anv: Add a way to reserve states from a pool
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "common/gen_aux_map.h"
33 #include "util/anon_file.h"
34
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({ \
37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38 __typeof(*(__ptr)) __val = *(__ptr); \
39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40 __val; \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
44 *(__ptr) = (__val); \
45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106
107 #define PAGE_SIZE 4096
108
109 struct anv_mmap_cleanup {
110 void *map;
111 size_t size;
112 };
113
114 static inline uint32_t
115 ilog2_round_up(uint32_t value)
116 {
117 assert(value != 0);
118 return 32 - __builtin_clz(value - 1);
119 }
120
121 static inline uint32_t
122 round_to_power_of_two(uint32_t value)
123 {
124 return 1 << ilog2_round_up(value);
125 }
126
127 struct anv_state_table_cleanup {
128 void *map;
129 size_t size;
130 };
131
132 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
133 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
134
135 static VkResult
136 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
137
138 VkResult
139 anv_state_table_init(struct anv_state_table *table,
140 struct anv_device *device,
141 uint32_t initial_entries)
142 {
143 VkResult result;
144
145 table->device = device;
146
147 /* Just make it 2GB up-front. The Linux kernel won't actually back it
148 * with pages until we either map and fault on one of them or we use
149 * userptr and send a chunk of it off to the GPU.
150 */
151 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
152 if (table->fd == -1) {
153 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
154 goto fail_fd;
155 }
156
157 if (!u_vector_init(&table->cleanups,
158 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
159 128)) {
160 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
161 goto fail_fd;
162 }
163
164 table->state.next = 0;
165 table->state.end = 0;
166 table->size = 0;
167
168 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
169 result = anv_state_table_expand_range(table, initial_size);
170 if (result != VK_SUCCESS)
171 goto fail_cleanups;
172
173 return VK_SUCCESS;
174
175 fail_cleanups:
176 u_vector_finish(&table->cleanups);
177 fail_fd:
178 close(table->fd);
179
180 return result;
181 }
182
183 static VkResult
184 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
185 {
186 void *map;
187 struct anv_state_table_cleanup *cleanup;
188
189 /* Assert that we only ever grow the pool */
190 assert(size >= table->state.end);
191
192 /* Make sure that we don't go outside the bounds of the memfd */
193 if (size > BLOCK_POOL_MEMFD_SIZE)
194 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
195
196 cleanup = u_vector_add(&table->cleanups);
197 if (!cleanup)
198 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
199
200 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
201
202 /* Just leak the old map until we destroy the pool. We can't munmap it
203 * without races or imposing locking on the block allocate fast path. On
204 * the whole the leaked maps adds up to less than the size of the
205 * current map. MAP_POPULATE seems like the right thing to do, but we
206 * should try to get some numbers.
207 */
208 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
209 MAP_SHARED | MAP_POPULATE, table->fd, 0);
210 if (map == MAP_FAILED) {
211 return vk_errorf(table->device, table->device,
212 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
213 }
214
215 cleanup->map = map;
216 cleanup->size = size;
217
218 table->map = map;
219 table->size = size;
220
221 return VK_SUCCESS;
222 }
223
224 static VkResult
225 anv_state_table_grow(struct anv_state_table *table)
226 {
227 VkResult result = VK_SUCCESS;
228
229 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
230 PAGE_SIZE);
231 uint32_t old_size = table->size;
232
233 /* The block pool is always initialized to a nonzero size and this function
234 * is always called after initialization.
235 */
236 assert(old_size > 0);
237
238 uint32_t required = MAX2(used, old_size);
239 if (used * 2 <= required) {
240 /* If we're in this case then this isn't the firsta allocation and we
241 * already have enough space on both sides to hold double what we
242 * have allocated. There's nothing for us to do.
243 */
244 goto done;
245 }
246
247 uint32_t size = old_size * 2;
248 while (size < required)
249 size *= 2;
250
251 assert(size > table->size);
252
253 result = anv_state_table_expand_range(table, size);
254
255 done:
256 return result;
257 }
258
259 void
260 anv_state_table_finish(struct anv_state_table *table)
261 {
262 struct anv_state_table_cleanup *cleanup;
263
264 u_vector_foreach(cleanup, &table->cleanups) {
265 if (cleanup->map)
266 munmap(cleanup->map, cleanup->size);
267 }
268
269 u_vector_finish(&table->cleanups);
270
271 close(table->fd);
272 }
273
274 VkResult
275 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
276 uint32_t count)
277 {
278 struct anv_block_state state, old, new;
279 VkResult result;
280
281 assert(idx);
282
283 while(1) {
284 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
285 if (state.next + count <= state.end) {
286 assert(table->map);
287 struct anv_free_entry *entry = &table->map[state.next];
288 for (int i = 0; i < count; i++) {
289 entry[i].state.idx = state.next + i;
290 }
291 *idx = state.next;
292 return VK_SUCCESS;
293 } else if (state.next <= state.end) {
294 /* We allocated the first block outside the pool so we have to grow
295 * the pool. pool_state->next acts a mutex: threads who try to
296 * allocate now will get block indexes above the current limit and
297 * hit futex_wait below.
298 */
299 new.next = state.next + count;
300 do {
301 result = anv_state_table_grow(table);
302 if (result != VK_SUCCESS)
303 return result;
304 new.end = table->size / ANV_STATE_ENTRY_SIZE;
305 } while (new.end < new.next);
306
307 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
308 if (old.next != state.next)
309 futex_wake(&table->state.end, INT_MAX);
310 } else {
311 futex_wait(&table->state.end, state.end, NULL);
312 continue;
313 }
314 }
315 }
316
317 void
318 anv_free_list_push(union anv_free_list *list,
319 struct anv_state_table *table,
320 uint32_t first, uint32_t count)
321 {
322 union anv_free_list current, old, new;
323 uint32_t last = first;
324
325 for (uint32_t i = 1; i < count; i++, last++)
326 table->map[last].next = last + 1;
327
328 old = *list;
329 do {
330 current = old;
331 table->map[last].next = current.offset;
332 new.offset = first;
333 new.count = current.count + 1;
334 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
335 } while (old.u64 != current.u64);
336 }
337
338 struct anv_state *
339 anv_free_list_pop(union anv_free_list *list,
340 struct anv_state_table *table)
341 {
342 union anv_free_list current, new, old;
343
344 current.u64 = list->u64;
345 while (current.offset != EMPTY) {
346 __sync_synchronize();
347 new.offset = table->map[current.offset].next;
348 new.count = current.count + 1;
349 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
350 if (old.u64 == current.u64) {
351 struct anv_free_entry *entry = &table->map[current.offset];
352 return &entry->state;
353 }
354 current = old;
355 }
356
357 return NULL;
358 }
359
360 static VkResult
361 anv_block_pool_expand_range(struct anv_block_pool *pool,
362 uint32_t center_bo_offset, uint32_t size);
363
364 VkResult
365 anv_block_pool_init(struct anv_block_pool *pool,
366 struct anv_device *device,
367 uint64_t start_address,
368 uint32_t initial_size)
369 {
370 VkResult result;
371
372 pool->device = device;
373 pool->use_softpin = device->physical->use_softpin;
374 pool->nbos = 0;
375 pool->size = 0;
376 pool->center_bo_offset = 0;
377 pool->start_address = gen_canonical_address(start_address);
378 pool->map = NULL;
379
380 if (pool->use_softpin) {
381 pool->bo = NULL;
382 pool->fd = -1;
383 } else {
384 /* Just make it 2GB up-front. The Linux kernel won't actually back it
385 * with pages until we either map and fault on one of them or we use
386 * userptr and send a chunk of it off to the GPU.
