intel/perf: extract register configuration
[mesa.git] / src / intel / perf / gen_perf.c
1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <dirent.h>
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <errno.h>
31
32 #include <drm-uapi/i915_drm.h>
33
34 #include "common/gen_gem.h"
35 #include "gen_perf.h"
36 #include "perf/gen_perf_mdapi.h"
37 #include "perf/gen_perf_metrics.h"
38
39 #include "dev/gen_debug.h"
40 #include "dev/gen_device_info.h"
41 #include "util/bitscan.h"
42 #include "util/u_math.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_PERFMON
45 #define MI_RPC_BO_SIZE 4096
46 #define MI_FREQ_START_OFFSET_BYTES (3072)
47 #define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2)
48 #define MI_FREQ_END_OFFSET_BYTES (3076)
49
50 #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
51
52 #define GEN7_RPSTAT1 0xA01C
53 #define GEN7_RPSTAT1_CURR_GT_FREQ_SHIFT 7
54 #define GEN7_RPSTAT1_CURR_GT_FREQ_MASK INTEL_MASK(13, 7)
55 #define GEN7_RPSTAT1_PREV_GT_FREQ_SHIFT 0
56 #define GEN7_RPSTAT1_PREV_GT_FREQ_MASK INTEL_MASK(6, 0)
57
58 #define GEN9_RPSTAT0 0xA01C
59 #define GEN9_RPSTAT0_CURR_GT_FREQ_SHIFT 23
60 #define GEN9_RPSTAT0_CURR_GT_FREQ_MASK INTEL_MASK(31, 23)
61 #define GEN9_RPSTAT0_PREV_GT_FREQ_SHIFT 0
62 #define GEN9_RPSTAT0_PREV_GT_FREQ_MASK INTEL_MASK(8, 0)
63
64 #define GEN6_SO_PRIM_STORAGE_NEEDED 0x2280
65 #define GEN7_SO_PRIM_STORAGE_NEEDED(n) (0x5240 + (n) * 8)
66 #define GEN6_SO_NUM_PRIMS_WRITTEN 0x2288
67 #define GEN7_SO_NUM_PRIMS_WRITTEN(n) (0x5200 + (n) * 8)
68
69 #define MAP_READ (1 << 0)
70 #define MAP_WRITE (1 << 1)
71
72 /**
73 * Periodic OA samples are read() into these buffer structures via the
74 * i915 perf kernel interface and appended to the
75 * perf_ctx->sample_buffers linked list. When we process the
76 * results of an OA metrics query we need to consider all the periodic
77 * samples between the Begin and End MI_REPORT_PERF_COUNT command
78 * markers.
79 *
80 * 'Periodic' is a simplification as there are other automatic reports
81 * written by the hardware also buffered here.
82 *
83 * Considering three queries, A, B and C:
84 *
85 * Time ---->
86 * ________________A_________________
87 * | |
88 * | ________B_________ _____C___________
89 * | | | | | |
90 *
91 * And an illustration of sample buffers read over this time frame:
92 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
93 *
94 * These nodes may hold samples for query A:
95 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
96 *
97 * These nodes may hold samples for query B:
98 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
99 *
100 * These nodes may hold samples for query C:
101 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
102 *
103 * The illustration assumes we have an even distribution of periodic
104 * samples so all nodes have the same size plotted against time:
105 *
106 * Note, to simplify code, the list is never empty.
107 *
108 * With overlapping queries we can see that periodic OA reports may
109 * relate to multiple queries and care needs to be take to keep
110 * track of sample buffers until there are no queries that might
111 * depend on their contents.
112 *
113 * We use a node ref counting system where a reference ensures that a
114 * node and all following nodes can't be freed/recycled until the
115 * reference drops to zero.
116 *
117 * E.g. with a ref of one here:
118 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
119 *
120 * These nodes could be freed or recycled ("reaped"):
121 * [ 0 ][ 0 ]
122 *
123 * These must be preserved until the leading ref drops to zero:
124 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
125 *
126 * When a query starts we take a reference on the current tail of
127 * the list, knowing that no already-buffered samples can possibly
128 * relate to the newly-started query. A pointer to this node is
129 * also saved in the query object's ->oa.samples_head.
130 *
131 * E.g. starting query A while there are two nodes in .sample_buffers:
132 * ________________A________
133 * |
134 *
135 * [ 0 ][ 1 ]
136 * ^_______ Add a reference and store pointer to node in
137 * A->oa.samples_head
138 *
139 * Moving forward to when the B query starts with no new buffer nodes:
140 * (for reference, i915 perf reads() are only done when queries finish)
141 * ________________A_______
142 * | ________B___
143 * | |
144 *
145 * [ 0 ][ 2 ]
146 * ^_______ Add a reference and store pointer to
147 * node in B->oa.samples_head
148 *
149 * Once a query is finished, after an OA query has become 'Ready',
150 * once the End OA report has landed and after we we have processed
151 * all the intermediate periodic samples then we drop the
152 * ->oa.samples_head reference we took at the start.
153 *
154 * So when the B query has finished we have:
155 * ________________A________
156 * | ______B___________
157 * | | |
158 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
159 * ^_______ Drop B->oa.samples_head reference
160 *
161 * We still can't free these due to the A->oa.samples_head ref:
162 * [ 1 ][ 0 ][ 0 ][ 0 ]
163 *
164 * When the A query finishes: (note there's a new ref for C's samples_head)
165 * ________________A_________________
166 * | |
167 * | _____C_________
168 * | | |
169 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
170 * ^_______ Drop A->oa.samples_head reference
171 *
172 * And we can now reap these nodes up to the C->oa.samples_head:
173 * [ X ][ X ][ X ][ X ]
174 * keeping -> [ 1 ][ 0 ][ 0 ]
175 *
176 * We reap old sample buffers each time we finish processing an OA
177 * query by iterating the sample_buffers list from the head until we
178 * find a referenced node and stop.
179 *
180 * Reaped buffers move to a perfquery.free_sample_buffers list and
181 * when we come to read() we first look to recycle a buffer from the
182 * free_sample_buffers list before allocating a new buffer.
183 */
184 struct oa_sample_buf {
185 struct exec_node link;
186 int refcount;
187 int len;
188 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
189 uint32_t last_timestamp;
190 };
191
192 /**
193 * gen representation of a performance query object.
194 *
195 * NB: We want to keep this structure relatively lean considering that
196 * applications may expect to allocate enough objects to be able to
197 * query around all draw calls in a frame.
198 */
199 struct gen_perf_query_object
200 {
201 const struct gen_perf_query_info *queryinfo;
202
203 /* See query->kind to know which state below is in use... */
204 union {
205 struct {
206
207 /**
208 * BO containing OA counter snapshots at query Begin/End time.
209 */
210 void *bo;
211
212 /**
213 * Address of mapped of @bo
214 */
215 void *map;
216
217 /**
218 * The MI_REPORT_PERF_COUNT command lets us specify a unique
219 * ID that will be reflected in the resulting OA report
220 * that's written by the GPU. This is the ID we're expecting
221 * in the begin report and the the end report should be
222 * @begin_report_id + 1.
223 */
224 int begin_report_id;
225
226 /**
227 * Reference the head of the brw->perfquery.sample_buffers
228 * list at the time that the query started (so we only need
229 * to look at nodes after this point when looking for samples
230 * related to this query)
231 *
232 * (See struct brw_oa_sample_buf description for more details)
233 */
234 struct exec_node *samples_head;
235
236 /**
237 * false while in the unaccumulated_elements list, and set to
238 * true when the final, end MI_RPC snapshot has been
239 * accumulated.
240 */
241 bool results_accumulated;
242
243 /**
244 * Frequency of the GT at begin and end of the query.
245 */
246 uint64_t gt_frequency[2];
247
248 /**
249 * Accumulated OA results between begin and end of the query.
250 */
251 struct gen_perf_query_result result;
252 } oa;
253
254 struct {
255 /**
256 * BO containing starting and ending snapshots for the
257 * statistics counters.
258 */
259 void *bo;
260 } pipeline_stats;
261 };
262 };
263
264 struct gen_perf_context {
265 struct gen_perf_config *perf;
266
267 void * ctx; /* driver context (eg, brw_context) */
268 void * bufmgr;
269 const struct gen_device_info *devinfo;
270
271 uint32_t hw_ctx;
272 int drm_fd;
273
274 /* The i915 perf stream we open to setup + enable the OA counters */
275 int oa_stream_fd;
276
277 /* An i915 perf stream fd gives exclusive access to the OA unit that will
278 * report counter snapshots for a specific counter set/profile in a
279 * specific layout/format so we can only start OA queries that are
280 * compatible with the currently open fd...
281 */
282 int current_oa_metrics_set_id;
283 int current_oa_format;
284
285 /* List of buffers containing OA reports */
286 struct exec_list sample_buffers;
287
288 /* Cached list of empty sample buffers */
289 struct exec_list free_sample_buffers;
290
291 int n_active_oa_queries;
292 int n_active_pipeline_stats_queries;
293
294 /* The number of queries depending on running OA counters which
295 * extends beyond brw_end_perf_query() since we need to wait until
296 * the last MI_RPC command has parsed by the GPU.
297 *
298 * Accurate accounting is important here as emitting an
299 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
300 * effectively hang the gpu.
301 */
302 int n_oa_users;
303
304 /* To help catch an spurious problem with the hardware or perf
305 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
306 * with a unique ID that we can explicitly check for...
307 */
308 int next_query_start_report_id;
309
310 /**
311 * An array of queries whose results haven't yet been assembled
312 * based on the data in buffer objects.
313 *
314 * These may be active, or have already ended. However, the
315 * results have not been requested.
