anv/allocator: Add anv_state_table.
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <linux/memfd.h>
29 #include <sys/mman.h>
30
31 #include "anv_private.h"
32
33 #include "util/hash_table.h"
34 #include "util/simple_mtx.h"
35
36 #ifdef HAVE_VALGRIND
37 #define VG_NOACCESS_READ(__ptr) ({ \
38 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39 __typeof(*(__ptr)) __val = *(__ptr); \
40 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41 __val; \
42 })
43 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
44 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
45 *(__ptr) = (__val); \
46 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
47 })
48 #else
49 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
50 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51 #endif
52
53 /* Design goals:
54 *
55 * - Lock free (except when resizing underlying bos)
56 *
57 * - Constant time allocation with typically only one atomic
58 *
59 * - Multiple allocation sizes without fragmentation
60 *
61 * - Can grow while keeping addresses and offset of contents stable
62 *
63 * - All allocations within one bo so we can point one of the
64 * STATE_BASE_ADDRESS pointers at it.
65 *
66 * The overall design is a two-level allocator: top level is a fixed size, big
67 * block (8k) allocator, which operates out of a bo. Allocation is done by
68 * either pulling a block from the free list or growing the used range of the
69 * bo. Growing the range may run out of space in the bo which we then need to
70 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
71 * we need to keep all pointers and contents in the old map valid. GEM bos in
72 * general can't grow, but we use a trick: we create a memfd and use ftruncate
73 * to grow it as necessary. We mmap the new size and then create a gem bo for
74 * it using the new gem userptr ioctl. Without heavy-handed locking around
75 * our allocation fast-path, there isn't really a way to munmap the old mmap,
76 * so we just keep it around until garbage collection time. While the block
77 * allocator is lockless for normal operations, we block other threads trying
78 * to allocate while we're growing the map. It sholdn't happen often, and
79 * growing is fast anyway.
80 *
81 * At the next level we can use various sub-allocators. The state pool is a
82 * pool of smaller, fixed size objects, which operates much like the block
83 * pool. It uses a free list for freeing objects, but when it runs out of
84 * space it just allocates a new block from the block pool. This allocator is
85 * intended for longer lived state objects such as SURFACE_STATE and most
86 * other persistent state objects in the API. We may need to track more info
87 * with these object and a pointer back to the CPU object (eg VkImage). In
88 * those cases we just allocate a slightly bigger object and put the extra
89 * state after the GPU state object.
90 *
91 * The state stream allocator works similar to how the i965 DRI driver streams
92 * all its state. Even with Vulkan, we need to emit transient state (whether
93 * surface state base or dynamic state base), and for that we can just get a
94 * block and fill it up. These cases are local to a command buffer and the
95 * sub-allocator need not be thread safe. The streaming allocator gets a new
96 * block when it runs out of space and chains them together so they can be
97 * easily freed.
98 */
99
100 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
101 * We use it to indicate the free list is empty. */
102 #define EMPTY 1
103 #define EMPTY2 UINT32_MAX
104
105 #define PAGE_SIZE 4096
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 #ifndef HAVE_MEMFD_CREATE
116 static inline int
117 memfd_create(const char *name, unsigned int flags)
118 {
119 return syscall(SYS_memfd_create, name, flags);
120 }
121 #endif
122
123 static inline uint32_t
124 ilog2_round_up(uint32_t value)
125 {
126 assert(value != 0);
127 return 32 - __builtin_clz(value - 1);
128 }
129
130 static inline uint32_t
131 round_to_power_of_two(uint32_t value)
132 {
133 return 1 << ilog2_round_up(value);
134 }
135
136 struct anv_state_table_cleanup {
137 void *map;
138 size_t size;
139 };
140
141 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
142 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
143
144 static VkResult
145 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
146
147 VkResult
148 anv_state_table_init(struct anv_state_table *table,
149 struct anv_device *device,
150 uint32_t initial_entries)
151 {
152 VkResult result;
153
154 table->device = device;
155
156 table->fd = memfd_create("state table", MFD_CLOEXEC);
157 if (table->fd == -1)
158 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
159
160 /* Just make it 2GB up-front. The Linux kernel won't actually back it
161 * with pages until we either map and fault on one of them or we use
162 * userptr and send a chunk of it off to the GPU.
163 */
164 if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
165 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
166 goto fail_fd;
167 }
168
169 if (!u_vector_init(&table->mmap_cleanups,
170 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
171 128)) {
172 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
173 goto fail_fd;
174 }
175
176 table->state.next = 0;
177 table->state.end = 0;
178 table->size = 0;
179
180 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
181 result = anv_state_table_expand_range(table, initial_size);
182 if (result != VK_SUCCESS)
183 goto fail_mmap_cleanups;
184
185 return VK_SUCCESS;
186
187 fail_mmap_cleanups:
188 u_vector_finish(&table->mmap_cleanups);
189 fail_fd:
190 close(table->fd);
191
192 return result;
193 }
194
195 static VkResult
196 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
197 {
198 void *map;
199 struct anv_mmap_cleanup *cleanup;
200
201 /* Assert that we only ever grow the pool */
202 assert(size >= table->state.end);
203
204 /* Make sure that we don't go outside the bounds of the memfd */
205 if (size > BLOCK_POOL_MEMFD_SIZE)
206 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
207
208 cleanup = u_vector_add(&table->mmap_cleanups);
209 if (!cleanup)
210 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
211
212 *cleanup = ANV_MMAP_CLEANUP_INIT;
213
214 /* Just leak the old map until we destroy the pool. We can't munmap it
215 * without races or imposing locking on the block allocate fast path. On
216 * the whole the leaked maps adds up to less than the size of the
217 * current map. MAP_POPULATE seems like the right thing to do, but we
218 * should try to get some numbers.
219 */
220 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
221 MAP_SHARED | MAP_POPULATE, table->fd, 0);
222 if (map == MAP_FAILED) {
223 return vk_errorf(table->device->instance, table->device,
224 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
225 }
226
227 cleanup->map = map;
228 cleanup->size = size;
229
230 table->map = map;
231 table->size = size;
232
233 return VK_SUCCESS;
234 }
235
236 static VkResult
237 anv_state_table_grow(struct anv_state_table *table)
238 {
239 VkResult result = VK_SUCCESS;
240
241 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
242 PAGE_SIZE);
243 uint32_t old_size = table->size;
244
245 /* The block pool is always initialized to a nonzero size and this function
246 * is always called after initialization.
