anv/allocator: Only write to _vg_ptr if we have valgrind
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <unistd.h>
27 #include <limits.h>
28 #include <assert.h>
29 #include <linux/futex.h>
30 #include <linux/memfd.h>
31 #include <sys/time.h>
32 #include <sys/mman.h>
33 #include <sys/syscall.h>
34
35 #include "anv_private.h"
36
37 #include "util/hash_table.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset,
183 uint32_t size, uint32_t count)
184 {
185 union anv_free_list current, old, new;
186 int32_t *next_ptr = map + offset;
187
188 /* If we're returning more than one chunk, we need to build a chain to add
189 * to the list. Fortunately, we can do this without any atomics since we
190 * own everything in the chain right now. `offset` is left pointing to the
191 * head of our chain list while `next_ptr` points to the tail.
192 */
193 for (uint32_t i = 1; i < count; i++) {
194 VG_NOACCESS_WRITE(next_ptr, offset + i * size);
195 next_ptr = map + offset + i * size;
196 }
197
198 old = *list;
199 do {
200 current = old;
201 VG_NOACCESS_WRITE(next_ptr, current.offset);
202 new.offset = offset;
203 new.count = current.count + 1;
204 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
205 } while (old.u64 != current.u64);
206 }
207
208 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
209 * means that the bottom 12 bits should all be zero.
210 */
211 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
212 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
213 #define PFL_PACK(ptr, count) ({ \
214 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
215 })
216
217 static bool
218 anv_ptr_free_list_pop(void **list, void **elem)
219 {
220 void *current = *list;
221 while (PFL_PTR(current) != NULL) {
222 void **next_ptr = PFL_PTR(current);
223 void *new_ptr = VG_NOACCESS_READ(next_ptr);
224 unsigned new_count = PFL_COUNT(current) + 1;
225 void *new = PFL_PACK(new_ptr, new_count);
226 void *old = __sync_val_compare_and_swap(list, current, new);
227 if (old == current) {
228 *elem = PFL_PTR(current);
229 return true;
230 }
231 current = old;
232 }
233
234 return false;
235 }
236
237 static void
238 anv_ptr_free_list_push(void **list, void *elem)
239 {
240 void *old, *current;
241 void **next_ptr = elem;
242
243 /* The pointer-based free list requires that the pointer be
244 * page-aligned. This is because we use the bottom 12 bits of the
245 * pointer to store a counter to solve the ABA concurrency problem.
246 */
247 assert(((uintptr_t)elem & 0xfff) == 0);
248
249 old = *list;
250 do {
251 current = old;
252 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
253 unsigned new_count = PFL_COUNT(current) + 1;
254 void *new = PFL_PACK(elem, new_count);
255 old = __sync_val_compare_and_swap(list, current, new);
256 } while (old != current);
257 }
258
259 static VkResult
260 anv_block_pool_expand_range(struct anv_block_pool *pool,
261 uint32_t center_bo_offset, uint32_t size);
262
263 VkResult
264 anv_block_pool_init(struct anv_block_pool *pool,
265 struct anv_device *device,
266 uint32_t initial_size)
267 {
268 VkResult result;
269
270 pool->device = device;
271 anv_bo_init(&pool->bo, 0, 0);
272
273 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
274 if (pool->fd == -1)
275 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
276
277 /* Just make it 2GB up-front. The Linux kernel won't actually back it
278 * with pages until we either map and fault on one of them or we use
279 * userptr and send a chunk of it off to the GPU.
