 *
623 * In this mode, the HiZ and CCS surfaces act as a single fused compression
624 * surface where resolves and ambiguates operate on both surfaces at the
625 * same time. In this mode, the HiZ surface operates in write-through
626 * mode where it is only used for accelerating depth testing and not for
627 * actual compression. The CCS-compressed surface contains valid data at
628 * all times.
629 *
630 * @invariant isl_surf::samples == 1
631 */
632 ISL_AUX_USAGE_HIZ_CCS_WT,
633
634 /** The auxiliary surface is a HiZ surface with and CCS is also enabled
635 *
636 * In this mode, the HiZ and CCS surfaces act as a single fused compression
637 * surface where resolves and ambiguates operate on both surfaces at the
638 * same time. In this mode, full HiZ compression is enabled and the
639 * CCS-compressed main surface may not contain valid data. The only way to
640 * read the surface outside of the depth hardware is to do a full resolve
641 * which resolves both HiZ and CCS so the surface is in the pass-through
642 * state.
643 */
644 ISL_AUX_USAGE_HIZ_CCS,
645
646 /** The auxiliary surface is an MCS and CCS is also enabled
647 *
648 * @invariant isl_surf::samples > 1
649 */
650 ISL_AUX_USAGE_MCS_CCS,
651
652 /** CCS auxiliary data is used to compress a stencil buffer
653 *
654 * @invariant isl_surf::samples == 1
655 */
656 ISL_AUX_USAGE_STC_CCS,
657 };
658
659 /**
660 * Enum for keeping track of the state an auxiliary compressed surface.
661 *
662 * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
663 * given slice (lod + array layer) can be in one of the six states described
664 * by this enum. Draw and resolve operations may cause the slice to change
665 * from one state to another. The six valid states are:
666 *
667 * 1) Clear: In this state, each block in the auxiliary surface contains a
668 * magic value that indicates that the block is in the clear state. If
669 * a block is in the clear state, it's values in the primary surface are
670 * ignored and the color of the samples in the block is taken either the
671 * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
672 * depth. Since neither the primary surface nor the auxiliary surface
673 * contains the clear value, the surface can be cleared to a different
674 * color by simply changing the clear color without modifying either
675 * surface.
676 *
677 * 2) Partial Clear: In this state, each block in the auxiliary surface
678 * contains either the magic clear or pass-through value. See Clear and
679 * Pass-through for more details.
680 *
681 * 3) Compressed w/ Clear: In this state, neither the auxiliary surface
682 * nor the primary surface has a complete representation of the data.
683 * Instead, both surfaces must be used together or else rendering
684 * corruption may occur. Depending on the auxiliary compression format
685 * and the data, any given block in the primary surface may contain all,
686 * some, or none of the data required to reconstruct the actual sample
687 * values. Blocks may also be in the clear state (see Clear) and have
688 * their value taken from outside the surface.
689 *
690 * 4) Compressed w/o Clear: This state is identical to the state above
691 * except that no blocks are in the clear state. In this state, all of
692 * the data required to reconstruct the final sample values is contained
693 * in the auxiliary and primary surface and the clear value is not
694 * considered.
695 *
696 * 5) Resolved: In this state, the primary surface contains 100% of the
697 * data. The auxiliary surface is also valid so the surface can be
698 * validly used with or without aux enabled. The auxiliary surface may,
699 * however, contain non-trivial data and any update to the primary
700 * surface with aux disabled will cause the two to get out of sync.
701 *
702 * 6) Pass-through: In this state, the primary surface contains 100% of the
703 * data and every block in the auxiliary surface contains a magic value
704 * which indicates that the auxiliary surface should be ignored and the
705 * only the primary surface should be considered. Updating the primary
706 * surface without aux works fine and can be done repeatedly in this
707 * mode. Writing to a surface in pass-through mode with aux enabled may
708 * cause the auxiliary buffer to contain non-trivial data and no longer
709 * be in the pass-through state.
710 *
711 * 7) Aux Invalid: In this state, the primary surface contains 100% of the
712 * data and the auxiliary surface is completely bogus. Any attempt to
713 * use the auxiliary surface is liable to result in rendering
714 * corruption. The only thing that one can do to re-enable aux once
715 * this state is reached is to use an ambiguate pass to transition into
716 * the pass-through state.
717 *
718 * Drawing with or without aux enabled may implicitly cause the surface to
719 * transition between these states. There are also four types of auxiliary
720 * compression operations which cause an explicit transition which are
721 * described by the isl_aux_op enum below.
722 *
723 * Not all operations are valid or useful in all states. The diagram below
724 * contains a complete description of the states and all valid and useful
725 * transitions except clear.
726 *
727 * Draw w/ Aux
728 * +----------+
729 * | |
730 * | +-------------+ Draw w/ Aux +-------------+
731 * +------>| Compressed |<-------------------| Clear |
732 * | w/ Clear |----->----+ | |
733 * +-------------+ | +-------------+
734 * | /|\ | | |
735 * | | | | |
736 * | | +------<-----+ | Draw w/
737 * | | | | Clear Only
738 * | | Full | | +----------+
739 * Partial | | Resolve | \|/ | |
740 * Resolve | | | +-------------+ |
741 * | | | | Partial |<------+
742 * | | | | Clear |<----------+
743 * | | | +-------------+ |
744 * | | | | |
745 * | | +------>---------+ Full |
746 * | | | Resolve |
747 * Draw w/ aux | | Partial Fast Clear | |
748 * +----------+ | +--------------------------+ | |
749 * | | \|/ | \|/ |
750 * | +-------------+ Full Resolve +-------------+ |
751 * +------>| Compressed |------------------->| Resolved | |
752 * | w/o Clear |<-------------------| | |
753 * +-------------+ Draw w/ Aux +-------------+ |
754 * /|\ | | |
755 * | Draw | | Draw |
756 * | w/ Aux | | w/o Aux |
757 * | Ambiguate | | |
758 * | +--------------------------+ | |
759 * Draw w/o Aux | | | Draw w/o Aux |
760 * +----------+ | | | +----------+ |
761 * | | | \|/ \|/ | | |
762 * | +-------------+ Ambiguate +-------------+ | |
763 * +------>| Pass- |<-------------------| Aux |<------+ |
764 * +------>| through | | Invalid | |
765 * | +-------------+ +-------------+ |
766 * | | | |
767 * +----------+ +-----------------------------------------------------+
768 * Draw w/ Partial Fast Clear
769 * Clear Only
770 *
771 *
772 * While the above general theory applies to all forms of auxiliary
773 * compression on Intel hardware, not all states and operations are available
774 * on all compression types. However, each of the auxiliary states and
775 * operations can be fairly easily mapped onto the above diagram:
776 *
777 * HiZ: Hierarchical depth compression is capable of being in any of the
778 * states above. Hardware provides three HiZ operations: "Depth
779 * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
780 * Clear", "Full Resolve", and "Ambiguate" respectively. The
781 * hardware provides no HiZ partial resolve operation so the only way
782 * to get into the "Compressed w/o Clear" state is to render with HiZ
783 * when the surface is in the resolved or pass-through states.