247 */
248 assert(old_size > 0);
249
250 uint32_t required = MAX2(used, old_size);
251 if (used * 2 <= required) {
252 /* If we're in this case then this isn't the firsta allocation and we
253 * already have enough space on both sides to hold double what we
254 * have allocated. There's nothing for us to do.
255 */
256 goto done;
257 }
258
259 uint32_t size = old_size * 2;
260 while (size < required)
261 size *= 2;
262
263 assert(size > table->size);
264
265 result = anv_state_table_expand_range(table, size);
266
267 done:
268 return result;
269 }
270
271 void
272 anv_state_table_finish(struct anv_state_table *table)
273 {
274 struct anv_state_table_cleanup *cleanup;
275
276 u_vector_foreach(cleanup, &table->mmap_cleanups) {
277 if (cleanup->map)
278 munmap(cleanup->map, cleanup->size);
279 }
280
281 u_vector_finish(&table->mmap_cleanups);
282
283 close(table->fd);
284 }
285
286 VkResult
287 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
288 uint32_t count)
289 {
290 struct anv_block_state state, old, new;
291 VkResult result;
292
293 assert(idx);
294
295 while(1) {
296 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
297 if (state.next + count <= state.end) {
298 assert(table->map);
299 struct anv_free_entry *entry = &table->map[state.next];
300 for (int i = 0; i < count; i++) {
301 entry[i].state.idx = state.next + i;
302 }
303 *idx = state.next;
304 return VK_SUCCESS;
305 } else if (state.next <= state.end) {
306 /* We allocated the first block outside the pool so we have to grow
307 * the pool. pool_state->next acts a mutex: threads who try to
308 * allocate now will get block indexes above the current limit and
309 * hit futex_wait below.
310 */
311 new.next = state.next + count;
312 do {
313 result = anv_state_table_grow(table);
314 if (result != VK_SUCCESS)
315 return result;
316 new.end = table->size / ANV_STATE_ENTRY_SIZE;
317 } while (new.end < new.next);
318
319 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
320 if (old.next != state.next)
321 futex_wake(&table->state.end, INT_MAX);
322 } else {
323 futex_wait(&table->state.end, state.end, NULL);
324 continue;
325 }
326 }
327 }
328
329 void
330 anv_free_list_push2(union anv_free_list2 *list,
331 struct anv_state_table *table,
332 uint32_t first, uint32_t count)
333 {
334 union anv_free_list2 current, old, new;
335 uint32_t last = first;
336
337 for (uint32_t i = 1; i < count; i++, last++)
338 table->map[last].next = last + 1;
339
340 old = *list;
341 do {
342 current = old;
343 table->map[last].next = current.offset;
344 new.offset = first;
345 new.count = current.count + 1;
346 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
347 } while (old.u64 != current.u64);
348 }
349
350 struct anv_state *
351 anv_free_list_pop2(union anv_free_list2 *list,
352 struct anv_state_table *table)
353 {
354 union anv_free_list2 current, new, old;
355
356 current.u64 = list->u64;
357 while (current.offset != EMPTY2) {
358 __sync_synchronize();
359 new.offset = table->map[current.offset].next;
360 new.count = current.count + 1;
361 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
362 if (old.u64 == current.u64) {
363 struct anv_free_entry *entry = &table->map[current.offset];
364 return &entry->state;
365 }
366 current = old;
367 }
368
369 return NULL;
370 }
371
372 static bool
373 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
374 {
375 union anv_free_list current, new, old;
376
377 current.u64 = list->u64;
378 while (current.offset != EMPTY) {
379 /* We have to add a memory barrier here so that the list head (and
380 * offset) gets read before we read the map pointer. This way we
381 * know that the map pointer is valid for the given offset at the
382 * point where we read it.
383 */
384 __sync_synchronize();
385
386 int32_t *next_ptr = *map + current.offset;
387 new.offset = VG_NOACCESS_READ(next_ptr);
388 new.count = current.count + 1;
389 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
390 if (old.u64 == current.u64) {
391 *offset = current.offset;
392 return true;
393 }
394 current = old;
395 }
396
397 return false;
398 }
399
400 static void
401 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset,
402 uint32_t size, uint32_t count)
403 {
404 union anv_free_list current, old, new;
405 int32_t *next_ptr = map + offset;
406
407 /* If we're returning more than one chunk, we need to build a chain to add
408 * to the list. Fortunately, we can do this without any atomics since we
409 * own everything in the chain right now. `offset` is left pointing to the
410 * head of our chain list while `next_ptr` points to the tail.
411 */
412 for (uint32_t i = 1; i < count; i++) {
413 VG_NOACCESS_WRITE(next_ptr, offset + i * size);
414 next_ptr = map + offset + i * size;
415 }
416
417 old = *list;
418 do {
419 current = old;
420 VG_NOACCESS_WRITE(next_ptr, current.offset);
421 new.offset = offset;
422 new.count = current.count + 1;
423 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
424 } while (old.u64 != current.u64);
425 }
426
427 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
428 * means that the bottom 12 bits should all be zero.
429 */
430 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
431 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
432 #define PFL_PACK(ptr, count) ({ \
433 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
434 })
435
436 static bool
437 anv_ptr_free_list_pop(void **list, void **elem)
438 {
439 void *current = *list;
440 while (PFL_PTR(current) != NULL) {
441 void **next_ptr = PFL_PTR(current);
442 void *new_ptr = VG_NOACCESS_READ(next_ptr);
443 unsigned new_count = PFL_COUNT(current) + 1;
444 void *new = PFL_PACK(new_ptr, new_count);
445 void *old = __sync_val_compare_and_swap(list, current, new);
446 if (old == current) {
447 *elem = PFL_PTR(current);
448 return true;
449 }
450 current = old;
451 }
452
453 return false;
454 }
455
456 static void
457 anv_ptr_free_list_push(void **list, void *elem)
458 {
459 void *old, *current;
460 void **next_ptr = elem;
461
462 /* The pointer-based free list requires that the pointer be
463 * page-aligned. This is because we use the bottom 12 bits of the
464 * pointer to store a counter to solve the ABA concurrency problem.
