anv/allocator: Support pushing multiple blocks onto a free list at once
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <unistd.h>
27 #include <limits.h>
28 #include <assert.h>
29 #include <linux/futex.h>
30 #include <linux/memfd.h>
31 #include <sys/time.h>
32 #include <sys/mman.h>
33 #include <sys/syscall.h>
34
35 #include "anv_private.h"
36
37 #include "util/hash_table.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset,
183 uint32_t size, uint32_t count)
184 {
185 union anv_free_list current, old, new;
186 int32_t *next_ptr = map + offset;
187
188 /* If we're returning more than one chunk, we need to build a chain to add
189 * to the list. Fortunately, we can do this without any atomics since we
190 * own everything in the chain right now. `offset` is left pointing to the
191 * head of our chain list while `next_ptr` points to the tail.
192 */
193 for (uint32_t i = 1; i < count; i++) {
194 VG_NOACCESS_WRITE(next_ptr, offset + i * size);
195 next_ptr = map + offset + i * size;
196 }
197
198 old = *list;
199 do {
200 current = old;
201 VG_NOACCESS_WRITE(next_ptr, current.offset);
202 new.offset = offset;
203 new.count = current.count + 1;
204 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
205 } while (old.u64 != current.u64);
206 }
207
208 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
209 * means that the bottom 12 bits should all be zero.
210 */
211 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
212 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
213 #define PFL_PACK(ptr, count) ({ \
214 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
215 })
216
217 static bool
218 anv_ptr_free_list_pop(void **list, void **elem)
219 {
220 void *current = *list;
221 while (PFL_PTR(current) != NULL) {
222 void **next_ptr = PFL_PTR(current);
223 void *new_ptr = VG_NOACCESS_READ(next_ptr);
224 unsigned new_count = PFL_COUNT(current) + 1;
225 void *new = PFL_PACK(new_ptr, new_count);
226 void *old = __sync_val_compare_and_swap(list, current, new);
227 if (old == current) {
228 *elem = PFL_PTR(current);
229 return true;
230 }
231 current = old;
232 }
233
234 return false;
235 }
236
237 static void
238 anv_ptr_free_list_push(void **list, void *elem)
239 {
240 void *old, *current;
241 void **next_ptr = elem;
242
243 /* The pointer-based free list requires that the pointer be
244 * page-aligned. This is because we use the bottom 12 bits of the
245 * pointer to store a counter to solve the ABA concurrency problem.
246 */
247 assert(((uintptr_t)elem & 0xfff) == 0);
248
249 old = *list;
250 do {
251 current = old;
252 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
253 unsigned new_count = PFL_COUNT(current) + 1;
254 void *new = PFL_PACK(elem, new_count);
255 old = __sync_val_compare_and_swap(list, current, new);
256 } while (old != current);
257 }
258
259 static VkResult
260 anv_block_pool_expand_range(struct anv_block_pool *pool,
261 uint32_t center_bo_offset, uint32_t size);
262
263 VkResult
264 anv_block_pool_init(struct anv_block_pool *pool,
265 struct anv_device *device,
266 uint32_t initial_size)
267 {
268 VkResult result;
269
270 pool->device = device;
271 anv_bo_init(&pool->bo, 0, 0);
272
273 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
274 if (pool->fd == -1)
275 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
276
277 /* Just make it 2GB up-front. The Linux kernel won't actually back it
278 * with pages until we either map and fault on one of them or we use
279 * userptr and send a chunk of it off to the GPU.
