anv/allocator: Pull the userptr part of block_pool_grow into a helper
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <unistd.h>
27 #include <limits.h>
28 #include <assert.h>
29 #include <linux/futex.h>
30 #include <linux/memfd.h>
31 #include <sys/time.h>
32 #include <sys/mman.h>
33 #include <sys/syscall.h>
34
35 #include "anv_private.h"
36
37 #include "util/hash_table.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
183 {
184 union anv_free_list current, old, new;
185 int32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
204 })
205
206 static bool
207 anv_ptr_free_list_pop(void **list, void **elem)
208 {
209 void *current = *list;
210 while (PFL_PTR(current) != NULL) {
211 void **next_ptr = PFL_PTR(current);
212 void *new_ptr = VG_NOACCESS_READ(next_ptr);
213 unsigned new_count = PFL_COUNT(current) + 1;
214 void *new = PFL_PACK(new_ptr, new_count);
215 void *old = __sync_val_compare_and_swap(list, current, new);
216 if (old == current) {
217 *elem = PFL_PTR(current);
218 return true;
219 }
220 current = old;
221 }
222
223 return false;
224 }
225
226 static void
227 anv_ptr_free_list_push(void **list, void *elem)
228 {
229 void *old, *current;
230 void **next_ptr = elem;
231
232 /* The pointer-based free list requires that the pointer be
233 * page-aligned. This is because we use the bottom 12 bits of the
234 * pointer to store a counter to solve the ABA concurrency problem.
235 */
236 assert(((uintptr_t)elem & 0xfff) == 0);
237
238 old = *list;
239 do {
240 current = old;
241 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
242 unsigned new_count = PFL_COUNT(current) + 1;
243 void *new = PFL_PACK(elem, new_count);
244 old = __sync_val_compare_and_swap(list, current, new);
245 } while (old != current);
246 }
247
248 static uint32_t
249 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state);
250
251 VkResult
252 anv_block_pool_init(struct anv_block_pool *pool,
253 struct anv_device *device, uint32_t block_size)
254 {
255 VkResult result;
256
257 assert(util_is_power_of_two(block_size));
258
259 pool->device = device;
260 anv_bo_init(&pool->bo, 0, 0);
261 pool->block_size = block_size;
262 pool->free_list = ANV_FREE_LIST_EMPTY;
263 pool->back_free_list = ANV_FREE_LIST_EMPTY;
264
265 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
266 if (pool->fd == -1)
267 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
268
269 /* Just make it 2GB up-front. The Linux kernel won't actually back it
270 * with pages until we either map and fault on one of them or we use
271 * userptr and send a chunk of it off to the GPU.
272 */
273 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
274 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
275 goto fail_fd;
276 }
277
278 if (!u_vector_init(&pool->mmap_cleanups,
279 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
280 128)) {
281 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
282 goto fail_fd;
283 }
284
285 pool->state.next = 0;
286 pool->state.end = 0;
287 pool->back_state.next = 0;
288 pool->back_state.end = 0;
289
290 /* Immediately grow the pool so we'll have a backing bo. */
291 pool->state.end = anv_block_pool_grow(pool, &pool->state);
292
293 return VK_SUCCESS;
294
295 fail_fd:
296 close(pool->fd);
297
298 return result;
299 }
300
301 void
302 anv_block_pool_finish(struct anv_block_pool *pool)
303 {
304 struct anv_mmap_cleanup *cleanup;
305
306 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
307 if (cleanup->map)
308 munmap(cleanup->map, cleanup->size);
309 if (cleanup->gem_handle)
310 anv_gem_close(pool->device, cleanup->gem_handle);
311 }
312
313 u_vector_finish(&pool->mmap_cleanups);
314
315 close(pool->fd);
316 }
317
318 #define PAGE_SIZE 4096
319
320 static VkResult
321 anv_block_pool_expand_range(struct anv_block_pool *pool,
322 uint32_t center_bo_offset, uint32_t size)
323 {
324 void *map;
325 uint32_t gem_handle;
326 struct anv_mmap_cleanup *cleanup;
327
328 /* Assert that we only ever grow the pool */
329 assert(center_bo_offset >= pool->back_state.end);
330 assert(size - center_bo_offset >= pool->state.end);
331
332 cleanup = u_vector_add(&pool->mmap_cleanups);
333 if (!cleanup)
334 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
335
336 *cleanup = ANV_MMAP_CLEANUP_INIT;
337
338 /* Just leak the old map until we destroy the pool. We can't munmap it
339 * without races or imposing locking on the block allocate fast path. On
340 * the whole the leaked maps adds up to less than the size of the
341 * current map. MAP_POPULATE seems like the right thing to do, but we
342 * should try to get some numbers.
