anv: Use an actual binding for gl_NumWorkgroups
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <linux/memfd.h>
29 #include <sys/mman.h>
30
31 #include "anv_private.h"
32
33 #include "util/hash_table.h"
34 #include "util/simple_mtx.h"
35
36 #ifdef HAVE_VALGRIND
37 #define VG_NOACCESS_READ(__ptr) ({ \
38 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39 __typeof(*(__ptr)) __val = *(__ptr); \
40 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41 __val; \
42 })
43 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
44 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
45 *(__ptr) = (__val); \
46 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
47 })
48 #else
49 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
50 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51 #endif
52
53 /* Design goals:
54 *
55 * - Lock free (except when resizing underlying bos)
56 *
57 * - Constant time allocation with typically only one atomic
58 *
59 * - Multiple allocation sizes without fragmentation
60 *
61 * - Can grow while keeping addresses and offset of contents stable
62 *
63 * - All allocations within one bo so we can point one of the
64 * STATE_BASE_ADDRESS pointers at it.
65 *
66 * The overall design is a two-level allocator: top level is a fixed size, big
67 * block (8k) allocator, which operates out of a bo. Allocation is done by
68 * either pulling a block from the free list or growing the used range of the
69 * bo. Growing the range may run out of space in the bo which we then need to
70 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
71 * we need to keep all pointers and contents in the old map valid. GEM bos in
72 * general can't grow, but we use a trick: we create a memfd and use ftruncate
73 * to grow it as necessary. We mmap the new size and then create a gem bo for
74 * it using the new gem userptr ioctl. Without heavy-handed locking around
75 * our allocation fast-path, there isn't really a way to munmap the old mmap,
76 * so we just keep it around until garbage collection time. While the block
77 * allocator is lockless for normal operations, we block other threads trying
78 * to allocate while we're growing the map. It sholdn't happen often, and
79 * growing is fast anyway.
80 *
81 * At the next level we can use various sub-allocators. The state pool is a
82 * pool of smaller, fixed size objects, which operates much like the block
83 * pool. It uses a free list for freeing objects, but when it runs out of
84 * space it just allocates a new block from the block pool. This allocator is
85 * intended for longer lived state objects such as SURFACE_STATE and most
86 * other persistent state objects in the API. We may need to track more info
87 * with these object and a pointer back to the CPU object (eg VkImage). In
88 * those cases we just allocate a slightly bigger object and put the extra
89 * state after the GPU state object.
90 *
91 * The state stream allocator works similar to how the i965 DRI driver streams
92 * all its state. Even with Vulkan, we need to emit transient state (whether
93 * surface state base or dynamic state base), and for that we can just get a
94 * block and fill it up. These cases are local to a command buffer and the
95 * sub-allocator need not be thread safe. The streaming allocator gets a new
96 * block when it runs out of space and chains them together so they can be
97 * easily freed.
98 */
99
100 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
101 * We use it to indicate the free list is empty. */
102 #define EMPTY UINT32_MAX
103
104 #define PAGE_SIZE 4096
105
106 struct anv_mmap_cleanup {
107 void *map;
108 size_t size;
109 uint32_t gem_handle;
110 };
111
112 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
113
114 #ifndef HAVE_MEMFD_CREATE
115 static inline int
116 memfd_create(const char *name, unsigned int flags)
117 {
118 return syscall(SYS_memfd_create, name, flags);
119 }
120 #endif
121
122 static inline uint32_t
123 ilog2_round_up(uint32_t value)
124 {
125 assert(value != 0);
126 return 32 - __builtin_clz(value - 1);
127 }
128
129 static inline uint32_t
130 round_to_power_of_two(uint32_t value)
131 {
132 return 1 << ilog2_round_up(value);
133 }
134
135 struct anv_state_table_cleanup {
136 void *map;
137 size_t size;
138 };
139
140 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
141 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
142
143 static VkResult
144 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
145
146 VkResult
147 anv_state_table_init(struct anv_state_table *table,
148 struct anv_device *device,
149 uint32_t initial_entries)
150 {
151 VkResult result;
152
153 table->device = device;
154
155 table->fd = memfd_create("state table", MFD_CLOEXEC);
156 if (table->fd == -1)
157 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
158
159 /* Just make it 2GB up-front. The Linux kernel won't actually back it
160 * with pages until we either map and fault on one of them or we use
161 * userptr and send a chunk of it off to the GPU.
162 */
163 if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
164 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
165 goto fail_fd;
166 }
167
168 if (!u_vector_init(&table->mmap_cleanups,
169 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
170 128)) {
171 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
172 goto fail_fd;
173 }
174
175 table->state.next = 0;
176 table->state.end = 0;
177 table->size = 0;
178
179 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
180 result = anv_state_table_expand_range(table, initial_size);
181 if (result != VK_SUCCESS)
182 goto fail_mmap_cleanups;
183
184 return VK_SUCCESS;
185
186 fail_mmap_cleanups:
187 u_vector_finish(&table->mmap_cleanups);
188 fail_fd:
189 close(table->fd);
190
191 return result;
192 }
193
194 static VkResult
195 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
196 {
197 void *map;
198 struct anv_mmap_cleanup *cleanup;
199
200 /* Assert that we only ever grow the pool */
201 assert(size >= table->state.end);
202
203 /* Make sure that we don't go outside the bounds of the memfd */
204 if (size > BLOCK_POOL_MEMFD_SIZE)
205 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
206
207 cleanup = u_vector_add(&table->mmap_cleanups);
208 if (!cleanup)
209 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
210
211 *cleanup = ANV_MMAP_CLEANUP_INIT;
212
213 /* Just leak the old map until we destroy the pool. We can't munmap it
214 * without races or imposing locking on the block allocate fast path. On
215 * the whole the leaked maps adds up to less than the size of the
216 * current map. MAP_POPULATE seems like the right thing to do, but we
217 * should try to get some numbers.
218 */
219 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
220 MAP_SHARED | MAP_POPULATE, table->fd, 0);
221 if (map == MAP_FAILED) {
222 return vk_errorf(table->device->instance, table->device,
223 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
224 }
225
226 cleanup->map = map;
227 cleanup->size = size;
228
229 table->map = map;
230 table->size = size;
231
232 return VK_SUCCESS;
233 }
234
235 static VkResult
236 anv_state_table_grow(struct anv_state_table *table)
237 {
238 VkResult result = VK_SUCCESS;
239
240 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
241 PAGE_SIZE);
242 uint32_t old_size = table->size;
243
244 /* The block pool is always initialized to a nonzero size and this function
245 * is always called after initialization.
246 */
247 assert(old_size > 0);
248
249 uint32_t required = MAX2(used, old_size);
250 if (used * 2 <= required) {
251 /* If we're in this case then this isn't the firsta allocation and we
252 * already have enough space on both sides to hold double what we
253 * have allocated. There's nothing for us to do.