316 */
317 struct gen_perf_query_object **unaccumulated;
318 int unaccumulated_elements;
319 int unaccumulated_array_size;
320
321 /* The total number of query objects so we can relinquish
322 * our exclusive access to perf if the application deletes
323 * all of its objects. (NB: We only disable perf while
324 * there are no active queries)
325 */
326 int n_query_instances;
327 };
328
329 const struct gen_perf_query_info*
330 gen_perf_query_info(const struct gen_perf_query_object *query)
331 {
332 return query->queryinfo;
333 }
334
335 struct gen_perf_context *
336 gen_perf_new_context(void *parent)
337 {
338 struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context);
339 if (! ctx)
340 fprintf(stderr, "%s: failed to alloc context\n", __func__);
341 return ctx;
342 }
343
344 struct gen_perf_config *
345 gen_perf_config(struct gen_perf_context *ctx)
346 {
347 return ctx->perf;
348 }
349
350 struct gen_perf_query_object *
351 gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index)
352 {
353 const struct gen_perf_query_info *query =
354 &perf_ctx->perf->queries[query_index];
355 struct gen_perf_query_object *obj =
356 calloc(1, sizeof(struct gen_perf_query_object));
357
358 if (!obj)
359 return NULL;
360
361 obj->queryinfo = query;
362
363 perf_ctx->n_query_instances++;
364 return obj;
365 }
366
367 int
368 gen_perf_active_queries(struct gen_perf_context *perf_ctx,
369 const struct gen_perf_query_info *query)
370 {
371 assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
372
373 switch (query->kind) {
374 case GEN_PERF_QUERY_TYPE_OA:
375 case GEN_PERF_QUERY_TYPE_RAW:
376 return perf_ctx->n_active_oa_queries;
377 break;
378
379 case GEN_PERF_QUERY_TYPE_PIPELINE:
380 return perf_ctx->n_active_pipeline_stats_queries;
381 break;
382
383 default:
384 unreachable("Unknown query type");
385 break;
386 }
387 }
388
389 static bool
390 get_sysfs_dev_dir(struct gen_perf_config *perf, int fd)
391 {
392 struct stat sb;
393 int min, maj;
394 DIR *drmdir;
395 struct dirent *drm_entry;
396 int len;
397
398 perf->sysfs_dev_dir[0] = '\0';
399
400 if (fstat(fd, &sb)) {
401 DBG("Failed to stat DRM fd\n");
402 return false;
403 }
404
405 maj = major(sb.st_rdev);
406 min = minor(sb.st_rdev);
407
408 if (!S_ISCHR(sb.st_mode)) {
409 DBG("DRM fd is not a character device as expected\n");
410 return false;
411 }
412
413 len = snprintf(perf->sysfs_dev_dir,
414 sizeof(perf->sysfs_dev_dir),
415 "/sys/dev/char/%d:%d/device/drm", maj, min);
416 if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) {
417 DBG("Failed to concatenate sysfs path to drm device\n");
418 return false;
419 }
420
421 drmdir = opendir(perf->sysfs_dev_dir);
422 if (!drmdir) {
423 DBG("Failed to open %s: %m\n", perf->sysfs_dev_dir);
424 return false;
425 }
426
427 while ((drm_entry = readdir(drmdir))) {
428 if ((drm_entry->d_type == DT_DIR ||
429 drm_entry->d_type == DT_LNK) &&
430 strncmp(drm_entry->d_name, "card", 4) == 0)
431 {
432 len = snprintf(perf->sysfs_dev_dir,
433 sizeof(perf->sysfs_dev_dir),
434 "/sys/dev/char/%d:%d/device/drm/%s",
435 maj, min, drm_entry->d_name);
436 closedir(drmdir);
437 if (len < 0 || len >= sizeof(perf->sysfs_dev_dir))
438 return false;
439 else
440 return true;
441 }
442 }
443
444 closedir(drmdir);
445
446 DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n",
447 maj, min);
448
449 return false;
450 }
451
452 static bool
453 read_file_uint64(const char *file, uint64_t *val)
454 {
455 char buf[32];
456 int fd, n;
457
458 fd = open(file, 0);
459 if (fd < 0)
460 return false;
461 while ((n = read(fd, buf, sizeof (buf) - 1)) < 0 &&
462 errno == EINTR);
463 close(fd);
464 if (n < 0)
465 return false;
466
467 buf[n] = '\0';
468 *val = strtoull(buf, NULL, 0);
469
470 return true;
471 }
472
473 static bool
474 read_sysfs_drm_device_file_uint64(struct gen_perf_config *perf,
475 const char *file,
476 uint64_t *value)
477 {
478 char buf[512];
479 int len;
480
481 len = snprintf(buf, sizeof(buf), "%s/%s", perf->sysfs_dev_dir, file);
482 if (len < 0 || len >= sizeof(buf)) {
483 DBG("Failed to concatenate sys filename to read u64 from\n");
484 return false;
485 }
486
487 return read_file_uint64(buf, value);
488 }
489
490 static inline struct gen_perf_query_info *
491 append_query_info(struct gen_perf_config *perf, int max_counters)
492 {
493 struct gen_perf_query_info *query;
494
495 perf->queries = reralloc(perf, perf->queries,
496 struct gen_perf_query_info,
497 ++perf->n_queries);
498 query = &perf->queries[perf->n_queries - 1];
499 memset(query, 0, sizeof(*query));
500
501 if (max_counters > 0) {
502 query->max_counters = max_counters;
503 query->counters =
504 rzalloc_array(perf, struct gen_perf_query_counter, max_counters);
505 }
506
507 return query;
508 }
509
510 static void
511 register_oa_config(struct gen_perf_config *perf,
512 const struct gen_perf_query_info *query,
513 uint64_t config_id)
514 {
515 struct gen_perf_query_info *registered_query = append_query_info(perf, 0);
516
517 *registered_query = *query;
518 registered_query->oa_metrics_set_id = config_id;
519 DBG("metric set registered: id = %" PRIu64", guid = %s\n",
520 registered_query->oa_metrics_set_id, query->guid);
521 }
522
523 static void
524 enumerate_sysfs_metrics(struct gen_perf_config *perf)
525 {
526 DIR *metricsdir = NULL;
527 struct dirent *metric_entry;
528 char buf[256];
529 int len;
530
531 len = snprintf(buf, sizeof(buf), "%s/metrics", perf->sysfs_dev_dir);
532 if (len < 0 || len >= sizeof(buf)) {
533 DBG("Failed to concatenate path to sysfs metrics/ directory\n");
534 return;
535 }
536
537 metricsdir = opendir(buf);
538 if (!metricsdir) {
539 DBG("Failed to open %s: %m\n", buf);
540 return;
541 }
542
543 while ((metric_entry = readdir(metricsdir))) {
544 struct hash_entry *entry;
545
546 if ((metric_entry->d_type != DT_DIR &&
547 metric_entry->d_type != DT_LNK) ||
548 metric_entry->d_name[0] == '.')
549 continue;
550
551 DBG("metric set: %s\n", metric_entry->d_name);
552 entry = _mesa_hash_table_search(perf->oa_metrics_table,
553 metric_entry->d_name);
554 if (entry) {
555 uint64_t id;
556
557 len = snprintf(buf, sizeof(buf), "%s/metrics/%s/id",
558 perf->sysfs_dev_dir, metric_entry->d_name);
559 if (len < 0 || len >= sizeof(buf)) {
560 DBG("Failed to concatenate path to sysfs metric id file\n");
561 continue;
562 }
563
564 if (!read_file_uint64(buf, &id)) {
565 DBG("Failed to read metric set id from %s: %m", buf);
566 continue;
567 }
568
569 register_oa_config(perf, (const struct gen_perf_query_info *)entry->data, id);
570 } else
571 DBG("metric set not known by mesa (skipping)\n");
572 }
573
574 closedir(metricsdir);
575 }
576
577 static bool
578 kernel_has_dynamic_config_support(struct gen_perf_config *perf, int fd)
579 {
580 uint64_t invalid_config_id = UINT64_MAX;
581
582 return gen_ioctl(fd, DRM_IOCTL_I915_PERF_REMOVE_CONFIG,
583 &invalid_config_id) < 0 && errno == ENOENT;
584 }
585
586 bool
587 gen_perf_load_metric_id(struct gen_perf_config *perf_cfg,
588 const char *guid,
589 uint64_t *metric_id)
590 {
591 char config_path[280];
592
593 snprintf(config_path, sizeof(config_path), "%s/metrics/%s/id",
594 perf_cfg->sysfs_dev_dir, guid);
595
596 /* Don't recreate already loaded configs. */
597 return read_file_uint64(config_path, metric_id);
598 }
599
600 static void
601 init_oa_configs(struct gen_perf_config *perf, int fd)
602 {
603 hash_table_foreach(perf->oa_metrics_table, entry) {
604 const struct gen_perf_query_info *query = entry->data;
605 struct drm_i915_perf_oa_config config;
606 uint64_t config_id;
607 int ret;
608
609 if (gen_perf_load_metric_id(perf, query->guid, &config_id)) {
610 DBG("metric set: %s (already loaded)\n", query->guid);
611 register_oa_config(perf, query, config_id);
612 continue;
613 }
614
615 memset(&config, 0, sizeof(config));
616
617 memcpy(config.uuid, query->guid, sizeof(config.uuid));
618
619 config.n_mux_regs = query->config.n_mux_regs;
620 config.mux_regs_ptr = (uintptr_t) query->config.mux_regs;
621
622 config.n_boolean_regs = query->config.n_b_counter_regs;
623 config.boolean_regs_ptr = (uintptr_t) query->config.b_counter_regs;
624
625 config.n_flex_regs = query->config.n_flex_regs;
626 config.flex_regs_ptr = (uintptr_t) query->config.flex_regs;
627
628 ret = gen_ioctl(fd, DRM_IOCTL_I915_PERF_ADD_CONFIG, &config);
629 if (ret < 0) {
630 DBG("Failed to load \"%s\" (%s) metrics set in kernel: %s\n",
631 query->name, query->guid, strerror(errno));
632 continue;
633 }
634
635 register_oa_config(perf, query, ret);
636 DBG("metric set: %s (added)\n", query->guid);
637 }
638 }
639
640 static void
641 compute_topology_builtins(struct gen_perf_config *perf,
642 const struct gen_device_info *devinfo)
643 {
644 perf->sys_vars.slice_mask = devinfo->slice_masks;
645 perf->sys_vars.n_eu_slices = devinfo->num_slices;
646
647 for (int i = 0; i < sizeof(devinfo->subslice_masks[i]); i++) {
648 perf->sys_vars.n_eu_sub_slices +=
649 __builtin_popcount(devinfo->subslice_masks[i]);
650 }
651
652 for (int i = 0; i < sizeof(devinfo->eu_masks); i++)
653 perf->sys_vars.n_eus += __builtin_popcount(devinfo->eu_masks[i]);
654
655 perf->sys_vars.eu_threads_count = devinfo->num_thread_per_eu;
656
657 /* The subslice mask builtin contains bits for all slices. Prior to Gen11
658 * it had groups of 3bits for each slice, on Gen11 it's 8bits for each
659 * slice.
