anv/bo_pool: Allow freeing BOs where the anv_bo is in the BO itself
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "anv_private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
183 {
184 union anv_free_list current, old, new;
185 int32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static uint32_t
244 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(util_is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->bo.size = 0;
256 pool->bo.is_winsys_bo = false;
257 pool->block_size = block_size;
258 pool->free_list = ANV_FREE_LIST_EMPTY;
259 pool->back_free_list = ANV_FREE_LIST_EMPTY;
260
261 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
262 if (pool->fd == -1)
263 return;
264
265 /* Just make it 2GB up-front. The Linux kernel won't actually back it
266 * with pages until we either map and fault on one of them or we use
267 * userptr and send a chunk of it off to the GPU.
268 */
269 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1)
270 return;
271
272 anv_vector_init(&pool->mmap_cleanups,
273 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
274
275 pool->state.next = 0;
276 pool->state.end = 0;
277 pool->back_state.next = 0;
278 pool->back_state.end = 0;
279
280 /* Immediately grow the pool so we'll have a backing bo. */
281 pool->state.end = anv_block_pool_grow(pool, &pool->state);
282 }
283
284 void
285 anv_block_pool_finish(struct anv_block_pool *pool)
286 {
287 struct anv_mmap_cleanup *cleanup;
288
289 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
290 if (cleanup->map)
291 munmap(cleanup->map, cleanup->size);
292 if (cleanup->gem_handle)
293 anv_gem_close(pool->device, cleanup->gem_handle);
294 }
295
296 anv_vector_finish(&pool->mmap_cleanups);
297
298 close(pool->fd);
299 }
300
301 #define PAGE_SIZE 4096
302
303 /** Grows and re-centers the block pool.
304 *
305 * We grow the block pool in one or both directions in such a way that the
306 * following conditions are met:
307 *
308 * 1) The size of the entire pool is always a power of two.
309 *
310 * 2) The pool only grows on both ends. Neither end can get
311 * shortened.
312 *
313 * 3) At the end of the allocation, we have about twice as much space
314 * allocated for each end as we have used. This way the pool doesn't
315 * grow too far in one direction or the other.
316 *
317 * 4) If the _alloc_back() has never been called, then the back portion of
318 * the pool retains a size of zero. (This makes it easier for users of
319 * the block pool that only want a one-sided pool.)
320 *
321 * 5) We have enough space allocated for at least one more block in
322 * whichever side `state` points to.
323 *
324 * 6) The center of the pool is always aligned to both the block_size of
325 * the pool and a 4K CPU page.
326 */
327 static uint32_t
328 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
329 {
330 size_t size;
331 void *map;
332 uint32_t gem_handle;
333 struct anv_mmap_cleanup *cleanup;
334
335 pthread_mutex_lock(&pool->device->mutex);
336
337 assert(state == &pool->state || state == &pool->back_state);
338
339 /* Gather a little usage information on the pool. Since we may have
340 * threadsd waiting in queue to get some storage while we resize, it's
341 * actually possible that total_used will be larger than old_size. In
342 * particular, block_pool_alloc() increments state->next prior to
343 * calling block_pool_grow, so this ensures that we get enough space for
344 * which ever side tries to grow the pool.
345 *
346 * We align to a page size because it makes it easier to do our
347 * calculations later in such a way that we state page-aigned.
348 */
349 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
350 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
351 uint32_t total_used = front_used + back_used;
352
353 assert(state == &pool->state || back_used > 0);
354
355 size_t old_size = pool->bo.size;
356
357 if (old_size != 0 &&
358 back_used * 2 <= pool->center_bo_offset &&
359 front_used * 2 <= (old_size - pool->center_bo_offset)) {
360 /* If we're in this case then this isn't the firsta allocation and we
361 * already have enough space on both sides to hold double what we
362 * have allocated. There's nothing for us to do.
363 */
364 goto done;
365 }
366
367 if (old_size == 0) {
368 /* This is the first allocation */
369 size = MAX2(32 * pool->block_size, PAGE_SIZE);
370 } else {
371 size = old_size * 2;
372 }
373
374 /* We can't have a block pool bigger than 1GB because we use signed
375 * 32-bit offsets in the free list and we don't want overflow. We
376 * should never need a block pool bigger than 1GB anyway.
377 */
378 assert(size <= (1u << 31));
379
380 /* We compute a new center_bo_offset such that, when we double the size
381 * of the pool, we maintain the ratio of how much is used by each side.
382 * This way things should remain more-or-less balanced.
383 */
384 uint32_t center_bo_offset;
385 if (back_used == 0) {
386 /* If we're in this case then we have never called alloc_back(). In
387 * this case, we want keep the offset at 0 to make things as simple
388 * as possible for users that don't care about back allocations.