343 */
344 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
345 MAP_SHARED | MAP_POPULATE, pool->fd,
346 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
347 if (map == MAP_FAILED)
348 return vk_errorf(VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
349
350 gem_handle = anv_gem_userptr(pool->device, map, size);
351 if (gem_handle == 0) {
352 munmap(map, size);
353 return vk_errorf(VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
354 }
355
356 cleanup->map = map;
357 cleanup->size = size;
358 cleanup->gem_handle = gem_handle;
359
360 #if 0
361 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
362 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
363 * always created as I915_CACHING_CACHED, which on non-LLC means
364 * snooped. That can be useful but comes with a bit of overheard. Since
365 * we're eplicitly clflushing and don't want the overhead we need to turn
366 * it off. */
367 if (!pool->device->info.has_llc) {
368 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
369 anv_gem_set_domain(pool->device, gem_handle,
370 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
371 }
372 #endif
373
374 /* Now that we successfull allocated everything, we can write the new
375 * values back into pool. */
376 pool->map = map + center_bo_offset;
377 pool->center_bo_offset = center_bo_offset;
378
379 /* For block pool BOs we have to be a bit careful about where we place them
380 * in the GTT. There are two documented workarounds for state base address
381 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
382 * which state that those two base addresses do not support 48-bit
383 * addresses and need to be placed in the bottom 32-bit range.
384 * Unfortunately, this is not quite accurate.
385 *
386 * The real problem is that we always set the size of our state pools in
387 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
388 * likely significantly smaller. We do this because we do not no at the
389 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
390 * the pool during command buffer building so we don't actually have a
391 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
392 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
393 * as being out of bounds and returns zero. For dynamic state, this
394 * usually just leads to rendering corruptions, but shaders that are all
395 * zero hang the GPU immediately.
396 *
397 * The easiest solution to do is exactly what the bogus workarounds say to
398 * do: restrict these buffers to 32-bit addresses. We could also pin the
399 * BO to some particular location of our choosing, but that's significantly
400 * more work than just not setting a flag. So, we explicitly DO NOT set
401 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
402 * hard work for us.
403 */
404 anv_bo_init(&pool->bo, gem_handle, size);
405 pool->bo.map = map;
406
407 return VK_SUCCESS;
408 }
409
410 /** Grows and re-centers the block pool.
411 *
412 * We grow the block pool in one or both directions in such a way that the
413 * following conditions are met:
414 *
415 * 1) The size of the entire pool is always a power of two.
416 *
417 * 2) The pool only grows on both ends. Neither end can get
418 * shortened.
419 *
420 * 3) At the end of the allocation, we have about twice as much space
421 * allocated for each end as we have used. This way the pool doesn't
422 * grow too far in one direction or the other.
423 *
424 * 4) If the _alloc_back() has never been called, then the back portion of
425 * the pool retains a size of zero. (This makes it easier for users of
426 * the block pool that only want a one-sided pool.)
427 *
428 * 5) We have enough space allocated for at least one more block in
429 * whichever side `state` points to.
430 *
431 * 6) The center of the pool is always aligned to both the block_size of
432 * the pool and a 4K CPU page.
433 */
434 static uint32_t
435 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
436 {
437 uint32_t size;
438 VkResult result = VK_SUCCESS;
439
440 pthread_mutex_lock(&pool->device->mutex);
441
442 assert(state == &pool->state || state == &pool->back_state);
443
444 /* Gather a little usage information on the pool. Since we may have
445 * threadsd waiting in queue to get some storage while we resize, it's
446 * actually possible that total_used will be larger than old_size. In
447 * particular, block_pool_alloc() increments state->next prior to
448 * calling block_pool_grow, so this ensures that we get enough space for
449 * which ever side tries to grow the pool.