254 */
255 goto done;
256 }
257
258 uint32_t size = old_size * 2;
259 while (size < required)
260 size *= 2;
261
262 assert(size > table->size);
263
264 result = anv_state_table_expand_range(table, size);
265
266 done:
267 return result;
268 }
269
270 void
271 anv_state_table_finish(struct anv_state_table *table)
272 {
273 struct anv_state_table_cleanup *cleanup;
274
275 u_vector_foreach(cleanup, &table->mmap_cleanups) {
276 if (cleanup->map)
277 munmap(cleanup->map, cleanup->size);
278 }
279
280 u_vector_finish(&table->mmap_cleanups);
281
282 close(table->fd);
283 }
284
285 VkResult
286 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
287 uint32_t count)
288 {
289 struct anv_block_state state, old, new;
290 VkResult result;
291
292 assert(idx);
293
294 while(1) {
295 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
296 if (state.next + count <= state.end) {
297 assert(table->map);
298 struct anv_free_entry *entry = &table->map[state.next];
299 for (int i = 0; i < count; i++) {
300 entry[i].state.idx = state.next + i;
301 }
302 *idx = state.next;
303 return VK_SUCCESS;
304 } else if (state.next <= state.end) {
305 /* We allocated the first block outside the pool so we have to grow
306 * the pool. pool_state->next acts a mutex: threads who try to
307 * allocate now will get block indexes above the current limit and
308 * hit futex_wait below.
309 */
310 new.next = state.next + count;
311 do {
312 result = anv_state_table_grow(table);
313 if (result != VK_SUCCESS)
314 return result;
315 new.end = table->size / ANV_STATE_ENTRY_SIZE;
316 } while (new.end < new.next);
317
318 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
319 if (old.next != state.next)
320 futex_wake(&table->state.end, INT_MAX);
321 } else {
322 futex_wait(&table->state.end, state.end, NULL);
323 continue;
324 }
325 }
326 }
327
328 void
329 anv_free_list_push(union anv_free_list *list,
330 struct anv_state_table *table,
331 uint32_t first, uint32_t count)
332 {
333 union anv_free_list current, old, new;
334 uint32_t last = first;
335
336 for (uint32_t i = 1; i < count; i++, last++)
337 table->map[last].next = last + 1;
338
339 old = *list;
340 do {
341 current = old;
342 table->map[last].next = current.offset;
343 new.offset = first;
344 new.count = current.count + 1;
345 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
346 } while (old.u64 != current.u64);
347 }
348
349 struct anv_state *
350 anv_free_list_pop(union anv_free_list *list,
351 struct anv_state_table *table)
352 {
353 union anv_free_list current, new, old;
354
355 current.u64 = list->u64;
356 while (current.offset != EMPTY) {
357 __sync_synchronize();
358 new.offset = table->map[current.offset].next;
359 new.count = current.count + 1;
360 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
361 if (old.u64 == current.u64) {
362 struct anv_free_entry *entry = &table->map[current.offset];
363 return &entry->state;
364 }
365 current = old;
366 }
367
368 return NULL;
369 }
370
371 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
372 * means that the bottom 12 bits should all be zero.
373 */
374 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
375 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
376 #define PFL_PACK(ptr, count) ({ \
377 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
378 })
379
380 static bool
381 anv_ptr_free_list_pop(void **list, void **elem)
382 {
383 void *current = *list;
384 while (PFL_PTR(current) != NULL) {
385 void **next_ptr = PFL_PTR(current);
386 void *new_ptr = VG_NOACCESS_READ(next_ptr);
387 unsigned new_count = PFL_COUNT(current) + 1;
388 void *new = PFL_PACK(new_ptr, new_count);
389 void *old = __sync_val_compare_and_swap(list, current, new);
390 if (old == current) {
391 *elem = PFL_PTR(current);
392 return true;
393 }
394 current = old;
395 }
396
397 return false;
398 }
399
400 static void
401 anv_ptr_free_list_push(void **list, void *elem)
402 {
403 void *old, *current;
404 void **next_ptr = elem;
405
406 /* The pointer-based free list requires that the pointer be
407 * page-aligned. This is because we use the bottom 12 bits of the
408 * pointer to store a counter to solve the ABA concurrency problem.
409 */
410 assert(((uintptr_t)elem & 0xfff) == 0);
411
412 old = *list;
413 do {
414 current = old;
415 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
416 unsigned new_count = PFL_COUNT(current) + 1;
417 void *new = PFL_PACK(elem, new_count);
418 old = __sync_val_compare_and_swap(list, current, new);
419 } while (old != current);
420 }
421
422 static VkResult
423 anv_block_pool_expand_range(struct anv_block_pool *pool,
424 uint32_t center_bo_offset, uint32_t size);
425
426 VkResult
427 anv_block_pool_init(struct anv_block_pool *pool,
428 struct anv_device *device,
429 uint64_t start_address,
430 uint32_t initial_size,
431 uint64_t bo_flags)
432 {
433 VkResult result;
434
435 pool->device = device;
436 pool->bo_flags = bo_flags;
437 pool->nbos = 0;
438 pool->size = 0;
439 pool->center_bo_offset = 0;
440 pool->start_address = gen_canonical_address(start_address);
441 pool->map = NULL;
442
443 /* This pointer will always point to the first BO in the list */
444 pool->bo = &pool->bos[0];
445
446 anv_bo_init(pool->bo, 0, 0);
447
448 if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) {
449 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
450 if (pool->fd == -1)
451 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
452
453 /* Just make it 2GB up-front. The Linux kernel won't actually back it
454 * with pages until we either map and fault on one of them or we use
455 * userptr and send a chunk of it off to the GPU.
456 */
457 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
458 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
459 goto fail_fd;
460 }
461 } else {
462 pool->fd = -1;
463 }
464
465 if (!u_vector_init(&pool->mmap_cleanups,
466 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
467 128)) {
468 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
469 goto fail_fd;
470 }
471
472 pool->state.next = 0;
473 pool->state.end = 0;
474 pool->back_state.next = 0;
475 pool->back_state.end = 0;
476
477 result = anv_block_pool_expand_range(pool, 0, initial_size);
478 if (result != VK_SUCCESS)
479 goto fail_mmap_cleanups;
480
481 return VK_SUCCESS;
482
483 fail_mmap_cleanups:
484 u_vector_finish(&pool->mmap_cleanups);
485 fail_fd:
486 if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
487 close(pool->fd);
488
489 return result;
490 }
491
492 void
493 anv_block_pool_finish(struct anv_block_pool *pool)
494 {
495 struct anv_mmap_cleanup *cleanup;
496
497 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
498 if (cleanup->map)
499 munmap(cleanup->map, cleanup->size);
500 if (cleanup->gem_handle)
501 anv_gem_close(pool->device, cleanup->gem_handle);
502 }
503
504 u_vector_finish(&pool->mmap_cleanups);
505 if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
506 close(pool->fd);
507 }
508
509 static VkResult
510 anv_block_pool_expand_range(struct anv_block_pool *pool,
511 uint32_t center_bo_offset, uint32_t size)
512 {
513 void *map;
514 uint32_t gem_handle;
515 struct anv_mmap_cleanup *cleanup;
516 const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED);
517
518 /* Assert that we only ever grow the pool */
519 assert(center_bo_offset >= pool->back_state.end);
520 assert(size - center_bo_offset >= pool->state.end);
521
522 /* Assert that we don't go outside the bounds of the memfd */
523 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
524 assert(use_softpin ||
525 size - center_bo_offset <=
526 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
527
528 cleanup = u_vector_add(&pool->mmap_cleanups);
529 if (!cleanup)
530 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
531
532 *cleanup = ANV_MMAP_CLEANUP_INIT;
533
534 uint32_t newbo_size = size - pool->size;
535 if (use_softpin) {
536 gem_handle = anv_gem_create(pool->device, newbo_size);
537 map = anv_gem_mmap(pool->device, gem_handle, 0, newbo_size, 0);
538 if (map == MAP_FAILED)
539 return vk_errorf(pool->device->instance, pool->device,
540 VK_ERROR_MEMORY_MAP_FAILED, "gem mmap failed: %m");
541 assert(center_bo_offset == 0);
542 } else {
543 /* Just leak the old map until we destroy the pool. We can't munmap it
544 * without races or imposing locking on the block allocate fast path. On
545 * the whole the leaked maps adds up to less than the size of the
546 * current map. MAP_POPULATE seems like the right thing to do, but we
547 * should try to get some numbers.