387 */
388 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
389 if (pool->fd == -1)
390 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
391
392 pool->wrapper_bo = (struct anv_bo) {
393 .refcount = 1,
394 .offset = -1,
395 .is_wrapper = true,
396 };
397 pool->bo = &pool->wrapper_bo;
398 }
399
400 if (!u_vector_init(&pool->mmap_cleanups,
401 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
402 128)) {
403 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
404 goto fail_fd;
405 }
406
407 pool->state.next = 0;
408 pool->state.end = 0;
409 pool->back_state.next = 0;
410 pool->back_state.end = 0;
411
412 result = anv_block_pool_expand_range(pool, 0, initial_size);
413 if (result != VK_SUCCESS)
414 goto fail_mmap_cleanups;
415
416 /* Make the entire pool available in the front of the pool. If back
417 * allocation needs to use this space, the "ends" will be re-arranged.
418 */
419 pool->state.end = pool->size;
420
421 return VK_SUCCESS;
422
423 fail_mmap_cleanups:
424 u_vector_finish(&pool->mmap_cleanups);
425 fail_fd:
426 if (pool->fd >= 0)
427 close(pool->fd);
428
429 return result;
430 }
431
432 void
433 anv_block_pool_finish(struct anv_block_pool *pool)
434 {
435 anv_block_pool_foreach_bo(bo, pool) {
436 if (bo->map)
437 anv_gem_munmap(pool->device, bo->map, bo->size);
438 anv_gem_close(pool->device, bo->gem_handle);
439 }
440
441 struct anv_mmap_cleanup *cleanup;
442 u_vector_foreach(cleanup, &pool->mmap_cleanups)
443 munmap(cleanup->map, cleanup->size);
444 u_vector_finish(&pool->mmap_cleanups);
445
446 if (pool->fd >= 0)
447 close(pool->fd);
448 }
449
450 static VkResult
451 anv_block_pool_expand_range(struct anv_block_pool *pool,
452 uint32_t center_bo_offset, uint32_t size)
453 {
454 /* Assert that we only ever grow the pool */
455 assert(center_bo_offset >= pool->back_state.end);
456 assert(size - center_bo_offset >= pool->state.end);
457
458 /* Assert that we don't go outside the bounds of the memfd */
459 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
460 assert(pool->use_softpin ||
461 size - center_bo_offset <=
462 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
463
464 /* For state pool BOs we have to be a bit careful about where we place them
465 * in the GTT. There are two documented workarounds for state base address
466 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
467 * which state that those two base addresses do not support 48-bit
468 * addresses and need to be placed in the bottom 32-bit range.
469 * Unfortunately, this is not quite accurate.
470 *
471 * The real problem is that we always set the size of our state pools in
472 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
473 * likely significantly smaller. We do this because we do not no at the
474 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
475 * the pool during command buffer building so we don't actually have a
476 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
477 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
478 * as being out of bounds and returns zero. For dynamic state, this
479 * usually just leads to rendering corruptions, but shaders that are all
480 * zero hang the GPU immediately.
481 *
482 * The easiest solution to do is exactly what the bogus workarounds say to
483 * do: restrict these buffers to 32-bit addresses. We could also pin the
484 * BO to some particular location of our choosing, but that's significantly
485 * more work than just not setting a flag. So, we explicitly DO NOT set
486 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
487 * hard work for us. When using softpin, we're in control and the fixed
488 * addresses we choose are fine for base addresses.
489 */
490 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
491 if (!pool->use_softpin)
492 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
493
494 if (pool->use_softpin) {
495 uint32_t new_bo_size = size - pool->size;
496 struct anv_bo *new_bo;
497 assert(center_bo_offset == 0);
498 VkResult result = anv_device_alloc_bo(pool->device, new_bo_size,
499 bo_alloc_flags |
500 ANV_BO_ALLOC_FIXED_ADDRESS |
501 ANV_BO_ALLOC_MAPPED |
502 ANV_BO_ALLOC_SNOOPED,
503 pool->start_address + pool->size,
504 &new_bo);
505 if (result != VK_SUCCESS)
506 return result;
507
508 pool->bos[pool->nbos++] = new_bo;
509
510 /* This pointer will always point to the first BO in the list */
511 pool->bo = pool->bos[0];
512 } else {
513 /* Just leak the old map until we destroy the pool. We can't munmap it
514 * without races or imposing locking on the block allocate fast path. On
515 * the whole the leaked maps adds up to less than the size of the
516 * current map. MAP_POPULATE seems like the right thing to do, but we
517 * should try to get some numbers.
518 */
519 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
520 MAP_SHARED | MAP_POPULATE, pool->fd,
521 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
522 if (map == MAP_FAILED)
523 return vk_errorf(pool->device, pool->device,
524 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
525
526 struct anv_bo *new_bo;
527 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
528 map, size,
529 bo_alloc_flags,
530 0 /* client_address */,
531 &new_bo);
532 if (result != VK_SUCCESS) {
533 munmap(map, size);
534 return result;
535 }
536
537 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
538 if (!cleanup) {
539 munmap(map, size);
540 anv_device_release_bo(pool->device, new_bo);
541 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
542 }
543 cleanup->map = map;
544 cleanup->size = size;
545
546 /* Now that we mapped the new memory, we can write the new
547 * center_bo_offset back into pool and update pool->map. */
548 pool->center_bo_offset = center_bo_offset;
549 pool->map = map + center_bo_offset;
550
551 pool->bos[pool->nbos++] = new_bo;
552 pool->wrapper_bo.map = new_bo;
553 }
554
555 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
556 pool->size = size;
557
558 return VK_SUCCESS;
559 }
560
561 /** Returns current memory map of the block pool.
562 *
563 * The returned pointer points to the map for the memory at the specified
564 * offset. The offset parameter is relative to the "center" of the block pool
565 * rather than the start of the block pool BO map.
566 */
567 void*
568 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
569 {
570 if (pool->use_softpin) {
571 struct anv_bo *bo = NULL;
572 int32_t bo_offset = 0;
573 anv_block_pool_foreach_bo(iter_bo, pool) {
574 if (offset < bo_offset + iter_bo->size) {
575 bo = iter_bo;
576 break;
577 }
578 bo_offset += iter_bo->size;
579 }
580 assert(bo != NULL);
581 assert(offset >= bo_offset);
582 assert((offset - bo_offset) + size <= bo->size);
583
584 return bo->map + (offset - bo_offset);
585 } else {
586 return pool->map + offset;
587 }
588 }
589
590 /** Grows and re-centers the block pool.
591 *
592 * We grow the block pool in one or both directions in such a way that the
593 * following conditions are met:
594 *
595 * 1) The size of the entire pool is always a power of two.
596 *
597 * 2) The pool only grows on both ends. Neither end can get
598 * shortened.
599 *
600 * 3) At the end of the allocation, we have about twice as much space
601 * allocated for each end as we have used. This way the pool doesn't
602 * grow too far in one direction or the other.
603 *
604 * 4) If the _alloc_back() has never been called, then the back portion of
605 * the pool retains a size of zero. (This makes it easier for users of
606 * the block pool that only want a one-sided pool.)