784 *
785 * MCS: Multisample compression is technically capable of being in any of
786 * the states above except that most of them aren't useful. Both the
787 * render engine and the sampler support MCS compression and, apart
788 * from clear color, MCS is format-unaware so we leave the surface
789 * compressed 100% of the time. The hardware provides no MCS
790 * operations.
791 *
792 * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
793 * the simplest forms of compression since they don't do anything
794 * beyond clear color tracking. They really only support three of
795 * the six states: Clear, Partial Clear, and Pass-through. The
796 * only CCS_D operation is "Resolve" which maps to a full resolve
797 * followed by an ambiguate.
798 *
799 * CCS_E: Single-sample render target compression (also called CCS_E in ISL)
800 * is capable of being in almost all of the above states. THe only
801 * exception is that it does not have separate resolved and pass-
802 * through states. Instead, the CCS_E full resolve operation does
803 * both a resolve and an ambiguate so it goes directly into the
804 * pass-through state. CCS_E also provides fast clear and partial
805 * resolve operations which work as described above.
806 *
807 * While it is technically possible to perform a CCS_E ambiguate, it
808 * is not provided by Sky Lake hardware so we choose to avoid the aux
809 * invalid state. If the aux invalid state were determined to be
810 * useful, a CCS ambiguate could be done by carefully rendering to
811 * the CCS and filling it with zeros.
812 */
813 enum isl_aux_state {
814 ISL_AUX_STATE_CLEAR = 0,
815 ISL_AUX_STATE_PARTIAL_CLEAR,
816 ISL_AUX_STATE_COMPRESSED_CLEAR,
817 ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
818 ISL_AUX_STATE_RESOLVED,
819 ISL_AUX_STATE_PASS_THROUGH,
820 ISL_AUX_STATE_AUX_INVALID,
821 };
822
823 /**
824 * Enum which describes explicit aux transition operations.
825 */
826 enum isl_aux_op {
827 ISL_AUX_OP_NONE,
828
829 /** Fast Clear
830 *
831 * This operation writes the magic "clear" value to the auxiliary surface.
832 * This operation will safely transition any slice of a surface from any
833 * state to the clear state so long as the entire slice is fast cleared at
834 * once. A fast clear that only covers part of a slice of a surface is
835 * called a partial fast clear.
836 */
837 ISL_AUX_OP_FAST_CLEAR,
838
839 /** Full Resolve
840 *
841 * This operation combines the auxiliary surface data with the primary
842 * surface data and writes the result to the primary. For HiZ, the docs
843 * call this a depth resolve. For CCS, the hardware full resolve operation
844 * does both a full resolve and an ambiguate so it actually takes you all
845 * the way to the pass-through state.
846 */
847 ISL_AUX_OP_FULL_RESOLVE,
848
849 /** Partial Resolve
850 *
851 * This operation considers blocks which are in the "clear" state and
852 * writes the clear value directly into the primary or auxiliary surface.
853 * Once this operation completes, the surface is still compressed but no
854 * longer references the clear color. This operation is only available
855 * for CCS_E.
856 */
857 ISL_AUX_OP_PARTIAL_RESOLVE,
858
859 /** Ambiguate
860 *
861 * This operation throws away the current auxiliary data and replaces it
862 * with the magic pass-through value. If an ambiguate operation is
863 * performed when the primary surface does not contain 100% of the data,
864 * data will be lost. This operation is only implemented in hardware for
865 * depth where it is called a HiZ resolve.
866 */
867 ISL_AUX_OP_AMBIGUATE,
868 };
869
870 /* TODO(chadv): Explain */
871 enum isl_array_pitch_span {
872 ISL_ARRAY_PITCH_SPAN_FULL,
873 ISL_ARRAY_PITCH_SPAN_COMPACT,
874 };
875
876 /**
877 * @defgroup Surface Usage
878 * @{
879 */
880 typedef uint64_t isl_surf_usage_flags_t;
881 #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
882 #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
883 #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
884 #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
885 #define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
886 #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
887 #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
888 #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
889 #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
890 #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
891 #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
892 #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
893 #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
894 #define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
895 #define ISL_SURF_USAGE_MCS_BIT (1u << 14)
896 #define ISL_SURF_USAGE_CCS_BIT (1u << 15)
897 /** @} */
898
899 /**
900 * @defgroup Channel Mask
901 *
902 * These #define values are chosen to match the values of
903 * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
904 *
905 * @{
906 */
907 typedef uint8_t isl_channel_mask_t;
908 #define ISL_CHANNEL_BLUE_BIT (1 << 0)
909 #define ISL_CHANNEL_GREEN_BIT (1 << 1)
910 #define ISL_CHANNEL_RED_BIT (1 << 2)
911 #define ISL_CHANNEL_ALPHA_BIT (1 << 3)
912 /** @} */
913
914 /**
915 * @brief A channel select (also known as texture swizzle) value
916 */
917 enum PACKED isl_channel_select {
918 ISL_CHANNEL_SELECT_ZERO = 0,
919 ISL_CHANNEL_SELECT_ONE = 1,
920 ISL_CHANNEL_SELECT_RED = 4,
921 ISL_CHANNEL_SELECT_GREEN = 5,
922 ISL_CHANNEL_SELECT_BLUE = 6,
923 ISL_CHANNEL_SELECT_ALPHA = 7,
924 };
925
926 /**
927 * Identical to VkSampleCountFlagBits.
928 */
929 enum isl_sample_count {
930 ISL_SAMPLE_COUNT_1_BIT = 1u,
931 ISL_SAMPLE_COUNT_2_BIT = 2u,
932 ISL_SAMPLE_COUNT_4_BIT = 4u,
933 ISL_SAMPLE_COUNT_8_BIT = 8u,
934 ISL_SAMPLE_COUNT_16_BIT = 16u,
935 };
936 typedef uint32_t isl_sample_count_mask_t;
937
938 /**
939 * @brief Multisample Format
940 */
941 enum isl_msaa_layout {
942 /**
943 * @brief Suface is single-sampled.
944 */
945 ISL_MSAA_LAYOUT_NONE,
946
947 /**
948 * @brief [SNB+] Interleaved Multisample Format
949 *
950 * In this format, multiple samples are interleaved into each cacheline.
951 * In other words, the sample index is swizzled into the low 6 bits of the
952 * surface's virtual address space.
953 *
954 * For example, suppose the surface is legacy Y tiled, is 4x multisampled,
955 * and its pixel format is 32bpp. Then the first cacheline is arranged
956 * thus:
957 *
958 * (0,0,0) (0,1,0) (0,0,1) (1,0,1)
959 * (1,0,0) (1,1,0) (0,1,1) (1,1,1)
960 *
961 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
962 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
963 *
964 * The hardware docs refer to this format with multiple terms. In
965 * Sandybridge, this is the only multisample format; so no term is used.
966 * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
967 * Multisample Surface). Later hardware docs additionally refer to this
968 * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
969 * color surfaces).
970 *
971 * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
972 * Surface Behavior".
973 *
974 * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
975 * Multisampled Surfaces".
976 */
977 ISL_MSAA_LAYOUT_INTERLEAVED,
978
979 /**
980 * @brief [IVB+] Array Multisample Format
981 *
982 * In this format, the surface's physical layout resembles that of a
983 * 2D array surface.