548 */
549 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
550 MAP_SHARED | MAP_POPULATE, pool->fd,
551 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
552 if (map == MAP_FAILED)
553 return vk_errorf(pool->device->instance, pool->device,
554 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
555
556 /* Now that we mapped the new memory, we can write the new
557 * center_bo_offset back into pool and update pool->map. */
558 pool->center_bo_offset = center_bo_offset;
559 pool->map = map + center_bo_offset;
560 gem_handle = anv_gem_userptr(pool->device, map, size);
561 if (gem_handle == 0) {
562 munmap(map, size);
563 return vk_errorf(pool->device->instance, pool->device,
564 VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
565 }
566 }
567
568 cleanup->map = map;
569 cleanup->size = use_softpin ? newbo_size : size;
570 cleanup->gem_handle = gem_handle;
571
572 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
573 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
574 * always created as I915_CACHING_CACHED, which on non-LLC means
575 * snooped.
576 *
577 * On platforms that support softpin, we are not going to use userptr
578 * anymore, but we still want to rely on the snooped states. So make sure
579 * everything is set to I915_CACHING_CACHED.
580 */
581 if (!pool->device->info.has_llc)
582 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_CACHED);
583
584 /* For block pool BOs we have to be a bit careful about where we place them
585 * in the GTT. There are two documented workarounds for state base address
586 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
587 * which state that those two base addresses do not support 48-bit
588 * addresses and need to be placed in the bottom 32-bit range.
589 * Unfortunately, this is not quite accurate.
590 *
591 * The real problem is that we always set the size of our state pools in
592 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
593 * likely significantly smaller. We do this because we do not no at the
594 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
595 * the pool during command buffer building so we don't actually have a
596 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
597 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
598 * as being out of bounds and returns zero. For dynamic state, this
599 * usually just leads to rendering corruptions, but shaders that are all
600 * zero hang the GPU immediately.
601 *
602 * The easiest solution to do is exactly what the bogus workarounds say to
603 * do: restrict these buffers to 32-bit addresses. We could also pin the
604 * BO to some particular location of our choosing, but that's significantly
605 * more work than just not setting a flag. So, we explicitly DO NOT set
606 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
607 * hard work for us.
608 */
609 struct anv_bo *bo;
610 uint32_t bo_size;
611 uint64_t bo_offset;
612
613 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
614
615 if (use_softpin) {
616 /* With softpin, we add a new BO to the pool, and set its offset to right
617 * where the previous BO ends (the end of the pool).
618 */
619 bo = &pool->bos[pool->nbos++];
620 bo_size = newbo_size;
621 bo_offset = pool->start_address + pool->size;
622 } else {
623 /* Without softpin, we just need one BO, and we already have a pointer to
624 * it. Simply "allocate" it from our array if we didn't do it before.
625 * The offset doesn't matter since we are not pinning the BO anyway.
626 */
627 if (pool->nbos == 0)
628 pool->nbos++;
629 bo = pool->bo;
630 bo_size = size;
631 bo_offset = 0;
632 }
633
634 anv_bo_init(bo, gem_handle, bo_size);
635 bo->offset = bo_offset;
636 bo->flags = pool->bo_flags;
637 bo->map = map;
638 pool->size = size;
639
640 return VK_SUCCESS;
641 }
642
643 static struct anv_bo *
644 anv_block_pool_get_bo(struct anv_block_pool *pool, int32_t *offset)
645 {
646 struct anv_bo *bo, *bo_found = NULL;
647 int32_t cur_offset = 0;
648
649 assert(offset);
650
651 if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
652 return pool->bo;
653
654 anv_block_pool_foreach_bo(bo, pool) {
655 if (*offset < cur_offset + bo->size) {
656 bo_found = bo;
657 break;
658 }
659 cur_offset += bo->size;
660 }
661
662 assert(bo_found != NULL);
663 *offset -= cur_offset;
664
665 return bo_found;
666 }
667
668 /** Returns current memory map of the block pool.
669 *
670 * The returned pointer points to the map for the memory at the specified
671 * offset. The offset parameter is relative to the "center" of the block pool
672 * rather than the start of the block pool BO map.
673 */
674 void*
675 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
676 {
677 if (pool->bo_flags & EXEC_OBJECT_PINNED) {
678 struct anv_bo *bo = anv_block_pool_get_bo(pool, &offset);
679 return bo->map + offset;
680 } else {
681 return pool->map + offset;
682 }
683 }
684
685 /** Grows and re-centers the block pool.
686 *
687 * We grow the block pool in one or both directions in such a way that the
688 * following conditions are met:
689 *
690 * 1) The size of the entire pool is always a power of two.
691 *
692 * 2) The pool only grows on both ends. Neither end can get
693 * shortened.
694 *
695 * 3) At the end of the allocation, we have about twice as much space
696 * allocated for each end as we have used. This way the pool doesn't
697 * grow too far in one direction or the other.
698 *
699 * 4) If the _alloc_back() has never been called, then the back portion of
700 * the pool retains a size of zero. (This makes it easier for users of
701 * the block pool that only want a one-sided pool.)
702 *
703 * 5) We have enough space allocated for at least one more block in
704 * whichever side `state` points to.
705 *
706 * 6) The center of the pool is always aligned to both the block_size of
707 * the pool and a 4K CPU page.
708 */
709 static uint32_t
710 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
711 {
712 VkResult result = VK_SUCCESS;
713
714 pthread_mutex_lock(&pool->device->mutex);
715
716 assert(state == &pool->state || state == &pool->back_state);
717
718 /* Gather a little usage information on the pool. Since we may have
719 * threadsd waiting in queue to get some storage while we resize, it's
720 * actually possible that total_used will be larger than old_size. In
721 * particular, block_pool_alloc() increments state->next prior to
722 * calling block_pool_grow, so this ensures that we get enough space for
723 * which ever side tries to grow the pool.
