anv: drop unused #include
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "util/anon_file.h"
33
34 #ifdef HAVE_VALGRIND
35 #define VG_NOACCESS_READ(__ptr) ({ \
36 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
37 __typeof(*(__ptr)) __val = *(__ptr); \
38 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
39 __val; \
40 })
41 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
42 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
43 *(__ptr) = (__val); \
44 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
45 })
46 #else
47 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
48 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
49 #endif
50
51 #ifndef MAP_POPULATE
52 #define MAP_POPULATE 0
53 #endif
54
55 /* Design goals:
56 *
57 * - Lock free (except when resizing underlying bos)
58 *
59 * - Constant time allocation with typically only one atomic
60 *
61 * - Multiple allocation sizes without fragmentation
62 *
63 * - Can grow while keeping addresses and offset of contents stable
64 *
65 * - All allocations within one bo so we can point one of the
66 * STATE_BASE_ADDRESS pointers at it.
67 *
68 * The overall design is a two-level allocator: top level is a fixed size, big
69 * block (8k) allocator, which operates out of a bo. Allocation is done by
70 * either pulling a block from the free list or growing the used range of the
71 * bo. Growing the range may run out of space in the bo which we then need to
72 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
73 * we need to keep all pointers and contents in the old map valid. GEM bos in
74 * general can't grow, but we use a trick: we create a memfd and use ftruncate
75 * to grow it as necessary. We mmap the new size and then create a gem bo for
76 * it using the new gem userptr ioctl. Without heavy-handed locking around
77 * our allocation fast-path, there isn't really a way to munmap the old mmap,
78 * so we just keep it around until garbage collection time. While the block
79 * allocator is lockless for normal operations, we block other threads trying
80 * to allocate while we're growing the map. It sholdn't happen often, and
81 * growing is fast anyway.
82 *
83 * At the next level we can use various sub-allocators. The state pool is a
84 * pool of smaller, fixed size objects, which operates much like the block
85 * pool. It uses a free list for freeing objects, but when it runs out of
86 * space it just allocates a new block from the block pool. This allocator is
87 * intended for longer lived state objects such as SURFACE_STATE and most
88 * other persistent state objects in the API. We may need to track more info
89 * with these object and a pointer back to the CPU object (eg VkImage). In
90 * those cases we just allocate a slightly bigger object and put the extra
91 * state after the GPU state object.
92 *
93 * The state stream allocator works similar to how the i965 DRI driver streams
94 * all its state. Even with Vulkan, we need to emit transient state (whether
95 * surface state base or dynamic state base), and for that we can just get a
96 * block and fill it up. These cases are local to a command buffer and the
97 * sub-allocator need not be thread safe. The streaming allocator gets a new
98 * block when it runs out of space and chains them together so they can be
99 * easily freed.
100 */
101
102 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
103 * We use it to indicate the free list is empty. */
104 #define EMPTY UINT32_MAX
105
106 #define PAGE_SIZE 4096
107
108 struct anv_mmap_cleanup {
109 void *map;
110 size_t size;
111 };
112
113 static inline uint32_t
114 ilog2_round_up(uint32_t value)
115 {
116 assert(value != 0);
117 return 32 - __builtin_clz(value - 1);
118 }
119
120 static inline uint32_t
121 round_to_power_of_two(uint32_t value)
122 {
123 return 1 << ilog2_round_up(value);
124 }
125
126 struct anv_state_table_cleanup {
127 void *map;
128 size_t size;
129 };
130
131 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
132 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
133
134 static VkResult
135 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
136
137 VkResult
138 anv_state_table_init(struct anv_state_table *table,
139 struct anv_device *device,
140 uint32_t initial_entries)
141 {
142 VkResult result;
143
144 table->device = device;
145
146 /* Just make it 2GB up-front. The Linux kernel won't actually back it
147 * with pages until we either map and fault on one of them or we use
148 * userptr and send a chunk of it off to the GPU.
149 */
150 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
151 if (table->fd == -1) {
152 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
153 goto fail_fd;
154 }
155
156 if (!u_vector_init(&table->cleanups,
157 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
158 128)) {
159 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
160 goto fail_fd;
161 }
162
163 table->state.next = 0;
164 table->state.end = 0;
165 table->size = 0;
166
167 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
168 result = anv_state_table_expand_range(table, initial_size);
169 if (result != VK_SUCCESS)
170 goto fail_cleanups;
171
172 return VK_SUCCESS;
173
174 fail_cleanups:
175 u_vector_finish(&table->cleanups);
176 fail_fd:
177 close(table->fd);
178
179 return result;
180 }
181
182 static VkResult
183 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
184 {
185 void *map;
186 struct anv_state_table_cleanup *cleanup;
187
188 /* Assert that we only ever grow the pool */
189 assert(size >= table->state.end);
190
191 /* Make sure that we don't go outside the bounds of the memfd */
192 if (size > BLOCK_POOL_MEMFD_SIZE)
193 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
194
195 cleanup = u_vector_add(&table->cleanups);
196 if (!cleanup)
197 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
198
199 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
200
201 /* Just leak the old map until we destroy the pool. We can't munmap it
202 * without races or imposing locking on the block allocate fast path. On
203 * the whole the leaked maps adds up to less than the size of the
204 * current map. MAP_POPULATE seems like the right thing to do, but we
205 * should try to get some numbers.
206 */
207 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
208 MAP_SHARED | MAP_POPULATE, table->fd, 0);
209 if (map == MAP_FAILED) {
210 return vk_errorf(table->device->instance, table->device,
211 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
212 }
213
214 cleanup->map = map;
215 cleanup->size = size;
216
217 table->map = map;
218 table->size = size;
219
220 return VK_SUCCESS;
221 }
222
223 static VkResult
224 anv_state_table_grow(struct anv_state_table *table)
225 {
226 VkResult result = VK_SUCCESS;
227
228 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
229 PAGE_SIZE);
230 uint32_t old_size = table->size;
231
232 /* The block pool is always initialized to a nonzero size and this function
233 * is always called after initialization.
234 */
235 assert(old_size > 0);
236
237 uint32_t required = MAX2(used, old_size);
238 if (used * 2 <= required) {
239 /* If we're in this case then this isn't the firsta allocation and we
240 * already have enough space on both sides to hold double what we
241 * have allocated. There's nothing for us to do.
242 */
243 goto done;
244 }
245
246 uint32_t size = old_size * 2;
247 while (size < required)
248 size *= 2;
249
250 assert(size > table->size);
251
252 result = anv_state_table_expand_range(table, size);
253
254 done:
255 return result;
256 }
257
258 void
259 anv_state_table_finish(struct anv_state_table *table)
260 {
261 struct anv_state_table_cleanup *cleanup;
262
263 u_vector_foreach(cleanup, &table->cleanups) {
264 if (cleanup->map)
265 munmap(cleanup->map, cleanup->size);
266 }
267
268 u_vector_finish(&table->cleanups);
269
270 close(table->fd);
271 }
272
273 VkResult
274 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
275 uint32_t count)
276 {
277 struct anv_block_state state, old, new;
278 VkResult result;
279
280 assert(idx);
281
282 while(1) {
283 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
284 if (state.next + count <= state.end) {
285 assert(table->map);
286 struct anv_free_entry *entry = &table->map[state.next];
287 for (int i = 0; i < count; i++) {
288 entry[i].state.idx = state.next + i;
289 }
290 *idx = state.next;
291 return VK_SUCCESS;
292 } else if (state.next <= state.end) {
293 /* We allocated the first block outside the pool so we have to grow
294 * the pool. pool_state->next acts a mutex: threads who try to
295 * allocate now will get block indexes above the current limit and
296 * hit futex_wait below.