984 *
985 * Suppose the multisample surface's logical extent is (w, h) and its
986 * sample count is N. Then surface's physical extent is the same as
987 * a singlesample 2D surface whose logical extent is (w, h) and array
988 * length is N. Array slice `i` contains the pixel values for sample
989 * index `i`.
990 *
991 * The Ivybridge docs refer to surfaces in this format as UMS
992 * (Uncompressed Multsample Layout) and CMS (Compressed Multisample
993 * Surface). The Broadwell docs additionally refer to this format as
994 * MSFMT_MSS (MSS=Multisample Surface Storage).
995 *
996 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
997 * Multisample Surfaces".
998 *
999 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
1000 * Multisample Surfaces".
1001 */
1002 ISL_MSAA_LAYOUT_ARRAY,
1003 };
1004
1005 typedef enum {
1006 ISL_MEMCPY = 0,
1007 ISL_MEMCPY_BGRA8,
1008 ISL_MEMCPY_STREAMING_LOAD,
1009 ISL_MEMCPY_INVALID,
1010 } isl_memcpy_type;
1011
1012 struct isl_device {
1013 const struct gen_device_info *info;
1014 bool use_separate_stencil;
1015 bool has_bit6_swizzling;
1016
1017 /**
1018 * Describes the layout of a RENDER_SURFACE_STATE structure for the
1019 * current gen.
1020 */
1021 struct {
1022 uint8_t size;
1023 uint8_t align;
1024 uint8_t addr_offset;
1025 uint8_t aux_addr_offset;
1026
1027 /* Rounded up to the nearest dword to simplify GPU memcpy operations. */
1028
1029 /* size of the state buffer used to store the clear color + extra
1030 * additional space used by the hardware */
1031 uint8_t clear_color_state_size;
1032 uint8_t clear_color_state_offset;
1033 /* size of the clear color itself - used to copy it to/from a BO */
1034 uint8_t clear_value_size;
1035 uint8_t clear_value_offset;
1036 } ss;
1037
1038 /**
1039 * Describes the layout of the depth/stencil/hiz commands as emitted by
1040 * isl_emit_depth_stencil_hiz.
1041 */
1042 struct {
1043 uint8_t size;
1044 uint8_t depth_offset;
1045 uint8_t stencil_offset;
1046 uint8_t hiz_offset;
1047 } ds;
1048
1049 struct {
1050 uint32_t internal;
1051 uint32_t external;
1052 } mocs;
1053 };
1054
1055 struct isl_extent2d {
1056 union { uint32_t w, width; };
1057 union { uint32_t h, height; };
1058 };
1059
1060 struct isl_extent3d {
1061 union { uint32_t w, width; };
1062 union { uint32_t h, height; };
1063 union { uint32_t d, depth; };
1064 };
1065
1066 struct isl_extent4d {
1067 union { uint32_t w, width; };
1068 union { uint32_t h, height; };
1069 union { uint32_t d, depth; };
1070 union { uint32_t a, array_len; };
1071 };
1072
1073 struct isl_channel_layout {
1074 enum isl_base_type type;
1075 uint8_t start_bit; /**< Bit at which this channel starts */
1076 uint8_t bits; /**< Size in bits */
1077 };
1078
1079 /**
1080 * Each format has 3D block extent (width, height, depth). The block extent of
1081 * compressed formats is that of the format's compression block. For example,
1082 * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block
1083 * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is
1084 * is (w=1, h=1, d=1).
1085 */
1086 struct isl_format_layout {
1087 enum isl_format format;
1088 const char *name;
1089
1090 uint16_t bpb; /**< Bits per block */
1091 uint8_t bw; /**< Block width, in pixels */
1092 uint8_t bh; /**< Block height, in pixels */
1093 uint8_t bd; /**< Block depth, in pixels */
1094
1095 union {
1096 struct {
1097 struct isl_channel_layout r; /**< Red channel */
1098 struct isl_channel_layout g; /**< Green channel */
1099 struct isl_channel_layout b; /**< Blue channel */
1100 struct isl_channel_layout a; /**< Alpha channel */
1101 struct isl_channel_layout l; /**< Luminance channel */
1102 struct isl_channel_layout i; /**< Intensity channel */
1103 struct isl_channel_layout p; /**< Palette channel */
1104 } channels;
1105 struct isl_channel_layout channels_array[7];
1106 };
1107
1108 enum isl_colorspace colorspace;
1109 enum isl_txc txc;
1110 };
1111
1112 struct isl_tile_info {
1113 enum isl_tiling tiling;
1114
1115 /* The size (in bits per block) of a single surface element
1116 *
1117 * For surfaces with power-of-two formats, this is the same as
1118 * isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
1119 * The logical_extent_el field is in terms of elements of this size.
1120 *
1121 * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
1122 * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
1123 * of the tiling formats can actually hold an integer number of 96-bit
1124 * surface elements so isl_tiling_get_info returns an isl_tile_info for a
1125 * 32-bit element size. It is the responsibility of the caller to
1126 * recognize that 32 != 96 ad adjust accordingly. For instance, to compute
1127 * the width of a surface in tiles, you would do:
1128 *
1129 * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
1130 * tile_info.logical_extent_el.width);
1131 */
1132 uint32_t format_bpb;
1133
1134 /** The logical size of the tile in units of format_bpb size elements
1135 *
1136 * This field determines how a given surface is cut up into tiles. It is
1137 * used to compute the size of a surface in tiles and can be used to
1138 * determine the location of the tile containing any given surface element.
1139 * The exact value of this field depends heavily on the bits-per-block of
1140 * the format being used.
1141 */
1142 struct isl_extent2d logical_extent_el;
1143
1144 /** The physical size of the tile in bytes and rows of bytes
1145 *
1146 * This field determines how the tiles of a surface are physically layed
1147 * out in memory. The logical and physical tile extent are frequently the
1148 * same but this is not always the case. For instance, a W-tile (which is
1149 * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
1150 * its physical size is 128B x 32rows, the same as a Y-tile.
1151 *
1152 * @see isl_surf::row_pitch_B
1153 */
1154 struct isl_extent2d phys_extent_B;
1155 };
1156
1157 /**
1158 * Metadata about a DRM format modifier.
1159 */
1160 struct isl_drm_modifier_info {
1161 uint64_t modifier;
1162
1163 /** Text name of the modifier */
1164 const char *name;
1165
1166 /** ISL tiling implied by this modifier */
1167 enum isl_tiling tiling;
1168
1169 /** ISL aux usage implied by this modifier */
1170 enum isl_aux_usage aux_usage;
1171
1172 /** Whether or not this modifier supports clear color */
1173 bool supports_clear_color;
1174 };
1175
1176 /**
1177 * @brief Input to surface initialization
1178 *
1179 * @invariant width >= 1
1180 * @invariant height >= 1
1181 * @invariant depth >= 1
1182 * @invariant levels >= 1
1183 * @invariant samples >= 1
1184 * @invariant array_len >= 1
1185 *
1186 * @invariant if 1D then height == 1 and depth == 1 and samples == 1
1187 * @invariant if 2D then depth == 1
1188 * @invariant if 3D then array_len == 1 and samples == 1
1189 */
1190 struct isl_surf_init_info {
1191 enum isl_surf_dim dim;
1192 enum isl_format format;
1193
1194 uint32_t width;
1195 uint32_t height;
1196 uint32_t depth;
1197 uint32_t levels;
1198 uint32_t array_len;
1199 uint32_t samples;
1200
1201 /** Lower bound for isl_surf::alignment, in bytes. */
1202 uint32_t min_alignment_B;
1203
1204 /**
1205 * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
1206 * will fail if this is misaligned or out of bounds.