660 *
661 * Ideally equations would be updated to have a slice/subslice query
662 * function/operator.
663 */
664 perf->sys_vars.subslice_mask = 0;
665
666 int bits_per_subslice = devinfo->gen == 11 ? 8 : 3;
667
668 for (int s = 0; s < util_last_bit(devinfo->slice_masks); s++) {
669 for (int ss = 0; ss < (devinfo->subslice_slice_stride * 8); ss++) {
670 if (gen_device_info_subslice_available(devinfo, s, ss))
671 perf->sys_vars.subslice_mask |= 1ULL << (s * bits_per_subslice + ss);
672 }
673 }
674 }
675
676 static bool
677 init_oa_sys_vars(struct gen_perf_config *perf, const struct gen_device_info *devinfo)
678 {
679 uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
680
681 if (!read_sysfs_drm_device_file_uint64(perf, "gt_min_freq_mhz", &min_freq_mhz))
682 return false;
683
684 if (!read_sysfs_drm_device_file_uint64(perf, "gt_max_freq_mhz", &max_freq_mhz))
685 return false;
686
687 memset(&perf->sys_vars, 0, sizeof(perf->sys_vars));
688 perf->sys_vars.gt_min_freq = min_freq_mhz * 1000000;
689 perf->sys_vars.gt_max_freq = max_freq_mhz * 1000000;
690 perf->sys_vars.timestamp_frequency = devinfo->timestamp_frequency;
691 perf->sys_vars.revision = devinfo->revision;
692 compute_topology_builtins(perf, devinfo);
693
694 return true;
695 }
696
697 typedef void (*perf_register_oa_queries_t)(struct gen_perf_config *);
698
699 static perf_register_oa_queries_t
700 get_register_queries_function(const struct gen_device_info *devinfo)
701 {
702 if (devinfo->is_haswell)
703 return gen_oa_register_queries_hsw;
704 if (devinfo->is_cherryview)
705 return gen_oa_register_queries_chv;
706 if (devinfo->is_broadwell)
707 return gen_oa_register_queries_bdw;
708 if (devinfo->is_broxton)
709 return gen_oa_register_queries_bxt;
710 if (devinfo->is_skylake) {
711 if (devinfo->gt == 2)
712 return gen_oa_register_queries_sklgt2;
713 if (devinfo->gt == 3)
714 return gen_oa_register_queries_sklgt3;
715 if (devinfo->gt == 4)
716 return gen_oa_register_queries_sklgt4;
717 }
718 if (devinfo->is_kabylake) {
719 if (devinfo->gt == 2)
720 return gen_oa_register_queries_kblgt2;
721 if (devinfo->gt == 3)
722 return gen_oa_register_queries_kblgt3;
723 }
724 if (devinfo->is_geminilake)
725 return gen_oa_register_queries_glk;
726 if (devinfo->is_coffeelake) {
727 if (devinfo->gt == 2)
728 return gen_oa_register_queries_cflgt2;
729 if (devinfo->gt == 3)
730 return gen_oa_register_queries_cflgt3;
731 }
732 if (devinfo->is_cannonlake)
733 return gen_oa_register_queries_cnl;
734 if (devinfo->gen == 11)
735 return gen_oa_register_queries_icl;
736
737 return NULL;
738 }
739
740 static inline void
741 add_stat_reg(struct gen_perf_query_info *query, uint32_t reg,
742 uint32_t numerator, uint32_t denominator,
743 const char *name, const char *description)
744 {
745 struct gen_perf_query_counter *counter;
746
747 assert(query->n_counters < query->max_counters);
748
749 counter = &query->counters[query->n_counters];
750 counter->name = name;
751 counter->desc = description;
752 counter->type = GEN_PERF_COUNTER_TYPE_RAW;
753 counter->data_type = GEN_PERF_COUNTER_DATA_TYPE_UINT64;
754 counter->offset = sizeof(uint64_t) * query->n_counters;
755 counter->pipeline_stat.reg = reg;
756 counter->pipeline_stat.numerator = numerator;
757 counter->pipeline_stat.denominator = denominator;
758
759 query->n_counters++;
760 }
761
762 static inline void
763 add_basic_stat_reg(struct gen_perf_query_info *query,
764 uint32_t reg, const char *name)
765 {
766 add_stat_reg(query, reg, 1, 1, name, name);
767 }
768
769 static void
770 load_pipeline_statistic_metrics(struct gen_perf_config *perf_cfg,
771 const struct gen_device_info *devinfo)
772 {
773 struct gen_perf_query_info *query =
774 append_query_info(perf_cfg, MAX_STAT_COUNTERS);
775
776 query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
777 query->name = "Pipeline Statistics Registers";
778
779 add_basic_stat_reg(query, IA_VERTICES_COUNT,
780 "N vertices submitted");
781 add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
782 "N primitives submitted");
783 add_basic_stat_reg(query, VS_INVOCATION_COUNT,
784 "N vertex shader invocations");
785
786 if (devinfo->gen == 6) {
787 add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1,
788 "SO_PRIM_STORAGE_NEEDED",
789 "N geometry shader stream-out primitives (total)");
790 add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1,
791 "SO_NUM_PRIMS_WRITTEN",
792 "N geometry shader stream-out primitives (written)");
793 } else {
794 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1,
795 "SO_PRIM_STORAGE_NEEDED (Stream 0)",
796 "N stream-out (stream 0) primitives (total)");
797 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1,
798 "SO_PRIM_STORAGE_NEEDED (Stream 1)",
799 "N stream-out (stream 1) primitives (total)");
800 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1,
801 "SO_PRIM_STORAGE_NEEDED (Stream 2)",
802 "N stream-out (stream 2) primitives (total)");
803 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1,
804 "SO_PRIM_STORAGE_NEEDED (Stream 3)",
805 "N stream-out (stream 3) primitives (total)");
806 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1,
807 "SO_NUM_PRIMS_WRITTEN (Stream 0)",
808 "N stream-out (stream 0) primitives (written)");
809 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1,
810 "SO_NUM_PRIMS_WRITTEN (Stream 1)",
811 "N stream-out (stream 1) primitives (written)");
812 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1,
813 "SO_NUM_PRIMS_WRITTEN (Stream 2)",
814 "N stream-out (stream 2) primitives (written)");
815 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1,
816 "SO_NUM_PRIMS_WRITTEN (Stream 3)",
817 "N stream-out (stream 3) primitives (written)");
818 }
819
820 add_basic_stat_reg(query, HS_INVOCATION_COUNT,
821 "N TCS shader invocations");
822 add_basic_stat_reg(query, DS_INVOCATION_COUNT,
823 "N TES shader invocations");
824
825 add_basic_stat_reg(query, GS_INVOCATION_COUNT,
826 "N geometry shader invocations");
827 add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
828 "N geometry shader primitives emitted");
829
830 add_basic_stat_reg(query, CL_INVOCATION_COUNT,
831 "N primitives entering clipping");
832 add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
833 "N primitives leaving clipping");
834
835 if (devinfo->is_haswell || devinfo->gen == 8) {
836 add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
837 "N fragment shader invocations",
838 "N fragment shader invocations");
839 } else {
840 add_basic_stat_reg(query, PS_INVOCATION_COUNT,
841 "N fragment shader invocations");
842 }
843
844 add_basic_stat_reg(query, PS_DEPTH_COUNT,
845 "N z-pass fragments");
846
847 if (devinfo->gen >= 7) {
848 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
849 "N compute shader invocations");
850 }
851
852 query->data_size = sizeof(uint64_t) * query->n_counters;
853 }
854
855 static bool
856 load_oa_metrics(struct gen_perf_config *perf, int fd,
857 const struct gen_device_info *devinfo)
858 {
859 perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo);
860 bool i915_perf_oa_available = false;
861 struct stat sb;
862
863 /* The existence of this sysctl parameter implies the kernel supports
864 * the i915 perf interface.
865 */
866 if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) {
867
868 /* If _paranoid == 1 then on Gen8+ we won't be able to access OA
869 * metrics unless running as root.
870 */
871 if (devinfo->is_haswell)
872 i915_perf_oa_available = true;
873 else {
874 uint64_t paranoid = 1;
875
876 read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", &paranoid);
877
878 if (paranoid == 0 || geteuid() == 0)
879 i915_perf_oa_available = true;
880 }
881 }
882
883 if (!i915_perf_oa_available ||
884 !oa_register ||
885 !get_sysfs_dev_dir(perf, fd) ||
886 !init_oa_sys_vars(perf, devinfo))
887 return false;
888
889 perf->oa_metrics_table =
890 _mesa_hash_table_create(perf, _mesa_key_hash_string,
891 _mesa_key_string_equal);
892
893 /* Index all the metric sets mesa knows about before looking to see what
894 * the kernel is advertising.