297 */
298 new.next = state.next + count;
299 do {
300 result = anv_state_table_grow(table);
301 if (result != VK_SUCCESS)
302 return result;
303 new.end = table->size / ANV_STATE_ENTRY_SIZE;
304 } while (new.end < new.next);
305
306 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
307 if (old.next != state.next)
308 futex_wake(&table->state.end, INT_MAX);
309 } else {
310 futex_wait(&table->state.end, state.end, NULL);
311 continue;
312 }
313 }
314 }
315
316 void
317 anv_free_list_push(union anv_free_list *list,
318 struct anv_state_table *table,
319 uint32_t first, uint32_t count)
320 {
321 union anv_free_list current, old, new;
322 uint32_t last = first;
323
324 for (uint32_t i = 1; i < count; i++, last++)
325 table->map[last].next = last + 1;
326
327 old = *list;
328 do {
329 current = old;
330 table->map[last].next = current.offset;
331 new.offset = first;
332 new.count = current.count + 1;
333 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
334 } while (old.u64 != current.u64);
335 }
336
337 struct anv_state *
338 anv_free_list_pop(union anv_free_list *list,
339 struct anv_state_table *table)
340 {
341 union anv_free_list current, new, old;
342
343 current.u64 = list->u64;
344 while (current.offset != EMPTY) {
345 __sync_synchronize();
346 new.offset = table->map[current.offset].next;
347 new.count = current.count + 1;
348 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
349 if (old.u64 == current.u64) {
350 struct anv_free_entry *entry = &table->map[current.offset];
351 return &entry->state;
352 }
353 current = old;
354 }
355
356 return NULL;
357 }
358
359 static VkResult
360 anv_block_pool_expand_range(struct anv_block_pool *pool,
361 uint32_t center_bo_offset, uint32_t size);
362
363 VkResult
364 anv_block_pool_init(struct anv_block_pool *pool,
365 struct anv_device *device,
366 uint64_t start_address,
367 uint32_t initial_size)
368 {
369 VkResult result;
370
371 pool->device = device;
372 pool->use_softpin = device->instance->physicalDevice.use_softpin;
373 pool->nbos = 0;
374 pool->size = 0;
375 pool->center_bo_offset = 0;
376 pool->start_address = gen_canonical_address(start_address);
377 pool->map = NULL;
378
379 if (pool->use_softpin) {
380 pool->bo = NULL;
381 pool->fd = -1;
382 } else {
383 /* Just make it 2GB up-front. The Linux kernel won't actually back it
384 * with pages until we either map and fault on one of them or we use
385 * userptr and send a chunk of it off to the GPU.
386 */
387 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
388 if (pool->fd == -1)
389 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
390
391 pool->wrapper_bo = (struct anv_bo) {
392 .refcount = 1,
393 .offset = -1,
394 .is_wrapper = true,
395 };
396 pool->bo = &pool->wrapper_bo;
397 }
398
399 if (!u_vector_init(&pool->mmap_cleanups,
400 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
401 128)) {
402 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
403 goto fail_fd;
404 }
405
406 pool->state.next = 0;
407 pool->state.end = 0;
408 pool->back_state.next = 0;
409 pool->back_state.end = 0;
410
411 result = anv_block_pool_expand_range(pool, 0, initial_size);
412 if (result != VK_SUCCESS)
413 goto fail_mmap_cleanups;
414
415 /* Make the entire pool available in the front of the pool. If back
416 * allocation needs to use this space, the "ends" will be re-arranged.
417 */
418 pool->state.end = pool->size;
419
420 return VK_SUCCESS;
421
422 fail_mmap_cleanups:
423 u_vector_finish(&pool->mmap_cleanups);
424 fail_fd:
425 if (pool->fd >= 0)
426 close(pool->fd);
427
428 return result;
429 }
430
431 void
432 anv_block_pool_finish(struct anv_block_pool *pool)
433 {
434 anv_block_pool_foreach_bo(bo, pool) {
435 if (bo->map)
436 anv_gem_munmap(bo->map, bo->size);
437 anv_gem_close(pool->device, bo->gem_handle);
438 }
439
440 struct anv_mmap_cleanup *cleanup;
441 u_vector_foreach(cleanup, &pool->mmap_cleanups)
442 munmap(cleanup->map, cleanup->size);
443 u_vector_finish(&pool->mmap_cleanups);
444
445 if (pool->fd >= 0)
446 close(pool->fd);
447 }
448
449 static VkResult
450 anv_block_pool_expand_range(struct anv_block_pool *pool,
451 uint32_t center_bo_offset, uint32_t size)
452 {
453 /* Assert that we only ever grow the pool */
454 assert(center_bo_offset >= pool->back_state.end);
455 assert(size - center_bo_offset >= pool->state.end);
456
457 /* Assert that we don't go outside the bounds of the memfd */
458 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
459 assert(pool->use_softpin ||
460 size - center_bo_offset <=
461 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
462
463 /* For state pool BOs we have to be a bit careful about where we place them
464 * in the GTT. There are two documented workarounds for state base address
465 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
466 * which state that those two base addresses do not support 48-bit
467 * addresses and need to be placed in the bottom 32-bit range.
468 * Unfortunately, this is not quite accurate.
469 *
470 * The real problem is that we always set the size of our state pools in
471 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
472 * likely significantly smaller. We do this because we do not no at the
473 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
474 * the pool during command buffer building so we don't actually have a
475 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
476 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
477 * as being out of bounds and returns zero. For dynamic state, this
478 * usually just leads to rendering corruptions, but shaders that are all
479 * zero hang the GPU immediately.
480 *
481 * The easiest solution to do is exactly what the bogus workarounds say to
482 * do: restrict these buffers to 32-bit addresses. We could also pin the
483 * BO to some particular location of our choosing, but that's significantly
484 * more work than just not setting a flag. So, we explicitly DO NOT set
485 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
486 * hard work for us. When using softpin, we're in control and the fixed
487 * addresses we choose are fine for base addresses.