607 *
608 * 5) We have enough space allocated for at least one more block in
609 * whichever side `state` points to.
610 *
611 * 6) The center of the pool is always aligned to both the block_size of
612 * the pool and a 4K CPU page.
613 */
614 static uint32_t
615 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
616 uint32_t contiguous_size)
617 {
618 VkResult result = VK_SUCCESS;
619
620 pthread_mutex_lock(&pool->device->mutex);
621
622 assert(state == &pool->state || state == &pool->back_state);
623
624 /* Gather a little usage information on the pool. Since we may have
625 * threadsd waiting in queue to get some storage while we resize, it's
626 * actually possible that total_used will be larger than old_size. In
627 * particular, block_pool_alloc() increments state->next prior to
628 * calling block_pool_grow, so this ensures that we get enough space for
629 * which ever side tries to grow the pool.
630 *
631 * We align to a page size because it makes it easier to do our
632 * calculations later in such a way that we state page-aigned.
633 */
634 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
635 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
636 uint32_t total_used = front_used + back_used;
637
638 assert(state == &pool->state || back_used > 0);
639
640 uint32_t old_size = pool->size;
641
642 /* The block pool is always initialized to a nonzero size and this function
643 * is always called after initialization.
644 */
645 assert(old_size > 0);
646
647 const uint32_t old_back = pool->center_bo_offset;
648 const uint32_t old_front = old_size - pool->center_bo_offset;
649
650 /* The back_used and front_used may actually be smaller than the actual
651 * requirement because they are based on the next pointers which are
652 * updated prior to calling this function.
653 */
654 uint32_t back_required = MAX2(back_used, old_back);
655 uint32_t front_required = MAX2(front_used, old_front);
656
657 if (pool->use_softpin) {
658 /* With softpin, the pool is made up of a bunch of buffers with separate
659 * maps. Make sure we have enough contiguous space that we can get a
660 * properly contiguous map for the next chunk.
661 */
662 assert(old_back == 0);
663 front_required = MAX2(front_required, old_front + contiguous_size);
664 }
665
666 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
667 /* If we're in this case then this isn't the firsta allocation and we
668 * already have enough space on both sides to hold double what we
669 * have allocated. There's nothing for us to do.
670 */
671 goto done;
672 }
673
674 uint32_t size = old_size * 2;
675 while (size < back_required + front_required)
676 size *= 2;
677
678 assert(size > pool->size);
679
680 /* We compute a new center_bo_offset such that, when we double the size
681 * of the pool, we maintain the ratio of how much is used by each side.
682 * This way things should remain more-or-less balanced.
683 */
684 uint32_t center_bo_offset;
685 if (back_used == 0) {
686 /* If we're in this case then we have never called alloc_back(). In
687 * this case, we want keep the offset at 0 to make things as simple
688 * as possible for users that don't care about back allocations.
689 */
690 center_bo_offset = 0;
691 } else {
692 /* Try to "center" the allocation based on how much is currently in
693 * use on each side of the center line.
694 */
695 center_bo_offset = ((uint64_t)size * back_used) / total_used;
696
697 /* Align down to a multiple of the page size */
698 center_bo_offset &= ~(PAGE_SIZE - 1);
699
700 assert(center_bo_offset >= back_used);
701
702 /* Make sure we don't shrink the back end of the pool */
703 if (center_bo_offset < back_required)
704 center_bo_offset = back_required;
705
706 /* Make sure that we don't shrink the front end of the pool */
707 if (size - center_bo_offset < front_required)
708 center_bo_offset = size - front_required;
709 }
710
711 assert(center_bo_offset % PAGE_SIZE == 0);
712
713 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
714
715 done:
716 pthread_mutex_unlock(&pool->device->mutex);
717
718 if (result == VK_SUCCESS) {
719 /* Return the appropriate new size. This function never actually
720 * updates state->next. Instead, we let the caller do that because it
721 * needs to do so in order to maintain its concurrency model.
722 */
723 if (state == &pool->state) {
724 return pool->size - pool->center_bo_offset;
725 } else {
726 assert(pool->center_bo_offset > 0);
727 return pool->center_bo_offset;
728 }
729 } else {
730 return 0;
731 }
732 }
733
734 static uint32_t
735 anv_block_pool_alloc_new(struct anv_block_pool *pool,
736 struct anv_block_state *pool_state,
737 uint32_t block_size, uint32_t *padding)
738 {
739 struct anv_block_state state, old, new;
740
741 /* Most allocations won't generate any padding */
742 if (padding)
743 *padding = 0;
744
745 while (1) {
746 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
747 if (state.next + block_size <= state.end) {
748 return state.next;
749 } else if (state.next <= state.end) {
750 if (pool->use_softpin && state.next < state.end) {
751 /* We need to grow the block pool, but still have some leftover
752 * space that can't be used by that particular allocation. So we
753 * add that as a "padding", and return it.
754 */
755 uint32_t leftover = state.end - state.next;
756
757 /* If there is some leftover space in the pool, the caller must
758 * deal with it.
759 */
760 assert(leftover == 0 || padding);
761 if (padding)
762 *padding = leftover;
763 state.next += leftover;
764 }
765
766 /* We allocated the first block outside the pool so we have to grow
767 * the pool. pool_state->next acts a mutex: threads who try to
768 * allocate now will get block indexes above the current limit and
769 * hit futex_wait below.
770 */
771 new.next = state.next + block_size;
772 do {
773 new.end = anv_block_pool_grow(pool, pool_state, block_size);
774 } while (new.end < new.next);
775
776 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
777 if (old.next != state.next)
778 futex_wake(&pool_state->end, INT_MAX);
779 return state.next;
780 } else {
781 futex_wait(&pool_state->end, state.end, NULL);
782 continue;
783 }
784 }
785 }
786
787 int32_t
788 anv_block_pool_alloc(struct anv_block_pool *pool,
789 uint32_t block_size, uint32_t *padding)
790 {
791 uint32_t offset;
792
793 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
794
795 return offset;
796 }
797
798 /* Allocates a block out of the back of the block pool.
799 *
800 * This will allocated a block earlier than the "start" of the block pool.
801 * The offsets returned from this function will be negative but will still
802 * be correct relative to the block pool's map pointer.
803 *
804 * If you ever use anv_block_pool_alloc_back, then you will have to do
805 * gymnastics with the block pool's BO when doing relocations.
806 */
807 int32_t
808 anv_block_pool_alloc_back(struct anv_block_pool *pool,
809 uint32_t block_size)
810 {
811 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
812 block_size, NULL);
813
814 /* The offset we get out of anv_block_pool_alloc_new() is actually the
815 * number of bytes downwards from the middle to the end of the block.
816 * We need to turn it into a (negative) offset from the middle to the
817 * start of the block.