465 */
466 assert(((uintptr_t)elem & 0xfff) == 0);
467
468 old = *list;
469 do {
470 current = old;
471 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
472 unsigned new_count = PFL_COUNT(current) + 1;
473 void *new = PFL_PACK(elem, new_count);
474 old = __sync_val_compare_and_swap(list, current, new);
475 } while (old != current);
476 }
477
478 static VkResult
479 anv_block_pool_expand_range(struct anv_block_pool *pool,
480 uint32_t center_bo_offset, uint32_t size);
481
482 VkResult
483 anv_block_pool_init(struct anv_block_pool *pool,
484 struct anv_device *device,
485 uint64_t start_address,
486 uint32_t initial_size,
487 uint64_t bo_flags)
488 {
489 VkResult result;
490
491 pool->device = device;
492 pool->bo_flags = bo_flags;
493 pool->start_address = gen_canonical_address(start_address);
494
495 anv_bo_init(&pool->bo, 0, 0);
496
497 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
498 if (pool->fd == -1)
499 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
500
501 /* Just make it 2GB up-front. The Linux kernel won't actually back it
502 * with pages until we either map and fault on one of them or we use
503 * userptr and send a chunk of it off to the GPU.
504 */
505 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
506 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
507 goto fail_fd;
508 }
509
510 if (!u_vector_init(&pool->mmap_cleanups,
511 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
512 128)) {
513 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
514 goto fail_fd;
515 }
516
517 pool->state.next = 0;
518 pool->state.end = 0;
519 pool->back_state.next = 0;
520 pool->back_state.end = 0;
521
522 result = anv_block_pool_expand_range(pool, 0, initial_size);
523 if (result != VK_SUCCESS)
524 goto fail_mmap_cleanups;
525
526 return VK_SUCCESS;
527
528 fail_mmap_cleanups:
529 u_vector_finish(&pool->mmap_cleanups);
530 fail_fd:
531 close(pool->fd);
532
533 return result;
534 }
535
536 void
537 anv_block_pool_finish(struct anv_block_pool *pool)
538 {
539 struct anv_mmap_cleanup *cleanup;
540
541 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
542 if (cleanup->map)
543 munmap(cleanup->map, cleanup->size);
544 if (cleanup->gem_handle)
545 anv_gem_close(pool->device, cleanup->gem_handle);
546 }
547
548 u_vector_finish(&pool->mmap_cleanups);
549
550 close(pool->fd);
551 }
552
553 static VkResult
554 anv_block_pool_expand_range(struct anv_block_pool *pool,
555 uint32_t center_bo_offset, uint32_t size)
556 {
557 void *map;
558 uint32_t gem_handle;
559 struct anv_mmap_cleanup *cleanup;
560
561 /* Assert that we only ever grow the pool */
562 assert(center_bo_offset >= pool->back_state.end);
563 assert(size - center_bo_offset >= pool->state.end);
564
565 /* Assert that we don't go outside the bounds of the memfd */
566 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
567 assert(size - center_bo_offset <=
568 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
569
570 cleanup = u_vector_add(&pool->mmap_cleanups);
571 if (!cleanup)
572 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
573
574 *cleanup = ANV_MMAP_CLEANUP_INIT;
575
576 /* Just leak the old map until we destroy the pool. We can't munmap it
577 * without races or imposing locking on the block allocate fast path. On
578 * the whole the leaked maps adds up to less than the size of the
579 * current map. MAP_POPULATE seems like the right thing to do, but we
580 * should try to get some numbers.
581 */
582 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
583 MAP_SHARED | MAP_POPULATE, pool->fd,
584 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
585 if (map == MAP_FAILED)
586 return vk_errorf(pool->device->instance, pool->device,
587 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
588
589 gem_handle = anv_gem_userptr(pool->device, map, size);
590 if (gem_handle == 0) {
591 munmap(map, size);
592 return vk_errorf(pool->device->instance, pool->device,
593 VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
594 }
595
596 cleanup->map = map;
597 cleanup->size = size;
598 cleanup->gem_handle = gem_handle;
599
600 #if 0
601 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
602 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
603 * always created as I915_CACHING_CACHED, which on non-LLC means
604 * snooped. That can be useful but comes with a bit of overheard. Since
605 * we're eplicitly clflushing and don't want the overhead we need to turn
606 * it off. */
607 if (!pool->device->info.has_llc) {
608 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
609 anv_gem_set_domain(pool->device, gem_handle,
610 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
611 }
612 #endif
613
614 /* Now that we successfull allocated everything, we can write the new
615 * values back into pool. */
616 pool->map = map + center_bo_offset;
617 pool->center_bo_offset = center_bo_offset;
618
619 /* For block pool BOs we have to be a bit careful about where we place them
620 * in the GTT. There are two documented workarounds for state base address
621 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
622 * which state that those two base addresses do not support 48-bit
623 * addresses and need to be placed in the bottom 32-bit range.
624 * Unfortunately, this is not quite accurate.
625 *
626 * The real problem is that we always set the size of our state pools in
627 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
628 * likely significantly smaller. We do this because we do not no at the
629 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
630 * the pool during command buffer building so we don't actually have a
631 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
632 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
633 * as being out of bounds and returns zero. For dynamic state, this
634 * usually just leads to rendering corruptions, but shaders that are all
635 * zero hang the GPU immediately.
636 *
637 * The easiest solution to do is exactly what the bogus workarounds say to
638 * do: restrict these buffers to 32-bit addresses. We could also pin the
639 * BO to some particular location of our choosing, but that's significantly
640 * more work than just not setting a flag. So, we explicitly DO NOT set
641 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
642 * hard work for us.
643 */
644 anv_bo_init(&pool->bo, gem_handle, size);
645 if (pool->bo_flags & EXEC_OBJECT_PINNED) {
646 pool->bo.offset = pool->start_address + BLOCK_POOL_MEMFD_CENTER -
647 center_bo_offset;
648 }
649 pool->bo.flags = pool->bo_flags;
650 pool->bo.map = map;
651
652 return VK_SUCCESS;
653 }
654
655 /** Grows and re-centers the block pool.
656 *
657 * We grow the block pool in one or both directions in such a way that the
658 * following conditions are met:
659 *
660 * 1) The size of the entire pool is always a power of two.
661 *
662 * 2) The pool only grows on both ends. Neither end can get
663 * shortened.
664 *
665 * 3) At the end of the allocation, we have about twice as much space
666 * allocated for each end as we have used. This way the pool doesn't
667 * grow too far in one direction or the other.
668 *
669 * 4) If the _alloc_back() has never been called, then the back portion of
670 * the pool retains a size of zero. (This makes it easier for users of
671 * the block pool that only want a one-sided pool.)
