anv: Add an explicit_address parameter to anv_device_alloc_bo
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "util/simple_mtx.h"
33 #include "util/anon_file.h"
34
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({ \
37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38 __typeof(*(__ptr)) __val = *(__ptr); \
39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40 __val; \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
44 *(__ptr) = (__val); \
45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106
107 #define PAGE_SIZE 4096
108
109 struct anv_mmap_cleanup {
110 void *map;
111 size_t size;
112 };
113
114 static inline uint32_t
115 ilog2_round_up(uint32_t value)
116 {
117 assert(value != 0);
118 return 32 - __builtin_clz(value - 1);
119 }
120
121 static inline uint32_t
122 round_to_power_of_two(uint32_t value)
123 {
124 return 1 << ilog2_round_up(value);
125 }
126
127 struct anv_state_table_cleanup {
128 void *map;
129 size_t size;
130 };
131
132 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
133 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
134
135 static VkResult
136 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
137
138 VkResult
139 anv_state_table_init(struct anv_state_table *table,
140 struct anv_device *device,
141 uint32_t initial_entries)
142 {
143 VkResult result;
144
145 table->device = device;
146
147 /* Just make it 2GB up-front. The Linux kernel won't actually back it
148 * with pages until we either map and fault on one of them or we use
149 * userptr and send a chunk of it off to the GPU.
150 */
151 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
152 if (table->fd == -1) {
153 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
154 goto fail_fd;
155 }
156
157 if (!u_vector_init(&table->cleanups,
158 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
159 128)) {
160 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
161 goto fail_fd;
162 }
163
164 table->state.next = 0;
165 table->state.end = 0;
166 table->size = 0;
167
168 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
169 result = anv_state_table_expand_range(table, initial_size);
170 if (result != VK_SUCCESS)
171 goto fail_cleanups;
172
173 return VK_SUCCESS;
174
175 fail_cleanups:
176 u_vector_finish(&table->cleanups);
177 fail_fd:
178 close(table->fd);
179
180 return result;
181 }
182
183 static VkResult
184 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
185 {
186 void *map;
187 struct anv_state_table_cleanup *cleanup;
188
189 /* Assert that we only ever grow the pool */
190 assert(size >= table->state.end);
191
192 /* Make sure that we don't go outside the bounds of the memfd */
193 if (size > BLOCK_POOL_MEMFD_SIZE)
194 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
195
196 cleanup = u_vector_add(&table->cleanups);
197 if (!cleanup)
198 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
199
200 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
201
202 /* Just leak the old map until we destroy the pool. We can't munmap it
203 * without races or imposing locking on the block allocate fast path. On
204 * the whole the leaked maps adds up to less than the size of the
205 * current map. MAP_POPULATE seems like the right thing to do, but we
206 * should try to get some numbers.
207 */
208 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
209 MAP_SHARED | MAP_POPULATE, table->fd, 0);
210 if (map == MAP_FAILED) {
211 return vk_errorf(table->device->instance, table->device,
212 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
213 }
214
215 cleanup->map = map;
216 cleanup->size = size;
217
218 table->map = map;
219 table->size = size;
220
221 return VK_SUCCESS;
222 }
223
224 static VkResult
225 anv_state_table_grow(struct anv_state_table *table)
226 {
227 VkResult result = VK_SUCCESS;
228
229 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
230 PAGE_SIZE);
231 uint32_t old_size = table->size;
232
233 /* The block pool is always initialized to a nonzero size and this function
234 * is always called after initialization.
235 */
236 assert(old_size > 0);
237
238 uint32_t required = MAX2(used, old_size);
239 if (used * 2 <= required) {
240 /* If we're in this case then this isn't the firsta allocation and we
241 * already have enough space on both sides to hold double what we
242 * have allocated. There's nothing for us to do.
243 */
244 goto done;
245 }
246
247 uint32_t size = old_size * 2;
248 while (size < required)
249 size *= 2;
250
251 assert(size > table->size);
252
253 result = anv_state_table_expand_range(table, size);
254
255 done:
256 return result;
257 }
258
259 void
260 anv_state_table_finish(struct anv_state_table *table)
261 {
262 struct anv_state_table_cleanup *cleanup;
263
264 u_vector_foreach(cleanup, &table->cleanups) {
265 if (cleanup->map)
266 munmap(cleanup->map, cleanup->size);
267 }
268
269 u_vector_finish(&table->cleanups);
270
271 close(table->fd);
272 }
273
274 VkResult
275 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
276 uint32_t count)
277 {
278 struct anv_block_state state, old, new;
279 VkResult result;
280
281 assert(idx);
282
283 while(1) {
284 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
285 if (state.next + count <= state.end) {
286 assert(table->map);
287 struct anv_free_entry *entry = &table->map[state.next];
288 for (int i = 0; i < count; i++) {
289 entry[i].state.idx = state.next + i;
290 }
291 *idx = state.next;
292 return VK_SUCCESS;
293 } else if (state.next <= state.end) {
294 /* We allocated the first block outside the pool so we have to grow
295 * the pool. pool_state->next acts a mutex: threads who try to
296 * allocate now will get block indexes above the current limit and
297 * hit futex_wait below.
298 */
299 new.next = state.next + count;
300 do {
301 result = anv_state_table_grow(table);
302 if (result != VK_SUCCESS)
303 return result;
304 new.end = table->size / ANV_STATE_ENTRY_SIZE;
305 } while (new.end < new.next);
306
307 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
308 if (old.next != state.next)
309 futex_wake(&table->state.end, INT_MAX);
310 } else {
311 futex_wait(&table->state.end, state.end, NULL);
312 continue;
313 }
314 }
315 }
316
317 void
318 anv_free_list_push(union anv_free_list *list,
319 struct anv_state_table *table,
320 uint32_t first, uint32_t count)
321 {
322 union anv_free_list current, old, new;
323 uint32_t last = first;
324
325 for (uint32_t i = 1; i < count; i++, last++)
326 table->map[last].next = last + 1;
327
328 old = *list;
329 do {
330 current = old;
331 table->map[last].next = current.offset;
332 new.offset = first;
333 new.count = current.count + 1;
334 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
335 } while (old.u64 != current.u64);
336 }
337
338 struct anv_state *
339 anv_free_list_pop(union anv_free_list *list,
340 struct anv_state_table *table)
341 {
342 union anv_free_list current, new, old;
343
344 current.u64 = list->u64;
345 while (current.offset != EMPTY) {
346 __sync_synchronize();
347 new.offset = table->map[current.offset].next;
348 new.count = current.count + 1;
349 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
350 if (old.u64 == current.u64) {
351 struct anv_free_entry *entry = &table->map[current.offset];
352 return &entry->state;
353 }
354 current = old;
355 }
356
357 return NULL;
358 }
359
360 static VkResult
361 anv_block_pool_expand_range(struct anv_block_pool *pool,
362 uint32_t center_bo_offset, uint32_t size);
363
364 VkResult
365 anv_block_pool_init(struct anv_block_pool *pool,
366 struct anv_device *device,
367 uint64_t start_address,
368 uint32_t initial_size)
369 {
370 VkResult result;
371
372 pool->device = device;
373 pool->use_softpin = device->instance->physicalDevice.use_softpin;
374 pool->nbos = 0;
375 pool->size = 0;
376 pool->center_bo_offset = 0;
377 pool->start_address = gen_canonical_address(start_address);
378 pool->map = NULL;
379
380 if (pool->use_softpin) {
381 pool->bo = NULL;
382 pool->fd = -1;
383 } else {
384 /* Just make it 2GB up-front. The Linux kernel won't actually back it
385 * with pages until we either map and fault on one of them or we use
386 * userptr and send a chunk of it off to the GPU.