818 */
819 assert(offset >= 0);
820 return -(offset + block_size);
821 }
822
823 VkResult
824 anv_state_pool_init(struct anv_state_pool *pool,
825 struct anv_device *device,
826 uint64_t base_address,
827 int32_t start_offset,
828 uint32_t block_size)
829 {
830 /* We don't want to ever see signed overflow */
831 assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
832
833 VkResult result = anv_block_pool_init(&pool->block_pool, device,
834 base_address + start_offset,
835 block_size * 16);
836 if (result != VK_SUCCESS)
837 return result;
838
839 pool->start_offset = start_offset;
840
841 result = anv_state_table_init(&pool->table, device, 64);
842 if (result != VK_SUCCESS) {
843 anv_block_pool_finish(&pool->block_pool);
844 return result;
845 }
846
847 assert(util_is_power_of_two_or_zero(block_size));
848 pool->block_size = block_size;
849 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
850 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
851 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
852 pool->buckets[i].block.next = 0;
853 pool->buckets[i].block.end = 0;
854 }
855 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
856
857 return VK_SUCCESS;
858 }
859
860 void
861 anv_state_pool_finish(struct anv_state_pool *pool)
862 {
863 VG(VALGRIND_DESTROY_MEMPOOL(pool));
864 anv_state_table_finish(&pool->table);
865 anv_block_pool_finish(&pool->block_pool);
866 }
867
868 static uint32_t
869 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
870 struct anv_block_pool *block_pool,
871 uint32_t state_size,
872 uint32_t block_size,
873 uint32_t *padding)
874 {
875 struct anv_block_state block, old, new;
876 uint32_t offset;
877
878 /* We don't always use anv_block_pool_alloc(), which would set *padding to
879 * zero for us. So if we have a pointer to padding, we must zero it out
880 * ourselves here, to make sure we always return some sensible value.
881 */
882 if (padding)
883 *padding = 0;
884
885 /* If our state is large, we don't need any sub-allocation from a block.
886 * Instead, we just grab whole (potentially large) blocks.
887 */
888 if (state_size >= block_size)
889 return anv_block_pool_alloc(block_pool, state_size, padding);
890
891 restart:
892 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
893
894 if (block.next < block.end) {
895 return block.next;
896 } else if (block.next == block.end) {
897 offset = anv_block_pool_alloc(block_pool, block_size, padding);
898 new.next = offset + state_size;
899 new.end = offset + block_size;
900 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
901 if (old.next != block.next)
902 futex_wake(&pool->block.end, INT_MAX);
903 return offset;
904 } else {
905 futex_wait(&pool->block.end, block.end, NULL);
906 goto restart;
907 }
908 }
909
910 static uint32_t
911 anv_state_pool_get_bucket(uint32_t size)
912 {
913 unsigned size_log2 = ilog2_round_up(size);
914 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
915 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
916 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
917 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
918 }
919
920 static uint32_t
921 anv_state_pool_get_bucket_size(uint32_t bucket)
922 {
923 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
924 return 1 << size_log2;
925 }
926
927 /** Helper to push a chunk into the state table.
928 *
929 * It creates 'count' entries into the state table and update their sizes,
930 * offsets and maps, also pushing them as "free" states.
931 */
932 static void
933 anv_state_pool_return_blocks(struct anv_state_pool *pool,
934 uint32_t chunk_offset, uint32_t count,
935 uint32_t block_size)
936 {
937 /* Disallow returning 0 chunks */
938 assert(count != 0);
939
940 /* Make sure we always return chunks aligned to the block_size */
941 assert(chunk_offset % block_size == 0);
942
943 uint32_t st_idx;
944 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
945 assert(result == VK_SUCCESS);
946 for (int i = 0; i < count; i++) {
947 /* update states that were added back to the state table */
948 struct anv_state *state_i = anv_state_table_get(&pool->table,
949 st_idx + i);
950 state_i->alloc_size = block_size;
951 state_i->offset = pool->start_offset + chunk_offset + block_size * i;
952 state_i->map = anv_block_pool_map(&pool->block_pool,
953 state_i->offset,
954 state_i->alloc_size);
955 }
956
957 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
958 anv_free_list_push(&pool->buckets[block_bucket].free_list,
959 &pool->table, st_idx, count);
960 }
961
962 /** Returns a chunk of memory back to the state pool.
963 *
964 * Do a two-level split. If chunk_size is bigger than divisor
965 * (pool->block_size), we return as many divisor sized blocks as we can, from
966 * the end of the chunk.
967 *
968 * The remaining is then split into smaller blocks (starting at small_size if
969 * it is non-zero), with larger blocks always being taken from the end of the
970 * chunk.
971 */
972 static void
973 anv_state_pool_return_chunk(struct anv_state_pool *pool,
974 uint32_t chunk_offset, uint32_t chunk_size,
975 uint32_t small_size)
976 {
977 uint32_t divisor = pool->block_size;
978 uint32_t nblocks = chunk_size / divisor;
979 uint32_t rest = chunk_size - nblocks * divisor;
980
981 if (nblocks > 0) {
982 /* First return divisor aligned and sized chunks. We start returning
983 * larger blocks from the end fo the chunk, since they should already be
984 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
985 * aligned chunks.
986 */
987 uint32_t offset = chunk_offset + rest;
988 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
989 }
990
991 chunk_size = rest;
992 divisor /= 2;
993
994 if (small_size > 0 && small_size < divisor)
995 divisor = small_size;
996
997 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
998
999 /* Just as before, return larger divisor aligned blocks from the end of the
1000 * chunk first.
1001 */
1002 while (chunk_size > 0 && divisor >= min_size) {
1003 nblocks = chunk_size / divisor;
1004 rest = chunk_size - nblocks * divisor;
1005 if (nblocks > 0) {
1006 anv_state_pool_return_blocks(pool, chunk_offset + rest,
1007 nblocks, divisor);
1008 chunk_size = rest;
1009 }
1010 divisor /= 2;
1011 }
1012 }
1013
1014 static struct anv_state
1015 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1016 uint32_t size, uint32_t align)
1017 {
1018 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1019
1020 struct anv_state *state;
1021 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1022 int32_t offset;
1023
1024 /* Try free list first. */
1025 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1026 &pool->table);
1027 if (state) {
1028 assert(state->offset >= 0);
1029 goto done;
1030 }
1031
1032 /* Try to grab a chunk from some larger bucket and split it up */
1033 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1034 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1035 if (state) {
1036 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1037 int32_t chunk_offset = state->offset;
1038
1039 /* First lets update the state we got to its new size. offset and map
1040 * remain the same.
1041 */
1042 state->alloc_size = alloc_size;
1043
1044 /* Now return the unused part of the chunk back to the pool as free
1045 * blocks
1046 *
1047 * There are a couple of options as to what we do with it:
1048 *
1049 * 1) We could fully split the chunk into state.alloc_size sized
1050 * pieces. However, this would mean that allocating a 16B
1051 * state could potentially split a 2MB chunk into 512K smaller
1052 * chunks. This would lead to unnecessary fragmentation.
1053 *
1054 * 2) The classic "buddy allocator" method would have us split the
1055 * chunk in half and return one half. Then we would split the
1056 * remaining half in half and return one half, and repeat as
1057 * needed until we get down to the size we want. However, if
1058 * you are allocating a bunch of the same size state (which is
1059 * the common case), this means that every other allocation has
1060 * to go up a level and every fourth goes up two levels, etc.
1061 * This is not nearly as efficient as it could be if we did a
1062 * little more work up-front.
1063 *
1064 * 3) Split the difference between (1) and (2) by doing a
1065 * two-level split. If it's bigger than some fixed block_size,
1066 * we split it into block_size sized chunks and return all but
1067 * one of them. Then we split what remains into
1068 * state.alloc_size sized chunks and return them.
1069 *
1070 * We choose something close to option (3), which is implemented with
1071 * anv_state_pool_return_chunk(). That is done by returning the
1072 * remaining of the chunk, with alloc_size as a hint of the size that
1073 * we want the smaller chunk split into.