672 *
673 * 5) We have enough space allocated for at least one more block in
674 * whichever side `state` points to.
675 *
676 * 6) The center of the pool is always aligned to both the block_size of
677 * the pool and a 4K CPU page.
678 */
679 static uint32_t
680 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
681 {
682 VkResult result = VK_SUCCESS;
683
684 pthread_mutex_lock(&pool->device->mutex);
685
686 assert(state == &pool->state || state == &pool->back_state);
687
688 /* Gather a little usage information on the pool. Since we may have
689 * threadsd waiting in queue to get some storage while we resize, it's
690 * actually possible that total_used will be larger than old_size. In
691 * particular, block_pool_alloc() increments state->next prior to
692 * calling block_pool_grow, so this ensures that we get enough space for
693 * which ever side tries to grow the pool.
694 *
695 * We align to a page size because it makes it easier to do our
696 * calculations later in such a way that we state page-aigned.
697 */
698 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
699 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
700 uint32_t total_used = front_used + back_used;
701
702 assert(state == &pool->state || back_used > 0);
703
704 uint32_t old_size = pool->bo.size;
705
706 /* The block pool is always initialized to a nonzero size and this function
707 * is always called after initialization.
708 */
709 assert(old_size > 0);
710
711 /* The back_used and front_used may actually be smaller than the actual
712 * requirement because they are based on the next pointers which are
713 * updated prior to calling this function.
714 */
715 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
716 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
717
718 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
719 /* If we're in this case then this isn't the firsta allocation and we
720 * already have enough space on both sides to hold double what we
721 * have allocated. There's nothing for us to do.
722 */
723 goto done;
724 }
725
726 uint32_t size = old_size * 2;
727 while (size < back_required + front_required)
728 size *= 2;
729
730 assert(size > pool->bo.size);
731
732 /* We compute a new center_bo_offset such that, when we double the size
733 * of the pool, we maintain the ratio of how much is used by each side.
734 * This way things should remain more-or-less balanced.
735 */
736 uint32_t center_bo_offset;
737 if (back_used == 0) {
738 /* If we're in this case then we have never called alloc_back(). In
739 * this case, we want keep the offset at 0 to make things as simple
740 * as possible for users that don't care about back allocations.
741 */
742 center_bo_offset = 0;
743 } else {
744 /* Try to "center" the allocation based on how much is currently in
745 * use on each side of the center line.
746 */
747 center_bo_offset = ((uint64_t)size * back_used) / total_used;
748
749 /* Align down to a multiple of the page size */
750 center_bo_offset &= ~(PAGE_SIZE - 1);
751
752 assert(center_bo_offset >= back_used);
753
754 /* Make sure we don't shrink the back end of the pool */
755 if (center_bo_offset < back_required)
756 center_bo_offset = back_required;
757
758 /* Make sure that we don't shrink the front end of the pool */
759 if (size - center_bo_offset < front_required)
760 center_bo_offset = size - front_required;
761 }
762
763 assert(center_bo_offset % PAGE_SIZE == 0);
764
765 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
766
767 pool->bo.flags = pool->bo_flags;
768
769 done:
770 pthread_mutex_unlock(&pool->device->mutex);
771
772 if (result == VK_SUCCESS) {
773 /* Return the appropriate new size. This function never actually
774 * updates state->next. Instead, we let the caller do that because it
775 * needs to do so in order to maintain its concurrency model.
776 */
777 if (state == &pool->state) {
778 return pool->bo.size - pool->center_bo_offset;
779 } else {
780 assert(pool->center_bo_offset > 0);
781 return pool->center_bo_offset;
782 }
783 } else {
784 return 0;
785 }
786 }
787
788 static uint32_t
789 anv_block_pool_alloc_new(struct anv_block_pool *pool,
790 struct anv_block_state *pool_state,
791 uint32_t block_size)
792 {
793 struct anv_block_state state, old, new;
794
795 while (1) {
796 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
797 if (state.next + block_size <= state.end) {
798 assert(pool->map);
799 return state.next;
800 } else if (state.next <= state.end) {
801 /* We allocated the first block outside the pool so we have to grow
802 * the pool. pool_state->next acts a mutex: threads who try to
803 * allocate now will get block indexes above the current limit and
804 * hit futex_wait below.
805 */
806 new.next = state.next + block_size;
807 do {
808 new.end = anv_block_pool_grow(pool, pool_state);
809 } while (new.end < new.next);
810
811 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
812 if (old.next != state.next)
813 futex_wake(&pool_state->end, INT_MAX);
814 return state.next;
815 } else {
816 futex_wait(&pool_state->end, state.end, NULL);
817 continue;
818 }
819 }
820 }
821
822 int32_t
823 anv_block_pool_alloc(struct anv_block_pool *pool,
824 uint32_t block_size)
825 {
826 return anv_block_pool_alloc_new(pool, &pool->state, block_size);
827 }
828
829 /* Allocates a block out of the back of the block pool.
830 *
831 * This will allocated a block earlier than the "start" of the block pool.
832 * The offsets returned from this function will be negative but will still
833 * be correct relative to the block pool's map pointer.
834 *
835 * If you ever use anv_block_pool_alloc_back, then you will have to do
836 * gymnastics with the block pool's BO when doing relocations.
837 */
838 int32_t
839 anv_block_pool_alloc_back(struct anv_block_pool *pool,
840 uint32_t block_size)
841 {
842 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
843 block_size);
844
845 /* The offset we get out of anv_block_pool_alloc_new() is actually the
846 * number of bytes downwards from the middle to the end of the block.
847 * We need to turn it into a (negative) offset from the middle to the
848 * start of the block.
849 */
850 assert(offset >= 0);
851 return -(offset + block_size);
852 }
853
854 VkResult
855 anv_state_pool_init(struct anv_state_pool *pool,
856 struct anv_device *device,
857 uint64_t start_address,
858 uint32_t block_size,
859 uint64_t bo_flags)
860 {
861 VkResult result = anv_block_pool_init(&pool->block_pool, device,
862 start_address,
863 block_size * 16,
864 bo_flags);
865 if (result != VK_SUCCESS)
866 return result;
867
868 assert(util_is_power_of_two_or_zero(block_size));
869 pool->block_size = block_size;
870 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
871 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
872 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
873 pool->buckets[i].block.next = 0;
874 pool->buckets[i].block.end = 0;
875 }
876 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
877
878 return VK_SUCCESS;
879 }
880
881 void
882 anv_state_pool_finish(struct anv_state_pool *pool)
883 {
884 VG(VALGRIND_DESTROY_MEMPOOL(pool));
885 anv_block_pool_finish(&pool->block_pool);
886 }
887
888 static uint32_t
889 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
890 struct anv_block_pool *block_pool,
891 uint32_t state_size,
892 uint32_t block_size)
893 {
894 struct anv_block_state block, old, new;
895 uint32_t offset;
896
897 /* If our state is large, we don't need any sub-allocation from a block.