387 */
388 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
389 if (pool->fd == -1)
390 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
391
392 pool->wrapper_bo = (struct anv_bo) {
393 .refcount = 1,
394 .offset = -1,
395 .is_wrapper = true,
396 };
397 pool->bo = &pool->wrapper_bo;
398 }
399
400 if (!u_vector_init(&pool->mmap_cleanups,
401 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
402 128)) {
403 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
404 goto fail_fd;
405 }
406
407 pool->state.next = 0;
408 pool->state.end = 0;
409 pool->back_state.next = 0;
410 pool->back_state.end = 0;
411
412 result = anv_block_pool_expand_range(pool, 0, initial_size);
413 if (result != VK_SUCCESS)
414 goto fail_mmap_cleanups;
415
416 /* Make the entire pool available in the front of the pool. If back
417 * allocation needs to use this space, the "ends" will be re-arranged.
418 */
419 pool->state.end = pool->size;
420
421 return VK_SUCCESS;
422
423 fail_mmap_cleanups:
424 u_vector_finish(&pool->mmap_cleanups);
425 fail_fd:
426 if (pool->fd >= 0)
427 close(pool->fd);
428
429 return result;
430 }
431
432 void
433 anv_block_pool_finish(struct anv_block_pool *pool)
434 {
435 anv_block_pool_foreach_bo(bo, pool) {
436 if (bo->map)
437 anv_gem_munmap(bo->map, bo->size);
438 anv_gem_close(pool->device, bo->gem_handle);
439 }
440
441 struct anv_mmap_cleanup *cleanup;
442 u_vector_foreach(cleanup, &pool->mmap_cleanups)
443 munmap(cleanup->map, cleanup->size);
444 u_vector_finish(&pool->mmap_cleanups);
445
446 if (pool->fd >= 0)
447 close(pool->fd);
448 }
449
450 static VkResult
451 anv_block_pool_expand_range(struct anv_block_pool *pool,
452 uint32_t center_bo_offset, uint32_t size)
453 {
454 /* Assert that we only ever grow the pool */
455 assert(center_bo_offset >= pool->back_state.end);
456 assert(size - center_bo_offset >= pool->state.end);
457
458 /* Assert that we don't go outside the bounds of the memfd */
459 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
460 assert(pool->use_softpin ||
461 size - center_bo_offset <=
462 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
463
464 /* For state pool BOs we have to be a bit careful about where we place them
465 * in the GTT. There are two documented workarounds for state base address
466 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
467 * which state that those two base addresses do not support 48-bit
468 * addresses and need to be placed in the bottom 32-bit range.
469 * Unfortunately, this is not quite accurate.
470 *
471 * The real problem is that we always set the size of our state pools in
472 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
473 * likely significantly smaller. We do this because we do not no at the
474 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
475 * the pool during command buffer building so we don't actually have a
476 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
477 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
478 * as being out of bounds and returns zero. For dynamic state, this
479 * usually just leads to rendering corruptions, but shaders that are all
480 * zero hang the GPU immediately.
481 *
482 * The easiest solution to do is exactly what the bogus workarounds say to
483 * do: restrict these buffers to 32-bit addresses. We could also pin the
484 * BO to some particular location of our choosing, but that's significantly
485 * more work than just not setting a flag. So, we explicitly DO NOT set
486 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
487 * hard work for us. When using softpin, we're in control and the fixed
488 * addresses we choose are fine for base addresses.
489 */
490 enum anv_bo_alloc_flags bo_alloc_flags = 0;
491 if (!pool->use_softpin)
492 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
493
494 uint64_t bo_flags = 0;
495 if (pool->device->instance->physicalDevice.has_exec_capture)
496 bo_flags |= EXEC_OBJECT_CAPTURE;
497
498 if (pool->use_softpin) {
499 uint32_t new_bo_size = size - pool->size;
500 struct anv_bo *new_bo;
501 assert(center_bo_offset == 0);
502 VkResult result = anv_device_alloc_bo(pool->device, new_bo_size,
503 bo_alloc_flags |
504 ANV_BO_ALLOC_FIXED_ADDRESS |
505 ANV_BO_ALLOC_MAPPED |
506 ANV_BO_ALLOC_SNOOPED,
507 pool->start_address + pool->size,
508 &new_bo);
509 if (result != VK_SUCCESS)
510 return result;
511
512 pool->bos[pool->nbos++] = new_bo;
513
514 /* This pointer will always point to the first BO in the list */
515 pool->bo = pool->bos[0];
516 } else {
517 /* Just leak the old map until we destroy the pool. We can't munmap it
518 * without races or imposing locking on the block allocate fast path. On
519 * the whole the leaked maps adds up to less than the size of the
520 * current map. MAP_POPULATE seems like the right thing to do, but we
521 * should try to get some numbers.
522 */
523 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
524 MAP_SHARED | MAP_POPULATE, pool->fd,
525 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
526 if (map == MAP_FAILED)
527 return vk_errorf(pool->device->instance, pool->device,
528 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
529
530 struct anv_bo *new_bo;
531 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
532 map, size,
533 bo_alloc_flags,
534 &new_bo);
535 if (result != VK_SUCCESS) {
536 munmap(map, size);
537 return result;
538 }
539
540 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
541 if (!cleanup) {
542 munmap(map, size);
543 anv_device_release_bo(pool->device, new_bo);
544 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
545 }
546 cleanup->map = map;
547 cleanup->size = size;
548
549 /* Now that we mapped the new memory, we can write the new
550 * center_bo_offset back into pool and update pool->map. */
551 pool->center_bo_offset = center_bo_offset;
552 pool->map = map + center_bo_offset;
553
554 pool->bos[pool->nbos++] = new_bo;
555 pool->wrapper_bo.map = new_bo;
556 }
557
558 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
559 pool->size = size;
560
561 return VK_SUCCESS;
562 }
563
564 /** Returns current memory map of the block pool.