895 */
896 oa_register(perf);
897
898 if (likely((INTEL_DEBUG & DEBUG_NO_OACONFIG) == 0) &&
899 kernel_has_dynamic_config_support(perf, fd))
900 init_oa_configs(perf, fd);
901 else
902 enumerate_sysfs_metrics(perf);
903
904 return true;
905 }
906
907 /* Accumulate 32bits OA counters */
908 static inline void
909 accumulate_uint32(const uint32_t *report0,
910 const uint32_t *report1,
911 uint64_t *accumulator)
912 {
913 *accumulator += (uint32_t)(*report1 - *report0);
914 }
915
916 /* Accumulate 40bits OA counters */
917 static inline void
918 accumulate_uint40(int a_index,
919 const uint32_t *report0,
920 const uint32_t *report1,
921 uint64_t *accumulator)
922 {
923 const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
924 const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
925 uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
926 uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
927 uint64_t value0 = report0[a_index + 4] | high0;
928 uint64_t value1 = report1[a_index + 4] | high1;
929 uint64_t delta;
930
931 if (value0 > value1)
932 delta = (1ULL << 40) + value1 - value0;
933 else
934 delta = value1 - value0;
935
936 *accumulator += delta;
937 }
938
939 static void
940 gen8_read_report_clock_ratios(const uint32_t *report,
941 uint64_t *slice_freq_hz,
942 uint64_t *unslice_freq_hz)
943 {
944 /* The lower 16bits of the RPT_ID field of the OA reports contains a
945 * snapshot of the bits coming from the RP_FREQ_NORMAL register and is
946 * divided this way :
947 *
948 * RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
949 * RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
950 * RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
951 *
952 * RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
953 * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
954 *
955 * RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
956 * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
957 */
958
959 uint32_t unslice_freq = report[0] & 0x1ff;
960 uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
961 uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
962 uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
963
964 *slice_freq_hz = slice_freq * 16666667ULL;
965 *unslice_freq_hz = unslice_freq * 16666667ULL;
966 }
967
968 void
969 gen_perf_query_result_read_frequencies(struct gen_perf_query_result *result,
970 const struct gen_device_info *devinfo,
971 const uint32_t *start,
972 const uint32_t *end)
973 {
974 /* Slice/Unslice frequency is only available in the OA reports when the
975 * "Disable OA reports due to clock ratio change" field in
976 * OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
977 * global register (see drivers/gpu/drm/i915/i915_perf.c)
978 *
979 * Documentation says this should be available on Gen9+ but experimentation
980 * shows that Gen8 reports similar values, so we enable it there too.
981 */
982 if (devinfo->gen < 8)
983 return;
984
985 gen8_read_report_clock_ratios(start,
986 &result->slice_frequency[0],
987 &result->unslice_frequency[0]);
988 gen8_read_report_clock_ratios(end,
989 &result->slice_frequency[1],
990 &result->unslice_frequency[1]);
991 }
992
993 void
994 gen_perf_query_result_accumulate(struct gen_perf_query_result *result,
995 const struct gen_perf_query_info *query,
996 const uint32_t *start,
997 const uint32_t *end)
998 {
999 int i, idx = 0;
1000
1001 result->hw_id = start[2];
1002 result->reports_accumulated++;
1003
1004 switch (query->oa_format) {
1005 case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
1006 accumulate_uint32(start + 1, end + 1, result->accumulator + idx++); /* timestamp */
1007 accumulate_uint32(start + 3, end + 3, result->accumulator + idx++); /* clock */
1008
1009 /* 32x 40bit A counters... */
1010 for (i = 0; i < 32; i++)
1011 accumulate_uint40(i, start, end, result->accumulator + idx++);
1012
1013 /* 4x 32bit A counters... */
1014 for (i = 0; i < 4; i++)
1015 accumulate_uint32(start + 36 + i, end + 36 + i, result->accumulator + idx++);
1016
1017 /* 8x 32bit B counters + 8x 32bit C counters... */
1018 for (i = 0; i < 16; i++)
1019 accumulate_uint32(start + 48 + i, end + 48 + i, result->accumulator + idx++);
1020 break;
1021
1022 case I915_OA_FORMAT_A45_B8_C8:
1023 accumulate_uint32(start + 1, end + 1, result->accumulator); /* timestamp */
1024
1025 for (i = 0; i < 61; i++)
1026 accumulate_uint32(start + 3 + i, end + 3 + i, result->accumulator + 1 + i);
1027 break;
1028
1029 default:
1030 unreachable("Can't accumulate OA counters in unknown format");
1031 }
1032
1033 }
1034
1035 void
1036 gen_perf_query_result_clear(struct gen_perf_query_result *result)
1037 {
1038 memset(result, 0, sizeof(*result));
1039 result->hw_id = 0xffffffff; /* invalid */
1040 }
1041
1042 static void
1043 register_mdapi_statistic_query(struct gen_perf_config *perf_cfg,
1044 const struct gen_device_info *devinfo)
1045 {
1046 if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
1047 return;
1048
1049 struct gen_perf_query_info *query =
1050 append_query_info(perf_cfg, MAX_STAT_COUNTERS);
1051
1052 query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
1053 query->name = "Intel_Raw_Pipeline_Statistics_Query";
1054
1055 /* The order has to match mdapi_pipeline_metrics. */
1056 add_basic_stat_reg(query, IA_VERTICES_COUNT,
1057 "N vertices submitted");
1058 add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
1059 "N primitives submitted");
1060 add_basic_stat_reg(query, VS_INVOCATION_COUNT,
1061 "N vertex shader invocations");
1062 add_basic_stat_reg(query, GS_INVOCATION_COUNT,
1063 "N geometry shader invocations");
1064 add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
1065 "N geometry shader primitives emitted");
1066 add_basic_stat_reg(query, CL_INVOCATION_COUNT,
1067 "N primitives entering clipping");
1068 add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
1069 "N primitives leaving clipping");
1070 if (devinfo->is_haswell || devinfo->gen == 8) {
1071 add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
1072 "N fragment shader invocations",
1073 "N fragment shader invocations");
1074 } else {
1075 add_basic_stat_reg(query, PS_INVOCATION_COUNT,
1076 "N fragment shader invocations");
1077 }
1078 add_basic_stat_reg(query, HS_INVOCATION_COUNT,
1079 "N TCS shader invocations");
1080 add_basic_stat_reg(query, DS_INVOCATION_COUNT,
1081 "N TES shader invocations");
1082 if (devinfo->gen >= 7) {
1083 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
1084 "N compute shader invocations");
1085 }
1086
1087 if (devinfo->gen >= 10) {
1088 /* Reuse existing CS invocation register until we can expose this new
1089 * one.
1090 */
1091 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
1092 "Reserved1");
1093 }
1094
1095 query->data_size = sizeof(uint64_t) * query->n_counters;
1096 }
1097
1098 static void
1099 fill_mdapi_perf_query_counter(struct gen_perf_query_info *query,
1100 const char *name,
1101 uint32_t data_offset,
1102 uint32_t data_size,
1103 enum gen_perf_counter_data_type data_type)
1104 {
1105 struct gen_perf_query_counter *counter = &query->counters[query->n_counters];
1106
1107 assert(query->n_counters <= query->max_counters);
1108
1109 counter->name = name;
1110 counter->desc = "Raw counter value";
1111 counter->type = GEN_PERF_COUNTER_TYPE_RAW;
1112 counter->data_type = data_type;
1113 counter->offset = data_offset;
1114
1115 query->n_counters++;
1116
1117 assert(counter->offset + gen_perf_query_counter_get_size(counter) <= query->data_size);
1118 }
1119
1120 #define MDAPI_QUERY_ADD_COUNTER(query, struct_name, field_name, type_name) \
1121 fill_mdapi_perf_query_counter(query, #field_name, \
1122 (uint8_t *) &struct_name.field_name - \
1123 (uint8_t *) &struct_name, \
1124 sizeof(struct_name.field_name), \
1125 GEN_PERF_COUNTER_DATA_TYPE_##type_name)
1126 #define MDAPI_QUERY_ADD_ARRAY_COUNTER(ctx, query, struct_name, field_name, idx, type_name) \
1127 fill_mdapi_perf_query_counter(query, \
1128 ralloc_asprintf(ctx, "%s%i", #field_name, idx), \
1129 (uint8_t *) &struct_name.field_name[idx] - \
1130 (uint8_t *) &struct_name, \
1131 sizeof(struct_name.field_name[0]), \
1132 GEN_PERF_COUNTER_DATA_TYPE_##type_name)
1133
1134 static void
1135 register_mdapi_oa_query(const struct gen_device_info *devinfo,
1136 struct gen_perf_config *perf)
1137 {
1138 struct gen_perf_query_info *query = NULL;
1139
1140 /* MDAPI requires different structures for pretty much every generation
1141 * (right now we have definitions for gen 7 to 11).
1142 */
1143 if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
1144 return;
1145
1146 switch (devinfo->gen) {
1147 case 7: {
1148 query = append_query_info(perf, 1 + 45 + 16 + 7);
1149 query->oa_format = I915_OA_FORMAT_A45_B8_C8;
1150
1151 struct gen7_mdapi_metrics metric_data;
1152 query->data_size = sizeof(metric_data);
1153
1154 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1155 for (int i = 0; i < ARRAY_SIZE(metric_data.ACounters); i++) {
1156 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1157 metric_data, ACounters, i, UINT64);
1158 }
1159 for (int i = 0; i < ARRAY_SIZE(metric_data.NOACounters); i++) {
1160 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1161 metric_data, NOACounters, i, UINT64);
1162 }
1163 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1164 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1165 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1166 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1167 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1168 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1169 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1170 break;
1171 }
1172 case 8: {
1173 query = append_query_info(perf, 2 + 36 + 16 + 16);
1174 query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
1175
1176 struct gen8_mdapi_metrics metric_data;
1177 query->data_size = sizeof(metric_data);
1178
1179 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1180 MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
1181 for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
1182 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1183 metric_data, OaCntr, i, UINT64);
1184 }
1185 for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
1186 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1187 metric_data, NoaCntr, i, UINT64);
1188 }
1189 MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
1190 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
1191 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
1192 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
1193 MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
1194 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
1195 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
1196 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
1197 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
1198 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1199 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1200 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1201 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1202 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1203 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1204 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1205 break;
1206 }
1207 case 9:
1208 case 10:
1209 case 11: {
1210 query = append_query_info(perf, 2 + 36 + 16 + 16 + 16 + 2);
1211 query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
1212
1213 struct gen9_mdapi_metrics metric_data;
1214 query->data_size = sizeof(metric_data);
1215
1216 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1217 MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
1218 for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
1219 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1220 metric_data, OaCntr, i, UINT64);
1221 }
1222 for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
1223 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1224 metric_data, NoaCntr, i, UINT64);
1225 }
1226 MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
1227 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
1228 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
1229 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
1230 MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
1231 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
1232 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
1233 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
1234 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
1235 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1236 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1237 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1238 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1239 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1240 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1241 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1242 for (int i = 0; i < ARRAY_SIZE(metric_data.UserCntr); i++) {
1243 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1244 metric_data, UserCntr, i, UINT64);
1245 }
1246 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UserCntrCfgId, UINT32);
1247 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved4, UINT32);
1248 break;
1249 }
1250 default:
1251 unreachable("Unsupported gen");
1252 break;
1253 }
1254
1255 query->kind = GEN_PERF_QUERY_TYPE_RAW;
1256 query->name = "Intel_Raw_Hardware_Counters_Set_0_Query";
1257 query->guid = GEN_PERF_QUERY_GUID_MDAPI;
1258
1259 {
1260 /* Accumulation buffer offsets copied from an actual query... */
1261 const struct gen_perf_query_info *copy_query =
1262 &perf->queries[0];
1263
1264 query->gpu_time_offset = copy_query->gpu_time_offset;
1265 query->gpu_clock_offset = copy_query->gpu_clock_offset;
1266 query->a_offset = copy_query->a_offset;
1267 query->b_offset = copy_query->b_offset;
1268 query->c_offset = copy_query->c_offset;
1269 }
1270 }
1271
1272 static uint64_t
1273 get_metric_id(struct gen_perf_config *perf,
1274 const struct gen_perf_query_info *query)
1275 {
1276 /* These queries are know not to ever change, their config ID has been
1277 * loaded upon the first query creation. No need to look them up again.