280 */
281 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
282 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
283 goto fail_fd;
284 }
285
286 if (!u_vector_init(&pool->mmap_cleanups,
287 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
288 128)) {
289 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
290 goto fail_fd;
291 }
292
293 pool->state.next = 0;
294 pool->state.end = 0;
295 pool->back_state.next = 0;
296 pool->back_state.end = 0;
297
298 result = anv_block_pool_expand_range(pool, 0, initial_size);
299 if (result != VK_SUCCESS)
300 goto fail_mmap_cleanups;
301
302 return VK_SUCCESS;
303
304 fail_mmap_cleanups:
305 u_vector_finish(&pool->mmap_cleanups);
306 fail_fd:
307 close(pool->fd);
308
309 return result;
310 }
311
312 void
313 anv_block_pool_finish(struct anv_block_pool *pool)
314 {
315 struct anv_mmap_cleanup *cleanup;
316
317 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
318 if (cleanup->map)
319 munmap(cleanup->map, cleanup->size);
320 if (cleanup->gem_handle)
321 anv_gem_close(pool->device, cleanup->gem_handle);
322 }
323
324 u_vector_finish(&pool->mmap_cleanups);
325
326 close(pool->fd);
327 }
328
329 #define PAGE_SIZE 4096
330
331 static VkResult
332 anv_block_pool_expand_range(struct anv_block_pool *pool,
333 uint32_t center_bo_offset, uint32_t size)
334 {
335 void *map;
336 uint32_t gem_handle;
337 struct anv_mmap_cleanup *cleanup;
338
339 /* Assert that we only ever grow the pool */
340 assert(center_bo_offset >= pool->back_state.end);
341 assert(size - center_bo_offset >= pool->state.end);
342
343 /* Assert that we don't go outside the bounds of the memfd */
344 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
345 assert(size - center_bo_offset <=
346 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
347
348 cleanup = u_vector_add(&pool->mmap_cleanups);
349 if (!cleanup)
350 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
351
352 *cleanup = ANV_MMAP_CLEANUP_INIT;
353
354 /* Just leak the old map until we destroy the pool. We can't munmap it
355 * without races or imposing locking on the block allocate fast path. On
356 * the whole the leaked maps adds up to less than the size of the
357 * current map. MAP_POPULATE seems like the right thing to do, but we
358 * should try to get some numbers.
359 */
360 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
361 MAP_SHARED | MAP_POPULATE, pool->fd,
362 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
363 if (map == MAP_FAILED)
364 return vk_errorf(VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
365
366 gem_handle = anv_gem_userptr(pool->device, map, size);
367 if (gem_handle == 0) {
368 munmap(map, size);
369 return vk_errorf(VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
370 }
371
372 cleanup->map = map;
373 cleanup->size = size;
374 cleanup->gem_handle = gem_handle;
375
376 #if 0
377 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
378 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
379 * always created as I915_CACHING_CACHED, which on non-LLC means
380 * snooped. That can be useful but comes with a bit of overheard. Since
381 * we're eplicitly clflushing and don't want the overhead we need to turn
382 * it off. */
383 if (!pool->device->info.has_llc) {
384 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
385 anv_gem_set_domain(pool->device, gem_handle,
386 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
387 }
388 #endif
389
390 /* Now that we successfull allocated everything, we can write the new
391 * values back into pool. */
392 pool->map = map + center_bo_offset;
393 pool->center_bo_offset = center_bo_offset;
394
395 /* For block pool BOs we have to be a bit careful about where we place them
396 * in the GTT. There are two documented workarounds for state base address
397 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
398 * which state that those two base addresses do not support 48-bit
399 * addresses and need to be placed in the bottom 32-bit range.
400 * Unfortunately, this is not quite accurate.
401 *
402 * The real problem is that we always set the size of our state pools in
403 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
404 * likely significantly smaller. We do this because we do not no at the
405 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
406 * the pool during command buffer building so we don't actually have a
407 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
408 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
409 * as being out of bounds and returns zero. For dynamic state, this
410 * usually just leads to rendering corruptions, but shaders that are all
411 * zero hang the GPU immediately.
412 *
413 * The easiest solution to do is exactly what the bogus workarounds say to
414 * do: restrict these buffers to 32-bit addresses. We could also pin the
415 * BO to some particular location of our choosing, but that's significantly
416 * more work than just not setting a flag. So, we explicitly DO NOT set
417 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
418 * hard work for us.
419 */
420 anv_bo_init(&pool->bo, gem_handle, size);
421 pool->bo.map = map;
422
423 return VK_SUCCESS;
424 }
425
426 /** Grows and re-centers the block pool.
427 *
428 * We grow the block pool in one or both directions in such a way that the
429 * following conditions are met:
430 *
431 * 1) The size of the entire pool is always a power of two.
432 *
433 * 2) The pool only grows on both ends. Neither end can get
434 * shortened.
435 *
436 * 3) At the end of the allocation, we have about twice as much space
437 * allocated for each end as we have used. This way the pool doesn't
438 * grow too far in one direction or the other.
439 *
440 * 4) If the _alloc_back() has never been called, then the back portion of
441 * the pool retains a size of zero. (This makes it easier for users of
442 * the block pool that only want a one-sided pool.)
443 *
444 * 5) We have enough space allocated for at least one more block in
445 * whichever side `state` points to.
446 *
447 * 6) The center of the pool is always aligned to both the block_size of
448 * the pool and a 4K CPU page.