1074 */
1075 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1076 chunk_size - alloc_size, alloc_size);
1077 goto done;
1078 }
1079 }
1080
1081 uint32_t padding;
1082 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1083 &pool->block_pool,
1084 alloc_size,
1085 pool->block_size,
1086 &padding);
1087 /* Everytime we allocate a new state, add it to the state pool */
1088 uint32_t idx;
1089 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1090 assert(result == VK_SUCCESS);
1091
1092 state = anv_state_table_get(&pool->table, idx);
1093 state->offset = pool->start_offset + offset;
1094 state->alloc_size = alloc_size;
1095 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1096
1097 if (padding > 0) {
1098 uint32_t return_offset = offset - padding;
1099 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1100 }
1101
1102 done:
1103 return *state;
1104 }
1105
1106 struct anv_state
1107 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1108 {
1109 if (size == 0)
1110 return ANV_STATE_NULL;
1111
1112 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1113 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1114 return state;
1115 }
1116
1117 struct anv_state
1118 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1119 {
1120 struct anv_state *state;
1121 uint32_t alloc_size = pool->block_size;
1122
1123 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1124 if (state) {
1125 assert(state->offset < 0);
1126 goto done;
1127 }
1128
1129 int32_t offset;
1130 offset = anv_block_pool_alloc_back(&pool->block_pool,
1131 pool->block_size);
1132 uint32_t idx;
1133 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1134 assert(result == VK_SUCCESS);
1135
1136 state = anv_state_table_get(&pool->table, idx);
1137 state->offset = pool->start_offset + offset;
1138 state->alloc_size = alloc_size;
1139 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1140
1141 done:
1142 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1143 return *state;
1144 }
1145
1146 static void
1147 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1148 {
1149 assert(util_is_power_of_two_or_zero(state.alloc_size));
1150 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1151
1152 if (state.offset < 0) {
1153 assert(state.alloc_size == pool->block_size);
1154 anv_free_list_push(&pool->back_alloc_free_list,
1155 &pool->table, state.idx, 1);
1156 } else {
1157 anv_free_list_push(&pool->buckets[bucket].free_list,
1158 &pool->table, state.idx, 1);
1159 }
1160 }
1161
1162 void
1163 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1164 {
1165 if (state.alloc_size == 0)
1166 return;
1167
1168 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1169 anv_state_pool_free_no_vg(pool, state);
1170 }
1171
1172 struct anv_state_stream_block {
1173 struct anv_state block;
1174
1175 /* The next block */
1176 struct anv_state_stream_block *next;
1177
1178 #ifdef HAVE_VALGRIND
1179 /* A pointer to the first user-allocated thing in this block. This is
1180 * what valgrind sees as the start of the block.
1181 */
1182 void *_vg_ptr;
1183 #endif
1184 };
1185
1186 /* The state stream allocator is a one-shot, single threaded allocator for
1187 * variable sized blocks. We use it for allocating dynamic state.
1188 */
1189 void
1190 anv_state_stream_init(struct anv_state_stream *stream,
1191 struct anv_state_pool *state_pool,
1192 uint32_t block_size)
1193 {
1194 stream->state_pool = state_pool;
1195 stream->block_size = block_size;
1196
1197 stream->block = ANV_STATE_NULL;
1198
1199 /* Ensure that next + whatever > block_size. This way the first call to
1200 * state_stream_alloc fetches a new block.
1201 */
1202 stream->next = block_size;
1203
1204 util_dynarray_init(&stream->all_blocks, NULL);
1205
1206 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1207 }
1208
1209 void
1210 anv_state_stream_finish(struct anv_state_stream *stream)
1211 {
1212 util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1213 VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1214 VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1215 anv_state_pool_free_no_vg(stream->state_pool, *block);
1216 }
1217 util_dynarray_fini(&stream->all_blocks);
1218
1219 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1220 }
1221
1222 struct anv_state
1223 anv_state_stream_alloc(struct anv_state_stream *stream,
1224 uint32_t size, uint32_t alignment)
1225 {
1226 if (size == 0)
1227 return ANV_STATE_NULL;
1228
1229 assert(alignment <= PAGE_SIZE);
1230
1231 uint32_t offset = align_u32(stream->next, alignment);
1232 if (offset + size > stream->block.alloc_size) {
1233 uint32_t block_size = stream->block_size;
1234 if (block_size < size)
1235 block_size = round_to_power_of_two(size);
1236
1237 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1238 block_size, PAGE_SIZE);
1239 util_dynarray_append(&stream->all_blocks,
1240 struct anv_state, stream->block);
1241 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1242
1243 /* Reset back to the start */
1244 stream->next = offset = 0;
1245 assert(offset + size <= stream->block.alloc_size);
1246 }
1247 const bool new_block = stream->next == 0;
1248
1249 struct anv_state state = stream->block;
1250 state.offset += offset;
1251 state.alloc_size = size;
1252 state.map += offset;
1253
1254 stream->next = offset + size;
1255
1256 if (new_block) {
1257 assert(state.map == stream->block.map);
1258 VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1259 } else {
1260 /* This only updates the mempool. The newly allocated chunk is still
1261 * marked as NOACCESS. */
1262 VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1263 stream->next));
1264 /* Mark the newly allocated chunk as undefined */
1265 VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1266 }
1267
1268 return state;
1269 }
1270
1271 void
1272 anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1273 struct anv_state_pool *parent,
1274 uint32_t count, uint32_t size, uint32_t alignment)
1275 {
1276 pool->pool = parent;
1277 pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1278 pool->count = count;
1279
1280 for (unsigned i = 0; i < count; i++) {
1281 struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1282 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1283 }
1284 }
1285
1286 void
1287 anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1288 {
1289 struct anv_state *state;
1290
1291 while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1292 anv_state_pool_free(pool->pool, *state);
1293 pool->count--;
1294 }
1295 assert(pool->count == 0);
1296 }
1297
1298 struct anv_state
1299 anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1300 {
1301 return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1302 }
1303
1304 void
1305 anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1306 struct anv_state state)
1307 {
1308 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1309 }
1310
1311 void
1312 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
1313 {
1314 pool->device = device;
1315 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1316 util_sparse_array_free_list_init(&pool->free_list[i],
1317 &device->bo_cache.bo_map, 0,
1318 offsetof(struct anv_bo, free_index));
1319 }
1320
1321 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1322 }
1323
1324 void
1325 anv_bo_pool_finish(struct anv_bo_pool *pool)
1326 {
1327 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1328 while (1) {
1329 struct anv_bo *bo =
1330 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1331 if (bo == NULL)
1332 break;
1333
1334 /* anv_device_release_bo is going to "free" it */
1335 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1336 anv_device_release_bo(pool->device, bo);
1337 }
1338 }
1339
1340 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1341 }
1342
1343 VkResult
1344 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1345 struct anv_bo **bo_out)
1346 {
1347 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1348 const unsigned pow2_size = 1 << size_log2;
1349 const unsigned bucket = size_log2 - 12;
1350 assert(bucket < ARRAY_SIZE(pool->free_list));
1351
1352 struct anv_bo *bo =
1353 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1354 if (bo != NULL) {
1355 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1356 *bo_out = bo;
1357 return VK_SUCCESS;
1358 }
1359
1360 VkResult result = anv_device_alloc_bo(pool->device,
1361 pow2_size,
1362 ANV_BO_ALLOC_MAPPED |
1363 ANV_BO_ALLOC_SNOOPED |
1364 ANV_BO_ALLOC_CAPTURE,
1365 0 /* explicit_address */,
1366 &bo);
1367 if (result != VK_SUCCESS)
1368 return result;
1369
1370 /* We want it to look like it came from this pool */
1371 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1372 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1373
1374 *bo_out = bo;
1375
1376 return VK_SUCCESS;
1377 }
1378
1379 void
1380 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1381 {
1382 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1383
1384 assert(util_is_power_of_two_or_zero(bo->size));
1385 const unsigned size_log2 = ilog2_round_up(bo->size);
1386 const unsigned bucket = size_log2 - 12;
1387 assert(bucket < ARRAY_SIZE(pool->free_list));
1388
1389 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1390 bo->gem_handle) == bo);
1391 util_sparse_array_free_list_push(&pool->free_list[bucket],
1392 &bo->gem_handle, 1);
1393 }
1394
1395 // Scratch pool
1396
1397 void
1398 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1399 {
1400 memset(pool, 0, sizeof(*pool));
1401 }
1402
1403 void
1404 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1405 {
1406 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1407 for (unsigned i = 0; i < 16; i++) {
1408 if (pool->bos[i][s] != NULL)
1409 anv_device_release_bo(device, pool->bos[i][s]);
1410 }
1411 }
1412 }
1413
1414 struct anv_bo *
1415 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1416 gl_shader_stage stage, unsigned per_thread_scratch)
1417 {
1418 if (per_thread_scratch == 0)
1419 return NULL;
1420
1421 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1422 assert(scratch_size_log2 < 16);
1423
1424 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1425
1426 if (bo != NULL)
1427 return bo;
1428
1429 const struct gen_device_info *devinfo = &device->info;
1430
1431 unsigned subslices = MAX2(device->physical->subslice_total, 1);
1432
1433 /* The documentation for 3DSTATE_PS "Scratch Space Base Pointer" says:
1434 *
1435 * "Scratch Space per slice is computed based on 4 sub-slices. SW
1436 * must allocate scratch space enough so that each slice has 4
1437 * slices allowed."