280 */
281 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
282 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
283 goto fail_fd;
284 }
285
286 if (!u_vector_init(&pool->mmap_cleanups,
287 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
288 128)) {
289 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
290 goto fail_fd;
291 }
292
293 pool->state.next = 0;
294 pool->state.end = 0;
295 pool->back_state.next = 0;
296 pool->back_state.end = 0;
297
298 result = anv_block_pool_expand_range(pool, 0, initial_size);
299 if (result != VK_SUCCESS)
300 goto fail_mmap_cleanups;
301
302 return VK_SUCCESS;
303
304 fail_mmap_cleanups:
305 u_vector_finish(&pool->mmap_cleanups);
306 fail_fd:
307 close(pool->fd);
308
309 return result;
310 }
311
312 void
313 anv_block_pool_finish(struct anv_block_pool *pool)
314 {
315 struct anv_mmap_cleanup *cleanup;
316
317 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
318 if (cleanup->map)
319 munmap(cleanup->map, cleanup->size);
320 if (cleanup->gem_handle)
321 anv_gem_close(pool->device, cleanup->gem_handle);
322 }
323
324 u_vector_finish(&pool->mmap_cleanups);
325
326 close(pool->fd);
327 }
328
329 #define PAGE_SIZE 4096
330
331 static VkResult
332 anv_block_pool_expand_range(struct anv_block_pool *pool,
333 uint32_t center_bo_offset, uint32_t size)
334 {
335 void *map;
336 uint32_t gem_handle;
337 struct anv_mmap_cleanup *cleanup;
338
339 /* Assert that we only ever grow the pool */
340 assert(center_bo_offset >= pool->back_state.end);
341 assert(size - center_bo_offset >= pool->state.end);
342
343 cleanup = u_vector_add(&pool->mmap_cleanups);
344 if (!cleanup)
345 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
346
347 *cleanup = ANV_MMAP_CLEANUP_INIT;
348
349 /* Just leak the old map until we destroy the pool. We can't munmap it
350 * without races or imposing locking on the block allocate fast path. On
351 * the whole the leaked maps adds up to less than the size of the
352 * current map. MAP_POPULATE seems like the right thing to do, but we
353 * should try to get some numbers.
354 */
355 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
356 MAP_SHARED | MAP_POPULATE, pool->fd,
357 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
358 if (map == MAP_FAILED)
359 return vk_errorf(VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
360
361 gem_handle = anv_gem_userptr(pool->device, map, size);
362 if (gem_handle == 0) {
363 munmap(map, size);
364 return vk_errorf(VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
365 }
366
367 cleanup->map = map;
368 cleanup->size = size;
369 cleanup->gem_handle = gem_handle;
370
371 #if 0
372 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
373 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
374 * always created as I915_CACHING_CACHED, which on non-LLC means
375 * snooped. That can be useful but comes with a bit of overheard. Since
376 * we're eplicitly clflushing and don't want the overhead we need to turn
377 * it off. */
378 if (!pool->device->info.has_llc) {
379 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
380 anv_gem_set_domain(pool->device, gem_handle,
381 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
382 }
383 #endif
384
385 /* Now that we successfull allocated everything, we can write the new
386 * values back into pool. */
387 pool->map = map + center_bo_offset;
388 pool->center_bo_offset = center_bo_offset;
389
390 /* For block pool BOs we have to be a bit careful about where we place them
391 * in the GTT. There are two documented workarounds for state base address
392 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
393 * which state that those two base addresses do not support 48-bit
394 * addresses and need to be placed in the bottom 32-bit range.
395 * Unfortunately, this is not quite accurate.
396 *
397 * The real problem is that we always set the size of our state pools in
398 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
399 * likely significantly smaller. We do this because we do not no at the
400 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
401 * the pool during command buffer building so we don't actually have a
402 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
403 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
404 * as being out of bounds and returns zero. For dynamic state, this
405 * usually just leads to rendering corruptions, but shaders that are all
406 * zero hang the GPU immediately.
407 *
408 * The easiest solution to do is exactly what the bogus workarounds say to
409 * do: restrict these buffers to 32-bit addresses. We could also pin the
410 * BO to some particular location of our choosing, but that's significantly
411 * more work than just not setting a flag. So, we explicitly DO NOT set
412 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
413 * hard work for us.
414 */
415 anv_bo_init(&pool->bo, gem_handle, size);
416 pool->bo.map = map;
417
418 return VK_SUCCESS;
419 }
420
421 /** Grows and re-centers the block pool.
422 *
423 * We grow the block pool in one or both directions in such a way that the
424 * following conditions are met:
425 *
426 * 1) The size of the entire pool is always a power of two.
427 *
428 * 2) The pool only grows on both ends. Neither end can get
429 * shortened.
430 *
431 * 3) At the end of the allocation, we have about twice as much space
432 * allocated for each end as we have used. This way the pool doesn't
433 * grow too far in one direction or the other.
434 *
435 * 4) If the _alloc_back() has never been called, then the back portion of
436 * the pool retains a size of zero. (This makes it easier for users of
437 * the block pool that only want a one-sided pool.)
438 *
439 * 5) We have enough space allocated for at least one more block in
440 * whichever side `state` points to.