898 * Instead, we just grab whole (potentially large) blocks.
899 */
900 if (state_size >= block_size)
901 return anv_block_pool_alloc(block_pool, state_size);
902
903 restart:
904 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
905
906 if (block.next < block.end) {
907 return block.next;
908 } else if (block.next == block.end) {
909 offset = anv_block_pool_alloc(block_pool, block_size);
910 new.next = offset + state_size;
911 new.end = offset + block_size;
912 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
913 if (old.next != block.next)
914 futex_wake(&pool->block.end, INT_MAX);
915 return offset;
916 } else {
917 futex_wait(&pool->block.end, block.end, NULL);
918 goto restart;
919 }
920 }
921
922 static uint32_t
923 anv_state_pool_get_bucket(uint32_t size)
924 {
925 unsigned size_log2 = ilog2_round_up(size);
926 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
927 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
928 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
929 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
930 }
931
932 static uint32_t
933 anv_state_pool_get_bucket_size(uint32_t bucket)
934 {
935 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
936 return 1 << size_log2;
937 }
938
939 static struct anv_state
940 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
941 uint32_t size, uint32_t align)
942 {
943 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
944
945 struct anv_state state;
946 state.alloc_size = anv_state_pool_get_bucket_size(bucket);
947
948 /* Try free list first. */
949 if (anv_free_list_pop(&pool->buckets[bucket].free_list,
950 &pool->block_pool.map, &state.offset)) {
951 assert(state.offset >= 0);
952 goto done;
953 }
954
955 /* Try to grab a chunk from some larger bucket and split it up */
956 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
957 int32_t chunk_offset;
958 if (anv_free_list_pop(&pool->buckets[b].free_list,
959 &pool->block_pool.map, &chunk_offset)) {
960 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
961
962 /* We've found a chunk that's larger than the requested state size.
963 * There are a couple of options as to what we do with it:
964 *
965 * 1) We could fully split the chunk into state.alloc_size sized
966 * pieces. However, this would mean that allocating a 16B
967 * state could potentially split a 2MB chunk into 512K smaller
968 * chunks. This would lead to unnecessary fragmentation.
969 *
970 * 2) The classic "buddy allocator" method would have us split the
971 * chunk in half and return one half. Then we would split the
972 * remaining half in half and return one half, and repeat as
973 * needed until we get down to the size we want. However, if
974 * you are allocating a bunch of the same size state (which is
975 * the common case), this means that every other allocation has
976 * to go up a level and every fourth goes up two levels, etc.
977 * This is not nearly as efficient as it could be if we did a
978 * little more work up-front.
979 *
980 * 3) Split the difference between (1) and (2) by doing a
981 * two-level split. If it's bigger than some fixed block_size,
982 * we split it into block_size sized chunks and return all but
983 * one of them. Then we split what remains into
984 * state.alloc_size sized chunks and return all but one.
985 *
986 * We choose option (3).
987 */
988 if (chunk_size > pool->block_size &&
989 state.alloc_size < pool->block_size) {
990 assert(chunk_size % pool->block_size == 0);
991 /* We don't want to split giant chunks into tiny chunks. Instead,
992 * break anything bigger than a block into block-sized chunks and
993 * then break it down into bucket-sized chunks from there. Return
994 * all but the first block of the chunk to the block bucket.
995 */
996 const uint32_t block_bucket =
997 anv_state_pool_get_bucket(pool->block_size);
998 anv_free_list_push(&pool->buckets[block_bucket].free_list,
999 pool->block_pool.map,
1000 chunk_offset + pool->block_size,
1001 pool->block_size,
1002 (chunk_size / pool->block_size) - 1);
1003 chunk_size = pool->block_size;
1004 }
1005
1006 assert(chunk_size % state.alloc_size == 0);
1007 anv_free_list_push(&pool->buckets[bucket].free_list,
1008 pool->block_pool.map,
1009 chunk_offset + state.alloc_size,
1010 state.alloc_size,
1011 (chunk_size / state.alloc_size) - 1);
1012
1013 state.offset = chunk_offset;
1014 goto done;
1015 }
1016 }
1017
1018 state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1019 &pool->block_pool,
1020 state.alloc_size,
1021 pool->block_size);
1022
1023 done:
1024 state.map = pool->block_pool.map + state.offset;
1025 return state;
1026 }
1027
1028 struct anv_state
1029 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1030 {
1031 if (size == 0)
1032 return ANV_STATE_NULL;
1033
1034 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1035 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1036 return state;
1037 }
1038
1039 struct anv_state
1040 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1041 {
1042 struct anv_state state;
1043 state.alloc_size = pool->block_size;
1044
1045 if (anv_free_list_pop(&pool->back_alloc_free_list,
1046 &pool->block_pool.map, &state.offset)) {
1047 assert(state.offset < 0);
1048 goto done;
1049 }
1050
1051 state.offset = anv_block_pool_alloc_back(&pool->block_pool,
1052 pool->block_size);
1053
1054 done:
1055 state.map = pool->block_pool.map + state.offset;
1056 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, state.alloc_size));
1057 return state;
1058 }
1059
1060 static void
1061 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1062 {
1063 assert(util_is_power_of_two_or_zero(state.alloc_size));
1064 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1065
1066 if (state.offset < 0) {
1067 assert(state.alloc_size == pool->block_size);
1068 anv_free_list_push(&pool->back_alloc_free_list,
1069 pool->block_pool.map, state.offset,
1070 state.alloc_size, 1);
1071 } else {
1072 anv_free_list_push(&pool->buckets[bucket].free_list,
1073 pool->block_pool.map, state.offset,
1074 state.alloc_size, 1);
1075 }
1076 }
1077
1078 void
1079 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1080 {
1081 if (state.alloc_size == 0)
1082 return;
1083
1084 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1085 anv_state_pool_free_no_vg(pool, state);
1086 }
1087
1088 struct anv_state_stream_block {
1089 struct anv_state block;
1090
1091 /* The next block */
1092 struct anv_state_stream_block *next;
1093
1094 #ifdef HAVE_VALGRIND
1095 /* A pointer to the first user-allocated thing in this block. This is
1096 * what valgrind sees as the start of the block.