1438 *
1439 * According to the other driver team, this applies to compute shaders
1440 * as well. This is not currently documented at all.
1441 *
1442 * This hack is no longer necessary on Gen11+.
1443 *
1444 * For, Gen11+, scratch space allocation is based on the number of threads
1445 * in the base configuration.
1446 */
1447 if (devinfo->gen >= 12)
1448 subslices = devinfo->num_subslices[0];
1449 else if (devinfo->gen == 11)
1450 subslices = 8;
1451 else if (devinfo->gen >= 9)
1452 subslices = 4 * devinfo->num_slices;
1453
1454 unsigned scratch_ids_per_subslice;
1455 if (devinfo->gen >= 12) {
1456 /* Same as ICL below, but with 16 EUs. */
1457 scratch_ids_per_subslice = 16 * 8;
1458 } else if (devinfo->gen == 11) {
1459 /* The MEDIA_VFE_STATE docs say:
1460 *
1461 * "Starting with this configuration, the Maximum Number of
1462 * Threads must be set to (#EU * 8) for GPGPU dispatches.
1463 *
1464 * Although there are only 7 threads per EU in the configuration,
1465 * the FFTID is calculated as if there are 8 threads per EU,
1466 * which in turn requires a larger amount of Scratch Space to be
1467 * allocated by the driver."
1468 */
1469 scratch_ids_per_subslice = 8 * 8;
1470 } else if (devinfo->is_haswell) {
1471 /* WaCSScratchSize:hsw
1472 *
1473 * Haswell's scratch space address calculation appears to be sparse
1474 * rather than tightly packed. The Thread ID has bits indicating
1475 * which subslice, EU within a subslice, and thread within an EU it
1476 * is. There's a maximum of two slices and two subslices, so these
1477 * can be stored with a single bit. Even though there are only 10 EUs
1478 * per subslice, this is stored in 4 bits, so there's an effective
1479 * maximum value of 16 EUs. Similarly, although there are only 7
1480 * threads per EU, this is stored in a 3 bit number, giving an
1481 * effective maximum value of 8 threads per EU.
1482 *
1483 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1484 * number of threads per subslice.
1485 */
1486 scratch_ids_per_subslice = 16 * 8;
1487 } else if (devinfo->is_cherryview) {
1488 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1489 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1490 * it had 8 EUs.
1491 */
1492 scratch_ids_per_subslice = 8 * 7;
1493 } else {
1494 scratch_ids_per_subslice = devinfo->max_cs_threads;
1495 }
1496
1497 uint32_t max_threads[] = {
1498 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1499 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1500 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1501 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1502 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1503 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1504 };
1505
1506 uint32_t size = per_thread_scratch * max_threads[stage];
1507
1508 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1509 * are still relative to the general state base address. When we emit
1510 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1511 * to the maximum (1 page under 4GB). This allows us to just place the
1512 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1513 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1514 * However, in order to do so, we need to ensure that the kernel does not
1515 * place the scratch BO above the 32-bit boundary.
1516 *
1517 * NOTE: Technically, it can't go "anywhere" because the top page is off
1518 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1519 * kernel allocates space using
1520 *
1521 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1522 *
1523 * so nothing will ever touch the top page.
1524 */
1525 VkResult result = anv_device_alloc_bo(device, size,
1526 ANV_BO_ALLOC_32BIT_ADDRESS,
1527 0 /* explicit_address */,
1528 &bo);
1529 if (result != VK_SUCCESS)
1530 return NULL; /* TODO */
1531
1532 struct anv_bo *current_bo =
1533 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1534 if (current_bo) {
1535 anv_device_release_bo(device, bo);
1536 return current_bo;
1537 } else {
1538 return bo;
1539 }
1540 }
1541
1542 VkResult
1543 anv_bo_cache_init(struct anv_bo_cache *cache)
1544 {
1545 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1546
1547 if (pthread_mutex_init(&cache->mutex, NULL)) {
1548 util_sparse_array_finish(&cache->bo_map);
1549 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1550 "pthread_mutex_init failed: %m");
1551 }
1552
1553 return VK_SUCCESS;
1554 }
1555
1556 void
1557 anv_bo_cache_finish(struct anv_bo_cache *cache)
1558 {
1559 util_sparse_array_finish(&cache->bo_map);
1560 pthread_mutex_destroy(&cache->mutex);
1561 }
1562
1563 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1564 (EXEC_OBJECT_WRITE | \
1565 EXEC_OBJECT_ASYNC | \
1566 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1567 EXEC_OBJECT_PINNED | \
1568 EXEC_OBJECT_CAPTURE)
1569
1570 static uint32_t
1571 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1572 enum anv_bo_alloc_flags alloc_flags)
1573 {
1574 struct anv_physical_device *pdevice = device->physical;
1575
1576 uint64_t bo_flags = 0;
1577 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1578 pdevice->supports_48bit_addresses)
1579 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1580
1581 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1582 bo_flags |= EXEC_OBJECT_CAPTURE;
1583
1584 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1585 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1586 bo_flags |= EXEC_OBJECT_WRITE;
1587 }
1588
1589 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1590 bo_flags |= EXEC_OBJECT_ASYNC;
1591
1592 if (pdevice->use_softpin)
1593 bo_flags |= EXEC_OBJECT_PINNED;
1594
1595 return bo_flags;
1596 }
1597
1598 static uint32_t
1599 anv_device_get_bo_align(struct anv_device *device,
1600 enum anv_bo_alloc_flags alloc_flags)
1601 {
1602 /* Gen12 CCS surface addresses need to be 64K aligned. */
1603 if (device->info.gen >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
1604 return 64 * 1024;
1605
1606 return 4096;
1607 }
1608
1609 VkResult
1610 anv_device_alloc_bo(struct anv_device *device,
1611 uint64_t size,
1612 enum anv_bo_alloc_flags alloc_flags,
1613 uint64_t explicit_address,
1614 struct anv_bo **bo_out)
1615 {
1616 if (!device->physical->has_implicit_ccs)
1617 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1618
1619 const uint32_t bo_flags =
1620 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1621 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1622
1623 /* The kernel is going to give us whole pages anyway */
1624 size = align_u64(size, 4096);
1625
1626 const uint32_t align = anv_device_get_bo_align(device, alloc_flags);
1627
1628 uint64_t ccs_size = 0;
1629 if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
1630 /* Align the size up to the next multiple of 64K so we don't have any
1631 * AUX-TT entries pointing from a 64K page to itself.