441 *
442 * 6) The center of the pool is always aligned to both the block_size of
443 * the pool and a 4K CPU page.
444 */
445 static uint32_t
446 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
447 {
448 VkResult result = VK_SUCCESS;
449
450 pthread_mutex_lock(&pool->device->mutex);
451
452 assert(state == &pool->state || state == &pool->back_state);
453
454 /* Gather a little usage information on the pool. Since we may have
455 * threadsd waiting in queue to get some storage while we resize, it's
456 * actually possible that total_used will be larger than old_size. In
457 * particular, block_pool_alloc() increments state->next prior to
458 * calling block_pool_grow, so this ensures that we get enough space for
459 * which ever side tries to grow the pool.
460 *
461 * We align to a page size because it makes it easier to do our
462 * calculations later in such a way that we state page-aigned.
463 */
464 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
465 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
466 uint32_t total_used = front_used + back_used;
467
468 assert(state == &pool->state || back_used > 0);
469
470 uint32_t old_size = pool->bo.size;
471
472 /* The block pool is always initialized to a nonzero size and this function
473 * is always called after initialization.
474 */
475 assert(old_size > 0);
476
477 /* The back_used and front_used may actually be smaller than the actual
478 * requirement because they are based on the next pointers which are
479 * updated prior to calling this function.
480 */
481 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
482 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
483
484 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
485 /* If we're in this case then this isn't the firsta allocation and we
486 * already have enough space on both sides to hold double what we
487 * have allocated. There's nothing for us to do.
488 */
489 goto done;
490 }
491
492 uint32_t size = old_size * 2;
493 while (size < back_required + front_required)
494 size *= 2;
495
496 assert(size > pool->bo.size);
497
498 /* We can't have a block pool bigger than 1GB because we use signed
499 * 32-bit offsets in the free list and we don't want overflow. We
500 * should never need a block pool bigger than 1GB anyway.
501 */
502 assert(size <= (1u << 31));
503
504 /* We compute a new center_bo_offset such that, when we double the size
505 * of the pool, we maintain the ratio of how much is used by each side.
506 * This way things should remain more-or-less balanced.
507 */
508 uint32_t center_bo_offset;
509 if (back_used == 0) {
510 /* If we're in this case then we have never called alloc_back(). In
511 * this case, we want keep the offset at 0 to make things as simple
512 * as possible for users that don't care about back allocations.
513 */
514 center_bo_offset = 0;
515 } else {
516 /* Try to "center" the allocation based on how much is currently in
517 * use on each side of the center line.
518 */
519 center_bo_offset = ((uint64_t)size * back_used) / total_used;
520
521 /* Align down to a multiple of the page size */
522 center_bo_offset &= ~(PAGE_SIZE - 1);
523
524 assert(center_bo_offset >= back_used);
525
526 /* Make sure we don't shrink the back end of the pool */
527 if (center_bo_offset < pool->back_state.end)
528 center_bo_offset = pool->back_state.end;
529
530 /* Make sure that we don't shrink the front end of the pool */
531 if (size - center_bo_offset < pool->state.end)
532 center_bo_offset = size - pool->state.end;
533 }
534
535 assert(center_bo_offset % PAGE_SIZE == 0);
536
537 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
538
539 if (pool->device->instance->physicalDevice.has_exec_async)
540 pool->bo.flags |= EXEC_OBJECT_ASYNC;
541
542 done:
543 pthread_mutex_unlock(&pool->device->mutex);
544
545 if (result == VK_SUCCESS) {
546 /* Return the appropriate new size. This function never actually
547 * updates state->next. Instead, we let the caller do that because it
548 * needs to do so in order to maintain its concurrency model.
549 */
550 if (state == &pool->state) {
551 return pool->bo.size - pool->center_bo_offset;
552 } else {
553 assert(pool->center_bo_offset > 0);
554 return pool->center_bo_offset;
555 }
556 } else {
557 return 0;
558 }
559 }
560
561 static uint32_t
562 anv_block_pool_alloc_new(struct anv_block_pool *pool,
563 struct anv_block_state *pool_state,
564 uint32_t block_size)
565 {
566 struct anv_block_state state, old, new;
567
568 while (1) {
569 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
570 if (state.next + block_size <= state.end) {
571 assert(pool->map);
572 return state.next;
573 } else if (state.next <= state.end) {
574 /* We allocated the first block outside the pool so we have to grow
575 * the pool. pool_state->next acts a mutex: threads who try to
576 * allocate now will get block indexes above the current limit and
577 * hit futex_wait below.