1278 */
1279 if (query->kind == GEN_PERF_QUERY_TYPE_OA)
1280 return query->oa_metrics_set_id;
1281
1282 assert(query->kind == GEN_PERF_QUERY_TYPE_RAW);
1283
1284 /* Raw queries can be reprogrammed up by an external application/library.
1285 * When a raw query is used for the first time it's id is set to a value !=
1286 * 0. When it stops being used the id returns to 0. No need to reload the
1287 * ID when it's already loaded.
1288 */
1289 if (query->oa_metrics_set_id != 0) {
1290 DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
1291 query->name, query->guid, query->oa_metrics_set_id);
1292 return query->oa_metrics_set_id;
1293 }
1294
1295 struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query;
1296 if (!gen_perf_load_metric_id(perf, query->guid,
1297 &raw_query->oa_metrics_set_id)) {
1298 DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
1299 raw_query->oa_metrics_set_id = 1ULL;
1300 } else {
1301 DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
1302 query->name, query->guid, query->oa_metrics_set_id);
1303 }
1304 return query->oa_metrics_set_id;
1305 }
1306
1307 static struct oa_sample_buf *
1308 get_free_sample_buf(struct gen_perf_context *perf_ctx)
1309 {
1310 struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
1311 struct oa_sample_buf *buf;
1312
1313 if (node)
1314 buf = exec_node_data(struct oa_sample_buf, node, link);
1315 else {
1316 buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
1317
1318 exec_node_init(&buf->link);
1319 buf->refcount = 0;
1320 buf->len = 0;
1321 }
1322
1323 return buf;
1324 }
1325
1326 static void
1327 reap_old_sample_buffers(struct gen_perf_context *perf_ctx)
1328 {
1329 struct exec_node *tail_node =
1330 exec_list_get_tail(&perf_ctx->sample_buffers);
1331 struct oa_sample_buf *tail_buf =
1332 exec_node_data(struct oa_sample_buf, tail_node, link);
1333
1334 /* Remove all old, unreferenced sample buffers walking forward from
1335 * the head of the list, except always leave at least one node in
1336 * the list so we always have a node to reference when we Begin
1337 * a new query.
1338 */
1339 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
1340 &perf_ctx->sample_buffers)
1341 {
1342 if (buf->refcount == 0 && buf != tail_buf) {
1343 exec_node_remove(&buf->link);
1344 exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
1345 } else
1346 return;
1347 }
1348 }
1349
1350 static void
1351 free_sample_bufs(struct gen_perf_context *perf_ctx)
1352 {
1353 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
1354 &perf_ctx->free_sample_buffers)
1355 ralloc_free(buf);
1356
1357 exec_list_make_empty(&perf_ctx->free_sample_buffers);
1358 }
1359
1360 /******************************************************************************/
1361
1362 /**
1363 * Emit MI_STORE_REGISTER_MEM commands to capture all of the
1364 * pipeline statistics for the performance query object.
1365 */
1366 static void
1367 snapshot_statistics_registers(void *context,
1368 struct gen_perf_config *perf,
1369 struct gen_perf_query_object *obj,
1370 uint32_t offset_in_bytes)
1371 {
1372 const struct gen_perf_query_info *query = obj->queryinfo;
1373 const int n_counters = query->n_counters;
1374
1375 for (int i = 0; i < n_counters; i++) {
1376 const struct gen_perf_query_counter *counter = &query->counters[i];
1377
1378 assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64);
1379
1380 perf->vtbl.store_register_mem64(context, obj->pipeline_stats.bo,
1381 counter->pipeline_stat.reg,
1382 offset_in_bytes + i * sizeof(uint64_t));
1383 }
1384 }
1385
1386 static void
1387 gen_perf_close(struct gen_perf_context *perfquery,
1388 const struct gen_perf_query_info *query)
1389 {
1390 if (perfquery->oa_stream_fd != -1) {
1391 close(perfquery->oa_stream_fd);
1392 perfquery->oa_stream_fd = -1;
1393 }
1394 if (query->kind == GEN_PERF_QUERY_TYPE_RAW) {
1395 struct gen_perf_query_info *raw_query =
1396 (struct gen_perf_query_info *) query;
1397 raw_query->oa_metrics_set_id = 0;
1398 }
1399 }
1400
1401 static bool
1402 gen_perf_open(struct gen_perf_context *perf_ctx,
1403 int metrics_set_id,
1404 int report_format,
1405 int period_exponent,
1406 int drm_fd,
1407 uint32_t ctx_id)
1408 {
1409 uint64_t properties[] = {
1410 /* Single context sampling */
1411 DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
1412
1413 /* Include OA reports in samples */
1414 DRM_I915_PERF_PROP_SAMPLE_OA, true,
1415
1416 /* OA unit configuration */
1417 DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
1418 DRM_I915_PERF_PROP_OA_FORMAT, report_format,
1419 DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
1420 };
1421 struct drm_i915_perf_open_param param = {
1422 .flags = I915_PERF_FLAG_FD_CLOEXEC |
1423 I915_PERF_FLAG_FD_NONBLOCK |
1424 I915_PERF_FLAG_DISABLED,
1425 .num_properties = ARRAY_SIZE(properties) / 2,
1426 .properties_ptr = (uintptr_t) properties,
1427 };
1428 int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
1429 if (fd == -1) {
1430 DBG("Error opening gen perf OA stream: %m\n");
1431 return false;
1432 }
1433
1434 perf_ctx->oa_stream_fd = fd;
1435
1436 perf_ctx->current_oa_metrics_set_id = metrics_set_id;
1437 perf_ctx->current_oa_format = report_format;
1438
1439 return true;
1440 }
1441
1442 static bool
1443 inc_n_users(struct gen_perf_context *perf_ctx)
1444 {
1445 if (perf_ctx->n_oa_users == 0 &&
1446 gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
1447 {
1448 return false;
1449 }
1450 ++perf_ctx->n_oa_users;
1451
1452 return true;
1453 }
1454
1455 static void
1456 dec_n_users(struct gen_perf_context *perf_ctx)
1457 {
1458 /* Disabling the i915 perf stream will effectively disable the OA
1459 * counters. Note it's important to be sure there are no outstanding
1460 * MI_RPC commands at this point since they could stall the CS
1461 * indefinitely once OACONTROL is disabled.
1462 */
1463 --perf_ctx->n_oa_users;
1464 if (perf_ctx->n_oa_users == 0 &&
1465 gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
1466 {
1467 DBG("WARNING: Error disabling gen perf stream: %m\n");
1468 }
1469 }
1470
1471 void
1472 gen_perf_init_metrics(struct gen_perf_config *perf_cfg,
1473 const struct gen_device_info *devinfo,
1474 int drm_fd)
1475 {
1476 load_pipeline_statistic_metrics(perf_cfg, devinfo);
1477 register_mdapi_statistic_query(perf_cfg, devinfo);
1478 if (load_oa_metrics(perf_cfg, drm_fd, devinfo))
1479 register_mdapi_oa_query(devinfo, perf_cfg);
1480 }
1481
1482 void
1483 gen_perf_init_context(struct gen_perf_context *perf_ctx,
1484 struct gen_perf_config *perf_cfg,
1485 void * ctx, /* driver context (eg, brw_context) */
1486 void * bufmgr, /* eg brw_bufmgr */
1487 const struct gen_device_info *devinfo,
1488 uint32_t hw_ctx,
1489 int drm_fd)
1490 {
1491 perf_ctx->perf = perf_cfg;
1492 perf_ctx->ctx = ctx;
1493 perf_ctx->bufmgr = bufmgr;
1494 perf_ctx->drm_fd = drm_fd;
1495 perf_ctx->hw_ctx = hw_ctx;
1496 perf_ctx->devinfo = devinfo;
1497
1498 perf_ctx->unaccumulated =
1499 ralloc_array(ctx, struct gen_perf_query_object *, 2);
1500 perf_ctx->unaccumulated_elements = 0;
1501 perf_ctx->unaccumulated_array_size = 2;
1502
1503 exec_list_make_empty(&perf_ctx->sample_buffers);
1504 exec_list_make_empty(&perf_ctx->free_sample_buffers);
1505
1506 /* It's convenient to guarantee that this linked list of sample
1507 * buffers is never empty so we add an empty head so when we
1508 * Begin an OA query we can always take a reference on a buffer
1509 * in this list.
1510 */
1511 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1512 exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
1513
1514 perf_ctx->oa_stream_fd = -1;
1515 perf_ctx->next_query_start_report_id = 1000;
1516 }
1517
1518 /**
1519 * Add a query to the global list of "unaccumulated queries."
1520 *
1521 * Queries are tracked here until all the associated OA reports have
1522 * been accumulated via accumulate_oa_reports() after the end
1523 * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
1524 */
1525 static void
1526 add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
1527 struct gen_perf_query_object *obj)
1528 {
1529 if (perf_ctx->unaccumulated_elements >=
1530 perf_ctx->unaccumulated_array_size)
1531 {
1532 perf_ctx->unaccumulated_array_size *= 1.5;
1533 perf_ctx->unaccumulated =
1534 reralloc(perf_ctx->ctx, perf_ctx->unaccumulated,
1535 struct gen_perf_query_object *,
1536 perf_ctx->unaccumulated_array_size);
1537 }
1538
1539 perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
1540 }
1541
1542 bool
1543 gen_perf_begin_query(struct gen_perf_context *perf_ctx,
1544 struct gen_perf_query_object *query)
1545 {
1546 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1547 const struct gen_perf_query_info *queryinfo = query->queryinfo;
1548
1549 /* XXX: We have to consider that the command parser unit that parses batch
1550 * buffer commands and is used to capture begin/end counter snapshots isn't
1551 * implicitly synchronized with what's currently running across other GPU
1552 * units (such as the EUs running shaders) that the performance counters are
1553 * associated with.