488 */
489 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
490 if (!pool->use_softpin)
491 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
492
493 if (pool->use_softpin) {
494 uint32_t new_bo_size = size - pool->size;
495 struct anv_bo *new_bo;
496 assert(center_bo_offset == 0);
497 VkResult result = anv_device_alloc_bo(pool->device, new_bo_size,
498 bo_alloc_flags |
499 ANV_BO_ALLOC_FIXED_ADDRESS |
500 ANV_BO_ALLOC_MAPPED |
501 ANV_BO_ALLOC_SNOOPED,
502 pool->start_address + pool->size,
503 &new_bo);
504 if (result != VK_SUCCESS)
505 return result;
506
507 pool->bos[pool->nbos++] = new_bo;
508
509 /* This pointer will always point to the first BO in the list */
510 pool->bo = pool->bos[0];
511 } else {
512 /* Just leak the old map until we destroy the pool. We can't munmap it
513 * without races or imposing locking on the block allocate fast path. On
514 * the whole the leaked maps adds up to less than the size of the
515 * current map. MAP_POPULATE seems like the right thing to do, but we
516 * should try to get some numbers.
517 */
518 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
519 MAP_SHARED | MAP_POPULATE, pool->fd,
520 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
521 if (map == MAP_FAILED)
522 return vk_errorf(pool->device->instance, pool->device,
523 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
524
525 struct anv_bo *new_bo;
526 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
527 map, size,
528 bo_alloc_flags,
529 0 /* client_address */,
530 &new_bo);
531 if (result != VK_SUCCESS) {
532 munmap(map, size);
533 return result;
534 }
535
536 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
537 if (!cleanup) {
538 munmap(map, size);
539 anv_device_release_bo(pool->device, new_bo);
540 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
541 }
542 cleanup->map = map;
543 cleanup->size = size;
544
545 /* Now that we mapped the new memory, we can write the new
546 * center_bo_offset back into pool and update pool->map. */
547 pool->center_bo_offset = center_bo_offset;
548 pool->map = map + center_bo_offset;
549
550 pool->bos[pool->nbos++] = new_bo;
551 pool->wrapper_bo.map = new_bo;
552 }
553
554 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
555 pool->size = size;
556
557 return VK_SUCCESS;
558 }
559
560 /** Returns current memory map of the block pool.
561 *
562 * The returned pointer points to the map for the memory at the specified
563 * offset. The offset parameter is relative to the "center" of the block pool
564 * rather than the start of the block pool BO map.
565 */
566 void*
567 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
568 {
569 if (pool->use_softpin) {
570 struct anv_bo *bo = NULL;
571 int32_t bo_offset = 0;
572 anv_block_pool_foreach_bo(iter_bo, pool) {
573 if (offset < bo_offset + iter_bo->size) {
574 bo = iter_bo;
575 break;
576 }
577 bo_offset += iter_bo->size;
578 }
579 assert(bo != NULL);
580 assert(offset >= bo_offset);
581
582 return bo->map + (offset - bo_offset);
583 } else {
584 return pool->map + offset;
585 }
586 }
587
588 /** Grows and re-centers the block pool.
589 *
590 * We grow the block pool in one or both directions in such a way that the
591 * following conditions are met:
592 *
593 * 1) The size of the entire pool is always a power of two.
594 *
595 * 2) The pool only grows on both ends. Neither end can get
596 * shortened.
597 *
598 * 3) At the end of the allocation, we have about twice as much space
599 * allocated for each end as we have used. This way the pool doesn't
600 * grow too far in one direction or the other.
601 *
602 * 4) If the _alloc_back() has never been called, then the back portion of
603 * the pool retains a size of zero. (This makes it easier for users of
604 * the block pool that only want a one-sided pool.)
605 *
606 * 5) We have enough space allocated for at least one more block in
607 * whichever side `state` points to.
608 *
609 * 6) The center of the pool is always aligned to both the block_size of
610 * the pool and a 4K CPU page.
611 */
612 static uint32_t
613 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
614 {
615 VkResult result = VK_SUCCESS;
616
617 pthread_mutex_lock(&pool->device->mutex);
618
619 assert(state == &pool->state || state == &pool->back_state);
620
621 /* Gather a little usage information on the pool. Since we may have
622 * threadsd waiting in queue to get some storage while we resize, it's
623 * actually possible that total_used will be larger than old_size. In
624 * particular, block_pool_alloc() increments state->next prior to
625 * calling block_pool_grow, so this ensures that we get enough space for
626 * which ever side tries to grow the pool.
627 *
628 * We align to a page size because it makes it easier to do our
629 * calculations later in such a way that we state page-aigned.
630 */
631 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
632 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
633 uint32_t total_used = front_used + back_used;
634
635 assert(state == &pool->state || back_used > 0);
636
637 uint32_t old_size = pool->size;
638
639 /* The block pool is always initialized to a nonzero size and this function
640 * is always called after initialization.
641 */
642 assert(old_size > 0);
643
644 /* The back_used and front_used may actually be smaller than the actual
645 * requirement because they are based on the next pointers which are
646 * updated prior to calling this function.
647 */
648 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
649 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
650
651 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
652 /* If we're in this case then this isn't the firsta allocation and we
653 * already have enough space on both sides to hold double what we
654 * have allocated. There's nothing for us to do.
655 */
656 goto done;
657 }
658
659 uint32_t size = old_size * 2;
660 while (size < back_required + front_required)
661 size *= 2;
662
663 assert(size > pool->size);
664
665 /* We compute a new center_bo_offset such that, when we double the size
666 * of the pool, we maintain the ratio of how much is used by each side.
667 * This way things should remain more-or-less balanced.
668 */
669 uint32_t center_bo_offset;
670 if (back_used == 0) {
671 /* If we're in this case then we have never called alloc_back(). In
672 * this case, we want keep the offset at 0 to make things as simple
673 * as possible for users that don't care about back allocations.
674 */
675 center_bo_offset = 0;
676 } else {
677 /* Try to "center" the allocation based on how much is currently in
678 * use on each side of the center line.
679 */
680 center_bo_offset = ((uint64_t)size * back_used) / total_used;
681
682 /* Align down to a multiple of the page size */
683 center_bo_offset &= ~(PAGE_SIZE - 1);
684
685 assert(center_bo_offset >= back_used);
686
687 /* Make sure we don't shrink the back end of the pool */
688 if (center_bo_offset < back_required)
689 center_bo_offset = back_required;
690
691 /* Make sure that we don't shrink the front end of the pool */
692 if (size - center_bo_offset < front_required)
693 center_bo_offset = size - front_required;
694 }
695
696 assert(center_bo_offset % PAGE_SIZE == 0);
697
698 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
699
700 done:
701 pthread_mutex_unlock(&pool->device->mutex);
702
703 if (result == VK_SUCCESS) {
704 /* Return the appropriate new size. This function never actually
705 * updates state->next. Instead, we let the caller do that because it
706 * needs to do so in order to maintain its concurrency model.
707 */
708 if (state == &pool->state) {
709 return pool->size - pool->center_bo_offset;
710 } else {
711 assert(pool->center_bo_offset > 0);
712 return pool->center_bo_offset;
713 }
714 } else {
715 return 0;
716 }
717 }
718
719 static uint32_t
720 anv_block_pool_alloc_new(struct anv_block_pool *pool,
721 struct anv_block_state *pool_state,
722 uint32_t block_size, uint32_t *padding)
723 {
724 struct anv_block_state state, old, new;
725
726 /* Most allocations won't generate any padding */
727 if (padding)
728 *padding = 0;
729
730 while (1) {
731 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
732 if (state.next + block_size <= state.end) {
733 return state.next;
734 } else if (state.next <= state.end) {
735 if (pool->use_softpin && state.next < state.end) {
736 /* We need to grow the block pool, but still have some leftover
737 * space that can't be used by that particular allocation. So we
738 * add that as a "padding", and return it.