578 */
579 new.next = state.next + block_size;
580 do {
581 new.end = anv_block_pool_grow(pool, pool_state);
582 } while (new.end < new.next);
583
584 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
585 if (old.next != state.next)
586 futex_wake(&pool_state->end, INT_MAX);
587 return state.next;
588 } else {
589 futex_wait(&pool_state->end, state.end);
590 continue;
591 }
592 }
593 }
594
595 int32_t
596 anv_block_pool_alloc(struct anv_block_pool *pool,
597 uint32_t block_size)
598 {
599 return anv_block_pool_alloc_new(pool, &pool->state, block_size);
600 }
601
602 /* Allocates a block out of the back of the block pool.
603 *
604 * This will allocated a block earlier than the "start" of the block pool.
605 * The offsets returned from this function will be negative but will still
606 * be correct relative to the block pool's map pointer.
607 *
608 * If you ever use anv_block_pool_alloc_back, then you will have to do
609 * gymnastics with the block pool's BO when doing relocations.
610 */
611 int32_t
612 anv_block_pool_alloc_back(struct anv_block_pool *pool,
613 uint32_t block_size)
614 {
615 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
616 block_size);
617
618 /* The offset we get out of anv_block_pool_alloc_new() is actually the
619 * number of bytes downwards from the middle to the end of the block.
620 * We need to turn it into a (negative) offset from the middle to the
621 * start of the block.
622 */
623 assert(offset >= 0);
624 return -(offset + block_size);
625 }
626
627 VkResult
628 anv_state_pool_init(struct anv_state_pool *pool,
629 struct anv_device *device,
630 uint32_t block_size)
631 {
632 VkResult result = anv_block_pool_init(&pool->block_pool, device,
633 block_size * 16);
634 if (result != VK_SUCCESS)
635 return result;
636
637 assert(util_is_power_of_two(block_size));
638 pool->block_size = block_size;
639 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
640 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
641 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
642 pool->buckets[i].block.next = 0;
643 pool->buckets[i].block.end = 0;
644 }
645 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
646
647 return VK_SUCCESS;
648 }
649
650 void
651 anv_state_pool_finish(struct anv_state_pool *pool)
652 {
653 VG(VALGRIND_DESTROY_MEMPOOL(pool));
654 anv_block_pool_finish(&pool->block_pool);
655 }
656
657 static uint32_t
658 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
659 struct anv_block_pool *block_pool,
660 uint32_t state_size,
661 uint32_t block_size)
662 {
663 struct anv_block_state block, old, new;
664 uint32_t offset;
665
666 restart:
667 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
668
669 if (block.next < block.end) {
670 return block.next;
671 } else if (block.next == block.end) {
672 offset = anv_block_pool_alloc(block_pool, block_size);
673 new.next = offset + state_size;
674 new.end = offset + block_size;
675 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
676 if (old.next != block.next)
677 futex_wake(&pool->block.end, INT_MAX);
678 return offset;
679 } else {
680 futex_wait(&pool->block.end, block.end);
681 goto restart;
682 }
683 }
684
685 static uint32_t
686 anv_state_pool_get_bucket(uint32_t size)
687 {
688 unsigned size_log2 = ilog2_round_up(size);
689 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
690 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
691 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
692 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
693 }
694
695 static uint32_t
696 anv_state_pool_get_bucket_size(uint32_t bucket)
697 {
698 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
699 return 1 << size_log2;
700 }
701
702 static struct anv_state
703 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
704 uint32_t size, uint32_t align)
705 {
706 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
707
708 struct anv_state state;
709 state.alloc_size = anv_state_pool_get_bucket_size(bucket);
710
711 /* Try free list first. */
712 if (anv_free_list_pop(&pool->buckets[bucket].free_list,
713 &pool->block_pool.map, &state.offset)) {
714 assert(state.offset >= 0);
715 goto done;
716 }
717
718 state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
719 &pool->block_pool,
720 state.alloc_size,
721 pool->block_size);
722
723 done:
724 state.map = pool->block_pool.map + state.offset;
725 return state;
726 }
727
728 struct anv_state
729 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
730 {
731 if (size == 0)
732 return ANV_STATE_NULL;
733
734 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
735 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