1207 */
1208 uint32_t row_pitch_B;
1209
1210 isl_surf_usage_flags_t usage;
1211
1212 /** Flags that alter how ISL selects isl_surf::tiling. */
1213 isl_tiling_flags_t tiling_flags;
1214 };
1215
1216 struct isl_surf {
1217 enum isl_surf_dim dim;
1218 enum isl_dim_layout dim_layout;
1219 enum isl_msaa_layout msaa_layout;
1220 enum isl_tiling tiling;
1221 enum isl_format format;
1222
1223 /**
1224 * Alignment of the upper-left sample of each subimage, in units of surface
1225 * elements.
1226 */
1227 struct isl_extent3d image_alignment_el;
1228
1229 /**
1230 * Logical extent of the surface's base level, in units of pixels. This is
1231 * identical to the extent defined in isl_surf_init_info.
1232 */
1233 struct isl_extent4d logical_level0_px;
1234
1235 /**
1236 * Physical extent of the surface's base level, in units of physical
1237 * surface samples.
1238 *
1239 * Consider isl_dim_layout as an operator that transforms a logical surface
1240 * layout to a physical surface layout. Then
1241 *
1242 * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
1243 * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
1244 */
1245 struct isl_extent4d phys_level0_sa;
1246
1247 uint32_t levels;
1248 uint32_t samples;
1249
1250 /** Total size of the surface, in bytes. */
1251 uint64_t size_B;
1252
1253 /** Required alignment for the surface's base address. */
1254 uint32_t alignment_B;
1255
1256 /**
1257 * The interpretation of this field depends on the value of
1258 * isl_tile_info::physical_extent_B. In particular, the width of the
1259 * surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
1260 * and the distance in bytes between vertically adjacent tiles in the image
1261 * is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
1262 *
1263 * For linear images where isl_tile_info::physical_extent_B.height == 1,
1264 * this cleanly reduces to being the distance, in bytes, between vertically
1265 * adjacent surface elements.
1266 *
1267 * @see isl_tile_info::phys_extent_B;
1268 */
1269 uint32_t row_pitch_B;
1270
1271 /**
1272 * Pitch between physical array slices, in rows of surface elements.
1273 */
1274 uint32_t array_pitch_el_rows;
1275
1276 enum isl_array_pitch_span array_pitch_span;
1277
1278 /** Copy of isl_surf_init_info::usage. */
1279 isl_surf_usage_flags_t usage;
1280 };
1281
1282 struct isl_swizzle {
1283 enum isl_channel_select r:4;
1284 enum isl_channel_select g:4;
1285 enum isl_channel_select b:4;
1286 enum isl_channel_select a:4;
1287 };
1288
1289 #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
1290 .r = ISL_CHANNEL_SELECT_##R, \
1291 .g = ISL_CHANNEL_SELECT_##G, \
1292 .b = ISL_CHANNEL_SELECT_##B, \
1293 .a = ISL_CHANNEL_SELECT_##A, \
1294 })
1295
1296 #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
1297
1298 struct isl_view {
1299 /**
1300 * Indicates the usage of the particular view
1301 *
1302 * Normally, this is one bit. However, for a cube map texture, it
1303 * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
1304 */
1305 isl_surf_usage_flags_t usage;
1306
1307 /**
1308 * The format to use in the view
1309 *
1310 * This may differ from the format of the actual isl_surf but must have
1311 * the same block size.
1312 */
1313 enum isl_format format;
1314
1315 uint32_t base_level;
1316 uint32_t levels;
1317
1318 /**
1319 * Base array layer
1320 *
1321 * For cube maps, both base_array_layer and array_len should be
1322 * specified in terms of 2-D layers and must be a multiple of 6.
1323 *
1324 * 3-D textures are effectively treated as 2-D arrays when used as a
1325 * storage image or render target. If `usage` contains
1326 * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
1327 * base_array_layer and array_len are applied. If the surface is only used
1328 * for texturing, they are ignored.
1329 */
1330 uint32_t base_array_layer;
1331
1332 /**
1333 * Array Length
1334 *
1335 * Indicates the number of array elements starting at Base Array Layer.
1336 */
1337 uint32_t array_len;
1338
1339 struct isl_swizzle swizzle;
1340 };
1341
1342 union isl_color_value {
1343 float f32[4];
1344 uint32_t u32[4];
1345 int32_t i32[4];
1346 };
1347
1348 struct isl_surf_fill_state_info {
1349 const struct isl_surf *surf;
1350 const struct isl_view *view;
1351
1352 /**
1353 * The address of the surface in GPU memory.
1354 */
1355 uint64_t address;
1356
1357 /**
1358 * The Memory Object Control state for the filled surface state.
1359 *
1360 * The exact format of this value depends on hardware generation.
1361 */
1362 uint32_t mocs;
1363
1364 /**
1365 * The auxilary surface or NULL if no auxilary surface is to be used.
1366 */
1367 const struct isl_surf *aux_surf;
1368 enum isl_aux_usage aux_usage;
1369 uint64_t aux_address;
1370
1371 /**
1372 * The clear color for this surface
1373 *
1374 * Valid values depend on hardware generation.
1375 */
1376 union isl_color_value clear_color;
1377
1378 /**
1379 * Send only the clear value address
1380 *
1381 * If set, we only pass the clear address to the GPU and it will fetch it
1382 * from wherever it is.
1383 */
1384 bool use_clear_address;
1385 uint64_t clear_address;
1386
1387 /**
1388 * Surface write disables for gen4-5
1389 */
1390 isl_channel_mask_t write_disables;
1391
1392 /* Intra-tile offset */
1393 uint16_t x_offset_sa, y_offset_sa;
1394 };
1395
1396 struct isl_buffer_fill_state_info {
1397 /**
1398 * The address of the surface in GPU memory.
1399 */
1400 uint64_t address;
1401
1402 /**
1403 * The size of the buffer
1404 */
1405 uint64_t size_B;
1406
1407 /**
1408 * The Memory Object Control state for the filled surface state.
1409 *
1410 * The exact format of this value depends on hardware generation.
1411 */
1412 uint32_t mocs;
1413
1414 /**
1415 * The format to use in the surface state
1416 *
1417 * This may differ from the format of the actual isl_surf but have the
1418 * same block size.