565 *
566 * The returned pointer points to the map for the memory at the specified
567 * offset. The offset parameter is relative to the "center" of the block pool
568 * rather than the start of the block pool BO map.
569 */
570 void*
571 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
572 {
573 if (pool->use_softpin) {
574 struct anv_bo *bo = NULL;
575 int32_t bo_offset = 0;
576 anv_block_pool_foreach_bo(iter_bo, pool) {
577 if (offset < bo_offset + iter_bo->size) {
578 bo = iter_bo;
579 break;
580 }
581 bo_offset += iter_bo->size;
582 }
583 assert(bo != NULL);
584 assert(offset >= bo_offset);
585
586 return bo->map + (offset - bo_offset);
587 } else {
588 return pool->map + offset;
589 }
590 }
591
592 /** Grows and re-centers the block pool.
593 *
594 * We grow the block pool in one or both directions in such a way that the
595 * following conditions are met:
596 *
597 * 1) The size of the entire pool is always a power of two.
598 *
599 * 2) The pool only grows on both ends. Neither end can get
600 * shortened.
601 *
602 * 3) At the end of the allocation, we have about twice as much space
603 * allocated for each end as we have used. This way the pool doesn't
604 * grow too far in one direction or the other.
605 *
606 * 4) If the _alloc_back() has never been called, then the back portion of
607 * the pool retains a size of zero. (This makes it easier for users of
608 * the block pool that only want a one-sided pool.)
609 *
610 * 5) We have enough space allocated for at least one more block in
611 * whichever side `state` points to.
612 *
613 * 6) The center of the pool is always aligned to both the block_size of
614 * the pool and a 4K CPU page.
615 */
616 static uint32_t
617 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
618 {
619 VkResult result = VK_SUCCESS;
620
621 pthread_mutex_lock(&pool->device->mutex);
622
623 assert(state == &pool->state || state == &pool->back_state);
624
625 /* Gather a little usage information on the pool. Since we may have
626 * threadsd waiting in queue to get some storage while we resize, it's
627 * actually possible that total_used will be larger than old_size. In
628 * particular, block_pool_alloc() increments state->next prior to
629 * calling block_pool_grow, so this ensures that we get enough space for
630 * which ever side tries to grow the pool.
631 *
632 * We align to a page size because it makes it easier to do our
633 * calculations later in such a way that we state page-aigned.
634 */
635 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
636 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
637 uint32_t total_used = front_used + back_used;
638
639 assert(state == &pool->state || back_used > 0);
640
641 uint32_t old_size = pool->size;
642
643 /* The block pool is always initialized to a nonzero size and this function
644 * is always called after initialization.
645 */
646 assert(old_size > 0);
647
648 /* The back_used and front_used may actually be smaller than the actual
649 * requirement because they are based on the next pointers which are
650 * updated prior to calling this function.
651 */
652 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
653 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
654
655 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
656 /* If we're in this case then this isn't the firsta allocation and we
657 * already have enough space on both sides to hold double what we
658 * have allocated. There's nothing for us to do.
659 */
660 goto done;
661 }
662
663 uint32_t size = old_size * 2;
664 while (size < back_required + front_required)
665 size *= 2;
666
667 assert(size > pool->size);
668
669 /* We compute a new center_bo_offset such that, when we double the size
670 * of the pool, we maintain the ratio of how much is used by each side.
671 * This way things should remain more-or-less balanced.
672 */
673 uint32_t center_bo_offset;
674 if (back_used == 0) {
675 /* If we're in this case then we have never called alloc_back(). In
676 * this case, we want keep the offset at 0 to make things as simple
677 * as possible for users that don't care about back allocations.
678 */
679 center_bo_offset = 0;
680 } else {
681 /* Try to "center" the allocation based on how much is currently in
682 * use on each side of the center line.
683 */
684 center_bo_offset = ((uint64_t)size * back_used) / total_used;
685
686 /* Align down to a multiple of the page size */
687 center_bo_offset &= ~(PAGE_SIZE - 1);
688
689 assert(center_bo_offset >= back_used);
690
691 /* Make sure we don't shrink the back end of the pool */
692 if (center_bo_offset < back_required)
693 center_bo_offset = back_required;
694
695 /* Make sure that we don't shrink the front end of the pool */
696 if (size - center_bo_offset < front_required)
697 center_bo_offset = size - front_required;
698 }
699
700 assert(center_bo_offset % PAGE_SIZE == 0);
701
702 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
703
704 done:
705 pthread_mutex_unlock(&pool->device->mutex);
706
707 if (result == VK_SUCCESS) {
708 /* Return the appropriate new size. This function never actually
709 * updates state->next. Instead, we let the caller do that because it
710 * needs to do so in order to maintain its concurrency model.
711 */
712 if (state == &pool->state) {
713 return pool->size - pool->center_bo_offset;
714 } else {
715 assert(pool->center_bo_offset > 0);
716 return pool->center_bo_offset;
717 }
718 } else {
719 return 0;
720 }
721 }
722
723 static uint32_t
724 anv_block_pool_alloc_new(struct anv_block_pool *pool,
725 struct anv_block_state *pool_state,
726 uint32_t block_size, uint32_t *padding)
727 {
728 struct anv_block_state state, old, new;
729
730 /* Most allocations won't generate any padding */
731 if (padding)
732 *padding = 0;
733
734 while (1) {
735 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
736 if (state.next + block_size <= state.end) {
737 return state.next;
738 } else if (state.next <= state.end) {
739 if (pool->use_softpin && state.next < state.end) {
740 /* We need to grow the block pool, but still have some leftover
741 * space that can't be used by that particular allocation. So we
742 * add that as a "padding", and return it.
743 */
744 uint32_t leftover = state.end - state.next;
745
746 /* If there is some leftover space in the pool, the caller must
747 * deal with it.
748 */
749 assert(leftover == 0 || padding);
750 if (padding)
751 *padding = leftover;
752 state.next += leftover;
753 }
754
755 /* We allocated the first block outside the pool so we have to grow
756 * the pool. pool_state->next acts a mutex: threads who try to
757 * allocate now will get block indexes above the current limit and
758 * hit futex_wait below.