736 return state;
737 }
738
739 struct anv_state
740 anv_state_pool_alloc_back(struct anv_state_pool *pool)
741 {
742 struct anv_state state;
743 state.alloc_size = pool->block_size;
744
745 if (anv_free_list_pop(&pool->back_alloc_free_list,
746 &pool->block_pool.map, &state.offset)) {
747 assert(state.offset < 0);
748 goto done;
749 }
750
751 state.offset = anv_block_pool_alloc_back(&pool->block_pool,
752 pool->block_size);
753
754 done:
755 state.map = pool->block_pool.map + state.offset;
756 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, state.alloc_size));
757 return state;
758 }
759
760 static void
761 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
762 {
763 assert(util_is_power_of_two(state.alloc_size));
764 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
765
766 if (state.offset < 0) {
767 assert(state.alloc_size == pool->block_size);
768 anv_free_list_push(&pool->back_alloc_free_list,
769 pool->block_pool.map, state.offset,
770 state.alloc_size, 1);
771 } else {
772 anv_free_list_push(&pool->buckets[bucket].free_list,
773 pool->block_pool.map, state.offset,
774 state.alloc_size, 1);
775 }
776 }
777
778 void
779 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
780 {
781 if (state.alloc_size == 0)
782 return;
783
784 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
785 anv_state_pool_free_no_vg(pool, state);
786 }
787
788 struct anv_state_stream_block {
789 struct anv_state block;
790
791 /* The next block */
792 struct anv_state_stream_block *next;
793
794 #ifdef HAVE_VALGRIND
795 /* A pointer to the first user-allocated thing in this block. This is
796 * what valgrind sees as the start of the block.
797 */
798 void *_vg_ptr;
799 #endif
800 };
801
802 /* The state stream allocator is a one-shot, single threaded allocator for
803 * variable sized blocks. We use it for allocating dynamic state.
804 */
805 void
806 anv_state_stream_init(struct anv_state_stream *stream,
807 struct anv_state_pool *state_pool,
808 uint32_t block_size)
809 {
810 stream->state_pool = state_pool;
811 stream->block_size = block_size;
812
813 stream->block = ANV_STATE_NULL;
814
815 stream->block_list = NULL;
816
817 /* Ensure that next + whatever > block_size. This way the first call to
818 * state_stream_alloc fetches a new block.
819 */
820 stream->next = block_size;
821
822 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
823 }
824
825 void
826 anv_state_stream_finish(struct anv_state_stream *stream)
827 {
828 struct anv_state_stream_block *next = stream->block_list;
829 while (next != NULL) {
830 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
831 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
832 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
833 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
834 next = sb.next;
835 }
836
837 VG(VALGRIND_DESTROY_MEMPOOL(stream));
838 }
839
840 struct anv_state
841 anv_state_stream_alloc(struct anv_state_stream *stream,
842 uint32_t size, uint32_t alignment)
843 {
844 if (size == 0)
845 return ANV_STATE_NULL;
846
847 assert(alignment <= PAGE_SIZE);
848
849 uint32_t offset = align_u32(stream->next, alignment);
850 if (offset + size > stream->block_size) {
851 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
852 stream->block_size,
853 PAGE_SIZE);
854
855 struct anv_state_stream_block *sb = stream->block.map;
856 VG_NOACCESS_WRITE(&sb->block, stream->block);
857 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
858 stream->block_list = sb;
859 VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL);
860
861 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
862
863 /* Reset back to the start plus space for the header */
864 stream->next = sizeof(*sb);
865
866 offset = align_u32(stream->next, alignment);
867 assert(offset + size <= stream->block_size);
868 }
869
870 struct anv_state state = stream->block;
871 state.offset += offset;
872 state.alloc_size = size;
873 state.map += offset;
874
875 stream->next = offset + size;
876
877 #ifdef HAVE_VALGRIND
878 struct anv_state_stream_block *sb = stream->block_list;
879 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
880 if (vg_ptr == NULL) {
881 vg_ptr = state.map;
882 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
883 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
884 } else {
885 void *state_end = state.map + state.alloc_size;
886 /* This only updates the mempool. The newly allocated chunk is still
887 * marked as NOACCESS. */
888 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
889 /* Mark the newly allocated chunk as undefined */
890 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