1097 */
1098 void *_vg_ptr;
1099 #endif
1100 };
1101
1102 /* The state stream allocator is a one-shot, single threaded allocator for
1103 * variable sized blocks. We use it for allocating dynamic state.
1104 */
1105 void
1106 anv_state_stream_init(struct anv_state_stream *stream,
1107 struct anv_state_pool *state_pool,
1108 uint32_t block_size)
1109 {
1110 stream->state_pool = state_pool;
1111 stream->block_size = block_size;
1112
1113 stream->block = ANV_STATE_NULL;
1114
1115 stream->block_list = NULL;
1116
1117 /* Ensure that next + whatever > block_size. This way the first call to
1118 * state_stream_alloc fetches a new block.
1119 */
1120 stream->next = block_size;
1121
1122 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1123 }
1124
1125 void
1126 anv_state_stream_finish(struct anv_state_stream *stream)
1127 {
1128 struct anv_state_stream_block *next = stream->block_list;
1129 while (next != NULL) {
1130 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1131 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1132 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1133 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1134 next = sb.next;
1135 }
1136
1137 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1138 }
1139
1140 struct anv_state
1141 anv_state_stream_alloc(struct anv_state_stream *stream,
1142 uint32_t size, uint32_t alignment)
1143 {
1144 if (size == 0)
1145 return ANV_STATE_NULL;
1146
1147 assert(alignment <= PAGE_SIZE);
1148
1149 uint32_t offset = align_u32(stream->next, alignment);
1150 if (offset + size > stream->block.alloc_size) {
1151 uint32_t block_size = stream->block_size;
1152 if (block_size < size)
1153 block_size = round_to_power_of_two(size);
1154
1155 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1156 block_size, PAGE_SIZE);
1157
1158 struct anv_state_stream_block *sb = stream->block.map;
1159 VG_NOACCESS_WRITE(&sb->block, stream->block);
1160 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1161 stream->block_list = sb;
1162 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1163
1164 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1165
1166 /* Reset back to the start plus space for the header */
1167 stream->next = sizeof(*sb);
1168
1169 offset = align_u32(stream->next, alignment);
1170 assert(offset + size <= stream->block.alloc_size);
1171 }
1172
1173 struct anv_state state = stream->block;
1174 state.offset += offset;
1175 state.alloc_size = size;
1176 state.map += offset;
1177
1178 stream->next = offset + size;
1179
1180 #ifdef HAVE_VALGRIND
1181 struct anv_state_stream_block *sb = stream->block_list;
1182 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1183 if (vg_ptr == NULL) {
1184 vg_ptr = state.map;
1185 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1186 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1187 } else {
1188 void *state_end = state.map + state.alloc_size;
1189 /* This only updates the mempool. The newly allocated chunk is still
1190 * marked as NOACCESS. */
1191 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1192 /* Mark the newly allocated chunk as undefined */
1193 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1194 }
1195 #endif
1196
1197 return state;
1198 }
1199
1200 struct bo_pool_bo_link {
1201 struct bo_pool_bo_link *next;
1202 struct anv_bo bo;
1203 };
1204
1205 void
1206 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1207 uint64_t bo_flags)
1208 {
1209 pool->device = device;
1210 pool->bo_flags = bo_flags;
1211 memset(pool->free_list, 0, sizeof(pool->free_list));
1212
1213 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1214 }
1215
1216 void
1217 anv_bo_pool_finish(struct anv_bo_pool *pool)
1218 {
1219 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1220 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
1221 while (link != NULL) {
1222 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
1223
1224 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
1225 anv_vma_free(pool->device, &link_copy.bo);
1226 anv_gem_close(pool->device, link_copy.bo.gem_handle);
1227 link = link_copy.next;
1228 }
1229 }
1230
1231 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1232 }
1233
1234 VkResult
1235 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1236 {
1237 VkResult result;
1238
1239 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1240 const unsigned pow2_size = 1 << size_log2;
1241 const unsigned bucket = size_log2 - 12;
1242 assert(bucket < ARRAY_SIZE(pool->free_list));
1243
1244 void *next_free_void;
1245 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1246 struct bo_pool_bo_link *next_free = next_free_void;
1247 *bo = VG_NOACCESS_READ(&next_free->bo);
1248 assert(bo->gem_handle);
1249 assert(bo->map == next_free);
1250 assert(size <= bo->size);
1251
1252 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1253
1254 return VK_SUCCESS;
1255 }
1256
1257 struct anv_bo new_bo;
1258
1259 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1260 if (result != VK_SUCCESS)
1261 return result;
1262
1263 new_bo.flags = pool->bo_flags;
1264
1265 if (!anv_vma_alloc(pool->device, &new_bo))
1266 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1267
1268 assert(new_bo.size == pow2_size);
1269
1270 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1271 if (new_bo.map == MAP_FAILED) {
1272 anv_gem_close(pool->device, new_bo.gem_handle);
1273 anv_vma_free(pool->device, &new_bo);
1274 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1275 }
1276
1277 *bo = new_bo;
1278
1279 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1280
1281 return VK_SUCCESS;
1282 }
1283
1284 void
1285 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1286 {
1287 /* Make a copy in case the anv_bo happens to be storred in the BO */
1288 struct anv_bo bo = *bo_in;
1289
1290 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1291
1292 struct bo_pool_bo_link *link = bo.map;
1293 VG_NOACCESS_WRITE(&link->bo, bo);
1294
1295 assert(util_is_power_of_two_or_zero(bo.size));
1296 const unsigned size_log2 = ilog2_round_up(bo.size);
1297 const unsigned bucket = size_log2 - 12;
1298 assert(bucket < ARRAY_SIZE(pool->free_list));
1299
1300 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1301 }
1302
1303 // Scratch pool
1304
1305 void
1306 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1307 {
1308 memset(pool, 0, sizeof(*pool));
1309 }
1310
1311 void
1312 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1313 {
1314 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1315 for (unsigned i = 0; i < 16; i++) {
1316 struct anv_scratch_bo *bo = &pool->bos[i][s];
1317 if (bo->exists > 0) {
1318 anv_vma_free(device, &bo->bo);
1319 anv_gem_close(device, bo->bo.gem_handle);
1320 }
1321 }
1322 }
1323 }
1324
1325 struct anv_bo *
1326 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1327 gl_shader_stage stage, unsigned per_thread_scratch)
1328 {
1329 if (per_thread_scratch == 0)
1330 return NULL;
1331
1332 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1333 assert(scratch_size_log2 < 16);
1334
1335 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1336
1337 /* We can use "exists" to shortcut and ignore the critical section */
1338 if (bo->exists)
1339 return &bo->bo;
1340
1341 pthread_mutex_lock(&device->mutex);
1342
1343 __sync_synchronize();
1344 if (bo->exists) {
1345 pthread_mutex_unlock(&device->mutex);
1346 return &bo->bo;
1347 }
1348
1349 const struct anv_physical_device *physical_device =
1350 &device->instance->physicalDevice;
1351 const struct gen_device_info *devinfo = &physical_device->info;
1352
1353 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1354
1355 unsigned scratch_ids_per_subslice;
1356 if (devinfo->is_haswell) {
1357 /* WaCSScratchSize:hsw
1358 *
1359 * Haswell's scratch space address calculation appears to be sparse
1360 * rather than tightly packed. The Thread ID has bits indicating
1361 * which subslice, EU within a subslice, and thread within an EU it
1362 * is. There's a maximum of two slices and two subslices, so these
1363 * can be stored with a single bit. Even though there are only 10 EUs
1364 * per subslice, this is stored in 4 bits, so there's an effective
1365 * maximum value of 16 EUs. Similarly, although there are only 7
1366 * threads per EU, this is stored in a 3 bit number, giving an
1367 * effective maximum value of 8 threads per EU.