759 */
760 new.next = state.next + block_size;
761 do {
762 new.end = anv_block_pool_grow(pool, pool_state);
763 } while (new.end < new.next);
764
765 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
766 if (old.next != state.next)
767 futex_wake(&pool_state->end, INT_MAX);
768 return state.next;
769 } else {
770 futex_wait(&pool_state->end, state.end, NULL);
771 continue;
772 }
773 }
774 }
775
776 int32_t
777 anv_block_pool_alloc(struct anv_block_pool *pool,
778 uint32_t block_size, uint32_t *padding)
779 {
780 uint32_t offset;
781
782 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
783
784 return offset;
785 }
786
787 /* Allocates a block out of the back of the block pool.
788 *
789 * This will allocated a block earlier than the "start" of the block pool.
790 * The offsets returned from this function will be negative but will still
791 * be correct relative to the block pool's map pointer.
792 *
793 * If you ever use anv_block_pool_alloc_back, then you will have to do
794 * gymnastics with the block pool's BO when doing relocations.
795 */
796 int32_t
797 anv_block_pool_alloc_back(struct anv_block_pool *pool,
798 uint32_t block_size)
799 {
800 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
801 block_size, NULL);
802
803 /* The offset we get out of anv_block_pool_alloc_new() is actually the
804 * number of bytes downwards from the middle to the end of the block.
805 * We need to turn it into a (negative) offset from the middle to the
806 * start of the block.
807 */
808 assert(offset >= 0);
809 return -(offset + block_size);
810 }
811
812 VkResult
813 anv_state_pool_init(struct anv_state_pool *pool,
814 struct anv_device *device,
815 uint64_t start_address,
816 uint32_t block_size)
817 {
818 VkResult result = anv_block_pool_init(&pool->block_pool, device,
819 start_address,
820 block_size * 16);
821 if (result != VK_SUCCESS)
822 return result;
823
824 result = anv_state_table_init(&pool->table, device, 64);
825 if (result != VK_SUCCESS) {
826 anv_block_pool_finish(&pool->block_pool);
827 return result;
828 }
829
830 assert(util_is_power_of_two_or_zero(block_size));
831 pool->block_size = block_size;
832 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
833 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
834 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
835 pool->buckets[i].block.next = 0;
836 pool->buckets[i].block.end = 0;
837 }
838 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
839
840 return VK_SUCCESS;
841 }
842
843 void
844 anv_state_pool_finish(struct anv_state_pool *pool)
845 {
846 VG(VALGRIND_DESTROY_MEMPOOL(pool));
847 anv_state_table_finish(&pool->table);
848 anv_block_pool_finish(&pool->block_pool);
849 }
850
851 static uint32_t
852 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
853 struct anv_block_pool *block_pool,
854 uint32_t state_size,
855 uint32_t block_size,
856 uint32_t *padding)
857 {
858 struct anv_block_state block, old, new;
859 uint32_t offset;
860
861 /* We don't always use anv_block_pool_alloc(), which would set *padding to
862 * zero for us. So if we have a pointer to padding, we must zero it out
863 * ourselves here, to make sure we always return some sensible value.
864 */
865 if (padding)
866 *padding = 0;
867
868 /* If our state is large, we don't need any sub-allocation from a block.
869 * Instead, we just grab whole (potentially large) blocks.
870 */
871 if (state_size >= block_size)
872 return anv_block_pool_alloc(block_pool, state_size, padding);
873
874 restart:
875 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
876
877 if (block.next < block.end) {
878 return block.next;
879 } else if (block.next == block.end) {
880 offset = anv_block_pool_alloc(block_pool, block_size, padding);
881 new.next = offset + state_size;
882 new.end = offset + block_size;
883 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
884 if (old.next != block.next)
885 futex_wake(&pool->block.end, INT_MAX);
886 return offset;
887 } else {
888 futex_wait(&pool->block.end, block.end, NULL);
889 goto restart;
890 }
891 }
892
893 static uint32_t
894 anv_state_pool_get_bucket(uint32_t size)
895 {
896 unsigned size_log2 = ilog2_round_up(size);
897 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
898 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
899 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
900 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
901 }
902
903 static uint32_t
904 anv_state_pool_get_bucket_size(uint32_t bucket)
905 {
906 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
907 return 1 << size_log2;
908 }
909
910 /** Helper to push a chunk into the state table.
911 *
912 * It creates 'count' entries into the state table and update their sizes,
913 * offsets and maps, also pushing them as "free" states.
914 */
915 static void
916 anv_state_pool_return_blocks(struct anv_state_pool *pool,
917 uint32_t chunk_offset, uint32_t count,
918 uint32_t block_size)
919 {
920 /* Disallow returning 0 chunks */
921 assert(count != 0);
922
923 /* Make sure we always return chunks aligned to the block_size */
924 assert(chunk_offset % block_size == 0);
925
926 uint32_t st_idx;
927 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
928 assert(result == VK_SUCCESS);
929 for (int i = 0; i < count; i++) {
930 /* update states that were added back to the state table */
931 struct anv_state *state_i = anv_state_table_get(&pool->table,
932 st_idx + i);
933 state_i->alloc_size = block_size;
934 state_i->offset = chunk_offset + block_size * i;
935 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
936 }
937
938 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
939 anv_free_list_push(&pool->buckets[block_bucket].free_list,
940 &pool->table, st_idx, count);
941 }
942
943 /** Returns a chunk of memory back to the state pool.
944 *
945 * Do a two-level split. If chunk_size is bigger than divisor
946 * (pool->block_size), we return as many divisor sized blocks as we can, from
947 * the end of the chunk.
948 *
949 * The remaining is then split into smaller blocks (starting at small_size if
950 * it is non-zero), with larger blocks always being taken from the end of the
951 * chunk.
952 */
953 static void
954 anv_state_pool_return_chunk(struct anv_state_pool *pool,
955 uint32_t chunk_offset, uint32_t chunk_size,
956 uint32_t small_size)
957 {
958 uint32_t divisor = pool->block_size;
959 uint32_t nblocks = chunk_size / divisor;
960 uint32_t rest = chunk_size - nblocks * divisor;
961
962 if (nblocks > 0) {
963 /* First return divisor aligned and sized chunks. We start returning
964 * larger blocks from the end fo the chunk, since they should already be
965 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
966 * aligned chunks.
967 */
968 uint32_t offset = chunk_offset + rest;
969 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
970 }
971
972 chunk_size = rest;
973 divisor /= 2;
974
975 if (small_size > 0 && small_size < divisor)
976 divisor = small_size;
977
978 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
979
980 /* Just as before, return larger divisor aligned blocks from the end of the
981 * chunk first.