891 }
892 #endif
893
894 return state;
895 }
896
897 struct bo_pool_bo_link {
898 struct bo_pool_bo_link *next;
899 struct anv_bo bo;
900 };
901
902 void
903 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
904 {
905 pool->device = device;
906 memset(pool->free_list, 0, sizeof(pool->free_list));
907
908 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
909 }
910
911 void
912 anv_bo_pool_finish(struct anv_bo_pool *pool)
913 {
914 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
915 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
916 while (link != NULL) {
917 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
918
919 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
920 anv_gem_close(pool->device, link_copy.bo.gem_handle);
921 link = link_copy.next;
922 }
923 }
924
925 VG(VALGRIND_DESTROY_MEMPOOL(pool));
926 }
927
928 VkResult
929 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
930 {
931 VkResult result;
932
933 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
934 const unsigned pow2_size = 1 << size_log2;
935 const unsigned bucket = size_log2 - 12;
936 assert(bucket < ARRAY_SIZE(pool->free_list));
937
938 void *next_free_void;
939 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
940 struct bo_pool_bo_link *next_free = next_free_void;
941 *bo = VG_NOACCESS_READ(&next_free->bo);
942 assert(bo->gem_handle);
943 assert(bo->map == next_free);
944 assert(size <= bo->size);
945
946 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
947
948 return VK_SUCCESS;
949 }
950
951 struct anv_bo new_bo;
952
953 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
954 if (result != VK_SUCCESS)
955 return result;
956
957 assert(new_bo.size == pow2_size);
958
959 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
960 if (new_bo.map == MAP_FAILED) {
961 anv_gem_close(pool->device, new_bo.gem_handle);
962 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
963 }
964
965 *bo = new_bo;
966
967 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
968
969 return VK_SUCCESS;
970 }
971
972 void
973 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
974 {
975 /* Make a copy in case the anv_bo happens to be storred in the BO */
976 struct anv_bo bo = *bo_in;
977
978 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
979
980 struct bo_pool_bo_link *link = bo.map;
981 VG_NOACCESS_WRITE(&link->bo, bo);
982
983 assert(util_is_power_of_two(bo.size));
984 const unsigned size_log2 = ilog2_round_up(bo.size);
985 const unsigned bucket = size_log2 - 12;
986 assert(bucket < ARRAY_SIZE(pool->free_list));
987
988 anv_ptr_free_list_push(&pool->free_list[bucket], link);
989 }
990
991 // Scratch pool
992
993 void
994 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
995 {
996 memset(pool, 0, sizeof(*pool));
997 }
998
999 void
1000 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1001 {
1002 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1003 for (unsigned i = 0; i < 16; i++) {
1004 struct anv_scratch_bo *bo = &pool->bos[i][s];
1005 if (bo->exists > 0)
1006 anv_gem_close(device, bo->bo.gem_handle);
1007 }
1008 }
1009 }
1010
1011 struct anv_bo *
1012 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1013 gl_shader_stage stage, unsigned per_thread_scratch)
1014 {
1015 if (per_thread_scratch == 0)
1016 return NULL;
1017
1018 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1019 assert(scratch_size_log2 < 16);
1020
1021 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1022
1023 /* We can use "exists" to shortcut and ignore the critical section */
1024 if (bo->exists)
1025 return &bo->bo;
1026
1027 pthread_mutex_lock(&device->mutex);
1028
1029 __sync_synchronize();
1030 if (bo->exists)
1031 return &bo->bo;
1032
1033 const struct anv_physical_device *physical_device =
1034 &device->instance->physicalDevice;
1035 const struct gen_device_info *devinfo = &physical_device->info;
1036
1037 /* WaCSScratchSize:hsw
1038 *
1039 * Haswell's scratch space address calculation appears to be sparse
1040 * rather than tightly packed. The Thread ID has bits indicating which
1041 * subslice, EU within a subslice, and thread within an EU it is.
1042 * There's a maximum of two slices and two subslices, so these can be
1043 * stored with a single bit. Even though there are only 10 EUs per
1044 * subslice, this is stored in 4 bits, so there's an effective maximum
1045 * value of 16 EUs. Similarly, although there are only 7 threads per EU,
1046 * this is stored in a 3 bit number, giving an effective maximum value
1047 * of 8 threads per EU.
1048 *
1049 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1050 * number of threads per subslice.