724 *
725 * We align to a page size because it makes it easier to do our
726 * calculations later in such a way that we state page-aigned.
727 */
728 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
729 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
730 uint32_t total_used = front_used + back_used;
731
732 assert(state == &pool->state || back_used > 0);
733
734 uint32_t old_size = pool->size;
735
736 /* The block pool is always initialized to a nonzero size and this function
737 * is always called after initialization.
738 */
739 assert(old_size > 0);
740
741 /* The back_used and front_used may actually be smaller than the actual
742 * requirement because they are based on the next pointers which are
743 * updated prior to calling this function.
744 */
745 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
746 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
747
748 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
749 /* If we're in this case then this isn't the firsta allocation and we
750 * already have enough space on both sides to hold double what we
751 * have allocated. There's nothing for us to do.
752 */
753 goto done;
754 }
755
756 uint32_t size = old_size * 2;
757 while (size < back_required + front_required)
758 size *= 2;
759
760 assert(size > pool->size);
761
762 /* We compute a new center_bo_offset such that, when we double the size
763 * of the pool, we maintain the ratio of how much is used by each side.
764 * This way things should remain more-or-less balanced.
765 */
766 uint32_t center_bo_offset;
767 if (back_used == 0) {
768 /* If we're in this case then we have never called alloc_back(). In
769 * this case, we want keep the offset at 0 to make things as simple
770 * as possible for users that don't care about back allocations.
771 */
772 center_bo_offset = 0;
773 } else {
774 /* Try to "center" the allocation based on how much is currently in
775 * use on each side of the center line.
776 */
777 center_bo_offset = ((uint64_t)size * back_used) / total_used;
778
779 /* Align down to a multiple of the page size */
780 center_bo_offset &= ~(PAGE_SIZE - 1);
781
782 assert(center_bo_offset >= back_used);
783
784 /* Make sure we don't shrink the back end of the pool */
785 if (center_bo_offset < back_required)
786 center_bo_offset = back_required;
787
788 /* Make sure that we don't shrink the front end of the pool */
789 if (size - center_bo_offset < front_required)
790 center_bo_offset = size - front_required;
791 }
792
793 assert(center_bo_offset % PAGE_SIZE == 0);
794
795 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
796
797 pool->bo->flags = pool->bo_flags;
798
799 done:
800 pthread_mutex_unlock(&pool->device->mutex);
801
802 if (result == VK_SUCCESS) {
803 /* Return the appropriate new size. This function never actually
804 * updates state->next. Instead, we let the caller do that because it
805 * needs to do so in order to maintain its concurrency model.
806 */
807 if (state == &pool->state) {
808 return pool->size - pool->center_bo_offset;
809 } else {
810 assert(pool->center_bo_offset > 0);
811 return pool->center_bo_offset;
812 }
813 } else {
814 return 0;
815 }
816 }
817
818 static uint32_t
819 anv_block_pool_alloc_new(struct anv_block_pool *pool,
820 struct anv_block_state *pool_state,
821 uint32_t block_size, uint32_t *padding)
822 {
823 struct anv_block_state state, old, new;
824
825 /* Most allocations won't generate any padding */
826 if (padding)
827 *padding = 0;
828
829 while (1) {
830 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
831 if (state.next + block_size <= state.end) {
832 return state.next;
833 } else if (state.next <= state.end) {
834 if (pool->bo_flags & EXEC_OBJECT_PINNED && state.next < state.end) {
835 /* We need to grow the block pool, but still have some leftover
836 * space that can't be used by that particular allocation. So we
837 * add that as a "padding", and return it.
838 */
839 uint32_t leftover = state.end - state.next;
840
841 /* If there is some leftover space in the pool, the caller must
842 * deal with it.
843 */
844 assert(leftover == 0 || padding);
845 if (padding)
846 *padding = leftover;
847 state.next += leftover;
848 }
849
850 /* We allocated the first block outside the pool so we have to grow
851 * the pool. pool_state->next acts a mutex: threads who try to
852 * allocate now will get block indexes above the current limit and
853 * hit futex_wait below.
854 */
855 new.next = state.next + block_size;
856 do {
857 new.end = anv_block_pool_grow(pool, pool_state);
858 } while (new.end < new.next);
859
860 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
861 if (old.next != state.next)
862 futex_wake(&pool_state->end, INT_MAX);
863 return state.next;
864 } else {
865 futex_wait(&pool_state->end, state.end, NULL);
866 continue;
867 }
868 }
869 }
870
871 int32_t
872 anv_block_pool_alloc(struct anv_block_pool *pool,
873 uint32_t block_size, uint32_t *padding)
874 {
875 uint32_t offset;
876
877 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
878
879 return offset;
880 }
881
882 /* Allocates a block out of the back of the block pool.
883 *
884 * This will allocated a block earlier than the "start" of the block pool.
885 * The offsets returned from this function will be negative but will still
886 * be correct relative to the block pool's map pointer.
887 *
888 * If you ever use anv_block_pool_alloc_back, then you will have to do
889 * gymnastics with the block pool's BO when doing relocations.
890 */
891 int32_t
892 anv_block_pool_alloc_back(struct anv_block_pool *pool,
893 uint32_t block_size)
894 {
895 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
896 block_size, NULL);
897
898 /* The offset we get out of anv_block_pool_alloc_new() is actually the
899 * number of bytes downwards from the middle to the end of the block.
900 * We need to turn it into a (negative) offset from the middle to the
901 * start of the block.
902 */
903 assert(offset >= 0);
904 return -(offset + block_size);
905 }
906
907 VkResult
908 anv_state_pool_init(struct anv_state_pool *pool,
909 struct anv_device *device,
910 uint64_t start_address,
911 uint32_t block_size,
912 uint64_t bo_flags)
913 {
914 VkResult result = anv_block_pool_init(&pool->block_pool, device,
915 start_address,
916 block_size * 16,
917 bo_flags);
918 if (result != VK_SUCCESS)
919 return result;
920
921 result = anv_state_table_init(&pool->table, device, 64);
922 if (result != VK_SUCCESS) {
923 anv_block_pool_finish(&pool->block_pool);
924 return result;
925 }
926
927 assert(util_is_power_of_two_or_zero(block_size));
928 pool->block_size = block_size;
929 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
930 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
931 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
932 pool->buckets[i].block.next = 0;
933 pool->buckets[i].block.end = 0;
934 }
935 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
936
937 return VK_SUCCESS;
938 }
939
940 void
941 anv_state_pool_finish(struct anv_state_pool *pool)
942 {
943 VG(VALGRIND_DESTROY_MEMPOOL(pool));
944 anv_state_table_finish(&pool->table);
945 anv_block_pool_finish(&pool->block_pool);
946 }
947
948 static uint32_t
949 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
950 struct anv_block_pool *block_pool,
951 uint32_t state_size,
952 uint32_t block_size,
953 uint32_t *padding)
954 {
955 struct anv_block_state block, old, new;
956 uint32_t offset;
957
958 /* We don't always use anv_block_pool_alloc(), which would set *padding to
959 * zero for us. So if we have a pointer to padding, we must zero it out
960 * ourselves here, to make sure we always return some sensible value.