739 */
740 uint32_t leftover = state.end - state.next;
741
742 /* If there is some leftover space in the pool, the caller must
743 * deal with it.
744 */
745 assert(leftover == 0 || padding);
746 if (padding)
747 *padding = leftover;
748 state.next += leftover;
749 }
750
751 /* We allocated the first block outside the pool so we have to grow
752 * the pool. pool_state->next acts a mutex: threads who try to
753 * allocate now will get block indexes above the current limit and
754 * hit futex_wait below.
755 */
756 new.next = state.next + block_size;
757 do {
758 new.end = anv_block_pool_grow(pool, pool_state);
759 } while (new.end < new.next);
760
761 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
762 if (old.next != state.next)
763 futex_wake(&pool_state->end, INT_MAX);
764 return state.next;
765 } else {
766 futex_wait(&pool_state->end, state.end, NULL);
767 continue;
768 }
769 }
770 }
771
772 int32_t
773 anv_block_pool_alloc(struct anv_block_pool *pool,
774 uint32_t block_size, uint32_t *padding)
775 {
776 uint32_t offset;
777
778 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
779
780 return offset;
781 }
782
783 /* Allocates a block out of the back of the block pool.
784 *
785 * This will allocated a block earlier than the "start" of the block pool.
786 * The offsets returned from this function will be negative but will still
787 * be correct relative to the block pool's map pointer.
788 *
789 * If you ever use anv_block_pool_alloc_back, then you will have to do
790 * gymnastics with the block pool's BO when doing relocations.
791 */
792 int32_t
793 anv_block_pool_alloc_back(struct anv_block_pool *pool,
794 uint32_t block_size)
795 {
796 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
797 block_size, NULL);
798
799 /* The offset we get out of anv_block_pool_alloc_new() is actually the
800 * number of bytes downwards from the middle to the end of the block.
801 * We need to turn it into a (negative) offset from the middle to the
802 * start of the block.
803 */
804 assert(offset >= 0);
805 return -(offset + block_size);
806 }
807
808 VkResult
809 anv_state_pool_init(struct anv_state_pool *pool,
810 struct anv_device *device,
811 uint64_t start_address,
812 uint32_t block_size)
813 {
814 VkResult result = anv_block_pool_init(&pool->block_pool, device,
815 start_address,
816 block_size * 16);
817 if (result != VK_SUCCESS)
818 return result;
819
820 result = anv_state_table_init(&pool->table, device, 64);
821 if (result != VK_SUCCESS) {
822 anv_block_pool_finish(&pool->block_pool);
823 return result;
824 }
825
826 assert(util_is_power_of_two_or_zero(block_size));
827 pool->block_size = block_size;
828 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
829 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
830 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
831 pool->buckets[i].block.next = 0;
832 pool->buckets[i].block.end = 0;
833 }
834 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
835
836 return VK_SUCCESS;
837 }
838
839 void
840 anv_state_pool_finish(struct anv_state_pool *pool)
841 {
842 VG(VALGRIND_DESTROY_MEMPOOL(pool));
843 anv_state_table_finish(&pool->table);
844 anv_block_pool_finish(&pool->block_pool);
845 }
846
847 static uint32_t
848 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
849 struct anv_block_pool *block_pool,
850 uint32_t state_size,
851 uint32_t block_size,
852 uint32_t *padding)
853 {
854 struct anv_block_state block, old, new;
855 uint32_t offset;
856
857 /* We don't always use anv_block_pool_alloc(), which would set *padding to
858 * zero for us. So if we have a pointer to padding, we must zero it out
859 * ourselves here, to make sure we always return some sensible value.
860 */
861 if (padding)
862 *padding = 0;
863
864 /* If our state is large, we don't need any sub-allocation from a block.
865 * Instead, we just grab whole (potentially large) blocks.
866 */
867 if (state_size >= block_size)
868 return anv_block_pool_alloc(block_pool, state_size, padding);
869
870 restart:
871 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
872
873 if (block.next < block.end) {
874 return block.next;
875 } else if (block.next == block.end) {
876 offset = anv_block_pool_alloc(block_pool, block_size, padding);
877 new.next = offset + state_size;
878 new.end = offset + block_size;
879 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
880 if (old.next != block.next)
881 futex_wake(&pool->block.end, INT_MAX);
882 return offset;
883 } else {
884 futex_wait(&pool->block.end, block.end, NULL);
885 goto restart;
886 }
887 }
888
889 static uint32_t
890 anv_state_pool_get_bucket(uint32_t size)
891 {
892 unsigned size_log2 = ilog2_round_up(size);
893 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
894 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
895 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
896 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
897 }
898
899 static uint32_t
900 anv_state_pool_get_bucket_size(uint32_t bucket)
901 {
902 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
903 return 1 << size_log2;
904 }
905
906 /** Helper to push a chunk into the state table.
907 *
908 * It creates 'count' entries into the state table and update their sizes,
909 * offsets and maps, also pushing them as "free" states.
910 */
911 static void
912 anv_state_pool_return_blocks(struct anv_state_pool *pool,
913 uint32_t chunk_offset, uint32_t count,
914 uint32_t block_size)
915 {
916 /* Disallow returning 0 chunks */
917 assert(count != 0);
918
919 /* Make sure we always return chunks aligned to the block_size */
920 assert(chunk_offset % block_size == 0);
921
922 uint32_t st_idx;
923 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
924 assert(result == VK_SUCCESS);
925 for (int i = 0; i < count; i++) {
926 /* update states that were added back to the state table */
927 struct anv_state *state_i = anv_state_table_get(&pool->table,
928 st_idx + i);
929 state_i->alloc_size = block_size;
930 state_i->offset = chunk_offset + block_size * i;
931 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
932 }
933
934 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
935 anv_free_list_push(&pool->buckets[block_bucket].free_list,
936 &pool->table, st_idx, count);
937 }
938
939 /** Returns a chunk of memory back to the state pool.
940 *
941 * Do a two-level split. If chunk_size is bigger than divisor
942 * (pool->block_size), we return as many divisor sized blocks as we can, from
943 * the end of the chunk.
944 *
945 * The remaining is then split into smaller blocks (starting at small_size if
946 * it is non-zero), with larger blocks always being taken from the end of the
947 * chunk.
948 */
949 static void
950 anv_state_pool_return_chunk(struct anv_state_pool *pool,
951 uint32_t chunk_offset, uint32_t chunk_size,
952 uint32_t small_size)
953 {
954 uint32_t divisor = pool->block_size;
955 uint32_t nblocks = chunk_size / divisor;
956 uint32_t rest = chunk_size - nblocks * divisor;
957
958 if (nblocks > 0) {
959 /* First return divisor aligned and sized chunks. We start returning
960 * larger blocks from the end fo the chunk, since they should already be
961 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
962 * aligned chunks.