450 *
451 * We align to a page size because it makes it easier to do our
452 * calculations later in such a way that we state page-aigned.
453 */
454 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
455 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
456 uint32_t total_used = front_used + back_used;
457
458 assert(state == &pool->state || back_used > 0);
459
460 uint32_t old_size = pool->bo.size;
461
462 if (old_size != 0 &&
463 back_used * 2 <= pool->center_bo_offset &&
464 front_used * 2 <= (old_size - pool->center_bo_offset)) {
465 /* If we're in this case then this isn't the firsta allocation and we
466 * already have enough space on both sides to hold double what we
467 * have allocated. There's nothing for us to do.
468 */
469 goto done;
470 }
471
472 if (old_size == 0) {
473 /* This is the first allocation */
474 size = MAX2(32 * pool->block_size, PAGE_SIZE);
475 } else {
476 size = old_size * 2;
477 }
478
479 /* We can't have a block pool bigger than 1GB because we use signed
480 * 32-bit offsets in the free list and we don't want overflow. We
481 * should never need a block pool bigger than 1GB anyway.
482 */
483 assert(size <= (1u << 31));
484
485 /* We compute a new center_bo_offset such that, when we double the size
486 * of the pool, we maintain the ratio of how much is used by each side.
487 * This way things should remain more-or-less balanced.
488 */
489 uint32_t center_bo_offset;
490 if (back_used == 0) {
491 /* If we're in this case then we have never called alloc_back(). In
492 * this case, we want keep the offset at 0 to make things as simple
493 * as possible for users that don't care about back allocations.
494 */
495 center_bo_offset = 0;
496 } else {
497 /* Try to "center" the allocation based on how much is currently in
498 * use on each side of the center line.
499 */
500 center_bo_offset = ((uint64_t)size * back_used) / total_used;
501
502 /* Align down to a multiple of both the block size and page size */
503 uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE);
504 assert(util_is_power_of_two(granularity));
505 center_bo_offset &= ~(granularity - 1);
506
507 assert(center_bo_offset >= back_used);
508
509 /* Make sure we don't shrink the back end of the pool */
510 if (center_bo_offset < pool->back_state.end)
511 center_bo_offset = pool->back_state.end;
512
513 /* Make sure that we don't shrink the front end of the pool */
514 if (size - center_bo_offset < pool->state.end)
515 center_bo_offset = size - pool->state.end;
516 }
517
518 assert(center_bo_offset % pool->block_size == 0);
519 assert(center_bo_offset % PAGE_SIZE == 0);
520
521 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
522
523 if (pool->device->instance->physicalDevice.has_exec_async)
524 pool->bo.flags |= EXEC_OBJECT_ASYNC;
525
526 done:
527 pthread_mutex_unlock(&pool->device->mutex);
528
529 if (result == VK_SUCCESS) {
530 /* Return the appropriate new size. This function never actually
531 * updates state->next. Instead, we let the caller do that because it
532 * needs to do so in order to maintain its concurrency model.
533 */
534 if (state == &pool->state) {
535 return pool->bo.size - pool->center_bo_offset;
536 } else {
537 assert(pool->center_bo_offset > 0);
538 return pool->center_bo_offset;
539 }
540 } else {
541 return 0;
542 }
543 }
544
545 static uint32_t
546 anv_block_pool_alloc_new(struct anv_block_pool *pool,
547 struct anv_block_state *pool_state)
548 {
549 struct anv_block_state state, old, new;
550
551 while (1) {
552 state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
553 if (state.next < state.end) {
554 assert(pool->map);
555 return state.next;
556 } else if (state.next == state.end) {
557 /* We allocated the first block outside the pool, we have to grow it.