1051 */
1052 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1053 const unsigned scratch_ids_per_subslice =
1054 device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads;
1055
1056 uint32_t max_threads[] = {
1057 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1058 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1059 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1060 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1061 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1062 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1063 };
1064
1065 uint32_t size = per_thread_scratch * max_threads[stage];
1066
1067 anv_bo_init_new(&bo->bo, device, size);
1068
1069 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1070 * are still relative to the general state base address. When we emit
1071 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1072 * to the maximum (1 page under 4GB). This allows us to just place the
1073 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1074 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1075 * However, in order to do so, we need to ensure that the kernel does not
1076 * place the scratch BO above the 32-bit boundary.
1077 *
1078 * NOTE: Technically, it can't go "anywhere" because the top page is off
1079 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1080 * kernel allocates space using
1081 *
1082 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1083 *
1084 * so nothing will ever touch the top page.
1085 */
1086 bo->bo.flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1087
1088 /* Set the exists last because it may be read by other threads */
1089 __sync_synchronize();
1090 bo->exists = true;
1091
1092 pthread_mutex_unlock(&device->mutex);
1093
1094 return &bo->bo;
1095 }
1096
1097 struct anv_cached_bo {
1098 struct anv_bo bo;
1099
1100 uint32_t refcount;
1101 };
1102
1103 VkResult
1104 anv_bo_cache_init(struct anv_bo_cache *cache)
1105 {
1106 cache->bo_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1107 _mesa_key_pointer_equal);
1108 if (!cache->bo_map)
1109 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1110
1111 if (pthread_mutex_init(&cache->mutex, NULL)) {
1112 _mesa_hash_table_destroy(cache->bo_map, NULL);
1113 return vk_errorf(VK_ERROR_OUT_OF_HOST_MEMORY,
1114 "pthread_mutex_init failed: %m");
1115 }
1116
1117 return VK_SUCCESS;
1118 }
1119
1120 void
1121 anv_bo_cache_finish(struct anv_bo_cache *cache)
1122 {
1123 _mesa_hash_table_destroy(cache->bo_map, NULL);
1124 pthread_mutex_destroy(&cache->mutex);
1125 }
1126
1127 static struct anv_cached_bo *
1128 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1129 {
1130 struct hash_entry *entry =
1131 _mesa_hash_table_search(cache->bo_map,
1132 (const void *)(uintptr_t)gem_handle);
1133 if (!entry)
1134 return NULL;
1135
1136 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1137 assert(bo->bo.gem_handle == gem_handle);
1138
1139 return bo;
1140 }
1141
1142 static struct anv_bo *
1143 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1144 {
1145 pthread_mutex_lock(&cache->mutex);
1146
1147 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1148
1149 pthread_mutex_unlock(&cache->mutex);
1150
1151 return bo ? &bo->bo : NULL;
1152 }
1153
1154 VkResult
1155 anv_bo_cache_alloc(struct anv_device *device,
1156 struct anv_bo_cache *cache,
1157 uint64_t size, struct anv_bo **bo_out)
1158 {
1159 struct anv_cached_bo *bo =
1160 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1161 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1162 if (!bo)
1163 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1164
1165 bo->refcount = 1;
1166
1167 /* The kernel is going to give us whole pages anyway */
1168 size = align_u64(size, 4096);
1169
1170 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1171 if (result != VK_SUCCESS) {
1172 vk_free(&device->alloc, bo);
1173 return result;
1174 }
1175
1176 assert(bo->bo.gem_handle);
1177
1178 pthread_mutex_lock(&cache->mutex);
1179
1180 _mesa_hash_table_insert(cache->bo_map,
1181 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1182
1183 pthread_mutex_unlock(&cache->mutex);
1184
1185 *bo_out = &bo->bo;
1186
1187 return VK_SUCCESS;
1188 }
1189
1190 VkResult
1191 anv_bo_cache_import(struct anv_device *device,
1192 struct anv_bo_cache *cache,
1193 int fd, uint64_t size, struct anv_bo **bo_out)
1194 {
1195 pthread_mutex_lock(&cache->mutex);
1196
1197 /* The kernel is going to give us whole pages anyway */
1198 size = align_u64(size, 4096);
1199
1200 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1201 if (!gem_handle) {
1202 pthread_mutex_unlock(&cache->mutex);
1203 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1204 }
1205
1206 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1207 if (bo) {
1208 if (bo->bo.size != size) {
1209 pthread_mutex_unlock(&cache->mutex);
1210 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1211 }
1212 __sync_fetch_and_add(&bo->refcount, 1);
1213 } else {
1214 /* For security purposes, we reject BO imports where the size does not
1215 * match exactly. This prevents a malicious client from passing a
1216 * buffer to a trusted client, lying about the size, and telling the
1217 * trusted client to try and texture from an image that goes
1218 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1219 * in the trusted client. The trusted client can protect itself against
1220 * this sort of attack but only if it can trust the buffer size.