982 */
983 while (chunk_size > 0 && divisor >= min_size) {
984 nblocks = chunk_size / divisor;
985 rest = chunk_size - nblocks * divisor;
986 if (nblocks > 0) {
987 anv_state_pool_return_blocks(pool, chunk_offset + rest,
988 nblocks, divisor);
989 chunk_size = rest;
990 }
991 divisor /= 2;
992 }
993 }
994
995 static struct anv_state
996 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
997 uint32_t size, uint32_t align)
998 {
999 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1000
1001 struct anv_state *state;
1002 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1003 int32_t offset;
1004
1005 /* Try free list first. */
1006 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1007 &pool->table);
1008 if (state) {
1009 assert(state->offset >= 0);
1010 goto done;
1011 }
1012
1013 /* Try to grab a chunk from some larger bucket and split it up */
1014 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1015 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1016 if (state) {
1017 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1018 int32_t chunk_offset = state->offset;
1019
1020 /* First lets update the state we got to its new size. offset and map
1021 * remain the same.
1022 */
1023 state->alloc_size = alloc_size;
1024
1025 /* Now return the unused part of the chunk back to the pool as free
1026 * blocks
1027 *
1028 * There are a couple of options as to what we do with it:
1029 *
1030 * 1) We could fully split the chunk into state.alloc_size sized
1031 * pieces. However, this would mean that allocating a 16B
1032 * state could potentially split a 2MB chunk into 512K smaller
1033 * chunks. This would lead to unnecessary fragmentation.
1034 *
1035 * 2) The classic "buddy allocator" method would have us split the
1036 * chunk in half and return one half. Then we would split the
1037 * remaining half in half and return one half, and repeat as
1038 * needed until we get down to the size we want. However, if
1039 * you are allocating a bunch of the same size state (which is
1040 * the common case), this means that every other allocation has
1041 * to go up a level and every fourth goes up two levels, etc.
1042 * This is not nearly as efficient as it could be if we did a
1043 * little more work up-front.
1044 *
1045 * 3) Split the difference between (1) and (2) by doing a
1046 * two-level split. If it's bigger than some fixed block_size,
1047 * we split it into block_size sized chunks and return all but
1048 * one of them. Then we split what remains into
1049 * state.alloc_size sized chunks and return them.
1050 *
1051 * We choose something close to option (3), which is implemented with
1052 * anv_state_pool_return_chunk(). That is done by returning the
1053 * remaining of the chunk, with alloc_size as a hint of the size that
1054 * we want the smaller chunk split into.
1055 */
1056 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1057 chunk_size - alloc_size, alloc_size);
1058 goto done;
1059 }
1060 }
1061
1062 uint32_t padding;
1063 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1064 &pool->block_pool,
1065 alloc_size,
1066 pool->block_size,
1067 &padding);
1068 /* Everytime we allocate a new state, add it to the state pool */
1069 uint32_t idx;
1070 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1071 assert(result == VK_SUCCESS);
1072
1073 state = anv_state_table_get(&pool->table, idx);
1074 state->offset = offset;
1075 state->alloc_size = alloc_size;
1076 state->map = anv_block_pool_map(&pool->block_pool, offset);
1077
1078 if (padding > 0) {
1079 uint32_t return_offset = offset - padding;
1080 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1081 }
1082
1083 done:
1084 return *state;
1085 }
1086
1087 struct anv_state
1088 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1089 {
1090 if (size == 0)
1091 return ANV_STATE_NULL;
1092
1093 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1094 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1095 return state;
1096 }
1097
1098 struct anv_state
1099 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1100 {
1101 struct anv_state *state;
1102 uint32_t alloc_size = pool->block_size;
1103
1104 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1105 if (state) {
1106 assert(state->offset < 0);
1107 goto done;
1108 }
1109
1110 int32_t offset;
1111 offset = anv_block_pool_alloc_back(&pool->block_pool,
1112 pool->block_size);
1113 uint32_t idx;
1114 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1115 assert(result == VK_SUCCESS);
1116
1117 state = anv_state_table_get(&pool->table, idx);
1118 state->offset = offset;
1119 state->alloc_size = alloc_size;
1120 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1121
1122 done:
1123 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1124 return *state;
1125 }
1126
1127 static void
1128 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1129 {
1130 assert(util_is_power_of_two_or_zero(state.alloc_size));
1131 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1132
1133 if (state.offset < 0) {
1134 assert(state.alloc_size == pool->block_size);
1135 anv_free_list_push(&pool->back_alloc_free_list,
1136 &pool->table, state.idx, 1);
1137 } else {
1138 anv_free_list_push(&pool->buckets[bucket].free_list,
1139 &pool->table, state.idx, 1);
1140 }
1141 }
1142
1143 void
1144 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1145 {
1146 if (state.alloc_size == 0)
1147 return;
1148
1149 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1150 anv_state_pool_free_no_vg(pool, state);
1151 }
1152
1153 struct anv_state_stream_block {
1154 struct anv_state block;
1155
1156 /* The next block */
1157 struct anv_state_stream_block *next;
1158
1159 #ifdef HAVE_VALGRIND
1160 /* A pointer to the first user-allocated thing in this block. This is
1161 * what valgrind sees as the start of the block.
1162 */
1163 void *_vg_ptr;
1164 #endif
1165 };
1166
1167 /* The state stream allocator is a one-shot, single threaded allocator for
1168 * variable sized blocks. We use it for allocating dynamic state.
1169 */
1170 void
1171 anv_state_stream_init(struct anv_state_stream *stream,
1172 struct anv_state_pool *state_pool,
1173 uint32_t block_size)
1174 {
1175 stream->state_pool = state_pool;
1176 stream->block_size = block_size;
1177
1178 stream->block = ANV_STATE_NULL;
1179
1180 stream->block_list = NULL;
1181
1182 /* Ensure that next + whatever > block_size. This way the first call to
1183 * state_stream_alloc fetches a new block.