1419 */
1420 enum isl_format format;
1421
1422 /**
1423 * The swizzle to use in the surface state
1424 */
1425 struct isl_swizzle swizzle;
1426
1427 uint32_t stride_B;
1428 };
1429
1430 struct isl_depth_stencil_hiz_emit_info {
1431 /**
1432 * The depth surface
1433 */
1434 const struct isl_surf *depth_surf;
1435
1436 /**
1437 * The stencil surface
1438 *
1439 * If separate stencil is not available, this must point to the same
1440 * isl_surf as depth_surf.
1441 */
1442 const struct isl_surf *stencil_surf;
1443
1444 /**
1445 * The view into the depth and stencil surfaces.
1446 *
1447 * This view applies to both surfaces simultaneously.
1448 */
1449 const struct isl_view *view;
1450
1451 /**
1452 * The address of the depth surface in GPU memory
1453 */
1454 uint64_t depth_address;
1455
1456 /**
1457 * The address of the stencil surface in GPU memory
1458 *
1459 * If separate stencil is not available, this must have the same value as
1460 * depth_address.
1461 */
1462 uint64_t stencil_address;
1463
1464 /**
1465 * The Memory Object Control state for depth and stencil buffers
1466 *
1467 * Both depth and stencil will get the same MOCS value. The exact format
1468 * of this value depends on hardware generation.
1469 */
1470 uint32_t mocs;
1471
1472 /**
1473 * The HiZ surface or NULL if HiZ is disabled.
1474 */
1475 const struct isl_surf *hiz_surf;
1476 enum isl_aux_usage hiz_usage;
1477 uint64_t hiz_address;
1478
1479 /**
1480 * The depth clear value
1481 */
1482 float depth_clear_value;
1483
1484 /**
1485 * Track stencil aux usage for Gen >= 12
1486 */
1487 enum isl_aux_usage stencil_aux_usage;
1488 };
1489
1490 extern const struct isl_format_layout isl_format_layouts[];
1491
1492 void
1493 isl_device_init(struct isl_device *dev,
1494 const struct gen_device_info *info,
1495 bool has_bit6_swizzling);
1496
1497 isl_sample_count_mask_t ATTRIBUTE_CONST
1498 isl_device_get_sample_counts(struct isl_device *dev);
1499
1500 static inline const struct isl_format_layout * ATTRIBUTE_CONST
1501 isl_format_get_layout(enum isl_format fmt)
1502 {
1503 assert(fmt != ISL_FORMAT_UNSUPPORTED);
1504 assert(fmt < ISL_NUM_FORMATS);
1505 return &isl_format_layouts[fmt];
1506 }
1507
1508 bool isl_format_is_valid(enum isl_format);
1509
1510 static inline const char * ATTRIBUTE_CONST
1511 isl_format_get_name(enum isl_format fmt)
1512 {
1513 return isl_format_get_layout(fmt)->name;
1514 }
1515
1516 enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
1517
1518 bool isl_format_supports_rendering(const struct gen_device_info *devinfo,
1519 enum isl_format format);
1520 bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo,
1521 enum isl_format format);
1522 bool isl_format_supports_sampling(const struct gen_device_info *devinfo,
1523 enum isl_format format);
1524 bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
1525 enum isl_format format);
1526 bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
1527 enum isl_format format);
1528 bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
1529 enum isl_format format);
1530 bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
1531 enum isl_format format);
1532 bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
1533 enum isl_format format);
1534 bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
1535 enum isl_format format);
1536 bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
1537 enum isl_format format);
1538
1539 bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
1540 enum isl_format format1,
1541 enum isl_format format2);
1542 uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
1543
1544 bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1545 bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1546 bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1547 bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1548 bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1549 bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1550
1551 static inline bool
1552 isl_format_has_normalized_channel(enum isl_format fmt)
1553 {
1554 return isl_format_has_unorm_channel(fmt) ||
1555 isl_format_has_snorm_channel(fmt);
1556 }
1557
1558 static inline bool
1559 isl_format_has_float_channel(enum isl_format fmt)
1560 {
1561 return isl_format_has_ufloat_channel(fmt) ||
1562 isl_format_has_sfloat_channel(fmt);
1563 }
1564
1565 static inline bool
1566 isl_format_has_int_channel(enum isl_format fmt)
1567 {
1568 return isl_format_has_uint_channel(fmt) ||
1569 isl_format_has_sint_channel(fmt);
1570 }
1571
1572 bool isl_format_has_color_component(enum isl_format fmt,
1573 int component) ATTRIBUTE_CONST;
1574
1575 unsigned isl_format_get_num_channels(enum isl_format fmt);
1576
1577 uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
1578
1579 static inline bool
1580 isl_format_is_compressed(enum isl_format fmt)
1581 {
1582 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1583
1584 return fmtl->txc != ISL_TXC_NONE;
1585 }
1586
1587 static inline bool
1588 isl_format_has_bc_compression(enum isl_format fmt)
1589 {
1590 switch (isl_format_get_layout(fmt)->txc) {
1591 case ISL_TXC_DXT1:
1592 case ISL_TXC_DXT3:
1593 case ISL_TXC_DXT5:
1594 return true;
1595 case ISL_TXC_NONE:
1596 case ISL_TXC_FXT1:
1597 case ISL_TXC_RGTC1:
1598 case ISL_TXC_RGTC2:
1599 case ISL_TXC_BPTC:
1600 case ISL_TXC_ETC1:
1601 case ISL_TXC_ETC2:
1602 case ISL_TXC_ASTC:
1603 return false;
1604
1605 case ISL_TXC_HIZ:
1606 case ISL_TXC_MCS:
1607 case ISL_TXC_CCS:
1608 unreachable("Should not be called on an aux surface");
1609 }
1610
1611 unreachable("bad texture compression mode");
1612 return false;
1613 }
1614
1615 static inline bool
1616 isl_format_is_yuv(enum isl_format fmt)
1617 {
1618 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1619
1620 return fmtl->colorspace == ISL_COLORSPACE_YUV;
1621 }
1622
1623 static inline bool
1624 isl_format_block_is_1x1x1(enum isl_format fmt)
1625 {
1626 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1627
1628 return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
1629 }
1630
1631 static inline bool
1632 isl_format_is_srgb(enum isl_format fmt)
1633 {
1634 return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
1635 }
1636
1637 enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
1638
1639 static inline bool
1640 isl_format_is_rgb(enum isl_format fmt)
1641 {
1642 if (isl_format_is_yuv(fmt))
1643 return false;
1644
1645 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1646
1647 return fmtl->channels.r.bits > 0 &&
1648 fmtl->channels.g.bits > 0 &&
1649 fmtl->channels.b.bits > 0 &&
1650 fmtl->channels.a.bits == 0;
1651 }
1652
1653 static inline bool
1654 isl_format_is_rgbx(enum isl_format fmt)
1655 {
1656 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1657
1658 return fmtl->channels.r.bits > 0 &&
1659 fmtl->channels.g.bits > 0 &&
1660 fmtl->channels.b.bits > 0 &&
1661 fmtl->channels.a.bits > 0 &&
1662 fmtl->channels.a.type == ISL_VOID;
1663 }
1664
1665 enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1666 enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
1667 enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1668
1669 void isl_color_value_pack(const union isl_color_value *value,
1670 enum isl_format format,
1671 uint32_t *data_out);
1672 void isl_color_value_unpack(union isl_color_value *value,
1673 enum isl_format format,
1674 const uint32_t *data_in);
1675
1676 bool isl_is_storage_image_format(enum isl_format fmt);
1677
1678 enum isl_format
1679 isl_lower_storage_image_format(const struct gen_device_info *devinfo,
1680 enum isl_format fmt);
1681
1682 /* Returns true if this hardware supports typed load/store on a format with
1683 * the same size as the given format.