558 * pool_state->next acts a mutex: threads who try to allocate now will
559 * get block indexes above the current limit and hit futex_wait
560 * below. */
561 new.next = state.next + pool->block_size;
562 new.end = anv_block_pool_grow(pool, pool_state);
563 assert(new.end >= new.next && new.end % pool->block_size == 0);
564 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
565 if (old.next != state.next)
566 futex_wake(&pool_state->end, INT_MAX);
567 return state.next;
568 } else {
569 futex_wait(&pool_state->end, state.end);
570 continue;
571 }
572 }
573 }
574
575 int32_t
576 anv_block_pool_alloc(struct anv_block_pool *pool)
577 {
578 int32_t offset;
579
580 /* Try free list first. */
581 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
582 assert(offset >= 0);
583 assert(pool->map);
584 return offset;
585 }
586
587 return anv_block_pool_alloc_new(pool, &pool->state);
588 }
589
590 /* Allocates a block out of the back of the block pool.
591 *
592 * This will allocated a block earlier than the "start" of the block pool.
593 * The offsets returned from this function will be negative but will still
594 * be correct relative to the block pool's map pointer.
595 *
596 * If you ever use anv_block_pool_alloc_back, then you will have to do
597 * gymnastics with the block pool's BO when doing relocations.
598 */
599 int32_t
600 anv_block_pool_alloc_back(struct anv_block_pool *pool)
601 {
602 int32_t offset;
603
604 /* Try free list first. */
605 if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) {
606 assert(offset < 0);
607 assert(pool->map);
608 return offset;
609 }
610
611 offset = anv_block_pool_alloc_new(pool, &pool->back_state);
612
613 /* The offset we get out of anv_block_pool_alloc_new() is actually the
614 * number of bytes downwards from the middle to the end of the block.
615 * We need to turn it into a (negative) offset from the middle to the
616 * start of the block.
617 */
618 assert(offset >= 0);
619 return -(offset + pool->block_size);
620 }
621
622 void
623 anv_block_pool_free(struct anv_block_pool *pool, int32_t offset)
624 {
625 if (offset < 0) {
626 anv_free_list_push(&pool->back_free_list, pool->map, offset);
627 } else {
628 anv_free_list_push(&pool->free_list, pool->map, offset);
629 }
630 }
631
632 void
633 anv_state_pool_init(struct anv_state_pool *pool,
634 struct anv_block_pool *block_pool)
635 {
636 pool->block_pool = block_pool;
637 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
638 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
639 pool->buckets[i].block.next = 0;
640 pool->buckets[i].block.end = 0;
641 }
642 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
643 }
644
645 void
646 anv_state_pool_finish(struct anv_state_pool *pool)
647 {
648 VG(VALGRIND_DESTROY_MEMPOOL(pool));
649 }
650
651 static uint32_t
652 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
653 struct anv_block_pool *block_pool,
654 uint32_t state_size)
655 {
656 struct anv_block_state block, old, new;
657 uint32_t offset;
658
659 restart:
660 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
661
662 if (block.next < block.end) {
663 return block.next;
664 } else if (block.next == block.end) {
665 offset = anv_block_pool_alloc(block_pool);
666 new.next = offset + state_size;
667 new.end = offset + block_pool->block_size;
668 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
669 if (old.next != block.next)
670 futex_wake(&pool->block.end, INT_MAX);
671 return offset;
672 } else {
673 futex_wait(&pool->block.end, block.end);
674 goto restart;
675 }
676 }
677
678 static struct anv_state
679 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
680 uint32_t size, uint32_t align)
681 {
682 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
683 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
684 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
685 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
686 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
687
688 struct anv_state state;
689 state.alloc_size = 1 << size_log2;
690
691 /* Try free list first. */
692 if (anv_free_list_pop(&pool->buckets[bucket].free_list,
693 &pool->block_pool->map, &state.offset)) {
694 assert(state.offset >= 0);
695 goto done;
696 }
697
698 state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
699 pool->block_pool,
700 state.alloc_size);
701
702 done:
703 state.map = pool->block_pool->map + state.offset;
704 return state;
705 }
706
707 struct anv_state
708 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
709 {
710 if (size == 0)
711 return ANV_STATE_NULL;
712
713 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
714 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
715 return state;
716 }
717
718 static void
719 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
720 {
721 assert(util_is_power_of_two(state.alloc_size));
722 unsigned size_log2 = ilog2_round_up(state.alloc_size);
723 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
724 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
725 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
726
727 anv_free_list_push(&pool->buckets[bucket].free_list,
728 pool->block_pool->map, state.offset);
729 }
730
731 void
732 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
733 {
734 if (state.alloc_size == 0)
735 return;
736
737 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
738 anv_state_pool_free_no_vg(pool, state);
739 }
740
741 struct anv_state_stream_block {
742 struct anv_state block;
743
744 /* The next block */
745 struct anv_state_stream_block *next;
746
747 #ifdef HAVE_VALGRIND
748 /* A pointer to the first user-allocated thing in this block. This is
749 * what valgrind sees as the start of the block.