961 */
962 if (padding)
963 *padding = 0;
964
965 /* If our state is large, we don't need any sub-allocation from a block.
966 * Instead, we just grab whole (potentially large) blocks.
967 */
968 if (state_size >= block_size)
969 return anv_block_pool_alloc(block_pool, state_size, padding);
970
971 restart:
972 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
973
974 if (block.next < block.end) {
975 return block.next;
976 } else if (block.next == block.end) {
977 offset = anv_block_pool_alloc(block_pool, block_size, padding);
978 new.next = offset + state_size;
979 new.end = offset + block_size;
980 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
981 if (old.next != block.next)
982 futex_wake(&pool->block.end, INT_MAX);
983 return offset;
984 } else {
985 futex_wait(&pool->block.end, block.end, NULL);
986 goto restart;
987 }
988 }
989
990 static uint32_t
991 anv_state_pool_get_bucket(uint32_t size)
992 {
993 unsigned size_log2 = ilog2_round_up(size);
994 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
995 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
996 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
997 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
998 }
999
1000 static uint32_t
1001 anv_state_pool_get_bucket_size(uint32_t bucket)
1002 {
1003 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
1004 return 1 << size_log2;
1005 }
1006
1007 /** Helper to push a chunk into the state table.
1008 *
1009 * It creates 'count' entries into the state table and update their sizes,
1010 * offsets and maps, also pushing them as "free" states.
1011 */
1012 static void
1013 anv_state_pool_return_blocks(struct anv_state_pool *pool,
1014 uint32_t chunk_offset, uint32_t count,
1015 uint32_t block_size)
1016 {
1017 /* Disallow returning 0 chunks */
1018 assert(count != 0);
1019
1020 /* Make sure we always return chunks aligned to the block_size */
1021 assert(chunk_offset % block_size == 0);
1022
1023 uint32_t st_idx;
1024 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
1025 assert(result == VK_SUCCESS);
1026 for (int i = 0; i < count; i++) {
1027 /* update states that were added back to the state table */
1028 struct anv_state *state_i = anv_state_table_get(&pool->table,
1029 st_idx + i);
1030 state_i->alloc_size = block_size;
1031 state_i->offset = chunk_offset + block_size * i;
1032 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
1033 }
1034
1035 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
1036 anv_free_list_push(&pool->buckets[block_bucket].free_list,
1037 &pool->table, st_idx, count);
1038 }
1039
1040 /** Returns a chunk of memory back to the state pool.
1041 *
1042 * Do a two-level split. If chunk_size is bigger than divisor
1043 * (pool->block_size), we return as many divisor sized blocks as we can, from
1044 * the end of the chunk.
1045 *
1046 * The remaining is then split into smaller blocks (starting at small_size if
1047 * it is non-zero), with larger blocks always being taken from the end of the
1048 * chunk.
1049 */
1050 static void
1051 anv_state_pool_return_chunk(struct anv_state_pool *pool,
1052 uint32_t chunk_offset, uint32_t chunk_size,
1053 uint32_t small_size)
1054 {
1055 uint32_t divisor = pool->block_size;
1056 uint32_t nblocks = chunk_size / divisor;
1057 uint32_t rest = chunk_size - nblocks * divisor;
1058
1059 if (nblocks > 0) {
1060 /* First return divisor aligned and sized chunks. We start returning
1061 * larger blocks from the end fo the chunk, since they should already be
1062 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
1063 * aligned chunks.
1064 */
1065 uint32_t offset = chunk_offset + rest;
1066 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
1067 }
1068
1069 chunk_size = rest;
1070 divisor /= 2;
1071
1072 if (small_size > 0 && small_size < divisor)
1073 divisor = small_size;
1074
1075 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1076
1077 /* Just as before, return larger divisor aligned blocks from the end of the
1078 * chunk first.
1079 */
1080 while (chunk_size > 0 && divisor >= min_size) {
1081 nblocks = chunk_size / divisor;
1082 rest = chunk_size - nblocks * divisor;
1083 if (nblocks > 0) {
1084 anv_state_pool_return_blocks(pool, chunk_offset + rest,
1085 nblocks, divisor);
1086 chunk_size = rest;
1087 }
1088 divisor /= 2;
1089 }
1090 }
1091
1092 static struct anv_state
1093 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1094 uint32_t size, uint32_t align)
1095 {
1096 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1097
1098 struct anv_state *state;
1099 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1100 int32_t offset;
1101
1102 /* Try free list first. */
1103 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1104 &pool->table);
1105 if (state) {
1106 assert(state->offset >= 0);
1107 goto done;
1108 }
1109
1110 /* Try to grab a chunk from some larger bucket and split it up */
1111 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1112 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1113 if (state) {
1114 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1115 int32_t chunk_offset = state->offset;
1116
1117 /* First lets update the state we got to its new size. offset and map
1118 * remain the same.
1119 */
1120 state->alloc_size = alloc_size;
1121
1122 /* Now return the unused part of the chunk back to the pool as free
1123 * blocks
1124 *
1125 * There are a couple of options as to what we do with it:
1126 *
1127 * 1) We could fully split the chunk into state.alloc_size sized
1128 * pieces. However, this would mean that allocating a 16B
1129 * state could potentially split a 2MB chunk into 512K smaller
1130 * chunks. This would lead to unnecessary fragmentation.
1131 *
1132 * 2) The classic "buddy allocator" method would have us split the
1133 * chunk in half and return one half. Then we would split the
1134 * remaining half in half and return one half, and repeat as
1135 * needed until we get down to the size we want. However, if
1136 * you are allocating a bunch of the same size state (which is
1137 * the common case), this means that every other allocation has
1138 * to go up a level and every fourth goes up two levels, etc.
1139 * This is not nearly as efficient as it could be if we did a
1140 * little more work up-front.
1141 *
1142 * 3) Split the difference between (1) and (2) by doing a
1143 * two-level split. If it's bigger than some fixed block_size,
1144 * we split it into block_size sized chunks and return all but
1145 * one of them. Then we split what remains into
1146 * state.alloc_size sized chunks and return them.
1147 *
1148 * We choose something close to option (3), which is implemented with
1149 * anv_state_pool_return_chunk(). That is done by returning the
1150 * remaining of the chunk, with alloc_size as a hint of the size that
1151 * we want the smaller chunk split into.