1554 *
1555 * The intention of performance queries is to measure the work associated
1556 * with commands between the begin/end delimiters and so for that to be the
1557 * case we need to explicitly synchronize the parsing of commands to capture
1558 * Begin/End counter snapshots with what's running across other parts of the
1559 * GPU.
1560 *
1561 * When the command parser reaches a Begin marker it effectively needs to
1562 * drain everything currently running on the GPU until the hardware is idle
1563 * before capturing the first snapshot of counters - otherwise the results
1564 * would also be measuring the effects of earlier commands.
1565 *
1566 * When the command parser reaches an End marker it needs to stall until
1567 * everything currently running on the GPU has finished before capturing the
1568 * end snapshot - otherwise the results won't be a complete representation
1569 * of the work.
1570 *
1571 * Theoretically there could be opportunities to minimize how much of the
1572 * GPU pipeline is drained, or that we stall for, when we know what specific
1573 * units the performance counters being queried relate to but we don't
1574 * currently attempt to be clever here.
1575 *
1576 * Note: with our current simple approach here then for back-to-back queries
1577 * we will redundantly emit duplicate commands to synchronize the command
1578 * streamer with the rest of the GPU pipeline, but we assume that in HW the
1579 * second synchronization is effectively a NOOP.
1580 *
1581 * N.B. The final results are based on deltas of counters between (inside)
1582 * Begin/End markers so even though the total wall clock time of the
1583 * workload is stretched by larger pipeline bubbles the bubbles themselves
1584 * are generally invisible to the query results. Whether that's a good or a
1585 * bad thing depends on the use case. For a lower real-time impact while
1586 * capturing metrics then periodic sampling may be a better choice than
1587 * INTEL_performance_query.
1588 *
1589 *
1590 * This is our Begin synchronization point to drain current work on the
1591 * GPU before we capture our first counter snapshot...
1592 */
1593 perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
1594
1595 switch (queryinfo->kind) {
1596 case GEN_PERF_QUERY_TYPE_OA:
1597 case GEN_PERF_QUERY_TYPE_RAW: {
1598
1599 /* Opening an i915 perf stream implies exclusive access to the OA unit
1600 * which will generate counter reports for a specific counter set with a
1601 * specific layout/format so we can't begin any OA based queries that
1602 * require a different counter set or format unless we get an opportunity
1603 * to close the stream and open a new one...
1604 */
1605 uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
1606
1607 if (perf_ctx->oa_stream_fd != -1 &&
1608 perf_ctx->current_oa_metrics_set_id != metric_id) {
1609
1610 if (perf_ctx->n_oa_users != 0) {
1611 DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
1612 perf_ctx->current_oa_metrics_set_id, metric_id);
1613 return false;
1614 } else
1615 gen_perf_close(perf_ctx, queryinfo);
1616 }
1617
1618 /* If the OA counters aren't already on, enable them. */
1619 if (perf_ctx->oa_stream_fd == -1) {
1620 const struct gen_device_info *devinfo = perf_ctx->devinfo;
1621
1622 /* The period_exponent gives a sampling period as follows:
1623 * sample_period = timestamp_period * 2^(period_exponent + 1)
1624 *
1625 * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
1626 * ~83ns (GEN8/9).
1627 *
1628 * The counter overflow period is derived from the EuActive counter
1629 * which reads a counter that increments by the number of clock
1630 * cycles multiplied by the number of EUs. It can be calculated as:
1631 *
1632 * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
1633 *
1634 * (E.g. 40 EUs @ 1GHz = ~53ms)
1635 *
1636 * We select a sampling period inferior to that overflow period to
1637 * ensure we cannot see more than 1 counter overflow, otherwise we
1638 * could loose information.
1639 */
1640
1641 int a_counter_in_bits = 32;
1642 if (devinfo->gen >= 8)
1643 a_counter_in_bits = 40;
1644
1645 uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
1646 /* drop 1GHz freq to have units in nanoseconds */
1647 2);
1648
1649 DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
1650 overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
1651
1652 int period_exponent = 0;
1653 uint64_t prev_sample_period, next_sample_period;
1654 for (int e = 0; e < 30; e++) {
1655 prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
1656 next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
1657
1658 /* Take the previous sampling period, lower than the overflow
1659 * period.
1660 */
1661 if (prev_sample_period < overflow_period &&
1662 next_sample_period > overflow_period)
1663 period_exponent = e + 1;
1664 }
1665
1666 if (period_exponent == 0) {
1667 DBG("WARNING: enable to find a sampling exponent\n");
1668 return false;
1669 }
1670
1671 DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
1672 prev_sample_period / 1000000ul);
1673
1674 if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
1675 period_exponent, perf_ctx->drm_fd,
1676 perf_ctx->hw_ctx))
1677 return false;
1678 } else {
1679 assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
1680 perf_ctx->current_oa_format == queryinfo->oa_format);
1681 }
1682
1683 if (!inc_n_users(perf_ctx)) {
1684 DBG("WARNING: Error enabling i915 perf stream: %m\n");
1685 return false;
1686 }
1687
1688 if (query->oa.bo) {
1689 perf_cfg->vtbl.bo_unreference(query->oa.bo);
1690 query->oa.bo = NULL;
1691 }
1692
1693 query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
1694 "perf. query OA MI_RPC bo",
1695 MI_RPC_BO_SIZE);
1696 #ifdef DEBUG
1697 /* Pre-filling the BO helps debug whether writes landed. */
1698 void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
1699 memset(map, 0x80, MI_RPC_BO_SIZE);
1700 perf_cfg->vtbl.bo_unmap(query->oa.bo);
1701 #endif
1702
1703 query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
1704 perf_ctx->next_query_start_report_id += 2;
1705
1706 /* We flush the batchbuffer here to minimize the chances that MI_RPC
1707 * delimiting commands end up in different batchbuffers. If that's the
1708 * case, the measurement will include the time it takes for the kernel
1709 * scheduler to load a new request into the hardware. This is manifested in
1710 * tools like frameretrace by spikes in the "GPU Core Clocks" counter.
1711 */
1712 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1713
1714 /* Take a starting OA counter snapshot. */
1715 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0,
1716 query->oa.begin_report_id);
1717 perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
1718 MI_FREQ_START_OFFSET_BYTES);
1719
1720 ++perf_ctx->n_active_oa_queries;
1721
1722 /* No already-buffered samples can possibly be associated with this query
1723 * so create a marker within the list of sample buffers enabling us to
1724 * easily ignore earlier samples when processing this query after
1725 * completion.
1726 */
1727 assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
1728 query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
1729
1730 struct oa_sample_buf *buf =
1731 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
1732
1733 /* This reference will ensure that future/following sample
1734 * buffers (that may relate to this query) can't be freed until
1735 * this drops to zero.
1736 */
1737 buf->refcount++;
1738
1739 gen_perf_query_result_clear(&query->oa.result);
1740 query->oa.results_accumulated = false;
1741
1742 add_to_unaccumulated_query_list(perf_ctx, query);
1743 break;
1744 }
1745
1746 case GEN_PERF_QUERY_TYPE_PIPELINE:
1747 if (query->pipeline_stats.bo) {
1748 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
1749 query->pipeline_stats.bo = NULL;
1750 }
1751
1752 query->pipeline_stats.bo =
1753 perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
1754 "perf. query pipeline stats bo",
1755 STATS_BO_SIZE);
1756
1757 /* Take starting snapshots. */
1758 snapshot_statistics_registers(perf_ctx->ctx , perf_cfg, query, 0);
1759
1760 ++perf_ctx->n_active_pipeline_stats_queries;
1761 break;
1762
1763 default:
1764 unreachable("Unknown query type");
1765 break;
1766 }
1767
1768 return true;
1769 }
1770
1771 void
1772 gen_perf_end_query(struct gen_perf_context *perf_ctx,
1773 struct gen_perf_query_object *query)
1774 {
1775 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1776
1777 /* Ensure that the work associated with the queried commands will have
1778 * finished before taking our query end counter readings.
1779 *
1780 * For more details see comment in brw_begin_perf_query for
1781 * corresponding flush.
1782 */
1783 perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
1784
1785 switch (query->queryinfo->kind) {
1786 case GEN_PERF_QUERY_TYPE_OA:
1787 case GEN_PERF_QUERY_TYPE_RAW:
1788
1789 /* NB: It's possible that the query will have already been marked
1790 * as 'accumulated' if an error was seen while reading samples
1791 * from perf. In this case we mustn't try and emit a closing
1792 * MI_RPC command in case the OA unit has already been disabled
1793 */
1794 if (!query->oa.results_accumulated) {
1795 /* Take an ending OA counter snapshot. */
1796 perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
1797 MI_FREQ_END_OFFSET_BYTES);
1798 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
1799 MI_RPC_BO_END_OFFSET_BYTES,
1800 query->oa.begin_report_id + 1);
1801 }
1802
1803 --perf_ctx->n_active_oa_queries;
1804
1805 /* NB: even though the query has now ended, it can't be accumulated
1806 * until the end MI_REPORT_PERF_COUNT snapshot has been written
1807 * to query->oa.bo
1808 */
1809 break;
1810
1811 case GEN_PERF_QUERY_TYPE_PIPELINE:
1812 snapshot_statistics_registers(perf_ctx->ctx, perf_cfg, query,
1813 STATS_BO_END_OFFSET_BYTES);
1814 --perf_ctx->n_active_pipeline_stats_queries;
1815 break;
1816
1817 default:
1818 unreachable("Unknown query type");
1819 break;
1820 }
1821 }
1822
1823 enum OaReadStatus {
1824 OA_READ_STATUS_ERROR,
1825 OA_READ_STATUS_UNFINISHED,
1826 OA_READ_STATUS_FINISHED,
1827 };
1828
1829 static enum OaReadStatus
1830 read_oa_samples_until(struct gen_perf_context *perf_ctx,
1831 uint32_t start_timestamp,
1832 uint32_t end_timestamp)
1833 {
1834 struct exec_node *tail_node =
1835 exec_list_get_tail(&perf_ctx->sample_buffers);
1836 struct oa_sample_buf *tail_buf =
1837 exec_node_data(struct oa_sample_buf, tail_node, link);
1838 uint32_t last_timestamp = tail_buf->last_timestamp;
1839
1840 while (1) {
1841 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1842 uint32_t offset;
1843 int len;
1844
1845 while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
1846 sizeof(buf->buf))) < 0 && errno == EINTR)
1847 ;
1848
1849 if (len <= 0) {
1850 exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
1851
1852 if (len < 0) {
1853 if (errno == EAGAIN)
1854 return ((last_timestamp - start_timestamp) >=
1855 (end_timestamp - start_timestamp)) ?