750 */
751 void *_vg_ptr;
752 #endif
753 };
754
755 /* The state stream allocator is a one-shot, single threaded allocator for
756 * variable sized blocks. We use it for allocating dynamic state.
757 */
758 void
759 anv_state_stream_init(struct anv_state_stream *stream,
760 struct anv_state_pool *state_pool,
761 uint32_t block_size)
762 {
763 stream->state_pool = state_pool;
764 stream->block_size = block_size;
765
766 stream->block = ANV_STATE_NULL;
767
768 stream->block_list = NULL;
769
770 /* Ensure that next + whatever > block_size. This way the first call to
771 * state_stream_alloc fetches a new block.
772 */
773 stream->next = block_size;
774
775 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
776 }
777
778 void
779 anv_state_stream_finish(struct anv_state_stream *stream)
780 {
781 struct anv_state_stream_block *next = stream->block_list;
782 while (next != NULL) {
783 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
784 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
785 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
786 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
787 next = sb.next;
788 }
789
790 VG(VALGRIND_DESTROY_MEMPOOL(stream));
791 }
792
793 struct anv_state
794 anv_state_stream_alloc(struct anv_state_stream *stream,
795 uint32_t size, uint32_t alignment)
796 {
797 if (size == 0)
798 return ANV_STATE_NULL;
799
800 assert(alignment <= PAGE_SIZE);
801
802 uint32_t offset = align_u32(stream->next, alignment);
803 if (offset + size > stream->block_size) {
804 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
805 stream->block_size,
806 PAGE_SIZE);
807
808 struct anv_state_stream_block *sb = stream->block.map;
809 VG_NOACCESS_WRITE(&sb->block, stream->block);
810 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
811 stream->block_list = sb;
812 VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL);
813
814 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
815
816 /* Reset back to the start plus space for the header */
817 stream->next = sizeof(*sb);
818
819 offset = align_u32(stream->next, alignment);
820 assert(offset + size <= stream->block_size);
821 }
822
823 struct anv_state state = stream->block;
824 state.offset += offset;
825 state.alloc_size = size;
826 state.map += offset;
827
828 stream->next = offset + size;
829
830 #ifdef HAVE_VALGRIND
831 struct anv_state_stream_block *sb = stream->block_list;
832 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
833 if (vg_ptr == NULL) {
834 vg_ptr = state.map;
835 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
836 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
837 } else {
838 void *state_end = state.map + state.alloc_size;
839 /* This only updates the mempool. The newly allocated chunk is still
840 * marked as NOACCESS. */
841 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
842 /* Mark the newly allocated chunk as undefined */
843 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
844 }
845 #endif
846
847 return state;
848 }
849
850 struct bo_pool_bo_link {
851 struct bo_pool_bo_link *next;
852 struct anv_bo bo;
853 };
854
855 void
856 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
857 {
858 pool->device = device;
859 memset(pool->free_list, 0, sizeof(pool->free_list));
860
861 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
862 }
863
864 void
865 anv_bo_pool_finish(struct anv_bo_pool *pool)
866 {
867 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
868 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
869 while (link != NULL) {
870 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
871
872 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
873 anv_gem_close(pool->device, link_copy.bo.gem_handle);
874 link = link_copy.next;
875 }
876 }
877
878 VG(VALGRIND_DESTROY_MEMPOOL(pool));
879 }
880
881 VkResult
882 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
883 {
884 VkResult result;
885
886 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
887 const unsigned pow2_size = 1 << size_log2;
888 const unsigned bucket = size_log2 - 12;
889 assert(bucket < ARRAY_SIZE(pool->free_list));
890
891 void *next_free_void;
892 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
893 struct bo_pool_bo_link *next_free = next_free_void;
894 *bo = VG_NOACCESS_READ(&next_free->bo);
895 assert(bo->gem_handle);
896 assert(bo->map == next_free);
897 assert(size <= bo->size);