1184 */
1185 stream->next = block_size;
1186
1187 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1188 }
1189
1190 void
1191 anv_state_stream_finish(struct anv_state_stream *stream)
1192 {
1193 struct anv_state_stream_block *next = stream->block_list;
1194 while (next != NULL) {
1195 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1196 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1197 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1198 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1199 next = sb.next;
1200 }
1201
1202 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1203 }
1204
1205 struct anv_state
1206 anv_state_stream_alloc(struct anv_state_stream *stream,
1207 uint32_t size, uint32_t alignment)
1208 {
1209 if (size == 0)
1210 return ANV_STATE_NULL;
1211
1212 assert(alignment <= PAGE_SIZE);
1213
1214 uint32_t offset = align_u32(stream->next, alignment);
1215 if (offset + size > stream->block.alloc_size) {
1216 uint32_t block_size = stream->block_size;
1217 if (block_size < size)
1218 block_size = round_to_power_of_two(size);
1219
1220 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1221 block_size, PAGE_SIZE);
1222
1223 struct anv_state_stream_block *sb = stream->block.map;
1224 VG_NOACCESS_WRITE(&sb->block, stream->block);
1225 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1226 stream->block_list = sb;
1227 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1228
1229 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1230
1231 /* Reset back to the start plus space for the header */
1232 stream->next = sizeof(*sb);
1233
1234 offset = align_u32(stream->next, alignment);
1235 assert(offset + size <= stream->block.alloc_size);
1236 }
1237
1238 struct anv_state state = stream->block;
1239 state.offset += offset;
1240 state.alloc_size = size;
1241 state.map += offset;
1242
1243 stream->next = offset + size;
1244
1245 #ifdef HAVE_VALGRIND
1246 struct anv_state_stream_block *sb = stream->block_list;
1247 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1248 if (vg_ptr == NULL) {
1249 vg_ptr = state.map;
1250 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1251 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1252 } else {
1253 void *state_end = state.map + state.alloc_size;
1254 /* This only updates the mempool. The newly allocated chunk is still
1255 * marked as NOACCESS. */
1256 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1257 /* Mark the newly allocated chunk as undefined */
1258 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1259 }
1260 #endif
1261
1262 return state;
1263 }
1264
1265 void
1266 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
1267 {
1268 pool->device = device;
1269 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1270 util_sparse_array_free_list_init(&pool->free_list[i],
1271 &device->bo_cache.bo_map, 0,
1272 offsetof(struct anv_bo, free_index));
1273 }
1274
1275 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1276 }
1277
1278 void
1279 anv_bo_pool_finish(struct anv_bo_pool *pool)
1280 {
1281 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1282 while (1) {
1283 struct anv_bo *bo =
1284 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1285 if (bo == NULL)
1286 break;
1287
1288 /* anv_device_release_bo is going to "free" it */
1289 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1290 anv_device_release_bo(pool->device, bo);
1291 }
1292 }
1293
1294 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1295 }
1296
1297 VkResult
1298 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1299 struct anv_bo **bo_out)
1300 {
1301 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1302 const unsigned pow2_size = 1 << size_log2;
1303 const unsigned bucket = size_log2 - 12;
1304 assert(bucket < ARRAY_SIZE(pool->free_list));
1305
1306 struct anv_bo *bo =
1307 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1308 if (bo != NULL) {
1309 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1310 *bo_out = bo;
1311 return VK_SUCCESS;
1312 }
1313
1314 VkResult result = anv_device_alloc_bo(pool->device,
1315 pow2_size,
1316 ANV_BO_ALLOC_MAPPED |
1317 ANV_BO_ALLOC_SNOOPED,
1318 0 /* explicit_address */,
1319 &bo);
1320 if (result != VK_SUCCESS)
1321 return result;
1322
1323 /* We want it to look like it came from this pool */
1324 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1325 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1326
1327 *bo_out = bo;
1328
1329 return VK_SUCCESS;
1330 }
1331
1332 void
1333 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1334 {
1335 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1336
1337 assert(util_is_power_of_two_or_zero(bo->size));
1338 const unsigned size_log2 = ilog2_round_up(bo->size);
1339 const unsigned bucket = size_log2 - 12;
1340 assert(bucket < ARRAY_SIZE(pool->free_list));
1341
1342 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1343 bo->gem_handle) == bo);
1344 util_sparse_array_free_list_push(&pool->free_list[bucket],
1345 &bo->gem_handle, 1);
1346 }
1347
1348 // Scratch pool
1349
1350 void
1351 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1352 {
1353 memset(pool, 0, sizeof(*pool));
1354 }
1355
1356 void
1357 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1358 {
1359 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1360 for (unsigned i = 0; i < 16; i++) {
1361 if (pool->bos[i][s] != NULL)
1362 anv_device_release_bo(device, pool->bos[i][s]);
1363 }
1364 }
1365 }
1366
1367 struct anv_bo *
1368 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1369 gl_shader_stage stage, unsigned per_thread_scratch)
1370 {
1371 if (per_thread_scratch == 0)
1372 return NULL;
1373
1374 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1375 assert(scratch_size_log2 < 16);
1376
1377 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1378
1379 if (bo != NULL)
1380 return bo;
1381
1382 const struct anv_physical_device *physical_device =
1383 &device->instance->physicalDevice;
1384 const struct gen_device_info *devinfo = &physical_device->info;
1385
1386 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1387
1388 unsigned scratch_ids_per_subslice;
1389 if (devinfo->gen >= 11) {
1390 /* The MEDIA_VFE_STATE docs say:
1391 *
1392 * "Starting with this configuration, the Maximum Number of
1393 * Threads must be set to (#EU * 8) for GPGPU dispatches.
1394 *
1395 * Although there are only 7 threads per EU in the configuration,
1396 * the FFTID is calculated as if there are 8 threads per EU,
1397 * which in turn requires a larger amount of Scratch Space to be
1398 * allocated by the driver."
1399 */
1400 scratch_ids_per_subslice = 8 * 8;
1401 } else if (devinfo->is_haswell) {
1402 /* WaCSScratchSize:hsw
1403 *
1404 * Haswell's scratch space address calculation appears to be sparse
1405 * rather than tightly packed. The Thread ID has bits indicating
1406 * which subslice, EU within a subslice, and thread within an EU it
1407 * is. There's a maximum of two slices and two subslices, so these
1408 * can be stored with a single bit. Even though there are only 10 EUs
1409 * per subslice, this is stored in 4 bits, so there's an effective
1410 * maximum value of 16 EUs. Similarly, although there are only 7
1411 * threads per EU, this is stored in a 3 bit number, giving an
1412 * effective maximum value of 8 threads per EU.
1413 *
1414 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1415 * number of threads per subslice.
1416 */
1417 scratch_ids_per_subslice = 16 * 8;
1418 } else if (devinfo->is_cherryview) {
1419 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1420 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1421 * it had 8 EUs.
1422 */
1423 scratch_ids_per_subslice = 8 * 7;
1424 } else {
1425 scratch_ids_per_subslice = devinfo->max_cs_threads;
1426 }
1427
1428 uint32_t max_threads[] = {
1429 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1430 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1431 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1432 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1433 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1434 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1435 };
1436
1437 uint32_t size = per_thread_scratch * max_threads[stage];
1438
1439 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1440 * are still relative to the general state base address. When we emit
1441 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1442 * to the maximum (1 page under 4GB). This allows us to just place the
1443 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1444 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1445 * However, in order to do so, we need to ensure that the kernel does not
1446 * place the scratch BO above the 32-bit boundary.