389 */
390 center_bo_offset = 0;
391 } else {
392 /* Try to "center" the allocation based on how much is currently in
393 * use on each side of the center line.
394 */
395 center_bo_offset = ((uint64_t)size * back_used) / total_used;
396
397 /* Align down to a multiple of both the block size and page size */
398 uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE);
399 assert(util_is_power_of_two(granularity));
400 center_bo_offset &= ~(granularity - 1);
401
402 assert(center_bo_offset >= back_used);
403
404 /* Make sure we don't shrink the back end of the pool */
405 if (center_bo_offset < pool->back_state.end)
406 center_bo_offset = pool->back_state.end;
407
408 /* Make sure that we don't shrink the front end of the pool */
409 if (size - center_bo_offset < pool->state.end)
410 center_bo_offset = size - pool->state.end;
411 }
412
413 assert(center_bo_offset % pool->block_size == 0);
414 assert(center_bo_offset % PAGE_SIZE == 0);
415
416 /* Assert that we only ever grow the pool */
417 assert(center_bo_offset >= pool->back_state.end);
418 assert(size - center_bo_offset >= pool->state.end);
419
420 cleanup = anv_vector_add(&pool->mmap_cleanups);
421 if (!cleanup)
422 goto fail;
423 *cleanup = ANV_MMAP_CLEANUP_INIT;
424
425 /* Just leak the old map until we destroy the pool. We can't munmap it
426 * without races or imposing locking on the block allocate fast path. On
427 * the whole the leaked maps adds up to less than the size of the
428 * current map. MAP_POPULATE seems like the right thing to do, but we
429 * should try to get some numbers.
430 */
431 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
432 MAP_SHARED | MAP_POPULATE, pool->fd,
433 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
434 cleanup->map = map;
435 cleanup->size = size;
436
437 if (map == MAP_FAILED)
438 goto fail;
439
440 gem_handle = anv_gem_userptr(pool->device, map, size);
441 if (gem_handle == 0)
442 goto fail;
443 cleanup->gem_handle = gem_handle;
444
445 #if 0
446 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
447 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
448 * always created as I915_CACHING_CACHED, which on non-LLC means
449 * snooped. That can be useful but comes with a bit of overheard. Since
450 * we're eplicitly clflushing and don't want the overhead we need to turn
451 * it off. */
452 if (!pool->device->info.has_llc) {
453 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
454 anv_gem_set_domain(pool->device, gem_handle,
455 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
456 }
457 #endif
458
459 /* Now that we successfull allocated everything, we can write the new
460 * values back into pool. */
461 pool->map = map + center_bo_offset;
462 pool->center_bo_offset = center_bo_offset;
463 pool->bo.gem_handle = gem_handle;
464 pool->bo.size = size;
465 pool->bo.map = map;
466 pool->bo.index = 0;
467
468 done:
469 pthread_mutex_unlock(&pool->device->mutex);
470
471 /* Return the appropreate new size. This function never actually
472 * updates state->next. Instead, we let the caller do that because it
473 * needs to do so in order to maintain its concurrency model.
474 */
475 if (state == &pool->state) {
476 return pool->bo.size - pool->center_bo_offset;
477 } else {
478 assert(pool->center_bo_offset > 0);
479 return pool->center_bo_offset;
480 }
481
482 fail:
483 pthread_mutex_unlock(&pool->device->mutex);
484
485 return 0;
486 }
487
488 static uint32_t
489 anv_block_pool_alloc_new(struct anv_block_pool *pool,
490 struct anv_block_state *pool_state)
491 {
492 struct anv_block_state state, old, new;
493
494 while (1) {
495 state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
496 if (state.next < state.end) {
497 assert(pool->map);
498 return state.next;
499 } else if (state.next == state.end) {
500 /* We allocated the first block outside the pool, we have to grow it.
501 * pool_state->next acts a mutex: threads who try to allocate now will
502 * get block indexes above the current limit and hit futex_wait
503 * below. */
504 new.next = state.next + pool->block_size;
505 new.end = anv_block_pool_grow(pool, pool_state);
506 assert(new.end >= new.next && new.end % pool->block_size == 0);
507 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
508 if (old.next != state.next)
509 futex_wake(&pool_state->end, INT_MAX);
510 return state.next;
511 } else {
512 futex_wait(&pool_state->end, state.end);
513 continue;
514 }
515 }
516 }
517
518 int32_t
519 anv_block_pool_alloc(struct anv_block_pool *pool)
520 {
521 int32_t offset;
522
523 /* Try free list first. */
524 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
525 assert(offset >= 0);
526 assert(pool->map);
527 return offset;
528 }
529
530 return anv_block_pool_alloc_new(pool, &pool->state);
531 }
532
533 /* Allocates a block out of the back of the block pool.