898
899 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
900
901 return VK_SUCCESS;
902 }
903
904 struct anv_bo new_bo;
905
906 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
907 if (result != VK_SUCCESS)
908 return result;
909
910 assert(new_bo.size == pow2_size);
911
912 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
913 if (new_bo.map == MAP_FAILED) {
914 anv_gem_close(pool->device, new_bo.gem_handle);
915 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
916 }
917
918 *bo = new_bo;
919
920 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
921
922 return VK_SUCCESS;
923 }
924
925 void
926 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
927 {
928 /* Make a copy in case the anv_bo happens to be storred in the BO */
929 struct anv_bo bo = *bo_in;
930
931 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
932
933 struct bo_pool_bo_link *link = bo.map;
934 VG_NOACCESS_WRITE(&link->bo, bo);
935
936 assert(util_is_power_of_two(bo.size));
937 const unsigned size_log2 = ilog2_round_up(bo.size);
938 const unsigned bucket = size_log2 - 12;
939 assert(bucket < ARRAY_SIZE(pool->free_list));
940
941 anv_ptr_free_list_push(&pool->free_list[bucket], link);
942 }
943
944 // Scratch pool
945
946 void
947 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
948 {
949 memset(pool, 0, sizeof(*pool));
950 }
951
952 void
953 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
954 {
955 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
956 for (unsigned i = 0; i < 16; i++) {
957 struct anv_scratch_bo *bo = &pool->bos[i][s];
958 if (bo->exists > 0)
959 anv_gem_close(device, bo->bo.gem_handle);
960 }
961 }
962 }
963
964 struct anv_bo *
965 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
966 gl_shader_stage stage, unsigned per_thread_scratch)
967 {
968 if (per_thread_scratch == 0)
969 return NULL;
970
971 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
972 assert(scratch_size_log2 < 16);
973
974 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
975
976 /* We can use "exists" to shortcut and ignore the critical section */
977 if (bo->exists)
978 return &bo->bo;
979
980 pthread_mutex_lock(&device->mutex);
981
982 __sync_synchronize();
983 if (bo->exists)
984 return &bo->bo;
985
986 const struct anv_physical_device *physical_device =
987 &device->instance->physicalDevice;
988 const struct gen_device_info *devinfo = &physical_device->info;
989
990 /* WaCSScratchSize:hsw
991 *
992 * Haswell's scratch space address calculation appears to be sparse
993 * rather than tightly packed. The Thread ID has bits indicating which
994 * subslice, EU within a subslice, and thread within an EU it is.
995 * There's a maximum of two slices and two subslices, so these can be
996 * stored with a single bit. Even though there are only 10 EUs per
997 * subslice, this is stored in 4 bits, so there's an effective maximum
998 * value of 16 EUs. Similarly, although there are only 7 threads per EU,
999 * this is stored in a 3 bit number, giving an effective maximum value
1000 * of 8 threads per EU.
1001 *
1002 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1003 * number of threads per subslice.
1004 */
1005 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1006 const unsigned scratch_ids_per_subslice =
1007 device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads;
1008
1009 uint32_t max_threads[] = {
1010 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1011 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1012 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1013 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1014 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1015 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1016 };
1017
1018 uint32_t size = per_thread_scratch * max_threads[stage];
1019
1020 anv_bo_init_new(&bo->bo, device, size);
1021
1022 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1023 * are still relative to the general state base address. When we emit
1024 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1025 * to the maximum (1 page under 4GB). This allows us to just place the
1026 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1027 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1028 * However, in order to do so, we need to ensure that the kernel does not
1029 * place the scratch BO above the 32-bit boundary.