1684 */
1685 bool
1686 isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo,
1687 enum isl_format fmt);
1688
1689 static inline enum isl_tiling
1690 isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
1691 {
1692 assert(__builtin_popcount(flag) == 1);
1693 return (enum isl_tiling) (__builtin_ffs(flag) - 1);
1694 }
1695
1696 static inline bool
1697 isl_tiling_is_any_y(enum isl_tiling tiling)
1698 {
1699 return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
1700 }
1701
1702 static inline bool
1703 isl_tiling_is_std_y(enum isl_tiling tiling)
1704 {
1705 return (1u << tiling) & ISL_TILING_STD_Y_MASK;
1706 }
1707
1708 uint32_t
1709 isl_tiling_to_i915_tiling(enum isl_tiling tiling);
1710
1711 enum isl_tiling
1712 isl_tiling_from_i915_tiling(uint32_t tiling);
1713
1714 /**
1715 * Return an isl_aux_op needed to enable an access to occur in an
1716 * isl_aux_state suitable for the isl_aux_usage.
1717 *
1718 * NOTE: If the access will invalidate the main surface, this function should
1719 * not be called and the isl_aux_op of NONE should be used instead.
1720 * Otherwise, an extra (but still lossless) ambiguate may occur.
1721 *
1722 * @invariant initial_state is possible with an isl_aux_usage compatible with
1723 * the given usage. Two usages are compatible if it's possible to
1724 * switch between them (e.g. CCS_E <-> CCS_D).
1725 * @invariant fast_clear is false if the aux doesn't support fast clears.
1726 */
1727 enum isl_aux_op
1728 isl_aux_prepare_access(enum isl_aux_state initial_state,
1729 enum isl_aux_usage usage,
1730 bool fast_clear_supported);
1731
1732 /**
1733 * Return the isl_aux_state entered after performing an isl_aux_op.
1734 *
1735 * @invariant initial_state is possible with the given usage.
1736 * @invariant op is possible with the given usage.
1737 * @invariant op must not cause HW to read from an invalid aux.
1738 */
1739 enum isl_aux_state
1740 isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
1741 enum isl_aux_usage usage,
1742 enum isl_aux_op op);
1743
1744 /**
1745 * Return the isl_aux_state entered after performing a write.
1746 *
1747 * NOTE: full_surface should be true if the write covers the entire
1748 * slice. Setting it to false in this case will still result in a
1749 * correct (but imprecise) aux state.
1750 *
1751 * @invariant if usage is not ISL_AUX_USAGE_NONE, then initial_state is
1752 * possible with the given usage.
1753 * @invariant usage can be ISL_AUX_USAGE_NONE iff:
1754 * * the main surface is valid, or
1755 * * the main surface is being invalidated/replaced.
1756 */
1757 enum isl_aux_state
1758 isl_aux_state_transition_write(enum isl_aux_state initial_state,
1759 enum isl_aux_usage usage,
1760 bool full_surface);
1761
1762 bool
1763 isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
1764
1765 static inline bool
1766 isl_aux_usage_has_hiz(enum isl_aux_usage usage)
1767 {
1768 return usage == ISL_AUX_USAGE_HIZ ||
1769 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1770 usage == ISL_AUX_USAGE_HIZ_CCS;
1771 }
1772
1773 static inline bool
1774 isl_aux_usage_has_mcs(enum isl_aux_usage usage)
1775 {
1776 return usage == ISL_AUX_USAGE_MCS ||
1777 usage == ISL_AUX_USAGE_MCS_CCS;
1778 }
1779
1780 static inline bool
1781 isl_aux_usage_has_ccs(enum isl_aux_usage usage)
1782 {
1783 return usage == ISL_AUX_USAGE_CCS_D ||
1784 usage == ISL_AUX_USAGE_CCS_E ||
1785 usage == ISL_AUX_USAGE_MC ||
1786 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1787 usage == ISL_AUX_USAGE_HIZ_CCS ||
1788 usage == ISL_AUX_USAGE_MCS_CCS ||
1789 usage == ISL_AUX_USAGE_STC_CCS;
1790 }
1791
1792 static inline bool
1793 isl_aux_state_has_valid_primary(enum isl_aux_state state)
1794 {
1795 return state == ISL_AUX_STATE_RESOLVED ||
1796 state == ISL_AUX_STATE_PASS_THROUGH ||
1797 state == ISL_AUX_STATE_AUX_INVALID;
1798 }
1799
1800 static inline bool
1801 isl_aux_state_has_valid_aux(enum isl_aux_state state)
1802 {
1803 return state != ISL_AUX_STATE_AUX_INVALID;
1804 }
1805
1806 const struct isl_drm_modifier_info * ATTRIBUTE_CONST
1807 isl_drm_modifier_get_info(uint64_t modifier);
1808
1809 static inline bool
1810 isl_drm_modifier_has_aux(uint64_t modifier)
1811 {
1812 return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE;
1813 }
1814
1815 /** Returns the default isl_aux_state for the given modifier.
1816 *
1817 * If we have a modifier which supports compression, then the auxiliary data
1818 * could be in state other than ISL_AUX_STATE_AUX_INVALID. In particular, it
1819 * can be in any of the following:
1820 *
1821 * - ISL_AUX_STATE_CLEAR
1822 * - ISL_AUX_STATE_PARTIAL_CLEAR
1823 * - ISL_AUX_STATE_COMPRESSED_CLEAR
1824 * - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
1825 * - ISL_AUX_STATE_RESOLVED
1826 * - ISL_AUX_STATE_PASS_THROUGH
1827 *
1828 * If the modifier does not support fast-clears, then we are guaranteed
1829 * that the surface is at least partially resolved and the first three not
1830 * possible. We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
1831 * supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
1832 * because they are the least common denominator of the set of possible aux
1833 * states and will yield a valid interpretation of the aux data.