534 *
535 * This will allocated a block earlier than the "start" of the block pool.
536 * The offsets returned from this function will be negative but will still
537 * be correct relative to the block pool's map pointer.
538 *
539 * If you ever use anv_block_pool_alloc_back, then you will have to do
540 * gymnastics with the block pool's BO when doing relocations.
541 */
542 int32_t
543 anv_block_pool_alloc_back(struct anv_block_pool *pool)
544 {
545 int32_t offset;
546
547 /* Try free list first. */
548 if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) {
549 assert(offset < 0);
550 assert(pool->map);
551 return offset;
552 }
553
554 offset = anv_block_pool_alloc_new(pool, &pool->back_state);
555
556 /* The offset we get out of anv_block_pool_alloc_new() is actually the
557 * number of bytes downwards from the middle to the end of the block.
558 * We need to turn it into a (negative) offset from the middle to the
559 * start of the block.
560 */
561 assert(offset >= 0);
562 return -(offset + pool->block_size);
563 }
564
565 void
566 anv_block_pool_free(struct anv_block_pool *pool, int32_t offset)
567 {
568 if (offset < 0) {
569 anv_free_list_push(&pool->back_free_list, pool->map, offset);
570 } else {
571 anv_free_list_push(&pool->free_list, pool->map, offset);
572 }
573 }
574
575 static void
576 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
577 size_t state_size)
578 {
579 /* At least a cache line and must divide the block size. */
580 assert(state_size >= 64 && util_is_power_of_two(state_size));
581
582 pool->state_size = state_size;
583 pool->free_list = ANV_FREE_LIST_EMPTY;
584 pool->block.next = 0;
585 pool->block.end = 0;
586 }
587
588 static uint32_t
589 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
590 struct anv_block_pool *block_pool)
591 {
592 int32_t offset;
593 struct anv_block_state block, old, new;
594
595 /* Try free list first. */
596 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
597 assert(offset >= 0);
598 return offset;
599 }
600
601 /* If free list was empty (or somebody raced us and took the items) we
602 * allocate a new item from the end of the block */
603 restart:
604 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
605
606 if (block.next < block.end) {
607 return block.next;
608 } else if (block.next == block.end) {
609 offset = anv_block_pool_alloc(block_pool);
610 new.next = offset + pool->state_size;
611 new.end = offset + block_pool->block_size;
612 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
613 if (old.next != block.next)
614 futex_wake(&pool->block.end, INT_MAX);
615 return offset;
616 } else {
617 futex_wait(&pool->block.end, block.end);
618 goto restart;
619 }
620 }
621
622 static void
623 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
624 struct anv_block_pool *block_pool,
625 uint32_t offset)
626 {
627 anv_free_list_push(&pool->free_list, block_pool->map, offset);
628 }
629
630 void
631 anv_state_pool_init(struct anv_state_pool *pool,
632 struct anv_block_pool *block_pool)
633 {
634 pool->block_pool = block_pool;
635 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
636 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
637 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
638 }
639 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
640 }
641
642 void
643 anv_state_pool_finish(struct anv_state_pool *pool)
644 {
645 VG(VALGRIND_DESTROY_MEMPOOL(pool));
646 }
647
648 struct anv_state
649 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
650 {
651 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
652 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
653 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
654 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
655 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
656
657 struct anv_state state;
658 state.alloc_size = 1 << size_log2;
659 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
660 pool->block_pool);
661 state.map = pool->block_pool->map + state.offset;
662 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
663 return state;
664 }
665
666 void
667 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
668 {
669 assert(util_is_power_of_two(state.alloc_size));
670 unsigned size_log2 = ilog2_round_up(state.alloc_size);
671 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
672 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
673 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
674
675 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
676 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
677 pool->block_pool, state.offset);
678 }
679
680 #define NULL_BLOCK 1
681 struct anv_state_stream_block {
682 /* The next block */
683 struct anv_state_stream_block *next;
684
685 /* The offset into the block pool at which this block starts */
686 uint32_t offset;
687
688 #ifdef HAVE_VALGRIND
689 /* A pointer to the first user-allocated thing in this block. This is
690 * what valgrind sees as the start of the block.
691 */
692 void *_vg_ptr;
693 #endif
694 };
695
696 /* The state stream allocator is a one-shot, single threaded allocator for
697 * variable sized blocks. We use it for allocating dynamic state.