1030 *
1031 * NOTE: Technically, it can't go "anywhere" because the top page is off
1032 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1033 * kernel allocates space using
1034 *
1035 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1036 *
1037 * so nothing will ever touch the top page.
1038 */
1039 bo->bo.flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1040
1041 /* Set the exists last because it may be read by other threads */
1042 __sync_synchronize();
1043 bo->exists = true;
1044
1045 pthread_mutex_unlock(&device->mutex);
1046
1047 return &bo->bo;
1048 }
1049
1050 struct anv_cached_bo {
1051 struct anv_bo bo;
1052
1053 uint32_t refcount;
1054 };
1055
1056 VkResult
1057 anv_bo_cache_init(struct anv_bo_cache *cache)
1058 {
1059 cache->bo_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1060 _mesa_key_pointer_equal);
1061 if (!cache->bo_map)
1062 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1063
1064 if (pthread_mutex_init(&cache->mutex, NULL)) {
1065 _mesa_hash_table_destroy(cache->bo_map, NULL);
1066 return vk_errorf(VK_ERROR_OUT_OF_HOST_MEMORY,
1067 "pthread_mutex_init failed: %m");
1068 }
1069
1070 return VK_SUCCESS;
1071 }
1072
1073 void
1074 anv_bo_cache_finish(struct anv_bo_cache *cache)
1075 {
1076 _mesa_hash_table_destroy(cache->bo_map, NULL);
1077 pthread_mutex_destroy(&cache->mutex);
1078 }
1079
1080 static struct anv_cached_bo *
1081 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1082 {
1083 struct hash_entry *entry =
1084 _mesa_hash_table_search(cache->bo_map,
1085 (const void *)(uintptr_t)gem_handle);
1086 if (!entry)
1087 return NULL;
1088
1089 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1090 assert(bo->bo.gem_handle == gem_handle);
1091
1092 return bo;
1093 }
1094
1095 static struct anv_bo *
1096 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1097 {
1098 pthread_mutex_lock(&cache->mutex);
1099
1100 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1101
1102 pthread_mutex_unlock(&cache->mutex);
1103
1104 return bo ? &bo->bo : NULL;
1105 }
1106
1107 VkResult
1108 anv_bo_cache_alloc(struct anv_device *device,
1109 struct anv_bo_cache *cache,
1110 uint64_t size, struct anv_bo **bo_out)
1111 {
1112 struct anv_cached_bo *bo =
1113 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1114 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1115 if (!bo)
1116 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1117
1118 bo->refcount = 1;
1119
1120 /* The kernel is going to give us whole pages anyway */
1121 size = align_u64(size, 4096);
1122
1123 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1124 if (result != VK_SUCCESS) {
1125 vk_free(&device->alloc, bo);
1126 return result;
1127 }
1128
1129 assert(bo->bo.gem_handle);
1130
1131 pthread_mutex_lock(&cache->mutex);
1132
1133 _mesa_hash_table_insert(cache->bo_map,
1134 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1135
1136 pthread_mutex_unlock(&cache->mutex);
1137
1138 *bo_out = &bo->bo;
1139
1140 return VK_SUCCESS;
1141 }
1142
1143 VkResult
1144 anv_bo_cache_import(struct anv_device *device,
1145 struct anv_bo_cache *cache,
1146 int fd, uint64_t size, struct anv_bo **bo_out)
1147 {
1148 pthread_mutex_lock(&cache->mutex);
1149
1150 /* The kernel is going to give us whole pages anyway */
1151 size = align_u64(size, 4096);
1152
1153 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1154 if (!gem_handle) {
1155 pthread_mutex_unlock(&cache->mutex);
1156 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1157 }
1158
1159 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1160 if (bo) {
1161 if (bo->bo.size != size) {
1162 pthread_mutex_unlock(&cache->mutex);
1163 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1164 }
1165 __sync_fetch_and_add(&bo->refcount, 1);
1166 } else {
1167 /* For security purposes, we reject BO imports where the size does not
1168 * match exactly. This prevents a malicious client from passing a
1169 * buffer to a trusted client, lying about the size, and telling the
1170 * trusted client to try and texture from an image that goes
1171 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1172 * in the trusted client. The trusted client can protect itself against
1173 * this sort of attack but only if it can trust the buffer size.