963 */
964 uint32_t offset = chunk_offset + rest;
965 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
966 }
967
968 chunk_size = rest;
969 divisor /= 2;
970
971 if (small_size > 0 && small_size < divisor)
972 divisor = small_size;
973
974 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
975
976 /* Just as before, return larger divisor aligned blocks from the end of the
977 * chunk first.
978 */
979 while (chunk_size > 0 && divisor >= min_size) {
980 nblocks = chunk_size / divisor;
981 rest = chunk_size - nblocks * divisor;
982 if (nblocks > 0) {
983 anv_state_pool_return_blocks(pool, chunk_offset + rest,
984 nblocks, divisor);
985 chunk_size = rest;
986 }
987 divisor /= 2;
988 }
989 }
990
991 static struct anv_state
992 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
993 uint32_t size, uint32_t align)
994 {
995 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
996
997 struct anv_state *state;
998 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
999 int32_t offset;
1000
1001 /* Try free list first. */
1002 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1003 &pool->table);
1004 if (state) {
1005 assert(state->offset >= 0);
1006 goto done;
1007 }
1008
1009 /* Try to grab a chunk from some larger bucket and split it up */
1010 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1011 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1012 if (state) {
1013 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1014 int32_t chunk_offset = state->offset;
1015
1016 /* First lets update the state we got to its new size. offset and map
1017 * remain the same.
1018 */
1019 state->alloc_size = alloc_size;
1020
1021 /* Now return the unused part of the chunk back to the pool as free
1022 * blocks
1023 *
1024 * There are a couple of options as to what we do with it:
1025 *
1026 * 1) We could fully split the chunk into state.alloc_size sized
1027 * pieces. However, this would mean that allocating a 16B
1028 * state could potentially split a 2MB chunk into 512K smaller
1029 * chunks. This would lead to unnecessary fragmentation.
1030 *
1031 * 2) The classic "buddy allocator" method would have us split the
1032 * chunk in half and return one half. Then we would split the
1033 * remaining half in half and return one half, and repeat as
1034 * needed until we get down to the size we want. However, if
1035 * you are allocating a bunch of the same size state (which is
1036 * the common case), this means that every other allocation has
1037 * to go up a level and every fourth goes up two levels, etc.
1038 * This is not nearly as efficient as it could be if we did a
1039 * little more work up-front.
1040 *
1041 * 3) Split the difference between (1) and (2) by doing a
1042 * two-level split. If it's bigger than some fixed block_size,
1043 * we split it into block_size sized chunks and return all but
1044 * one of them. Then we split what remains into
1045 * state.alloc_size sized chunks and return them.
1046 *
1047 * We choose something close to option (3), which is implemented with
1048 * anv_state_pool_return_chunk(). That is done by returning the
1049 * remaining of the chunk, with alloc_size as a hint of the size that
1050 * we want the smaller chunk split into.
1051 */
1052 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1053 chunk_size - alloc_size, alloc_size);
1054 goto done;
1055 }
1056 }
1057
1058 uint32_t padding;
1059 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1060 &pool->block_pool,
1061 alloc_size,
1062 pool->block_size,
1063 &padding);
1064 /* Everytime we allocate a new state, add it to the state pool */
1065 uint32_t idx;
1066 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1067 assert(result == VK_SUCCESS);
1068
1069 state = anv_state_table_get(&pool->table, idx);
1070 state->offset = offset;
1071 state->alloc_size = alloc_size;
1072 state->map = anv_block_pool_map(&pool->block_pool, offset);
1073
1074 if (padding > 0) {
1075 uint32_t return_offset = offset - padding;
1076 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1077 }
1078
1079 done:
1080 return *state;
1081 }
1082
1083 struct anv_state
1084 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1085 {
1086 if (size == 0)
1087 return ANV_STATE_NULL;
1088
1089 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1090 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1091 return state;
1092 }
1093
1094 struct anv_state
1095 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1096 {
1097 struct anv_state *state;
1098 uint32_t alloc_size = pool->block_size;
1099
1100 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1101 if (state) {
1102 assert(state->offset < 0);
1103 goto done;
1104 }
1105
1106 int32_t offset;
1107 offset = anv_block_pool_alloc_back(&pool->block_pool,
1108 pool->block_size);
1109 uint32_t idx;
1110 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1111 assert(result == VK_SUCCESS);
1112
1113 state = anv_state_table_get(&pool->table, idx);
1114 state->offset = offset;
1115 state->alloc_size = alloc_size;
1116 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1117
1118 done:
1119 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1120 return *state;
1121 }
1122
1123 static void
1124 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1125 {
1126 assert(util_is_power_of_two_or_zero(state.alloc_size));
1127 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1128
1129 if (state.offset < 0) {
1130 assert(state.alloc_size == pool->block_size);
1131 anv_free_list_push(&pool->back_alloc_free_list,
1132 &pool->table, state.idx, 1);
1133 } else {
1134 anv_free_list_push(&pool->buckets[bucket].free_list,
1135 &pool->table, state.idx, 1);
1136 }
1137 }
1138
1139 void
1140 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1141 {
1142 if (state.alloc_size == 0)
1143 return;
1144
1145 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1146 anv_state_pool_free_no_vg(pool, state);
1147 }
1148
1149 struct anv_state_stream_block {
1150 struct anv_state block;
1151
1152 /* The next block */
1153 struct anv_state_stream_block *next;
1154
1155 #ifdef HAVE_VALGRIND
1156 /* A pointer to the first user-allocated thing in this block. This is
1157 * what valgrind sees as the start of the block.
1158 */
1159 void *_vg_ptr;
1160 #endif
1161 };
1162
1163 /* The state stream allocator is a one-shot, single threaded allocator for
1164 * variable sized blocks. We use it for allocating dynamic state.
1165 */
1166 void
1167 anv_state_stream_init(struct anv_state_stream *stream,
1168 struct anv_state_pool *state_pool,
1169 uint32_t block_size)
1170 {
1171 stream->state_pool = state_pool;
1172 stream->block_size = block_size;
1173
1174 stream->block = ANV_STATE_NULL;
1175
1176 stream->block_list = NULL;
1177
1178 /* Ensure that next + whatever > block_size. This way the first call to
1179 * state_stream_alloc fetches a new block.