1368 *
1369 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1370 * number of threads per subslice.
1371 */
1372 scratch_ids_per_subslice = 16 * 8;
1373 } else if (devinfo->is_cherryview) {
1374 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1375 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1376 * it had 8 EUs.
1377 */
1378 scratch_ids_per_subslice = 8 * 7;
1379 } else {
1380 scratch_ids_per_subslice = devinfo->max_cs_threads;
1381 }
1382
1383 uint32_t max_threads[] = {
1384 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1385 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1386 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1387 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1388 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1389 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1390 };
1391
1392 uint32_t size = per_thread_scratch * max_threads[stage];
1393
1394 anv_bo_init_new(&bo->bo, device, size);
1395
1396 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1397 * are still relative to the general state base address. When we emit
1398 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1399 * to the maximum (1 page under 4GB). This allows us to just place the
1400 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1401 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1402 * However, in order to do so, we need to ensure that the kernel does not
1403 * place the scratch BO above the 32-bit boundary.
1404 *
1405 * NOTE: Technically, it can't go "anywhere" because the top page is off
1406 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1407 * kernel allocates space using
1408 *
1409 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1410 *
1411 * so nothing will ever touch the top page.
1412 */
1413 assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1414
1415 if (device->instance->physicalDevice.has_exec_async)
1416 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1417
1418 if (device->instance->physicalDevice.use_softpin)
1419 bo->bo.flags |= EXEC_OBJECT_PINNED;
1420
1421 anv_vma_alloc(device, &bo->bo);
1422
1423 /* Set the exists last because it may be read by other threads */
1424 __sync_synchronize();
1425 bo->exists = true;
1426
1427 pthread_mutex_unlock(&device->mutex);
1428
1429 return &bo->bo;
1430 }
1431
1432 struct anv_cached_bo {
1433 struct anv_bo bo;
1434
1435 uint32_t refcount;
1436 };
1437
1438 VkResult
1439 anv_bo_cache_init(struct anv_bo_cache *cache)
1440 {
1441 cache->bo_map = _mesa_pointer_hash_table_create(NULL);
1442 if (!cache->bo_map)
1443 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1444
1445 if (pthread_mutex_init(&cache->mutex, NULL)) {
1446 _mesa_hash_table_destroy(cache->bo_map, NULL);
1447 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1448 "pthread_mutex_init failed: %m");
1449 }
1450
1451 return VK_SUCCESS;
1452 }
1453
1454 void
1455 anv_bo_cache_finish(struct anv_bo_cache *cache)
1456 {
1457 _mesa_hash_table_destroy(cache->bo_map, NULL);
1458 pthread_mutex_destroy(&cache->mutex);
1459 }
1460
1461 static struct anv_cached_bo *
1462 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1463 {
1464 struct hash_entry *entry =
1465 _mesa_hash_table_search(cache->bo_map,
1466 (const void *)(uintptr_t)gem_handle);
1467 if (!entry)
1468 return NULL;
1469
1470 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1471 assert(bo->bo.gem_handle == gem_handle);
1472
1473 return bo;
1474 }
1475
1476 UNUSED static struct anv_bo *
1477 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1478 {
1479 pthread_mutex_lock(&cache->mutex);
1480
1481 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1482
1483 pthread_mutex_unlock(&cache->mutex);
1484
1485 return bo ? &bo->bo : NULL;
1486 }
1487
1488 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1489 (EXEC_OBJECT_WRITE | \
1490 EXEC_OBJECT_ASYNC | \
1491 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1492 EXEC_OBJECT_PINNED | \
1493 ANV_BO_EXTERNAL)
1494
1495 VkResult
1496 anv_bo_cache_alloc(struct anv_device *device,
1497 struct anv_bo_cache *cache,
1498 uint64_t size, uint64_t bo_flags,
1499 struct anv_bo **bo_out)
1500 {
1501 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1502
1503 struct anv_cached_bo *bo =
1504 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1505 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1506 if (!bo)
1507 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1508
1509 bo->refcount = 1;
1510
1511 /* The kernel is going to give us whole pages anyway */
1512 size = align_u64(size, 4096);
1513
1514 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1515 if (result != VK_SUCCESS) {
1516 vk_free(&device->alloc, bo);
1517 return result;
1518 }
1519
1520 bo->bo.flags = bo_flags;
1521
1522 if (!anv_vma_alloc(device, &bo->bo)) {
1523 anv_gem_close(device, bo->bo.gem_handle);
1524 vk_free(&device->alloc, bo);
1525 return vk_errorf(device->instance, NULL,
1526 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1527 "failed to allocate virtual address for BO");
1528 }
1529
1530 assert(bo->bo.gem_handle);
1531
1532 pthread_mutex_lock(&cache->mutex);
1533
1534 _mesa_hash_table_insert(cache->bo_map,
1535 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1536
1537 pthread_mutex_unlock(&cache->mutex);
1538
1539 *bo_out = &bo->bo;
1540
1541 return VK_SUCCESS;
1542 }
1543
1544 VkResult
1545 anv_bo_cache_import(struct anv_device *device,
1546 struct anv_bo_cache *cache,
1547 int fd, uint64_t bo_flags,
1548 struct anv_bo **bo_out)
1549 {
1550 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1551 assert(bo_flags & ANV_BO_EXTERNAL);
1552
1553 pthread_mutex_lock(&cache->mutex);
1554
1555 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1556 if (!gem_handle) {
1557 pthread_mutex_unlock(&cache->mutex);
1558 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1559 }
1560
1561 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1562 if (bo) {
1563 /* We have to be careful how we combine flags so that it makes sense.