1447 *
1448 * NOTE: Technically, it can't go "anywhere" because the top page is off
1449 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1450 * kernel allocates space using
1451 *
1452 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1453 *
1454 * so nothing will ever touch the top page.
1455 */
1456 VkResult result = anv_device_alloc_bo(device, size,
1457 ANV_BO_ALLOC_32BIT_ADDRESS,
1458 0 /* explicit_address */,
1459 &bo);
1460 if (result != VK_SUCCESS)
1461 return NULL; /* TODO */
1462
1463 struct anv_bo *current_bo =
1464 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1465 if (current_bo) {
1466 anv_device_release_bo(device, bo);
1467 return current_bo;
1468 } else {
1469 return bo;
1470 }
1471 }
1472
1473 VkResult
1474 anv_bo_cache_init(struct anv_bo_cache *cache)
1475 {
1476 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1477
1478 if (pthread_mutex_init(&cache->mutex, NULL)) {
1479 util_sparse_array_finish(&cache->bo_map);
1480 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1481 "pthread_mutex_init failed: %m");
1482 }
1483
1484 return VK_SUCCESS;
1485 }
1486
1487 void
1488 anv_bo_cache_finish(struct anv_bo_cache *cache)
1489 {
1490 util_sparse_array_finish(&cache->bo_map);
1491 pthread_mutex_destroy(&cache->mutex);
1492 }
1493
1494 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1495 (EXEC_OBJECT_WRITE | \
1496 EXEC_OBJECT_ASYNC | \
1497 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1498 EXEC_OBJECT_PINNED | \
1499 EXEC_OBJECT_CAPTURE)
1500
1501 static uint32_t
1502 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1503 enum anv_bo_alloc_flags alloc_flags)
1504 {
1505 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1506
1507 uint64_t bo_flags = 0;
1508 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1509 pdevice->supports_48bit_addresses)
1510 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1511
1512 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1513 bo_flags |= EXEC_OBJECT_CAPTURE;
1514
1515 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1516 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1517 bo_flags |= EXEC_OBJECT_WRITE;
1518 }
1519
1520 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1521 bo_flags |= EXEC_OBJECT_ASYNC;
1522
1523 if (pdevice->use_softpin)
1524 bo_flags |= EXEC_OBJECT_PINNED;
1525
1526 return bo_flags;
1527 }
1528
1529 VkResult
1530 anv_device_alloc_bo(struct anv_device *device,
1531 uint64_t size,
1532 enum anv_bo_alloc_flags alloc_flags,
1533 uint64_t explicit_address,
1534 struct anv_bo **bo_out)
1535 {
1536 const uint32_t bo_flags =
1537 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1538 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1539
1540 /* The kernel is going to give us whole pages anyway */
1541 size = align_u64(size, 4096);
1542
1543 uint32_t gem_handle = anv_gem_create(device, size);
1544 if (gem_handle == 0)
1545 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1546
1547 struct anv_bo new_bo = {
1548 .gem_handle = gem_handle,
1549 .refcount = 1,
1550 .offset = -1,
1551 .size = size,
1552 .flags = bo_flags,
1553 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1554 };
1555
1556 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1557 new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1558 if (new_bo.map == MAP_FAILED) {
1559 anv_gem_close(device, new_bo.gem_handle);
1560 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1561 }
1562 }
1563
1564 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1565 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1566 /* We don't want to change these defaults if it's going to be shared
1567 * with another process.
1568 */
1569 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1570
1571 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1572 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1573 * objects, we'd rather take the snooping overhead than risk forgetting
1574 * a CLFLUSH somewhere. Userptr objects are always created as
1575 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1576 * need to do this there.
1577 */
1578 if (!device->info.has_llc) {
1579 anv_gem_set_caching(device, new_bo.gem_handle,
1580 I915_CACHING_CACHED);
1581 }
1582 }
1583
1584 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1585 new_bo.has_fixed_address = true;
1586 new_bo.offset = explicit_address;
1587 } else {
1588 assert(explicit_address == 0);
1589 if (!anv_vma_alloc(device, &new_bo)) {
1590 if (new_bo.map)
1591 anv_gem_munmap(new_bo.map, size);
1592 anv_gem_close(device, new_bo.gem_handle);
1593 return vk_errorf(device->instance, NULL,
1594 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1595 "failed to allocate virtual address for BO");
1596 }
1597 }
1598
1599 assert(new_bo.gem_handle);
1600
1601 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1602 * else is touching this BO at the moment so we don't need to lock here.
1603 */
1604 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1605 *bo = new_bo;
1606
1607 *bo_out = bo;
1608
1609 return VK_SUCCESS;
1610 }
1611
1612 VkResult
1613 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1614 void *host_ptr, uint32_t size,
1615 enum anv_bo_alloc_flags alloc_flags,
1616 struct anv_bo **bo_out)
1617 {
1618 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1619 ANV_BO_ALLOC_SNOOPED |
1620 ANV_BO_ALLOC_FIXED_ADDRESS)));
1621
1622 struct anv_bo_cache *cache = &device->bo_cache;
1623 const uint32_t bo_flags =
1624 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1625 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1626
1627 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1628 if (!gem_handle)
1629 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1630
1631 pthread_mutex_lock(&cache->mutex);
1632
1633 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1634 if (bo->refcount > 0) {
1635 /* VK_EXT_external_memory_host doesn't require handling importing the
1636 * same pointer twice at the same time, but we don't get in the way. If
1637 * kernel gives us the same gem_handle, only succeed if the flags match.