1180 */
1181 stream->next = block_size;
1182
1183 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1184 }
1185
1186 void
1187 anv_state_stream_finish(struct anv_state_stream *stream)
1188 {
1189 struct anv_state_stream_block *next = stream->block_list;
1190 while (next != NULL) {
1191 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1192 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1193 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1194 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1195 next = sb.next;
1196 }
1197
1198 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1199 }
1200
1201 struct anv_state
1202 anv_state_stream_alloc(struct anv_state_stream *stream,
1203 uint32_t size, uint32_t alignment)
1204 {
1205 if (size == 0)
1206 return ANV_STATE_NULL;
1207
1208 assert(alignment <= PAGE_SIZE);
1209
1210 uint32_t offset = align_u32(stream->next, alignment);
1211 if (offset + size > stream->block.alloc_size) {
1212 uint32_t block_size = stream->block_size;
1213 if (block_size < size)
1214 block_size = round_to_power_of_two(size);
1215
1216 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1217 block_size, PAGE_SIZE);
1218
1219 struct anv_state_stream_block *sb = stream->block.map;
1220 VG_NOACCESS_WRITE(&sb->block, stream->block);
1221 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1222 stream->block_list = sb;
1223 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1224
1225 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1226
1227 /* Reset back to the start plus space for the header */
1228 stream->next = sizeof(*sb);
1229
1230 offset = align_u32(stream->next, alignment);
1231 assert(offset + size <= stream->block.alloc_size);
1232 }
1233
1234 struct anv_state state = stream->block;
1235 state.offset += offset;
1236 state.alloc_size = size;
1237 state.map += offset;
1238
1239 stream->next = offset + size;
1240
1241 #ifdef HAVE_VALGRIND
1242 struct anv_state_stream_block *sb = stream->block_list;
1243 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1244 if (vg_ptr == NULL) {
1245 vg_ptr = state.map;
1246 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1247 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1248 } else {
1249 void *state_end = state.map + state.alloc_size;
1250 /* This only updates the mempool. The newly allocated chunk is still
1251 * marked as NOACCESS. */
1252 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1253 /* Mark the newly allocated chunk as undefined */
1254 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1255 }
1256 #endif
1257
1258 return state;
1259 }
1260
1261 void
1262 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
1263 {
1264 pool->device = device;
1265 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1266 util_sparse_array_free_list_init(&pool->free_list[i],
1267 &device->bo_cache.bo_map, 0,
1268 offsetof(struct anv_bo, free_index));
1269 }
1270
1271 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1272 }
1273
1274 void
1275 anv_bo_pool_finish(struct anv_bo_pool *pool)
1276 {
1277 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1278 while (1) {
1279 struct anv_bo *bo =
1280 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1281 if (bo == NULL)
1282 break;
1283
1284 /* anv_device_release_bo is going to "free" it */
1285 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1286 anv_device_release_bo(pool->device, bo);
1287 }
1288 }
1289
1290 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1291 }
1292
1293 VkResult
1294 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1295 struct anv_bo **bo_out)
1296 {
1297 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1298 const unsigned pow2_size = 1 << size_log2;
1299 const unsigned bucket = size_log2 - 12;
1300 assert(bucket < ARRAY_SIZE(pool->free_list));
1301
1302 struct anv_bo *bo =
1303 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1304 if (bo != NULL) {
1305 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1306 *bo_out = bo;
1307 return VK_SUCCESS;
1308 }
1309
1310 VkResult result = anv_device_alloc_bo(pool->device,
1311 pow2_size,
1312 ANV_BO_ALLOC_MAPPED |
1313 ANV_BO_ALLOC_SNOOPED |
1314 ANV_BO_ALLOC_CAPTURE,
1315 0 /* explicit_address */,
1316 &bo);
1317 if (result != VK_SUCCESS)
1318 return result;
1319
1320 /* We want it to look like it came from this pool */
1321 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1322 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1323
1324 *bo_out = bo;
1325
1326 return VK_SUCCESS;
1327 }
1328
1329 void
1330 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1331 {
1332 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1333
1334 assert(util_is_power_of_two_or_zero(bo->size));
1335 const unsigned size_log2 = ilog2_round_up(bo->size);
1336 const unsigned bucket = size_log2 - 12;
1337 assert(bucket < ARRAY_SIZE(pool->free_list));
1338
1339 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1340 bo->gem_handle) == bo);
1341 util_sparse_array_free_list_push(&pool->free_list[bucket],
1342 &bo->gem_handle, 1);
1343 }
1344
1345 // Scratch pool
1346
1347 void
1348 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1349 {
1350 memset(pool, 0, sizeof(*pool));
1351 }
1352
1353 void
1354 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1355 {
1356 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1357 for (unsigned i = 0; i < 16; i++) {
1358 if (pool->bos[i][s] != NULL)
1359 anv_device_release_bo(device, pool->bos[i][s]);
1360 }
1361 }
1362 }
1363
1364 struct anv_bo *
1365 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1366 gl_shader_stage stage, unsigned per_thread_scratch)
1367 {
1368 if (per_thread_scratch == 0)
1369 return NULL;
1370
1371 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1372 assert(scratch_size_log2 < 16);
1373
1374 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1375
1376 if (bo != NULL)
1377 return bo;
1378
1379 const struct anv_physical_device *physical_device =
1380 &device->instance->physicalDevice;
1381 const struct gen_device_info *devinfo = &physical_device->info;
1382
1383 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1384
1385 unsigned scratch_ids_per_subslice;
1386 if (devinfo->gen >= 11) {
1387 /* The MEDIA_VFE_STATE docs say:
1388 *
1389 * "Starting with this configuration, the Maximum Number of
1390 * Threads must be set to (#EU * 8) for GPGPU dispatches.
1391 *
1392 * Although there are only 7 threads per EU in the configuration,
1393 * the FFTID is calculated as if there are 8 threads per EU,
1394 * which in turn requires a larger amount of Scratch Space to be
1395 * allocated by the driver."
1396 */
1397 scratch_ids_per_subslice = 8 * 8;
1398 } else if (devinfo->is_haswell) {
1399 /* WaCSScratchSize:hsw
1400 *
1401 * Haswell's scratch space address calculation appears to be sparse
1402 * rather than tightly packed. The Thread ID has bits indicating
1403 * which subslice, EU within a subslice, and thread within an EU it
1404 * is. There's a maximum of two slices and two subslices, so these
1405 * can be stored with a single bit. Even though there are only 10 EUs
1406 * per subslice, this is stored in 4 bits, so there's an effective
1407 * maximum value of 16 EUs. Similarly, although there are only 7
1408 * threads per EU, this is stored in a 3 bit number, giving an
1409 * effective maximum value of 8 threads per EU.
1410 *
1411 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1412 * number of threads per subslice.
1413 */
1414 scratch_ids_per_subslice = 16 * 8;
1415 } else if (devinfo->is_cherryview) {
1416 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1417 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1418 * it had 8 EUs.
1419 */
1420 scratch_ids_per_subslice = 8 * 7;
1421 } else {
1422 scratch_ids_per_subslice = devinfo->max_cs_threads;
1423 }
1424
1425 uint32_t max_threads[] = {
1426 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1427 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1428 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1429 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1430 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1431 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1432 };
1433
1434 uint32_t size = per_thread_scratch * max_threads[stage];
1435
1436 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1437 * are still relative to the general state base address. When we emit
1438 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1439 * to the maximum (1 page under 4GB). This allows us to just place the
1440 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1441 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1442 * However, in order to do so, we need to ensure that the kernel does not
1443 * place the scratch BO above the 32-bit boundary.
1444 *
1445 * NOTE: Technically, it can't go "anywhere" because the top page is off
1446 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1447 * kernel allocates space using
1448 *
1449 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1450 *
1451 * so nothing will ever touch the top page.