1221 */
1222 off_t import_size = lseek(fd, 0, SEEK_END);
1223 if (import_size == (off_t)-1 || import_size != size) {
1224 anv_gem_close(device, gem_handle);
1225 pthread_mutex_unlock(&cache->mutex);
1226 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1227 }
1228
1229 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1230 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1231 if (!bo) {
1232 anv_gem_close(device, gem_handle);
1233 pthread_mutex_unlock(&cache->mutex);
1234 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1235 }
1236
1237 bo->refcount = 1;
1238
1239 anv_bo_init(&bo->bo, gem_handle, size);
1240
1241 if (device->instance->physicalDevice.supports_48bit_addresses)
1242 bo->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1243
1244 if (device->instance->physicalDevice.has_exec_async)
1245 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1246
1247 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1248 }
1249
1250 pthread_mutex_unlock(&cache->mutex);
1251
1252 /* From the Vulkan spec:
1253 *
1254 * "Importing memory from a file descriptor transfers ownership of
1255 * the file descriptor from the application to the Vulkan
1256 * implementation. The application must not perform any operations on
1257 * the file descriptor after a successful import."
1258 *
1259 * If the import fails, we leave the file descriptor open.
1260 */
1261 close(fd);
1262
1263 *bo_out = &bo->bo;
1264
1265 return VK_SUCCESS;
1266 }
1267
1268 VkResult
1269 anv_bo_cache_export(struct anv_device *device,
1270 struct anv_bo_cache *cache,
1271 struct anv_bo *bo_in, int *fd_out)
1272 {
1273 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1274 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1275
1276 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1277 if (fd < 0)
1278 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1279
1280 *fd_out = fd;
1281
1282 return VK_SUCCESS;
1283 }
1284
1285 static bool
1286 atomic_dec_not_one(uint32_t *counter)
1287 {
1288 uint32_t old, val;
1289
1290 val = *counter;
1291 while (1) {
1292 if (val == 1)
1293 return false;
1294
1295 old = __sync_val_compare_and_swap(counter, val, val - 1);
1296 if (old == val)
1297 return true;
1298
1299 val = old;
1300 }
1301 }
1302
1303 void
1304 anv_bo_cache_release(struct anv_device *device,
1305 struct anv_bo_cache *cache,
1306 struct anv_bo *bo_in)
1307 {
1308 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1309 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1310
1311 /* Try to decrement the counter but don't go below one. If this succeeds
1312 * then the refcount has been decremented and we are not the last
1313 * reference.
1314 */
1315 if (atomic_dec_not_one(&bo->refcount))
1316 return;
1317
1318 pthread_mutex_lock(&cache->mutex);
1319
1320 /* We are probably the last reference since our attempt to decrement above
1321 * failed. However, we can't actually know until we are inside the mutex.
1322 * Otherwise, someone could import the BO between the decrement and our
1323 * taking the mutex.
1324 */
1325 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1326 /* Turns out we're not the last reference. Unlock and bail. */
1327 pthread_mutex_unlock(&cache->mutex);
1328 return;
1329 }
1330
1331 struct hash_entry *entry =
1332 _mesa_hash_table_search(cache->bo_map,
1333 (const void *)(uintptr_t)bo->bo.gem_handle);
1334 assert(entry);
1335 _mesa_hash_table_remove(cache->bo_map, entry);
1336
1337 if (bo->bo.map)
1338 anv_gem_munmap(bo->bo.map, bo->bo.size);
1339
1340 anv_gem_close(device, bo->bo.gem_handle);
1341
1342 /* Don't unlock until we've actually closed the BO. The whole point of
1343 * the BO cache is to ensure that we correctly handle races with creating
1344 * and releasing GEM handles and we don't want to let someone import the BO
1345 * again between mutex unlock and closing the GEM handle.
1346 */
1347 pthread_mutex_unlock(&cache->mutex);
1348
1349 vk_free(&device->alloc, bo);
1350 }