698 */
699 void
700 anv_state_stream_init(struct anv_state_stream *stream,
701 struct anv_block_pool *block_pool)
702 {
703 stream->block_pool = block_pool;
704 stream->block = NULL;
705
706 /* Ensure that next + whatever > end. This way the first call to
707 * state_stream_alloc fetches a new block.
708 */
709 stream->next = 1;
710 stream->end = 0;
711
712 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
713 }
714
715 void
716 anv_state_stream_finish(struct anv_state_stream *stream)
717 {
718 VG(const uint32_t block_size = stream->block_pool->block_size);
719
720 struct anv_state_stream_block *next = stream->block;
721 while (next != NULL) {
722 VG(VALGRIND_MAKE_MEM_DEFINED(next, sizeof(*next)));
723 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
724 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
725 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, block_size));
726 anv_block_pool_free(stream->block_pool, sb.offset);
727 next = sb.next;
728 }
729
730 VG(VALGRIND_DESTROY_MEMPOOL(stream));
731 }
732
733 struct anv_state
734 anv_state_stream_alloc(struct anv_state_stream *stream,
735 uint32_t size, uint32_t alignment)
736 {
737 struct anv_state_stream_block *sb = stream->block;
738
739 struct anv_state state;
740
741 state.offset = align_u32(stream->next, alignment);
742 if (state.offset + size > stream->end) {
743 uint32_t block = anv_block_pool_alloc(stream->block_pool);
744 sb = stream->block_pool->map + block;
745
746 VG(VALGRIND_MAKE_MEM_UNDEFINED(sb, sizeof(*sb)));
747 sb->next = stream->block;
748 sb->offset = block;
749 VG(sb->_vg_ptr = NULL);
750 VG(VALGRIND_MAKE_MEM_NOACCESS(sb, stream->block_pool->block_size));
751
752 stream->block = sb;
753 stream->start = block;
754 stream->next = block + sizeof(*sb);
755 stream->end = block + stream->block_pool->block_size;
756
757 state.offset = align_u32(stream->next, alignment);
758 assert(state.offset + size <= stream->end);
759 }
760
761 assert(state.offset > stream->start);
762 state.map = (void *)sb + (state.offset - stream->start);
763 state.alloc_size = size;
764
765 #ifdef HAVE_VALGRIND
766 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
767 if (vg_ptr == NULL) {
768 vg_ptr = state.map;
769 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
770 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
771 } else {
772 void *state_end = state.map + state.alloc_size;
773 /* This only updates the mempool. The newly allocated chunk is still
774 * marked as NOACCESS. */
775 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
776 /* Mark the newly allocated chunk as undefined */
777 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
778 }
779 #endif
780
781 stream->next = state.offset + size;
782
783 return state;
784 }
785
786 struct bo_pool_bo_link {
787 struct bo_pool_bo_link *next;
788 struct anv_bo bo;
789 };
790
791 void
792 anv_bo_pool_init(struct anv_bo_pool *pool,
793 struct anv_device *device, uint32_t bo_size)
794 {
795 pool->device = device;
796 pool->bo_size = bo_size;
797 pool->free_list = NULL;
798
799 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
800 }
801
802 void
803 anv_bo_pool_finish(struct anv_bo_pool *pool)
804 {
805 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
806 while (link != NULL) {
807 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
808
809 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
810 anv_gem_close(pool->device, link_copy.bo.gem_handle);
811 link = link_copy.next;
812 }
813
814 VG(VALGRIND_DESTROY_MEMPOOL(pool));
815 }
816
817 VkResult
818 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
819 {
820 VkResult result;
821
822 void *next_free_void;
823 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
824 struct bo_pool_bo_link *next_free = next_free_void;
825 *bo = VG_NOACCESS_READ(&next_free->bo);
826 assert(bo->map == next_free);
827 assert(bo->size == pool->bo_size);
828
829 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
830
831 return VK_SUCCESS;
832 }
833
834 struct anv_bo new_bo;
835
836 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
837 if (result != VK_SUCCESS)
838 return result;
839
840 assert(new_bo.size == pool->bo_size);
841
842 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size, 0);
843 if (new_bo.map == NULL) {
844 anv_gem_close(pool->device, new_bo.gem_handle);
845 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
846 }
847
848 *bo = new_bo;
849
850 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
851
852 return VK_SUCCESS;
853 }
854
855 void
856 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
857 {
858 /* Make a copy in case the anv_bo happens to be storred in the BO */
859 struct anv_bo bo = *bo_in;
860 struct bo_pool_bo_link *link = bo.map;
861 link->bo = bo;
862
863 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
864 anv_ptr_free_list_push(&pool->free_list, link);
865 }