1452 */
1453 VkResult result = anv_device_alloc_bo(device, size,
1454 ANV_BO_ALLOC_32BIT_ADDRESS,
1455 0 /* explicit_address */,
1456 &bo);
1457 if (result != VK_SUCCESS)
1458 return NULL; /* TODO */
1459
1460 struct anv_bo *current_bo =
1461 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1462 if (current_bo) {
1463 anv_device_release_bo(device, bo);
1464 return current_bo;
1465 } else {
1466 return bo;
1467 }
1468 }
1469
1470 VkResult
1471 anv_bo_cache_init(struct anv_bo_cache *cache)
1472 {
1473 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1474
1475 if (pthread_mutex_init(&cache->mutex, NULL)) {
1476 util_sparse_array_finish(&cache->bo_map);
1477 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1478 "pthread_mutex_init failed: %m");
1479 }
1480
1481 return VK_SUCCESS;
1482 }
1483
1484 void
1485 anv_bo_cache_finish(struct anv_bo_cache *cache)
1486 {
1487 util_sparse_array_finish(&cache->bo_map);
1488 pthread_mutex_destroy(&cache->mutex);
1489 }
1490
1491 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1492 (EXEC_OBJECT_WRITE | \
1493 EXEC_OBJECT_ASYNC | \
1494 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1495 EXEC_OBJECT_PINNED | \
1496 EXEC_OBJECT_CAPTURE)
1497
1498 static uint32_t
1499 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1500 enum anv_bo_alloc_flags alloc_flags)
1501 {
1502 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1503
1504 uint64_t bo_flags = 0;
1505 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1506 pdevice->supports_48bit_addresses)
1507 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1508
1509 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1510 bo_flags |= EXEC_OBJECT_CAPTURE;
1511
1512 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1513 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1514 bo_flags |= EXEC_OBJECT_WRITE;
1515 }
1516
1517 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1518 bo_flags |= EXEC_OBJECT_ASYNC;
1519
1520 if (pdevice->use_softpin)
1521 bo_flags |= EXEC_OBJECT_PINNED;
1522
1523 return bo_flags;
1524 }
1525
1526 VkResult
1527 anv_device_alloc_bo(struct anv_device *device,
1528 uint64_t size,
1529 enum anv_bo_alloc_flags alloc_flags,
1530 uint64_t explicit_address,
1531 struct anv_bo **bo_out)
1532 {
1533 const uint32_t bo_flags =
1534 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1535 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1536
1537 /* The kernel is going to give us whole pages anyway */
1538 size = align_u64(size, 4096);
1539
1540 uint32_t gem_handle = anv_gem_create(device, size);
1541 if (gem_handle == 0)
1542 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1543
1544 struct anv_bo new_bo = {
1545 .gem_handle = gem_handle,
1546 .refcount = 1,
1547 .offset = -1,
1548 .size = size,
1549 .flags = bo_flags,
1550 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1551 .has_client_visible_address =
1552 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1553 };
1554
1555 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1556 new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1557 if (new_bo.map == MAP_FAILED) {
1558 anv_gem_close(device, new_bo.gem_handle);
1559 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1560 }
1561 }
1562
1563 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1564 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1565 /* We don't want to change these defaults if it's going to be shared
1566 * with another process.
1567 */
1568 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1569
1570 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1571 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1572 * objects, we'd rather take the snooping overhead than risk forgetting
1573 * a CLFLUSH somewhere. Userptr objects are always created as
1574 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1575 * need to do this there.
1576 */
1577 if (!device->info.has_llc) {
1578 anv_gem_set_caching(device, new_bo.gem_handle,
1579 I915_CACHING_CACHED);
1580 }
1581 }
1582
1583 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1584 new_bo.has_fixed_address = true;
1585 new_bo.offset = explicit_address;
1586 } else {
1587 if (!anv_vma_alloc(device, &new_bo, explicit_address)) {
1588 if (new_bo.map)
1589 anv_gem_munmap(new_bo.map, size);
1590 anv_gem_close(device, new_bo.gem_handle);
1591 return vk_errorf(device->instance, NULL,
1592 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1593 "failed to allocate virtual address for BO");
1594 }
1595 }
1596
1597 assert(new_bo.gem_handle);
1598
1599 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1600 * else is touching this BO at the moment so we don't need to lock here.
1601 */
1602 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1603 *bo = new_bo;
1604
1605 *bo_out = bo;
1606
1607 return VK_SUCCESS;
1608 }
1609
1610 VkResult
1611 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1612 void *host_ptr, uint32_t size,
1613 enum anv_bo_alloc_flags alloc_flags,
1614 uint64_t client_address,
1615 struct anv_bo **bo_out)
1616 {
1617 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1618 ANV_BO_ALLOC_SNOOPED |
1619 ANV_BO_ALLOC_FIXED_ADDRESS)));
1620
1621 struct anv_bo_cache *cache = &device->bo_cache;
1622 const uint32_t bo_flags =
1623 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1624 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1625
1626 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1627 if (!gem_handle)
1628 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1629
1630 pthread_mutex_lock(&cache->mutex);
1631
1632 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1633 if (bo->refcount > 0) {
1634 /* VK_EXT_external_memory_host doesn't require handling importing the
1635 * same pointer twice at the same time, but we don't get in the way. If
1636 * kernel gives us the same gem_handle, only succeed if the flags match.
1637 */
1638 assert(bo->gem_handle == gem_handle);
1639 if (bo_flags != bo->flags) {
1640 pthread_mutex_unlock(&cache->mutex);
1641 return vk_errorf(device->instance, NULL,
1642 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1643 "same host pointer imported two different ways");
1644 }
1645
1646 if (bo->has_client_visible_address !=
1647 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1648 pthread_mutex_unlock(&cache->mutex);
1649 return vk_errorf(device->instance, NULL,
1650 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1651 "The same BO was imported with and without buffer "
1652 "device address");
1653 }
1654
1655 if (client_address && client_address != gen_48b_address(bo->offset)) {
1656 pthread_mutex_unlock(&cache->mutex);
1657 return vk_errorf(device->instance, NULL,
1658 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1659 "The same BO was imported at two different "
1660 "addresses");
1661 }
1662
1663 __sync_fetch_and_add(&bo->refcount, 1);
1664 } else {
1665 struct anv_bo new_bo = {
1666 .gem_handle = gem_handle,
1667 .refcount = 1,
1668 .offset = -1,
1669 .size = size,
1670 .map = host_ptr,
1671 .flags = bo_flags,
1672 .is_external = true,
1673 .from_host_ptr = true,
1674 .has_client_visible_address =
1675 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1676 };
1677
1678 assert(client_address == gen_48b_address(client_address));
1679 if (!anv_vma_alloc(device, &new_bo, client_address)) {
1680 anv_gem_close(device, new_bo.gem_handle);
1681 pthread_mutex_unlock(&cache->mutex);
1682 return vk_errorf(device->instance, NULL,
1683 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1684 "failed to allocate virtual address for BO");
1685 }
1686
1687 *bo = new_bo;
1688 }
1689
1690 pthread_mutex_unlock(&cache->mutex);
1691 *bo_out = bo;
1692
1693 return VK_SUCCESS;
1694 }
1695
1696 VkResult
1697 anv_device_import_bo(struct anv_device *device,
1698 int fd,
1699 enum anv_bo_alloc_flags alloc_flags,
1700 uint64_t client_address,
1701 struct anv_bo **bo_out)
1702 {
1703 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1704 ANV_BO_ALLOC_SNOOPED |
1705 ANV_BO_ALLOC_FIXED_ADDRESS)));
1706
1707 struct anv_bo_cache *cache = &device->bo_cache;
1708 const uint32_t bo_flags =
1709 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1710 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1711
1712 pthread_mutex_lock(&cache->mutex);
1713
1714 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1715 if (!gem_handle) {
1716 pthread_mutex_unlock(&cache->mutex);
1717 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1718 }
1719
1720 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1721 if (bo->refcount > 0) {
1722 /* We have to be careful how we combine flags so that it makes sense.