1174 */
1175 off_t import_size = lseek(fd, 0, SEEK_END);
1176 if (import_size == (off_t)-1 || import_size != size) {
1177 anv_gem_close(device, gem_handle);
1178 pthread_mutex_unlock(&cache->mutex);
1179 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1180 }
1181
1182 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1183 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1184 if (!bo) {
1185 anv_gem_close(device, gem_handle);
1186 pthread_mutex_unlock(&cache->mutex);
1187 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1188 }
1189
1190 bo->refcount = 1;
1191
1192 anv_bo_init(&bo->bo, gem_handle, size);
1193
1194 if (device->instance->physicalDevice.supports_48bit_addresses)
1195 bo->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1196
1197 if (device->instance->physicalDevice.has_exec_async)
1198 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1199
1200 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1201 }
1202
1203 pthread_mutex_unlock(&cache->mutex);
1204
1205 /* From the Vulkan spec:
1206 *
1207 * "Importing memory from a file descriptor transfers ownership of
1208 * the file descriptor from the application to the Vulkan
1209 * implementation. The application must not perform any operations on
1210 * the file descriptor after a successful import."
1211 *
1212 * If the import fails, we leave the file descriptor open.
1213 */
1214 close(fd);
1215
1216 *bo_out = &bo->bo;
1217
1218 return VK_SUCCESS;
1219 }
1220
1221 VkResult
1222 anv_bo_cache_export(struct anv_device *device,
1223 struct anv_bo_cache *cache,
1224 struct anv_bo *bo_in, int *fd_out)
1225 {
1226 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1227 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1228
1229 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1230 if (fd < 0)
1231 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1232
1233 *fd_out = fd;
1234
1235 return VK_SUCCESS;
1236 }
1237
1238 static bool
1239 atomic_dec_not_one(uint32_t *counter)
1240 {
1241 uint32_t old, val;
1242
1243 val = *counter;
1244 while (1) {
1245 if (val == 1)
1246 return false;
1247
1248 old = __sync_val_compare_and_swap(counter, val, val - 1);
1249 if (old == val)
1250 return true;
1251
1252 val = old;
1253 }
1254 }
1255
1256 void
1257 anv_bo_cache_release(struct anv_device *device,
1258 struct anv_bo_cache *cache,
1259 struct anv_bo *bo_in)
1260 {
1261 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1262 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1263
1264 /* Try to decrement the counter but don't go below one. If this succeeds
1265 * then the refcount has been decremented and we are not the last
1266 * reference.
1267 */
1268 if (atomic_dec_not_one(&bo->refcount))
1269 return;
1270
1271 pthread_mutex_lock(&cache->mutex);
1272
1273 /* We are probably the last reference since our attempt to decrement above
1274 * failed. However, we can't actually know until we are inside the mutex.
1275 * Otherwise, someone could import the BO between the decrement and our
1276 * taking the mutex.
1277 */
1278 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1279 /* Turns out we're not the last reference. Unlock and bail. */
1280 pthread_mutex_unlock(&cache->mutex);
1281 return;
1282 }
1283
1284 struct hash_entry *entry =
1285 _mesa_hash_table_search(cache->bo_map,
1286 (const void *)(uintptr_t)bo->bo.gem_handle);
1287 assert(entry);
1288 _mesa_hash_table_remove(cache->bo_map, entry);
1289
1290 if (bo->bo.map)
1291 anv_gem_munmap(bo->bo.map, bo->bo.size);
1292
1293 anv_gem_close(device, bo->bo.gem_handle);
1294
1295 /* Don't unlock until we've actually closed the BO. The whole point of
1296 * the BO cache is to ensure that we correctly handle races with creating
1297 * and releasing GEM handles and we don't want to let someone import the BO
1298 * again between mutex unlock and closing the GEM handle.
1299 */
1300 pthread_mutex_unlock(&cache->mutex);
1301
1302 vk_free(&device->alloc, bo);
1303 }