1632 */
1633 size = align_u64(size, 64 * 1024);
1634
1635 /* See anv_bo::_ccs_size */
1636 ccs_size = align_u64(DIV_ROUND_UP(size, GEN_AUX_MAP_GEN12_CCS_SCALE), 4096);
1637 }
1638
1639 uint32_t gem_handle = anv_gem_create(device, size + ccs_size);
1640 if (gem_handle == 0)
1641 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1642
1643 struct anv_bo new_bo = {
1644 .gem_handle = gem_handle,
1645 .refcount = 1,
1646 .offset = -1,
1647 .size = size,
1648 ._ccs_size = ccs_size,
1649 .flags = bo_flags,
1650 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1651 .has_client_visible_address =
1652 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1653 .has_implicit_ccs = ccs_size > 0,
1654 };
1655
1656 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1657 new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1658 if (new_bo.map == MAP_FAILED) {
1659 anv_gem_close(device, new_bo.gem_handle);
1660 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1661 }
1662 }
1663
1664 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1665 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1666 /* We don't want to change these defaults if it's going to be shared
1667 * with another process.
1668 */
1669 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1670
1671 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1672 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1673 * objects, we'd rather take the snooping overhead than risk forgetting
1674 * a CLFLUSH somewhere. Userptr objects are always created as
1675 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1676 * need to do this there.
1677 */
1678 if (!device->info.has_llc) {
1679 anv_gem_set_caching(device, new_bo.gem_handle,
1680 I915_CACHING_CACHED);
1681 }
1682 }
1683
1684 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1685 new_bo.has_fixed_address = true;
1686 new_bo.offset = explicit_address;
1687 } else if (new_bo.flags & EXEC_OBJECT_PINNED) {
1688 new_bo.offset = anv_vma_alloc(device, new_bo.size + new_bo._ccs_size,
1689 align, alloc_flags, explicit_address);
1690 if (new_bo.offset == 0) {
1691 if (new_bo.map)
1692 anv_gem_munmap(device, new_bo.map, size);
1693 anv_gem_close(device, new_bo.gem_handle);
1694 return vk_errorf(device, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1695 "failed to allocate virtual address for BO");
1696 }
1697 } else {
1698 assert(!new_bo.has_client_visible_address);
1699 }
1700
1701 if (new_bo._ccs_size > 0) {
1702 assert(device->info.has_aux_map);
1703 gen_aux_map_add_mapping(device->aux_map_ctx,
1704 gen_canonical_address(new_bo.offset),
1705 gen_canonical_address(new_bo.offset + new_bo.size),
1706 new_bo.size, 0 /* format_bits */);
1707 }
1708
1709 assert(new_bo.gem_handle);
1710
1711 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1712 * else is touching this BO at the moment so we don't need to lock here.
1713 */
1714 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1715 *bo = new_bo;
1716
1717 *bo_out = bo;
1718
1719 return VK_SUCCESS;
1720 }
1721
1722 VkResult
1723 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1724 void *host_ptr, uint32_t size,
1725 enum anv_bo_alloc_flags alloc_flags,
1726 uint64_t client_address,
1727 struct anv_bo **bo_out)
1728 {
1729 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1730 ANV_BO_ALLOC_SNOOPED |
1731 ANV_BO_ALLOC_FIXED_ADDRESS)));
1732
1733 /* We can't do implicit CCS with an aux table on shared memory */
1734 if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1735 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1736
1737 struct anv_bo_cache *cache = &device->bo_cache;
1738 const uint32_t bo_flags =
1739 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1740 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1741
1742 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1743 if (!gem_handle)
1744 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1745
1746 pthread_mutex_lock(&cache->mutex);
1747
1748 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1749 if (bo->refcount > 0) {
1750 /* VK_EXT_external_memory_host doesn't require handling importing the
1751 * same pointer twice at the same time, but we don't get in the way. If
1752 * kernel gives us the same gem_handle, only succeed if the flags match.
1753 */
1754 assert(bo->gem_handle == gem_handle);
1755 if (bo_flags != bo->flags) {
1756 pthread_mutex_unlock(&cache->mutex);
1757 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1758 "same host pointer imported two different ways");
1759 }
1760
1761 if (bo->has_client_visible_address !=
1762 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1763 pthread_mutex_unlock(&cache->mutex);
1764 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1765 "The same BO was imported with and without buffer "
1766 "device address");
1767 }
1768
1769 if (client_address && client_address != gen_48b_address(bo->offset)) {
1770 pthread_mutex_unlock(&cache->mutex);
1771 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1772 "The same BO was imported at two different "
1773 "addresses");
1774 }
1775
1776 __sync_fetch_and_add(&bo->refcount, 1);
1777 } else {
1778 struct anv_bo new_bo = {
1779 .gem_handle = gem_handle,
1780 .refcount = 1,
1781 .offset = -1,
1782 .size = size,
1783 .map = host_ptr,
1784 .flags = bo_flags,
1785 .is_external = true,
1786 .from_host_ptr = true,
1787 .has_client_visible_address =
1788 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1789 };
1790
1791 assert(client_address == gen_48b_address(client_address));
1792 if (new_bo.flags & EXEC_OBJECT_PINNED) {
1793 assert(new_bo._ccs_size == 0);
1794 new_bo.offset = anv_vma_alloc(device, new_bo.size,
1795 anv_device_get_bo_align(device,
1796 alloc_flags),
1797 alloc_flags, client_address);
1798 if (new_bo.offset == 0) {
1799 anv_gem_close(device, new_bo.gem_handle);
1800 pthread_mutex_unlock(&cache->mutex);
1801 return vk_errorf(device, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1802 "failed to allocate virtual address for BO");
1803 }
1804 } else {
1805 assert(!new_bo.has_client_visible_address);
1806 }
1807
1808 *bo = new_bo;
1809 }
1810
1811 pthread_mutex_unlock(&cache->mutex);
1812 *bo_out = bo;
1813
1814 return VK_SUCCESS;
1815 }
1816
1817 VkResult
1818 anv_device_import_bo(struct anv_device *device,
1819 int fd,
1820 enum anv_bo_alloc_flags alloc_flags,
1821 uint64_t client_address,
1822 struct anv_bo **bo_out)
1823 {
1824 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1825 ANV_BO_ALLOC_SNOOPED |
1826 ANV_BO_ALLOC_FIXED_ADDRESS)));
1827
1828 /* We can't do implicit CCS with an aux table on shared memory */
1829 if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1830 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1831
1832 struct anv_bo_cache *cache = &device->bo_cache;
1833 const uint32_t bo_flags =
1834 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1835 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1836
1837 pthread_mutex_lock(&cache->mutex);
1838
1839 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1840 if (!gem_handle) {
1841 pthread_mutex_unlock(&cache->mutex);
1842 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1843 }
1844
1845 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1846 if (bo->refcount > 0) {
1847 /* We have to be careful how we combine flags so that it makes sense.