1152 */
1153 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1154 chunk_size - alloc_size, alloc_size);
1155 goto done;
1156 }
1157 }
1158
1159 uint32_t padding;
1160 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1161 &pool->block_pool,
1162 alloc_size,
1163 pool->block_size,
1164 &padding);
1165 /* Everytime we allocate a new state, add it to the state pool */
1166 uint32_t idx;
1167 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1168 assert(result == VK_SUCCESS);
1169
1170 state = anv_state_table_get(&pool->table, idx);
1171 state->offset = offset;
1172 state->alloc_size = alloc_size;
1173 state->map = anv_block_pool_map(&pool->block_pool, offset);
1174
1175 if (padding > 0) {
1176 uint32_t return_offset = offset - padding;
1177 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1178 }
1179
1180 done:
1181 return *state;
1182 }
1183
1184 struct anv_state
1185 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1186 {
1187 if (size == 0)
1188 return ANV_STATE_NULL;
1189
1190 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1191 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1192 return state;
1193 }
1194
1195 struct anv_state
1196 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1197 {
1198 struct anv_state *state;
1199 uint32_t alloc_size = pool->block_size;
1200
1201 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1202 if (state) {
1203 assert(state->offset < 0);
1204 goto done;
1205 }
1206
1207 int32_t offset;
1208 offset = anv_block_pool_alloc_back(&pool->block_pool,
1209 pool->block_size);
1210 uint32_t idx;
1211 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1212 assert(result == VK_SUCCESS);
1213
1214 state = anv_state_table_get(&pool->table, idx);
1215 state->offset = offset;
1216 state->alloc_size = alloc_size;
1217 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1218
1219 done:
1220 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1221 return *state;
1222 }
1223
1224 static void
1225 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1226 {
1227 assert(util_is_power_of_two_or_zero(state.alloc_size));
1228 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1229
1230 if (state.offset < 0) {
1231 assert(state.alloc_size == pool->block_size);
1232 anv_free_list_push(&pool->back_alloc_free_list,
1233 &pool->table, state.idx, 1);
1234 } else {
1235 anv_free_list_push(&pool->buckets[bucket].free_list,
1236 &pool->table, state.idx, 1);
1237 }
1238 }
1239
1240 void
1241 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1242 {
1243 if (state.alloc_size == 0)
1244 return;
1245
1246 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1247 anv_state_pool_free_no_vg(pool, state);
1248 }
1249
1250 struct anv_state_stream_block {
1251 struct anv_state block;
1252
1253 /* The next block */
1254 struct anv_state_stream_block *next;
1255
1256 #ifdef HAVE_VALGRIND
1257 /* A pointer to the first user-allocated thing in this block. This is
1258 * what valgrind sees as the start of the block.
1259 */
1260 void *_vg_ptr;
1261 #endif
1262 };
1263
1264 /* The state stream allocator is a one-shot, single threaded allocator for
1265 * variable sized blocks. We use it for allocating dynamic state.
1266 */
1267 void
1268 anv_state_stream_init(struct anv_state_stream *stream,
1269 struct anv_state_pool *state_pool,
1270 uint32_t block_size)
1271 {
1272 stream->state_pool = state_pool;
1273 stream->block_size = block_size;
1274
1275 stream->block = ANV_STATE_NULL;
1276
1277 stream->block_list = NULL;
1278
1279 /* Ensure that next + whatever > block_size. This way the first call to
1280 * state_stream_alloc fetches a new block.
1281 */
1282 stream->next = block_size;
1283
1284 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1285 }
1286
1287 void
1288 anv_state_stream_finish(struct anv_state_stream *stream)
1289 {
1290 struct anv_state_stream_block *next = stream->block_list;
1291 while (next != NULL) {
1292 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1293 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1294 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1295 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1296 next = sb.next;
1297 }
1298
1299 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1300 }
1301
1302 struct anv_state
1303 anv_state_stream_alloc(struct anv_state_stream *stream,
1304 uint32_t size, uint32_t alignment)
1305 {
1306 if (size == 0)
1307 return ANV_STATE_NULL;
1308
1309 assert(alignment <= PAGE_SIZE);
1310
1311 uint32_t offset = align_u32(stream->next, alignment);
1312 if (offset + size > stream->block.alloc_size) {
1313 uint32_t block_size = stream->block_size;
1314 if (block_size < size)
1315 block_size = round_to_power_of_two(size);
1316
1317 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1318 block_size, PAGE_SIZE);
1319
1320 struct anv_state_stream_block *sb = stream->block.map;
1321 VG_NOACCESS_WRITE(&sb->block, stream->block);
1322 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1323 stream->block_list = sb;
1324 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1325
1326 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1327
1328 /* Reset back to the start plus space for the header */
1329 stream->next = sizeof(*sb);
1330
1331 offset = align_u32(stream->next, alignment);
1332 assert(offset + size <= stream->block.alloc_size);
1333 }
1334
1335 struct anv_state state = stream->block;
1336 state.offset += offset;
1337 state.alloc_size = size;
1338 state.map += offset;
1339
1340 stream->next = offset + size;
1341
1342 #ifdef HAVE_VALGRIND
1343 struct anv_state_stream_block *sb = stream->block_list;
1344 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1345 if (vg_ptr == NULL) {
1346 vg_ptr = state.map;
1347 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1348 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1349 } else {
1350 void *state_end = state.map + state.alloc_size;
1351 /* This only updates the mempool. The newly allocated chunk is still
1352 * marked as NOACCESS. */
1353 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1354 /* Mark the newly allocated chunk as undefined */
1355 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1356 }
1357 #endif
1358
1359 return state;
1360 }
1361
1362 struct bo_pool_bo_link {
1363 struct bo_pool_bo_link *next;
1364 struct anv_bo bo;
1365 };
1366
1367 void
1368 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1369 uint64_t bo_flags)
1370 {
1371 pool->device = device;
1372 pool->bo_flags = bo_flags;
1373 memset(pool->free_list, 0, sizeof(pool->free_list));
1374
1375 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1376 }
1377
1378 void
1379 anv_bo_pool_finish(struct anv_bo_pool *pool)
1380 {
1381 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1382 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
1383 while (link != NULL) {
1384 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
1385
1386 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
1387 anv_vma_free(pool->device, &link_copy.bo);
1388 anv_gem_close(pool->device, link_copy.bo.gem_handle);
1389 link = link_copy.next;
1390 }
1391 }
1392
1393 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1394 }
1395
1396 VkResult
1397 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1398 {
1399 VkResult result;
1400
1401 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1402 const unsigned pow2_size = 1 << size_log2;
1403 const unsigned bucket = size_log2 - 12;
1404 assert(bucket < ARRAY_SIZE(pool->free_list));
1405
1406 void *next_free_void;
1407 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1408 struct bo_pool_bo_link *next_free = next_free_void;
1409 *bo = VG_NOACCESS_READ(&next_free->bo);
1410 assert(bo->gem_handle);
1411 assert(bo->map == next_free);
1412 assert(size <= bo->size);
1413
1414 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1415
1416 return VK_SUCCESS;
1417 }
1418
1419 struct anv_bo new_bo;
1420
1421 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1422 if (result != VK_SUCCESS)
1423 return result;
1424
1425 new_bo.flags = pool->bo_flags;
1426
1427 if (!anv_vma_alloc(pool->device, &new_bo))
1428 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1429
1430 assert(new_bo.size == pow2_size);
1431
1432 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1433 if (new_bo.map == MAP_FAILED) {
1434 anv_gem_close(pool->device, new_bo.gem_handle);
1435 anv_vma_free(pool->device, &new_bo);
1436 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1437 }
1438
1439 /* We are removing the state flushes, so lets make sure that these buffers
1440 * are cached/snooped.