1723 * Really, though, if we get to this case and it actually matters, the
1724 * client has imported a BO twice in different ways and they get what
1725 * they have coming.
1726 */
1727 uint64_t new_flags = 0;
1728 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1729 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1730 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1731 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1732 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1733
1734 /* It's theoretically possible for a BO to get imported such that it's
1735 * both pinned and not pinned. The only way this can happen is if it
1736 * gets imported as both a semaphore and a memory object and that would
1737 * be an application error. Just fail out in that case.
1738 */
1739 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1740 (bo_flags & EXEC_OBJECT_PINNED)) {
1741 pthread_mutex_unlock(&cache->mutex);
1742 return vk_errorf(device->instance, NULL,
1743 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1744 "The same BO was imported two different ways");
1745 }
1746
1747 /* It's also theoretically possible that someone could export a BO from
1748 * one heap and import it into another or to import the same BO into two
1749 * different heaps. If this happens, we could potentially end up both
1750 * allowing and disallowing 48-bit addresses. There's not much we can
1751 * do about it if we're pinning so we just throw an error and hope no
1752 * app is actually that stupid.
1753 */
1754 if ((new_flags & EXEC_OBJECT_PINNED) &&
1755 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1756 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1757 pthread_mutex_unlock(&cache->mutex);
1758 return vk_errorf(device->instance, NULL,
1759 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1760 "The same BO was imported on two different heaps");
1761 }
1762
1763 if (bo->has_client_visible_address !=
1764 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1765 pthread_mutex_unlock(&cache->mutex);
1766 return vk_errorf(device->instance, NULL,
1767 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1768 "The same BO was imported with and without buffer "
1769 "device address");
1770 }
1771
1772 if (client_address && client_address != gen_48b_address(bo->offset)) {
1773 pthread_mutex_unlock(&cache->mutex);
1774 return vk_errorf(device->instance, NULL,
1775 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1776 "The same BO was imported at two different "
1777 "addresses");
1778 }
1779
1780 bo->flags = new_flags;
1781
1782 __sync_fetch_and_add(&bo->refcount, 1);
1783 } else {
1784 off_t size = lseek(fd, 0, SEEK_END);
1785 if (size == (off_t)-1) {
1786 anv_gem_close(device, gem_handle);
1787 pthread_mutex_unlock(&cache->mutex);
1788 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1789 }
1790
1791 struct anv_bo new_bo = {
1792 .gem_handle = gem_handle,
1793 .refcount = 1,
1794 .offset = -1,
1795 .size = size,
1796 .flags = bo_flags,
1797 .is_external = true,
1798 .has_client_visible_address =
1799 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1800 };
1801
1802 assert(client_address == gen_48b_address(client_address));
1803 if (!anv_vma_alloc(device, &new_bo, client_address)) {
1804 anv_gem_close(device, new_bo.gem_handle);
1805 pthread_mutex_unlock(&cache->mutex);
1806 return vk_errorf(device->instance, NULL,
1807 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1808 "failed to allocate virtual address for BO");
1809 }
1810
1811 *bo = new_bo;
1812 }
1813
1814 pthread_mutex_unlock(&cache->mutex);
1815 *bo_out = bo;
1816
1817 return VK_SUCCESS;
1818 }
1819
1820 VkResult
1821 anv_device_export_bo(struct anv_device *device,
1822 struct anv_bo *bo, int *fd_out)
1823 {
1824 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1825
1826 /* This BO must have been flagged external in order for us to be able
1827 * to export it. This is done based on external options passed into
1828 * anv_AllocateMemory.
1829 */
1830 assert(bo->is_external);
1831
1832 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1833 if (fd < 0)
1834 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1835
1836 *fd_out = fd;
1837
1838 return VK_SUCCESS;
1839 }
1840
1841 static bool
1842 atomic_dec_not_one(uint32_t *counter)
1843 {
1844 uint32_t old, val;
1845
1846 val = *counter;
1847 while (1) {
1848 if (val == 1)
1849 return false;
1850
1851 old = __sync_val_compare_and_swap(counter, val, val - 1);
1852 if (old == val)
1853 return true;
1854
1855 val = old;
1856 }
1857 }
1858
1859 void
1860 anv_device_release_bo(struct anv_device *device,
1861 struct anv_bo *bo)
1862 {
1863 struct anv_bo_cache *cache = &device->bo_cache;
1864 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1865
1866 /* Try to decrement the counter but don't go below one. If this succeeds
1867 * then the refcount has been decremented and we are not the last
1868 * reference.
1869 */
1870 if (atomic_dec_not_one(&bo->refcount))
1871 return;
1872
1873 pthread_mutex_lock(&cache->mutex);
1874
1875 /* We are probably the last reference since our attempt to decrement above
1876 * failed. However, we can't actually know until we are inside the mutex.
1877 * Otherwise, someone could import the BO between the decrement and our
1878 * taking the mutex.
1879 */
1880 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1881 /* Turns out we're not the last reference. Unlock and bail. */
1882 pthread_mutex_unlock(&cache->mutex);
1883 return;
1884 }
1885 assert(bo->refcount == 0);
1886
1887 if (bo->map && !bo->from_host_ptr)
1888 anv_gem_munmap(bo->map, bo->size);
1889
1890 if (!bo->has_fixed_address)
1891 anv_vma_free(device, bo);
1892
1893 uint32_t gem_handle = bo->gem_handle;
1894
1895 /* Memset the BO just in case. The refcount being zero should be enough to
1896 * prevent someone from assuming the data is valid but it's safer to just
1897 * stomp to zero just in case. We explicitly do this *before* we close the
1898 * GEM handle to ensure that if anyone allocates something and gets the
1899 * same GEM handle, the memset has already happen and won't stomp all over
1900 * any data they may write in this BO.
1901 */
1902 memset(bo, 0, sizeof(*bo));
1903
1904 anv_gem_close(device, gem_handle);
1905
1906 /* Don't unlock until we've actually closed the BO. The whole point of
1907 * the BO cache is to ensure that we correctly handle races with creating
1908 * and releasing GEM handles and we don't want to let someone import the BO
1909 * again between mutex unlock and closing the GEM handle.
1910 */
1911 pthread_mutex_unlock(&cache->mutex);
1912 }