1856 OA_READ_STATUS_FINISHED :
1857 OA_READ_STATUS_UNFINISHED;
1858 else {
1859 DBG("Error reading i915 perf samples: %m\n");
1860 }
1861 } else
1862 DBG("Spurious EOF reading i915 perf samples\n");
1863
1864 return OA_READ_STATUS_ERROR;
1865 }
1866
1867 buf->len = len;
1868 exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
1869
1870 /* Go through the reports and update the last timestamp. */
1871 offset = 0;
1872 while (offset < buf->len) {
1873 const struct drm_i915_perf_record_header *header =
1874 (const struct drm_i915_perf_record_header *) &buf->buf[offset];
1875 uint32_t *report = (uint32_t *) (header + 1);
1876
1877 if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
1878 last_timestamp = report[1];
1879
1880 offset += header->size;
1881 }
1882
1883 buf->last_timestamp = last_timestamp;
1884 }
1885
1886 unreachable("not reached");
1887 return OA_READ_STATUS_ERROR;
1888 }
1889
1890 /**
1891 * Try to read all the reports until either the delimiting timestamp
1892 * or an error arises.
1893 */
1894 static bool
1895 read_oa_samples_for_query(struct gen_perf_context *perf_ctx,
1896 struct gen_perf_query_object *query,
1897 void *current_batch)
1898 {
1899 uint32_t *start;
1900 uint32_t *last;
1901 uint32_t *end;
1902 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1903
1904 /* We need the MI_REPORT_PERF_COUNT to land before we can start
1905 * accumulate. */
1906 assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1907 !perf_cfg->vtbl.bo_busy(query->oa.bo));
1908
1909 /* Map the BO once here and let accumulate_oa_reports() unmap
1910 * it. */
1911 if (query->oa.map == NULL)
1912 query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
1913
1914 start = last = query->oa.map;
1915 end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
1916
1917 if (start[0] != query->oa.begin_report_id) {
1918 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1919 return true;
1920 }
1921 if (end[0] != (query->oa.begin_report_id + 1)) {
1922 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1923 return true;
1924 }
1925
1926 /* Read the reports until the end timestamp. */
1927 switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
1928 case OA_READ_STATUS_ERROR:
1929 /* Fallthrough and let accumulate_oa_reports() deal with the
1930 * error. */
1931 case OA_READ_STATUS_FINISHED:
1932 return true;
1933 case OA_READ_STATUS_UNFINISHED:
1934 return false;
1935 }
1936
1937 unreachable("invalid read status");
1938 return false;
1939 }
1940
1941 void
1942 gen_perf_wait_query(struct gen_perf_context *perf_ctx,
1943 struct gen_perf_query_object *query,
1944 void *current_batch)
1945 {
1946 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1947 struct brw_bo *bo = NULL;
1948
1949 switch (query->queryinfo->kind) {
1950 case GEN_PERF_QUERY_TYPE_OA:
1951 case GEN_PERF_QUERY_TYPE_RAW:
1952 bo = query->oa.bo;
1953 break;
1954
1955 case GEN_PERF_QUERY_TYPE_PIPELINE:
1956 bo = query->pipeline_stats.bo;
1957 break;
1958
1959 default:
1960 unreachable("Unknown query type");
1961 break;
1962 }
1963
1964 if (bo == NULL)
1965 return;
1966
1967 /* If the current batch references our results bo then we need to
1968 * flush first...
1969 */
1970 if (perf_cfg->vtbl.batch_references(current_batch, bo))
1971 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1972
1973 perf_cfg->vtbl.bo_wait_rendering(bo);
1974
1975 /* Due to a race condition between the OA unit signaling report
1976 * availability and the report actually being written into memory,
1977 * we need to wait for all the reports to come in before we can
1978 * read them.
1979 */
1980 if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA ||
1981 query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) {
1982 while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
1983 ;
1984 }
1985 }
1986
1987 bool
1988 gen_perf_is_query_ready(struct gen_perf_context *perf_ctx,
1989 struct gen_perf_query_object *query,
1990 void *current_batch)
1991 {
1992 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1993
1994 switch (query->queryinfo->kind) {
1995 case GEN_PERF_QUERY_TYPE_OA:
1996 case GEN_PERF_QUERY_TYPE_RAW:
1997 return (query->oa.results_accumulated ||
1998 (query->oa.bo &&
1999 !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
2000 !perf_cfg->vtbl.bo_busy(query->oa.bo) &&
2001 read_oa_samples_for_query(perf_ctx, query, current_batch)));
2002 case GEN_PERF_QUERY_TYPE_PIPELINE:
2003 return (query->pipeline_stats.bo &&
2004 !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
2005 !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
2006
2007 default:
2008 unreachable("Unknown query type");
2009 break;
2010 }
2011
2012 return false;
2013 }
2014
2015 /**
2016 * Remove a query from the global list of unaccumulated queries once
2017 * after successfully accumulating the OA reports associated with the
2018 * query in accumulate_oa_reports() or when discarding unwanted query
2019 * results.
2020 */
2021 static void
2022 drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
2023 struct gen_perf_query_object *query)
2024 {
2025 for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
2026 if (perf_ctx->unaccumulated[i] == query) {
2027 int last_elt = --perf_ctx->unaccumulated_elements;
2028
2029 if (i == last_elt)
2030 perf_ctx->unaccumulated[i] = NULL;
2031 else {
2032 perf_ctx->unaccumulated[i] =
2033 perf_ctx->unaccumulated[last_elt];
2034 }
2035
2036 break;
2037 }
2038 }
2039
2040 /* Drop our samples_head reference so that associated periodic
2041 * sample data buffers can potentially be reaped if they aren't
2042 * referenced by any other queries...
2043 */
2044
2045 struct oa_sample_buf *buf =
2046 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
2047
2048 assert(buf->refcount > 0);
2049 buf->refcount--;
2050
2051 query->oa.samples_head = NULL;
2052
2053 reap_old_sample_buffers(perf_ctx);
2054 }
2055
2056 /* In general if we see anything spurious while accumulating results,
2057 * we don't try and continue accumulating the current query, hoping
2058 * for the best, we scrap anything outstanding, and then hope for the
2059 * best with new queries.
2060 */
2061 static void
2062 discard_all_queries(struct gen_perf_context *perf_ctx)
2063 {
2064 while (perf_ctx->unaccumulated_elements) {
2065 struct gen_perf_query_object *query = perf_ctx->unaccumulated[0];
2066
2067 query->oa.results_accumulated = true;
2068 drop_from_unaccumulated_query_list(perf_ctx, query);
2069
2070 dec_n_users(perf_ctx);
2071 }
2072 }
2073
2074 /**
2075 * Accumulate raw OA counter values based on deltas between pairs of
2076 * OA reports.
2077 *
2078 * Accumulation starts from the first report captured via
2079 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
2080 * last MI_RPC report requested by brw_end_perf_query(). Between these
2081 * two reports there may also some number of periodically sampled OA
2082 * reports collected via the i915 perf interface - depending on the
2083 * duration of the query.
2084 *
2085 * These periodic snapshots help to ensure we handle counter overflow
2086 * correctly by being frequent enough to ensure we don't miss multiple
2087 * overflows of a counter between snapshots. For Gen8+ the i915 perf
2088 * snapshots provide the extra context-switch reports that let us
2089 * subtract out the progress of counters associated with other
2090 * contexts running on the system.
2091 */
2092 static void
2093 accumulate_oa_reports(struct gen_perf_context *perf_ctx,
2094 struct gen_perf_query_object *query)
2095 {
2096 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2097 uint32_t *start;
2098 uint32_t *last;
2099 uint32_t *end;
2100 struct exec_node *first_samples_node;
2101 bool in_ctx = true;
2102 int out_duration = 0;
2103
2104 assert(query->oa.map != NULL);
2105
2106 start = last = query->oa.map;
2107 end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
2108
2109 if (start[0] != query->oa.begin_report_id) {
2110 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
2111 goto error;
2112 }
2113 if (end[0] != (query->oa.begin_report_id + 1)) {
2114 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
2115 goto error;
2116 }
2117
2118 /* See if we have any periodic reports to accumulate too... */
2119
2120 /* N.B. The oa.samples_head was set when the query began and
2121 * pointed to the tail of the perf_ctx->sample_buffers list at
2122 * the time the query started. Since the buffer existed before the
2123 * first MI_REPORT_PERF_COUNT command was emitted we therefore know
2124 * that no data in this particular node's buffer can possibly be
2125 * associated with the query - so skip ahead one...
2126 */
2127 first_samples_node = query->oa.samples_head->next;
2128
2129 foreach_list_typed_from(struct oa_sample_buf, buf, link,
2130 &perf_ctx.sample_buffers,
2131 first_samples_node)
2132 {
2133 int offset = 0;
2134
2135 while (offset < buf->len) {
2136 const struct drm_i915_perf_record_header *header =
2137 (const struct drm_i915_perf_record_header *)(buf->buf + offset);
2138
2139 assert(header->size != 0);
2140 assert(header->size <= buf->len);
2141
2142 offset += header->size;
2143
2144 switch (header->type) {
2145 case DRM_I915_PERF_RECORD_SAMPLE: {
2146 uint32_t *report = (uint32_t *)(header + 1);
2147 bool add = true;
2148
2149 /* Ignore reports that come before the start marker.