1441 */
1442 if (!pool->device->info.has_llc) {
1443 anv_gem_set_caching(pool->device, new_bo.gem_handle,
1444 I915_CACHING_CACHED);
1445 }
1446
1447 *bo = new_bo;
1448
1449 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1450
1451 return VK_SUCCESS;
1452 }
1453
1454 void
1455 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1456 {
1457 /* Make a copy in case the anv_bo happens to be storred in the BO */
1458 struct anv_bo bo = *bo_in;
1459
1460 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1461
1462 struct bo_pool_bo_link *link = bo.map;
1463 VG_NOACCESS_WRITE(&link->bo, bo);
1464
1465 assert(util_is_power_of_two_or_zero(bo.size));
1466 const unsigned size_log2 = ilog2_round_up(bo.size);
1467 const unsigned bucket = size_log2 - 12;
1468 assert(bucket < ARRAY_SIZE(pool->free_list));
1469
1470 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1471 }
1472
1473 // Scratch pool
1474
1475 void
1476 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1477 {
1478 memset(pool, 0, sizeof(*pool));
1479 }
1480
1481 void
1482 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1483 {
1484 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1485 for (unsigned i = 0; i < 16; i++) {
1486 struct anv_scratch_bo *bo = &pool->bos[i][s];
1487 if (bo->exists > 0) {
1488 anv_vma_free(device, &bo->bo);
1489 anv_gem_close(device, bo->bo.gem_handle);
1490 }
1491 }
1492 }
1493 }
1494
1495 struct anv_bo *
1496 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1497 gl_shader_stage stage, unsigned per_thread_scratch)
1498 {
1499 if (per_thread_scratch == 0)
1500 return NULL;
1501
1502 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1503 assert(scratch_size_log2 < 16);
1504
1505 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1506
1507 /* We can use "exists" to shortcut and ignore the critical section */
1508 if (bo->exists)
1509 return &bo->bo;
1510
1511 pthread_mutex_lock(&device->mutex);
1512
1513 __sync_synchronize();
1514 if (bo->exists) {
1515 pthread_mutex_unlock(&device->mutex);
1516 return &bo->bo;
1517 }
1518
1519 const struct anv_physical_device *physical_device =
1520 &device->instance->physicalDevice;
1521 const struct gen_device_info *devinfo = &physical_device->info;
1522
1523 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1524
1525 unsigned scratch_ids_per_subslice;
1526 if (devinfo->is_haswell) {
1527 /* WaCSScratchSize:hsw
1528 *
1529 * Haswell's scratch space address calculation appears to be sparse
1530 * rather than tightly packed. The Thread ID has bits indicating
1531 * which subslice, EU within a subslice, and thread within an EU it
1532 * is. There's a maximum of two slices and two subslices, so these
1533 * can be stored with a single bit. Even though there are only 10 EUs
1534 * per subslice, this is stored in 4 bits, so there's an effective
1535 * maximum value of 16 EUs. Similarly, although there are only 7
1536 * threads per EU, this is stored in a 3 bit number, giving an
1537 * effective maximum value of 8 threads per EU.
1538 *
1539 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1540 * number of threads per subslice.
1541 */
1542 scratch_ids_per_subslice = 16 * 8;
1543 } else if (devinfo->is_cherryview) {
1544 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1545 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1546 * it had 8 EUs.
1547 */
1548 scratch_ids_per_subslice = 8 * 7;
1549 } else {
1550 scratch_ids_per_subslice = devinfo->max_cs_threads;
1551 }
1552
1553 uint32_t max_threads[] = {
1554 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1555 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1556 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1557 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1558 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1559 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1560 };
1561
1562 uint32_t size = per_thread_scratch * max_threads[stage];
1563
1564 anv_bo_init_new(&bo->bo, device, size);
1565
1566 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1567 * are still relative to the general state base address. When we emit
1568 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1569 * to the maximum (1 page under 4GB). This allows us to just place the
1570 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1571 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1572 * However, in order to do so, we need to ensure that the kernel does not
1573 * place the scratch BO above the 32-bit boundary.
1574 *
1575 * NOTE: Technically, it can't go "anywhere" because the top page is off
1576 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1577 * kernel allocates space using
1578 *
1579 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1580 *
1581 * so nothing will ever touch the top page.
1582 */
1583 assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1584
1585 if (device->instance->physicalDevice.has_exec_async)
1586 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1587
1588 if (device->instance->physicalDevice.use_softpin)
1589 bo->bo.flags |= EXEC_OBJECT_PINNED;
1590
1591 anv_vma_alloc(device, &bo->bo);
1592
1593 /* Set the exists last because it may be read by other threads */
1594 __sync_synchronize();
1595 bo->exists = true;
1596
1597 pthread_mutex_unlock(&device->mutex);
1598
1599 return &bo->bo;
1600 }
1601
1602 struct anv_cached_bo {
1603 struct anv_bo bo;
1604
1605 uint32_t refcount;
1606 };
1607
1608 VkResult
1609 anv_bo_cache_init(struct anv_bo_cache *cache)
1610 {
1611 cache->bo_map = _mesa_pointer_hash_table_create(NULL);
1612 if (!cache->bo_map)
1613 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1614
1615 if (pthread_mutex_init(&cache->mutex, NULL)) {
1616 _mesa_hash_table_destroy(cache->bo_map, NULL);
1617 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1618 "pthread_mutex_init failed: %m");
1619 }
1620
1621 return VK_SUCCESS;
1622 }
1623
1624 void
1625 anv_bo_cache_finish(struct anv_bo_cache *cache)
1626 {
1627 _mesa_hash_table_destroy(cache->bo_map, NULL);
1628 pthread_mutex_destroy(&cache->mutex);
1629 }
1630
1631 static struct anv_cached_bo *
1632 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1633 {
1634 struct hash_entry *entry =
1635 _mesa_hash_table_search(cache->bo_map,
1636 (const void *)(uintptr_t)gem_handle);
1637 if (!entry)
1638 return NULL;
1639
1640 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1641 assert(bo->bo.gem_handle == gem_handle);
1642
1643 return bo;
1644 }
1645
1646 UNUSED static struct anv_bo *
1647 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1648 {
1649 pthread_mutex_lock(&cache->mutex);
1650
1651 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1652
1653 pthread_mutex_unlock(&cache->mutex);
1654
1655 return bo ? &bo->bo : NULL;
1656 }
1657
1658 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1659 (EXEC_OBJECT_WRITE | \
1660 EXEC_OBJECT_ASYNC | \
1661 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1662 EXEC_OBJECT_PINNED | \
1663 ANV_BO_EXTERNAL)
1664
1665 VkResult
1666 anv_bo_cache_alloc(struct anv_device *device,
1667 struct anv_bo_cache *cache,
1668 uint64_t size, uint64_t bo_flags,
1669 struct anv_bo **bo_out)
1670 {
1671 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1672
1673 struct anv_cached_bo *bo =
1674 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1675 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1676 if (!bo)
1677 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1678
1679 bo->refcount = 1;
1680
1681 /* The kernel is going to give us whole pages anyway */
1682 size = align_u64(size, 4096);
1683
1684 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1685 if (result != VK_SUCCESS) {
1686 vk_free(&device->alloc, bo);
1687 return result;
1688 }
1689
1690 bo->bo.flags = bo_flags;
1691
1692 if (!anv_vma_alloc(device, &bo->bo)) {
1693 anv_gem_close(device, bo->bo.gem_handle);
1694 vk_free(&device->alloc, bo);
1695 return vk_errorf(device->instance, NULL,
1696 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1697 "failed to allocate virtual address for BO");
1698 }
1699
1700 assert(bo->bo.gem_handle);
1701
1702 pthread_mutex_lock(&cache->mutex);
1703
1704 _mesa_hash_table_insert(cache->bo_map,
1705 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1706
1707 pthread_mutex_unlock(&cache->mutex);
1708
1709 *bo_out = &bo->bo;
1710
1711 return VK_SUCCESS;
1712 }
1713
1714 VkResult
1715 anv_bo_cache_import(struct anv_device *device,
1716 struct anv_bo_cache *cache,
1717 int fd, uint64_t bo_flags,
1718 struct anv_bo **bo_out)
1719 {
1720 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1721 assert(bo_flags & ANV_BO_EXTERNAL);
1722
1723 pthread_mutex_lock(&cache->mutex);
1724
1725 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1726 if (!gem_handle) {
1727 pthread_mutex_unlock(&cache->mutex);
1728 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1729 }
1730
1731 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1732 if (bo) {
1733 /* We have to be careful how we combine flags so that it makes sense.