1564 * Really, though, if we get to this case and it actually matters, the
1565 * client has imported a BO twice in different ways and they get what
1566 * they have coming.
1567 */
1568 uint64_t new_flags = ANV_BO_EXTERNAL;
1569 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
1570 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
1571 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1572 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
1573
1574 /* It's theoretically possible for a BO to get imported such that it's
1575 * both pinned and not pinned. The only way this can happen is if it
1576 * gets imported as both a semaphore and a memory object and that would
1577 * be an application error. Just fail out in that case.
1578 */
1579 if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
1580 (bo_flags & EXEC_OBJECT_PINNED)) {
1581 pthread_mutex_unlock(&cache->mutex);
1582 return vk_errorf(device->instance, NULL,
1583 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1584 "The same BO was imported two different ways");
1585 }
1586
1587 /* It's also theoretically possible that someone could export a BO from
1588 * one heap and import it into another or to import the same BO into two
1589 * different heaps. If this happens, we could potentially end up both
1590 * allowing and disallowing 48-bit addresses. There's not much we can
1591 * do about it if we're pinning so we just throw an error and hope no
1592 * app is actually that stupid.
1593 */
1594 if ((new_flags & EXEC_OBJECT_PINNED) &&
1595 (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1596 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1597 pthread_mutex_unlock(&cache->mutex);
1598 return vk_errorf(device->instance, NULL,
1599 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1600 "The same BO was imported on two different heaps");
1601 }
1602
1603 bo->bo.flags = new_flags;
1604
1605 __sync_fetch_and_add(&bo->refcount, 1);
1606 } else {
1607 off_t size = lseek(fd, 0, SEEK_END);
1608 if (size == (off_t)-1) {
1609 anv_gem_close(device, gem_handle);
1610 pthread_mutex_unlock(&cache->mutex);
1611 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1612 }
1613
1614 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1615 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1616 if (!bo) {
1617 anv_gem_close(device, gem_handle);
1618 pthread_mutex_unlock(&cache->mutex);
1619 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1620 }
1621
1622 bo->refcount = 1;
1623
1624 anv_bo_init(&bo->bo, gem_handle, size);
1625 bo->bo.flags = bo_flags;
1626
1627 if (!anv_vma_alloc(device, &bo->bo)) {
1628 anv_gem_close(device, bo->bo.gem_handle);
1629 pthread_mutex_unlock(&cache->mutex);
1630 vk_free(&device->alloc, bo);
1631 return vk_errorf(device->instance, NULL,
1632 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1633 "failed to allocate virtual address for BO");
1634 }
1635
1636 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1637 }
1638
1639 pthread_mutex_unlock(&cache->mutex);
1640 *bo_out = &bo->bo;
1641
1642 return VK_SUCCESS;
1643 }
1644
1645 VkResult
1646 anv_bo_cache_export(struct anv_device *device,
1647 struct anv_bo_cache *cache,
1648 struct anv_bo *bo_in, int *fd_out)
1649 {
1650 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1651 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1652
1653 /* This BO must have been flagged external in order for us to be able
1654 * to export it. This is done based on external options passed into
1655 * anv_AllocateMemory.
1656 */
1657 assert(bo->bo.flags & ANV_BO_EXTERNAL);
1658
1659 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1660 if (fd < 0)
1661 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1662
1663 *fd_out = fd;
1664
1665 return VK_SUCCESS;
1666 }
1667
1668 static bool
1669 atomic_dec_not_one(uint32_t *counter)
1670 {
1671 uint32_t old, val;
1672
1673 val = *counter;
1674 while (1) {
1675 if (val == 1)
1676 return false;
1677
1678 old = __sync_val_compare_and_swap(counter, val, val - 1);
1679 if (old == val)
1680 return true;
1681
1682 val = old;
1683 }
1684 }
1685
1686 void
1687 anv_bo_cache_release(struct anv_device *device,
1688 struct anv_bo_cache *cache,
1689 struct anv_bo *bo_in)
1690 {
1691 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1692 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1693
1694 /* Try to decrement the counter but don't go below one. If this succeeds
1695 * then the refcount has been decremented and we are not the last
1696 * reference.
1697 */
1698 if (atomic_dec_not_one(&bo->refcount))
1699 return;
1700
1701 pthread_mutex_lock(&cache->mutex);
1702
1703 /* We are probably the last reference since our attempt to decrement above
1704 * failed. However, we can't actually know until we are inside the mutex.
1705 * Otherwise, someone could import the BO between the decrement and our
1706 * taking the mutex.
1707 */
1708 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1709 /* Turns out we're not the last reference. Unlock and bail. */
1710 pthread_mutex_unlock(&cache->mutex);
1711 return;
1712 }
1713
1714 struct hash_entry *entry =
1715 _mesa_hash_table_search(cache->bo_map,
1716 (const void *)(uintptr_t)bo->bo.gem_handle);
1717 assert(entry);
1718 _mesa_hash_table_remove(cache->bo_map, entry);
1719
1720 if (bo->bo.map)
1721 anv_gem_munmap(bo->bo.map, bo->bo.size);
1722
1723 anv_vma_free(device, &bo->bo);
1724
1725 anv_gem_close(device, bo->bo.gem_handle);
1726
1727 /* Don't unlock until we've actually closed the BO. The whole point of
1728 * the BO cache is to ensure that we correctly handle races with creating
1729 * and releasing GEM handles and we don't want to let someone import the BO
1730 * again between mutex unlock and closing the GEM handle.
1731 */
1732 pthread_mutex_unlock(&cache->mutex);
1733
1734 vk_free(&device->alloc, bo);
1735 }