2150 * (Note: takes care to allow overflow of 32bit timestamps)
2151 */
2152 if (gen_device_info_timebase_scale(devinfo,
2153 report[1] - start[1]) > 5000000000) {
2154 continue;
2155 }
2156
2157 /* Ignore reports that come after the end marker.
2158 * (Note: takes care to allow overflow of 32bit timestamps)
2159 */
2160 if (gen_device_info_timebase_scale(devinfo,
2161 report[1] - end[1]) <= 5000000000) {
2162 goto end;
2163 }
2164
2165 /* For Gen8+ since the counters continue while other
2166 * contexts are running we need to discount any unrelated
2167 * deltas. The hardware automatically generates a report
2168 * on context switch which gives us a new reference point
2169 * to continuing adding deltas from.
2170 *
2171 * For Haswell we can rely on the HW to stop the progress
2172 * of OA counters while any other context is acctive.
2173 */
2174 if (devinfo->gen >= 8) {
2175 if (in_ctx && report[2] != query->oa.result.hw_id) {
2176 DBG("i915 perf: Switch AWAY (observed by ID change)\n");
2177 in_ctx = false;
2178 out_duration = 0;
2179 } else if (in_ctx == false && report[2] == query->oa.result.hw_id) {
2180 DBG("i915 perf: Switch TO\n");
2181 in_ctx = true;
2182
2183 /* From experimentation in IGT, we found that the OA unit
2184 * might label some report as "idle" (using an invalid
2185 * context ID), right after a report for a given context.
2186 * Deltas generated by those reports actually belong to the
2187 * previous context, even though they're not labelled as
2188 * such.
2189 *
2190 * We didn't *really* Switch AWAY in the case that we e.g.
2191 * saw a single periodic report while idle...
2192 */
2193 if (out_duration >= 1)
2194 add = false;
2195 } else if (in_ctx) {
2196 assert(report[2] == query->oa.result.hw_id);
2197 DBG("i915 perf: Continuation IN\n");
2198 } else {
2199 assert(report[2] != query->oa.result.hw_id);
2200 DBG("i915 perf: Continuation OUT\n");
2201 add = false;
2202 out_duration++;
2203 }
2204 }
2205
2206 if (add) {
2207 gen_perf_query_result_accumulate(&query->oa.result,
2208 query->queryinfo,
2209 last, report);
2210 }
2211
2212 last = report;
2213
2214 break;
2215 }
2216
2217 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
2218 DBG("i915 perf: OA error: all reports lost\n");
2219 goto error;
2220 case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
2221 DBG("i915 perf: OA report lost\n");
2222 break;
2223 }
2224 }
2225 }
2226
2227 end:
2228
2229 gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
2230 last, end);
2231
2232 query->oa.results_accumulated = true;
2233 drop_from_unaccumulated_query_list(perf_ctx, query);
2234 dec_n_users(perf_ctx);
2235
2236 return;
2237
2238 error:
2239
2240 discard_all_queries(perf_ctx);
2241 }
2242
2243 void
2244 gen_perf_delete_query(struct gen_perf_context *perf_ctx,
2245 struct gen_perf_query_object *query)
2246 {
2247 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2248
2249 /* We can assume that the frontend waits for a query to complete
2250 * before ever calling into here, so we don't have to worry about
2251 * deleting an in-flight query object.
2252 */
2253 switch (query->queryinfo->kind) {
2254 case GEN_PERF_QUERY_TYPE_OA:
2255 case GEN_PERF_QUERY_TYPE_RAW:
2256 if (query->oa.bo) {
2257 if (!query->oa.results_accumulated) {
2258 drop_from_unaccumulated_query_list(perf_ctx, query);
2259 dec_n_users(perf_ctx);
2260 }
2261
2262 perf_cfg->vtbl.bo_unreference(query->oa.bo);
2263 query->oa.bo = NULL;
2264 }
2265
2266 query->oa.results_accumulated = false;
2267 break;
2268
2269 case GEN_PERF_QUERY_TYPE_PIPELINE:
2270 if (query->pipeline_stats.bo) {
2271 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
2272 query->pipeline_stats.bo = NULL;
2273 }
2274 break;
2275
2276 default:
2277 unreachable("Unknown query type");
2278 break;
2279 }
2280
2281 /* As an indication that the INTEL_performance_query extension is no
2282 * longer in use, it's a good time to free our cache of sample
2283 * buffers and close any current i915-perf stream.
2284 */
2285 if (--perf_ctx->n_query_instances == 0) {
2286 free_sample_bufs(perf_ctx);
2287 gen_perf_close(perf_ctx, query->queryinfo);
2288 }
2289
2290 free(query);
2291 }
2292
2293 #define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
2294
2295 static void
2296 read_gt_frequency(struct gen_perf_context *perf_ctx,
2297 struct gen_perf_query_object *obj)
2298 {
2299 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2300 uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)),
2301 end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES));
2302
2303 switch (devinfo->gen) {
2304 case 7:
2305 case 8:
2306 obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
2307 obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
2308 break;
2309 case 9:
2310 case 10:
2311 case 11:
2312 obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
2313 obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
2314 break;
2315 default:
2316 unreachable("unexpected gen");
2317 }
2318
2319 /* Put the numbers into Hz. */
2320 obj->oa.gt_frequency[0] *= 1000000ULL;
2321 obj->oa.gt_frequency[1] *= 1000000ULL;
2322 }
2323
2324 static int
2325 get_oa_counter_data(struct gen_perf_context *perf_ctx,
2326 struct gen_perf_query_object *query,
2327 size_t data_size,
2328 uint8_t *data)
2329 {
2330 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2331 const struct gen_perf_query_info *queryinfo = query->queryinfo;
2332 int n_counters = queryinfo->n_counters;
2333 int written = 0;
2334
2335 for (int i = 0; i < n_counters; i++) {
2336 const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
2337 uint64_t *out_uint64;
2338 float *out_float;
2339 size_t counter_size = gen_perf_query_counter_get_size(counter);
2340
2341 if (counter_size) {
2342 switch (counter->data_type) {
2343 case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
2344 out_uint64 = (uint64_t *)(data + counter->offset);
2345 *out_uint64 =
2346 counter->oa_counter_read_uint64(perf_cfg, queryinfo,
2347 query->oa.result.accumulator);
2348 break;
2349 case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
2350 out_float = (float *)(data + counter->offset);
2351 *out_float =
2352 counter->oa_counter_read_float(perf_cfg, queryinfo,
2353 query->oa.result.accumulator);
2354 break;
2355 default:
2356 /* So far we aren't using uint32, double or bool32... */
2357 unreachable("unexpected counter data type");
2358 }
2359 written = counter->offset + counter_size;
2360 }
2361 }
2362
2363 return written;
2364 }
2365
2366 static int
2367 get_pipeline_stats_data(struct gen_perf_context *perf_ctx,
2368 struct gen_perf_query_object *query,
2369 size_t data_size,
2370 uint8_t *data)
2371
2372 {
2373 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2374 const struct gen_perf_query_info *queryinfo = query->queryinfo;
2375 int n_counters = queryinfo->n_counters;
2376 uint8_t *p = data;
2377
2378 uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
2379 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
2380
2381 for (int i = 0; i < n_counters; i++) {
2382 const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
2383 uint64_t value = end[i] - start[i];
2384
2385 if (counter->pipeline_stat.numerator !=
2386 counter->pipeline_stat.denominator) {
2387 value *= counter->pipeline_stat.numerator;
2388 value /= counter->pipeline_stat.denominator;
2389 }
2390
2391 *((uint64_t *)p) = value;
2392 p += 8;
2393 }
2394
2395 perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
2396
2397 return p - data;
2398 }
2399
2400 void
2401 gen_perf_get_query_data(struct gen_perf_context *perf_ctx,
2402 struct gen_perf_query_object *query,
2403 int data_size,
2404 unsigned *data,
2405 unsigned *bytes_written)
2406 {
2407 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2408 int written = 0;
2409
2410 switch (query->queryinfo->kind) {
2411 case GEN_PERF_QUERY_TYPE_OA:
2412 case GEN_PERF_QUERY_TYPE_RAW:
2413 if (!query->oa.results_accumulated) {
2414 read_gt_frequency(perf_ctx, query);
2415 uint32_t *begin_report = query->oa.map;
2416 uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
2417 gen_perf_query_result_read_frequencies(&query->oa.result,
2418 perf_ctx->devinfo,
2419 begin_report,
2420 end_report);
2421 accumulate_oa_reports(perf_ctx, query);
2422 assert(query->oa.results_accumulated);
2423
2424 perf_cfg->vtbl.bo_unmap(query->oa.bo);
2425 query->oa.map = NULL;
2426 }
2427 if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) {
2428 written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
2429 } else {
2430 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2431
2432 written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size,
2433 devinfo, &query->oa.result,
2434 query->oa.gt_frequency[0],
2435 query->oa.gt_frequency[1]);
2436 }
2437 break;
2438
2439 case GEN_PERF_QUERY_TYPE_PIPELINE:
2440 written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
2441 break;
2442
2443 default:
2444 unreachable("Unknown query type");
2445 break;
2446 }
2447
2448 if (bytes_written)
2449 *bytes_written = written;
2450 }
2451
2452 void
2453 gen_perf_dump_query_count(struct gen_perf_context *perf_ctx)
2454 {
2455 DBG("Queries: (Open queries = %d, OA users = %d)\n",
2456 perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
2457 }
2458
2459 void
2460 gen_perf_dump_query(struct gen_perf_context *ctx,
2461 struct gen_perf_query_object *obj,
2462 void *current_batch)
2463 {
2464 switch (obj->queryinfo->kind) {
2465 case GEN_PERF_QUERY_TYPE_OA:
2466 case GEN_PERF_QUERY_TYPE_RAW:
2467 DBG("BO: %-4s OA data: %-10s %-15s\n",
2468 obj->oa.bo ? "yes," : "no,",
2469 gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
2470 obj->oa.results_accumulated ? "accumulated" : "not accumulated");
2471 break;
2472 case GEN_PERF_QUERY_TYPE_PIPELINE:
2473 DBG("BO: %-4s\n",
2474 obj->pipeline_stats.bo ? "yes" : "no");
2475 break;
2476 default:
2477 unreachable("Unknown query type");
2478 break;
2479 }
2480 }