1734 * Really, though, if we get to this case and it actually matters, the
1735 * client has imported a BO twice in different ways and they get what
1736 * they have coming.
1737 */
1738 uint64_t new_flags = ANV_BO_EXTERNAL;
1739 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
1740 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
1741 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1742 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
1743
1744 /* It's theoretically possible for a BO to get imported such that it's
1745 * both pinned and not pinned. The only way this can happen is if it
1746 * gets imported as both a semaphore and a memory object and that would
1747 * be an application error. Just fail out in that case.
1748 */
1749 if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
1750 (bo_flags & EXEC_OBJECT_PINNED)) {
1751 pthread_mutex_unlock(&cache->mutex);
1752 return vk_errorf(device->instance, NULL,
1753 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1754 "The same BO was imported two different ways");
1755 }
1756
1757 /* It's also theoretically possible that someone could export a BO from
1758 * one heap and import it into another or to import the same BO into two
1759 * different heaps. If this happens, we could potentially end up both
1760 * allowing and disallowing 48-bit addresses. There's not much we can
1761 * do about it if we're pinning so we just throw an error and hope no
1762 * app is actually that stupid.
1763 */
1764 if ((new_flags & EXEC_OBJECT_PINNED) &&
1765 (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1766 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1767 pthread_mutex_unlock(&cache->mutex);
1768 return vk_errorf(device->instance, NULL,
1769 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1770 "The same BO was imported on two different heaps");
1771 }
1772
1773 bo->bo.flags = new_flags;
1774
1775 __sync_fetch_and_add(&bo->refcount, 1);
1776 } else {
1777 off_t size = lseek(fd, 0, SEEK_END);
1778 if (size == (off_t)-1) {
1779 anv_gem_close(device, gem_handle);
1780 pthread_mutex_unlock(&cache->mutex);
1781 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1782 }
1783
1784 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1785 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1786 if (!bo) {
1787 anv_gem_close(device, gem_handle);
1788 pthread_mutex_unlock(&cache->mutex);
1789 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1790 }
1791
1792 bo->refcount = 1;
1793
1794 anv_bo_init(&bo->bo, gem_handle, size);
1795 bo->bo.flags = bo_flags;
1796
1797 if (!anv_vma_alloc(device, &bo->bo)) {
1798 anv_gem_close(device, bo->bo.gem_handle);
1799 pthread_mutex_unlock(&cache->mutex);
1800 vk_free(&device->alloc, bo);
1801 return vk_errorf(device->instance, NULL,
1802 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1803 "failed to allocate virtual address for BO");
1804 }
1805
1806 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1807 }
1808
1809 pthread_mutex_unlock(&cache->mutex);
1810 *bo_out = &bo->bo;
1811
1812 return VK_SUCCESS;
1813 }
1814
1815 VkResult
1816 anv_bo_cache_export(struct anv_device *device,
1817 struct anv_bo_cache *cache,
1818 struct anv_bo *bo_in, int *fd_out)
1819 {
1820 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1821 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1822
1823 /* This BO must have been flagged external in order for us to be able
1824 * to export it. This is done based on external options passed into
1825 * anv_AllocateMemory.
1826 */
1827 assert(bo->bo.flags & ANV_BO_EXTERNAL);
1828
1829 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1830 if (fd < 0)
1831 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1832
1833 *fd_out = fd;
1834
1835 return VK_SUCCESS;
1836 }
1837
1838 static bool
1839 atomic_dec_not_one(uint32_t *counter)
1840 {
1841 uint32_t old, val;
1842
1843 val = *counter;
1844 while (1) {
1845 if (val == 1)
1846 return false;
1847
1848 old = __sync_val_compare_and_swap(counter, val, val - 1);
1849 if (old == val)
1850 return true;
1851
1852 val = old;
1853 }
1854 }
1855
1856 void
1857 anv_bo_cache_release(struct anv_device *device,
1858 struct anv_bo_cache *cache,
1859 struct anv_bo *bo_in)
1860 {
1861 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1862 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1863
1864 /* Try to decrement the counter but don't go below one. If this succeeds
1865 * then the refcount has been decremented and we are not the last
1866 * reference.
1867 */
1868 if (atomic_dec_not_one(&bo->refcount))
1869 return;
1870
1871 pthread_mutex_lock(&cache->mutex);
1872
1873 /* We are probably the last reference since our attempt to decrement above
1874 * failed. However, we can't actually know until we are inside the mutex.
1875 * Otherwise, someone could import the BO between the decrement and our
1876 * taking the mutex.
1877 */
1878 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1879 /* Turns out we're not the last reference. Unlock and bail. */
1880 pthread_mutex_unlock(&cache->mutex);
1881 return;
1882 }
1883
1884 struct hash_entry *entry =
1885 _mesa_hash_table_search(cache->bo_map,
1886 (const void *)(uintptr_t)bo->bo.gem_handle);
1887 assert(entry);
1888 _mesa_hash_table_remove(cache->bo_map, entry);
1889
1890 if (bo->bo.map)
1891 anv_gem_munmap(bo->bo.map, bo->bo.size);
1892
1893 anv_vma_free(device, &bo->bo);
1894
1895 anv_gem_close(device, bo->bo.gem_handle);
1896
1897 /* Don't unlock until we've actually closed the BO. The whole point of
1898 * the BO cache is to ensure that we correctly handle races with creating
1899 * and releasing GEM handles and we don't want to let someone import the BO
1900 * again between mutex unlock and closing the GEM handle.
1901 */
1902 pthread_mutex_unlock(&cache->mutex);
1903
1904 vk_free(&device->alloc, bo);
1905 }