1834 *
1835 * For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
1836 */
1837 static inline enum isl_aux_state
1838 isl_drm_modifier_get_default_aux_state(uint64_t modifier)
1839 {
1840 const struct isl_drm_modifier_info *mod_info =
1841 isl_drm_modifier_get_info(modifier);
1842
1843 if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE)
1844 return ISL_AUX_STATE_AUX_INVALID;
1845
1846 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1847 return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1848 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1849 }
1850
1851 struct isl_extent2d ATTRIBUTE_CONST
1852 isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
1853
1854 static inline bool
1855 isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
1856 {
1857 return usage & ISL_SURF_USAGE_DISPLAY_BIT;
1858 }
1859
1860 static inline bool
1861 isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
1862 {
1863 return usage & ISL_SURF_USAGE_DEPTH_BIT;
1864 }
1865
1866 static inline bool
1867 isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
1868 {
1869 return usage & ISL_SURF_USAGE_STENCIL_BIT;
1870 }
1871
1872 static inline bool
1873 isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
1874 {
1875 return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1876 (usage & ISL_SURF_USAGE_STENCIL_BIT);
1877 }
1878
1879 static inline bool
1880 isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
1881 {
1882 return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
1883 }
1884
1885 static inline bool
1886 isl_surf_info_is_z16(const struct isl_surf_init_info *info)
1887 {
1888 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1889 (info->format == ISL_FORMAT_R16_UNORM);
1890 }
1891
1892 static inline bool
1893 isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
1894 {
1895 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1896 (info->format == ISL_FORMAT_R32_FLOAT);
1897 }
1898
1899 static inline struct isl_extent2d
1900 isl_extent2d(uint32_t width, uint32_t height)
1901 {
1902 struct isl_extent2d e = { { 0 } };
1903
1904 e.width = width;
1905 e.height = height;
1906
1907 return e;
1908 }
1909
1910 static inline struct isl_extent3d
1911 isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
1912 {
1913 struct isl_extent3d e = { { 0 } };
1914
1915 e.width = width;
1916 e.height = height;
1917 e.depth = depth;
1918
1919 return e;
1920 }
1921
1922 static inline struct isl_extent4d
1923 isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
1924 uint32_t array_len)
1925 {
1926 struct isl_extent4d e = { { 0 } };
1927
1928 e.width = width;
1929 e.height = height;
1930 e.depth = depth;
1931 e.array_len = array_len;
1932
1933 return e;
1934 }
1935
1936 bool isl_color_value_is_zero(union isl_color_value value,
1937 enum isl_format format);
1938
1939 bool isl_color_value_is_zero_one(union isl_color_value value,
1940 enum isl_format format);
1941
1942 static inline bool
1943 isl_swizzle_is_identity(struct isl_swizzle swizzle)
1944 {
1945 return swizzle.r == ISL_CHANNEL_SELECT_RED &&
1946 swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
1947 swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
1948 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
1949 }
1950
1951 bool
1952 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
1953 struct isl_swizzle swizzle);
1954
1955 struct isl_swizzle
1956 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
1957 struct isl_swizzle
1958 isl_swizzle_invert(struct isl_swizzle swizzle);
1959
1960 #define isl_surf_init(dev, surf, ...) \
1961 isl_surf_init_s((dev), (surf), \
1962 &(struct isl_surf_init_info) { __VA_ARGS__ });
1963
1964 bool
1965 isl_surf_init_s(const struct isl_device *dev,
1966 struct isl_surf *surf,
1967 const struct isl_surf_init_info *restrict info);
1968
1969 void
1970 isl_surf_get_tile_info(const struct isl_surf *surf,
1971 struct isl_tile_info *tile_info);
1972
1973 bool
1974 isl_surf_get_hiz_surf(const struct isl_device *dev,
1975 const struct isl_surf *surf,
1976 struct isl_surf *hiz_surf);
1977
1978 bool
1979 isl_surf_get_mcs_surf(const struct isl_device *dev,
1980 const struct isl_surf *surf,
1981 struct isl_surf *mcs_surf);
1982
1983 bool
1984 isl_surf_get_ccs_surf(const struct isl_device *dev,
1985 const struct isl_surf *surf,
1986 struct isl_surf *aux_surf,
1987 struct isl_surf *extra_aux_surf,
1988 uint32_t row_pitch_B /**< Ignored if 0 */);
1989
1990 #define isl_surf_fill_state(dev, state, ...) \
1991 isl_surf_fill_state_s((dev), (state), \
1992 &(struct isl_surf_fill_state_info) { __VA_ARGS__ });
1993
1994 void
1995 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1996 const struct isl_surf_fill_state_info *restrict info);
1997
1998 #define isl_buffer_fill_state(dev, state, ...) \
1999 isl_buffer_fill_state_s((dev), (state), \
2000 &(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
2001
2002 void
2003 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
2004 const struct isl_buffer_fill_state_info *restrict info);
2005
2006 void
2007 isl_null_fill_state(const struct isl_device *dev, void *state,
2008 struct isl_extent3d size);
2009
2010 #define isl_emit_depth_stencil_hiz(dev, batch, ...) \
2011 isl_emit_depth_stencil_hiz_s((dev), (batch), \
2012 &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
2013
2014 void
2015 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
2016 const struct isl_depth_stencil_hiz_emit_info *restrict info);
2017
2018 void
2019 isl_surf_fill_image_param(const struct isl_device *dev,
2020 struct brw_image_param *param,
2021 const struct isl_surf *surf,
2022 const struct isl_view *view);
2023
2024 void
2025 isl_buffer_fill_image_param(const struct isl_device *dev,
2026 struct brw_image_param *param,
2027 enum isl_format format,
2028 uint64_t size);
2029
2030 /**
2031 * Alignment of the upper-left sample of each subimage, in units of surface
2032 * elements.
2033 */
2034 static inline struct isl_extent3d
2035 isl_surf_get_image_alignment_el(const struct isl_surf *surf)
2036 {
2037 return surf->image_alignment_el;
2038 }
2039
2040 /**
2041 * Alignment of the upper-left sample of each subimage, in units of surface
2042 * samples.
2043 */
2044 static inline struct isl_extent3d
2045 isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
2046 {
2047 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2048
2049 return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
2050 fmtl->bh * surf->image_alignment_el.h,
2051 fmtl->bd * surf->image_alignment_el.d);
2052 }
2053
2054 /**
2055 * Logical extent of level 0 in units of surface elements.
2056 */
2057 static inline struct isl_extent4d
2058 isl_surf_get_logical_level0_el(const struct isl_surf *surf)
2059 {
2060 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2061
2062 return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
2063 DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
2064 DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
2065 surf->logical_level0_px.a);
2066 }
2067
2068 /**
2069 * Physical extent of level 0 in units of surface elements.
2070 */
2071 static inline struct isl_extent4d
2072 isl_surf_get_phys_level0_el(const struct isl_surf *surf)
2073 {
2074 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2075
2076 return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
2077 DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
2078 DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
2079 surf->phys_level0_sa.a);
2080 }
2081
2082 /**
2083 * Pitch between vertically adjacent surface elements, in bytes.
2084 */
2085 static inline uint32_t
2086 isl_surf_get_row_pitch_B(const struct isl_surf *surf)
2087 {
2088 return surf->row_pitch_B;
2089 }
2090
2091 /**
2092 * Pitch between vertically adjacent surface elements, in units of surface elements.
2093 */
2094 static inline uint32_t
2095 isl_surf_get_row_pitch_el(const struct isl_surf *surf)
2096 {
2097 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2098
2099 assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
2100 return surf->row_pitch_B / (fmtl->bpb / 8);
2101 }
2102
2103 /**
2104 * Pitch between physical array slices, in rows of surface elements.
2105 */
2106 static inline uint32_t
2107 isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
2108 {
2109 return surf->array_pitch_el_rows;
2110 }
2111
2112 /**
2113 * Pitch between physical array slices, in units of surface elements.