1638 */
1639 assert(bo->gem_handle == gem_handle);
1640 if (bo_flags != bo->flags) {
1641 pthread_mutex_unlock(&cache->mutex);
1642 return vk_errorf(device->instance, NULL,
1643 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1644 "same host pointer imported two different ways");
1645 }
1646 __sync_fetch_and_add(&bo->refcount, 1);
1647 } else {
1648 struct anv_bo new_bo = {
1649 .gem_handle = gem_handle,
1650 .refcount = 1,
1651 .offset = -1,
1652 .size = size,
1653 .map = host_ptr,
1654 .flags = bo_flags,
1655 .is_external = true,
1656 .from_host_ptr = true,
1657 };
1658
1659 if (!anv_vma_alloc(device, &new_bo)) {
1660 anv_gem_close(device, new_bo.gem_handle);
1661 pthread_mutex_unlock(&cache->mutex);
1662 return vk_errorf(device->instance, NULL,
1663 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1664 "failed to allocate virtual address for BO");
1665 }
1666
1667 *bo = new_bo;
1668 }
1669
1670 pthread_mutex_unlock(&cache->mutex);
1671 *bo_out = bo;
1672
1673 return VK_SUCCESS;
1674 }
1675
1676 VkResult
1677 anv_device_import_bo(struct anv_device *device,
1678 int fd,
1679 enum anv_bo_alloc_flags alloc_flags,
1680 struct anv_bo **bo_out)
1681 {
1682 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1683 ANV_BO_ALLOC_SNOOPED |
1684 ANV_BO_ALLOC_FIXED_ADDRESS)));
1685
1686 struct anv_bo_cache *cache = &device->bo_cache;
1687 const uint32_t bo_flags =
1688 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1689 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1690
1691 pthread_mutex_lock(&cache->mutex);
1692
1693 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1694 if (!gem_handle) {
1695 pthread_mutex_unlock(&cache->mutex);
1696 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1697 }
1698
1699 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1700 if (bo->refcount > 0) {
1701 /* We have to be careful how we combine flags so that it makes sense.
1702 * Really, though, if we get to this case and it actually matters, the
1703 * client has imported a BO twice in different ways and they get what
1704 * they have coming.
1705 */
1706 uint64_t new_flags = 0;
1707 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1708 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1709 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1710 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1711 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1712
1713 /* It's theoretically possible for a BO to get imported such that it's
1714 * both pinned and not pinned. The only way this can happen is if it
1715 * gets imported as both a semaphore and a memory object and that would
1716 * be an application error. Just fail out in that case.
1717 */
1718 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1719 (bo_flags & EXEC_OBJECT_PINNED)) {
1720 pthread_mutex_unlock(&cache->mutex);
1721 return vk_errorf(device->instance, NULL,
1722 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1723 "The same BO was imported two different ways");
1724 }
1725
1726 /* It's also theoretically possible that someone could export a BO from
1727 * one heap and import it into another or to import the same BO into two
1728 * different heaps. If this happens, we could potentially end up both
1729 * allowing and disallowing 48-bit addresses. There's not much we can
1730 * do about it if we're pinning so we just throw an error and hope no
1731 * app is actually that stupid.
1732 */
1733 if ((new_flags & EXEC_OBJECT_PINNED) &&
1734 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1735 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1736 pthread_mutex_unlock(&cache->mutex);
1737 return vk_errorf(device->instance, NULL,
1738 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1739 "The same BO was imported on two different heaps");
1740 }
1741
1742 bo->flags = new_flags;
1743
1744 __sync_fetch_and_add(&bo->refcount, 1);
1745 } else {
1746 off_t size = lseek(fd, 0, SEEK_END);
1747 if (size == (off_t)-1) {
1748 anv_gem_close(device, gem_handle);
1749 pthread_mutex_unlock(&cache->mutex);
1750 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1751 }
1752
1753 struct anv_bo new_bo = {
1754 .gem_handle = gem_handle,
1755 .refcount = 1,
1756 .offset = -1,
1757 .size = size,
1758 .flags = bo_flags,
1759 .is_external = true,
1760 };
1761
1762 if (!anv_vma_alloc(device, &new_bo)) {
1763 anv_gem_close(device, new_bo.gem_handle);
1764 pthread_mutex_unlock(&cache->mutex);
1765 return vk_errorf(device->instance, NULL,
1766 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1767 "failed to allocate virtual address for BO");
1768 }
1769
1770 *bo = new_bo;
1771 }
1772
1773 pthread_mutex_unlock(&cache->mutex);
1774 *bo_out = bo;
1775
1776 return VK_SUCCESS;
1777 }
1778
1779 VkResult
1780 anv_device_export_bo(struct anv_device *device,
1781 struct anv_bo *bo, int *fd_out)
1782 {
1783 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1784
1785 /* This BO must have been flagged external in order for us to be able
1786 * to export it. This is done based on external options passed into
1787 * anv_AllocateMemory.
1788 */
1789 assert(bo->is_external);
1790
1791 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1792 if (fd < 0)
1793 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1794
1795 *fd_out = fd;
1796
1797 return VK_SUCCESS;
1798 }
1799
1800 static bool
1801 atomic_dec_not_one(uint32_t *counter)
1802 {
1803 uint32_t old, val;
1804
1805 val = *counter;
1806 while (1) {
1807 if (val == 1)
1808 return false;
1809
1810 old = __sync_val_compare_and_swap(counter, val, val - 1);
1811 if (old == val)
1812 return true;
1813
1814 val = old;
1815 }
1816 }
1817
1818 void
1819 anv_device_release_bo(struct anv_device *device,
1820 struct anv_bo *bo)
1821 {
1822 struct anv_bo_cache *cache = &device->bo_cache;
1823 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1824
1825 /* Try to decrement the counter but don't go below one. If this succeeds
1826 * then the refcount has been decremented and we are not the last
1827 * reference.
1828 */
1829 if (atomic_dec_not_one(&bo->refcount))
1830 return;
1831
1832 pthread_mutex_lock(&cache->mutex);
1833
1834 /* We are probably the last reference since our attempt to decrement above
1835 * failed. However, we can't actually know until we are inside the mutex.
1836 * Otherwise, someone could import the BO between the decrement and our
1837 * taking the mutex.
1838 */
1839 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1840 /* Turns out we're not the last reference. Unlock and bail. */
1841 pthread_mutex_unlock(&cache->mutex);
1842 return;
1843 }
1844 assert(bo->refcount == 0);
1845
1846 if (bo->map && !bo->from_host_ptr)
1847 anv_gem_munmap(bo->map, bo->size);
1848
1849 if (!bo->has_fixed_address)
1850 anv_vma_free(device, bo);
1851
1852 uint32_t gem_handle = bo->gem_handle;
1853
1854 /* Memset the BO just in case. The refcount being zero should be enough to
1855 * prevent someone from assuming the data is valid but it's safer to just
1856 * stomp to zero just in case. We explicitly do this *before* we close the
1857 * GEM handle to ensure that if anyone allocates something and gets the
1858 * same GEM handle, the memset has already happen and won't stomp all over
1859 * any data they may write in this BO.
1860 */
1861 memset(bo, 0, sizeof(*bo));
1862
1863 anv_gem_close(device, gem_handle);
1864
1865 /* Don't unlock until we've actually closed the BO. The whole point of
1866 * the BO cache is to ensure that we correctly handle races with creating
1867 * and releasing GEM handles and we don't want to let someone import the BO
1868 * again between mutex unlock and closing the GEM handle.
1869 */
1870 pthread_mutex_unlock(&cache->mutex);
1871 }