1848 * Really, though, if we get to this case and it actually matters, the
1849 * client has imported a BO twice in different ways and they get what
1850 * they have coming.
1851 */
1852 uint64_t new_flags = 0;
1853 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1854 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1855 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1856 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1857 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1858
1859 /* It's theoretically possible for a BO to get imported such that it's
1860 * both pinned and not pinned. The only way this can happen is if it
1861 * gets imported as both a semaphore and a memory object and that would
1862 * be an application error. Just fail out in that case.
1863 */
1864 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1865 (bo_flags & EXEC_OBJECT_PINNED)) {
1866 pthread_mutex_unlock(&cache->mutex);
1867 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1868 "The same BO was imported two different ways");
1869 }
1870
1871 /* It's also theoretically possible that someone could export a BO from
1872 * one heap and import it into another or to import the same BO into two
1873 * different heaps. If this happens, we could potentially end up both
1874 * allowing and disallowing 48-bit addresses. There's not much we can
1875 * do about it if we're pinning so we just throw an error and hope no
1876 * app is actually that stupid.
1877 */
1878 if ((new_flags & EXEC_OBJECT_PINNED) &&
1879 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1880 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1881 pthread_mutex_unlock(&cache->mutex);
1882 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1883 "The same BO was imported on two different heaps");
1884 }
1885
1886 if (bo->has_client_visible_address !=
1887 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1888 pthread_mutex_unlock(&cache->mutex);
1889 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1890 "The same BO was imported with and without buffer "
1891 "device address");
1892 }
1893
1894 if (client_address && client_address != gen_48b_address(bo->offset)) {
1895 pthread_mutex_unlock(&cache->mutex);
1896 return vk_errorf(device, NULL, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1897 "The same BO was imported at two different "
1898 "addresses");
1899 }
1900
1901 bo->flags = new_flags;
1902
1903 __sync_fetch_and_add(&bo->refcount, 1);
1904 } else {
1905 off_t size = lseek(fd, 0, SEEK_END);
1906 if (size == (off_t)-1) {
1907 anv_gem_close(device, gem_handle);
1908 pthread_mutex_unlock(&cache->mutex);
1909 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1910 }
1911
1912 struct anv_bo new_bo = {
1913 .gem_handle = gem_handle,
1914 .refcount = 1,
1915 .offset = -1,
1916 .size = size,
1917 .flags = bo_flags,
1918 .is_external = true,
1919 .has_client_visible_address =
1920 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1921 };
1922
1923 assert(client_address == gen_48b_address(client_address));
1924 if (new_bo.flags & EXEC_OBJECT_PINNED) {
1925 assert(new_bo._ccs_size == 0);
1926 new_bo.offset = anv_vma_alloc(device, new_bo.size,
1927 anv_device_get_bo_align(device,
1928 alloc_flags),
1929 alloc_flags, client_address);
1930 if (new_bo.offset == 0) {
1931 anv_gem_close(device, new_bo.gem_handle);
1932 pthread_mutex_unlock(&cache->mutex);
1933 return vk_errorf(device, NULL, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1934 "failed to allocate virtual address for BO");
1935 }
1936 } else {
1937 assert(!new_bo.has_client_visible_address);
1938 }
1939
1940 *bo = new_bo;
1941 }
1942
1943 pthread_mutex_unlock(&cache->mutex);
1944 *bo_out = bo;
1945
1946 return VK_SUCCESS;
1947 }
1948
1949 VkResult
1950 anv_device_export_bo(struct anv_device *device,
1951 struct anv_bo *bo, int *fd_out)
1952 {
1953 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1954
1955 /* This BO must have been flagged external in order for us to be able
1956 * to export it. This is done based on external options passed into
1957 * anv_AllocateMemory.
1958 */
1959 assert(bo->is_external);
1960
1961 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1962 if (fd < 0)
1963 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1964
1965 *fd_out = fd;
1966
1967 return VK_SUCCESS;
1968 }
1969
1970 static bool
1971 atomic_dec_not_one(uint32_t *counter)
1972 {
1973 uint32_t old, val;
1974
1975 val = *counter;
1976 while (1) {
1977 if (val == 1)
1978 return false;
1979
1980 old = __sync_val_compare_and_swap(counter, val, val - 1);
1981 if (old == val)
1982 return true;
1983
1984 val = old;
1985 }
1986 }
1987
1988 void
1989 anv_device_release_bo(struct anv_device *device,
1990 struct anv_bo *bo)
1991 {
1992 struct anv_bo_cache *cache = &device->bo_cache;
1993 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1994
1995 /* Try to decrement the counter but don't go below one. If this succeeds
1996 * then the refcount has been decremented and we are not the last
1997 * reference.
1998 */
1999 if (atomic_dec_not_one(&bo->refcount))
2000 return;
2001
2002 pthread_mutex_lock(&cache->mutex);
2003
2004 /* We are probably the last reference since our attempt to decrement above
2005 * failed. However, we can't actually know until we are inside the mutex.
2006 * Otherwise, someone could import the BO between the decrement and our
2007 * taking the mutex.
2008 */
2009 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
2010 /* Turns out we're not the last reference. Unlock and bail. */
2011 pthread_mutex_unlock(&cache->mutex);
2012 return;
2013 }
2014 assert(bo->refcount == 0);
2015
2016 if (bo->map && !bo->from_host_ptr)
2017 anv_gem_munmap(device, bo->map, bo->size);
2018
2019 if (bo->_ccs_size > 0) {
2020 assert(device->physical->has_implicit_ccs);
2021 assert(device->info.has_aux_map);
2022 assert(bo->has_implicit_ccs);
2023 gen_aux_map_unmap_range(device->aux_map_ctx,
2024 gen_canonical_address(bo->offset),
2025 bo->size);
2026 }
2027
2028 if ((bo->flags & EXEC_OBJECT_PINNED) && !bo->has_fixed_address)
2029 anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
2030
2031 uint32_t gem_handle = bo->gem_handle;
2032
2033 /* Memset the BO just in case. The refcount being zero should be enough to
2034 * prevent someone from assuming the data is valid but it's safer to just
2035 * stomp to zero just in case. We explicitly do this *before* we close the
2036 * GEM handle to ensure that if anyone allocates something and gets the
2037 * same GEM handle, the memset has already happen and won't stomp all over
2038 * any data they may write in this BO.
2039 */
2040 memset(bo, 0, sizeof(*bo));
2041
2042 anv_gem_close(device, gem_handle);
2043
2044 /* Don't unlock until we've actually closed the BO. The whole point of
2045 * the BO cache is to ensure that we correctly handle races with creating
2046 * and releasing GEM handles and we don't want to let someone import the BO
2047 * again between mutex unlock and closing the GEM handle.
2048 */
2049 pthread_mutex_unlock(&cache->mutex);
2050 }