2114 */
2115 static inline uint32_t
2116 isl_surf_get_array_pitch_el(const struct isl_surf *surf)
2117 {
2118 return isl_surf_get_array_pitch_el_rows(surf) *
2119 isl_surf_get_row_pitch_el(surf);
2120 }
2121
2122 /**
2123 * Pitch between physical array slices, in rows of surface samples.
2124 */
2125 static inline uint32_t
2126 isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
2127 {
2128 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2129 return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
2130 }
2131
2132 /**
2133 * Pitch between physical array slices, in bytes.
2134 */
2135 static inline uint32_t
2136 isl_surf_get_array_pitch(const struct isl_surf *surf)
2137 {
2138 return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
2139 }
2140
2141 /**
2142 * Calculate the offset, in units of surface samples, to a subimage in the
2143 * surface.
2144 *
2145 * @invariant level < surface levels
2146 * @invariant logical_array_layer < logical array length of surface
2147 * @invariant logical_z_offset_px < logical depth of surface at level
2148 */
2149 void
2150 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2151 uint32_t level,
2152 uint32_t logical_array_layer,
2153 uint32_t logical_z_offset_px,
2154 uint32_t *x_offset_sa,
2155 uint32_t *y_offset_sa);
2156
2157 /**
2158 * Calculate the offset, in units of surface elements, to a subimage in the
2159 * surface.
2160 *
2161 * @invariant level < surface levels
2162 * @invariant logical_array_layer < logical array length of surface
2163 * @invariant logical_z_offset_px < logical depth of surface at level
2164 */
2165 void
2166 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2167 uint32_t level,
2168 uint32_t logical_array_layer,
2169 uint32_t logical_z_offset_px,
2170 uint32_t *x_offset_el,
2171 uint32_t *y_offset_el);
2172
2173 /**
2174 * Calculate the offset, in bytes and intratile surface samples, to a
2175 * subimage in the surface.
2176 *
2177 * This is equivalent to calling isl_surf_get_image_offset_el, passing the
2178 * result to isl_tiling_get_intratile_offset_el, and converting the tile
2179 * offsets to samples.
2180 *
2181 * @invariant level < surface levels
2182 * @invariant logical_array_layer < logical array length of surface
2183 * @invariant logical_z_offset_px < logical depth of surface at level
2184 */
2185 void
2186 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2187 uint32_t level,
2188 uint32_t logical_array_layer,
2189 uint32_t logical_z_offset_px,
2190 uint32_t *offset_B,
2191 uint32_t *x_offset_sa,
2192 uint32_t *y_offset_sa);
2193
2194 /**
2195 * Calculate the range in bytes occupied by a subimage, to the nearest tile.
2196 *
2197 * The range returned will be the smallest memory range in which the give
2198 * subimage fits, rounded to even tiles. Intel images do not usually have a
2199 * direct subimage -> range mapping so the range returned may contain data
2200 * from other sub-images. The returned range is a half-open interval where
2201 * all of the addresses within the subimage are < end_tile_B.
2202 *
2203 * @invariant level < surface levels
2204 * @invariant logical_array_layer < logical array length of surface
2205 * @invariant logical_z_offset_px < logical depth of surface at level
2206 */
2207 void
2208 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2209 uint32_t level,
2210 uint32_t logical_array_layer,
2211 uint32_t logical_z_offset_px,
2212 uint32_t *start_tile_B,
2213 uint32_t *end_tile_B);
2214
2215 /**
2216 * Create an isl_surf that represents a particular subimage in the surface.
2217 *
2218 * The newly created surface will have a single miplevel and array slice. The
2219 * surface lives at the returned byte and intratile offsets, in samples.
2220 *
2221 * It is safe to call this function with surf == image_surf.
2222 *
2223 * @invariant level < surface levels
2224 * @invariant logical_array_layer < logical array length of surface
2225 * @invariant logical_z_offset_px < logical depth of surface at level
2226 */
2227 void
2228 isl_surf_get_image_surf(const struct isl_device *dev,
2229 const struct isl_surf *surf,
2230 uint32_t level,
2231 uint32_t logical_array_layer,
2232 uint32_t logical_z_offset_px,
2233 struct isl_surf *image_surf,
2234 uint32_t *offset_B,
2235 uint32_t *x_offset_sa,
2236 uint32_t *y_offset_sa);
2237
2238 /**
2239 * @brief Calculate the intratile offsets to a surface.
2240 *
2241 * In @a base_address_offset return the offset from the base of the surface to
2242 * the base address of the first tile of the subimage. In @a x_offset_B and
2243 * @a y_offset_rows, return the offset, in units of bytes and rows, from the
2244 * tile's base to the subimage's first surface element. The x and y offsets
2245 * are intratile offsets; that is, they do not exceed the boundary of the
2246 * surface's tiling format.
2247 */
2248 void
2249 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2250 uint32_t bpb,
2251 uint32_t row_pitch_B,
2252 uint32_t total_x_offset_el,
2253 uint32_t total_y_offset_el,
2254 uint32_t *base_address_offset,
2255 uint32_t *x_offset_el,
2256 uint32_t *y_offset_el);
2257
2258 static inline void
2259 isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
2260 enum isl_format format,
2261 uint32_t row_pitch_B,
2262 uint32_t total_x_offset_sa,
2263 uint32_t total_y_offset_sa,
2264 uint32_t *base_address_offset,
2265 uint32_t *x_offset_sa,
2266 uint32_t *y_offset_sa)
2267 {
2268 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2269
2270 /* For computing the intratile offsets, we actually want a strange unit
2271 * which is samples for multisampled surfaces but elements for compressed
2272 * surfaces.
2273 */
2274 assert(total_x_offset_sa % fmtl->bw == 0);
2275 assert(total_y_offset_sa % fmtl->bh == 0);
2276 const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
2277 const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
2278
2279 isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch_B,
2280 total_x_offset, total_y_offset,
2281 base_address_offset,
2282 x_offset_sa, y_offset_sa);
2283 *x_offset_sa *= fmtl->bw;
2284 *y_offset_sa *= fmtl->bh;
2285 }
2286
2287 /**
2288 * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
2289 *
2290 * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
2291 * @pre surf->format must be a valid format for depth surfaces
2292 */
2293 uint32_t
2294 isl_surf_get_depth_format(const struct isl_device *dev,
2295 const struct isl_surf *surf);
2296
2297 /**
2298 * @brief performs a copy from linear to tiled surface
2299 *
2300 */
2301 void
2302 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
2303 uint32_t yt1, uint32_t yt2,
2304 char *dst, const char *src,
2305 uint32_t dst_pitch, int32_t src_pitch,
2306 bool has_swizzling,
2307 enum isl_tiling tiling,
2308 isl_memcpy_type copy_type);
2309
2310 /**
2311 * @brief performs a copy from tiled to linear surface
2312 *
2313 */
2314 void
2315 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
2316 uint32_t yt1, uint32_t yt2,
2317 char *dst, const char *src,
2318 int32_t dst_pitch, uint32_t src_pitch,
2319 bool has_swizzling,
2320 enum isl_tiling tiling,
2321 isl_memcpy_type copy_type);
2322
2323 #ifdef __cplusplus
2324 }
2325 #endif
2326
2327 #endif /* ISL_H */