449 */
450 static uint32_t
451 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
452 {
453 VkResult result = VK_SUCCESS;
454
455 pthread_mutex_lock(&pool->device->mutex);
456
457 assert(state == &pool->state || state == &pool->back_state);
458
459 /* Gather a little usage information on the pool. Since we may have
460 * threadsd waiting in queue to get some storage while we resize, it's
461 * actually possible that total_used will be larger than old_size. In
462 * particular, block_pool_alloc() increments state->next prior to
463 * calling block_pool_grow, so this ensures that we get enough space for
464 * which ever side tries to grow the pool.
465 *
466 * We align to a page size because it makes it easier to do our
467 * calculations later in such a way that we state page-aigned.
468 */
469 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
470 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
471 uint32_t total_used = front_used + back_used;
472
473 assert(state == &pool->state || back_used > 0);
474
475 uint32_t old_size = pool->bo.size;
476
477 /* The block pool is always initialized to a nonzero size and this function
478 * is always called after initialization.
479 */
480 assert(old_size > 0);
481
482 /* The back_used and front_used may actually be smaller than the actual
483 * requirement because they are based on the next pointers which are
484 * updated prior to calling this function.
485 */
486 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
487 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
488
489 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
490 /* If we're in this case then this isn't the firsta allocation and we
491 * already have enough space on both sides to hold double what we
492 * have allocated. There's nothing for us to do.
493 */
494 goto done;
495 }
496
497 uint32_t size = old_size * 2;
498 while (size < back_required + front_required)
499 size *= 2;
500
501 assert(size > pool->bo.size);
502
503 /* We compute a new center_bo_offset such that, when we double the size
504 * of the pool, we maintain the ratio of how much is used by each side.
505 * This way things should remain more-or-less balanced.
506 */
507 uint32_t center_bo_offset;
508 if (back_used == 0) {
509 /* If we're in this case then we have never called alloc_back(). In
510 * this case, we want keep the offset at 0 to make things as simple
511 * as possible for users that don't care about back allocations.
512 */
513 center_bo_offset = 0;
514 } else {
515 /* Try to "center" the allocation based on how much is currently in
516 * use on each side of the center line.
517 */
518 center_bo_offset = ((uint64_t)size * back_used) / total_used;
519
520 /* Align down to a multiple of the page size */
521 center_bo_offset &= ~(PAGE_SIZE - 1);
522
523 assert(center_bo_offset >= back_used);
524
525 /* Make sure we don't shrink the back end of the pool */
526 if (center_bo_offset < pool->back_state.end)
527 center_bo_offset = pool->back_state.end;
528
529 /* Make sure that we don't shrink the front end of the pool */
530 if (size - center_bo_offset < pool->state.end)
531 center_bo_offset = size - pool->state.end;
532 }
533
534 assert(center_bo_offset % PAGE_SIZE == 0);
535
536 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
537
538 if (pool->device->instance->physicalDevice.has_exec_async)
539 pool->bo.flags |= EXEC_OBJECT_ASYNC;
540
541 done:
542 pthread_mutex_unlock(&pool->device->mutex);
543
544 if (result == VK_SUCCESS) {
545 /* Return the appropriate new size. This function never actually
546 * updates state->next. Instead, we let the caller do that because it
547 * needs to do so in order to maintain its concurrency model.
548 */
549 if (state == &pool->state) {
550 return pool->bo.size - pool->center_bo_offset;
551 } else {
552 assert(pool->center_bo_offset > 0);
553 return pool->center_bo_offset;
554 }
555 } else {
556 return 0;
557 }
558 }
559
560 static uint32_t
561 anv_block_pool_alloc_new(struct anv_block_pool *pool,
562 struct anv_block_state *pool_state,
563 uint32_t block_size)
564 {
565 struct anv_block_state state, old, new;
566
567 while (1) {
568 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
569 if (state.next + block_size <= state.end) {
570 assert(pool->map);
571 return state.next;
572 } else if (state.next <= state.end) {
573 /* We allocated the first block outside the pool so we have to grow
574 * the pool. pool_state->next acts a mutex: threads who try to
575 * allocate now will get block indexes above the current limit and
576 * hit futex_wait below.
577 */
578 new.next = state.next + block_size;
579 do {
580 new.end = anv_block_pool_grow(pool, pool_state);
581 } while (new.end < new.next);
582
583 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
584 if (old.next != state.next)
585 futex_wake(&pool_state->end, INT_MAX);
586 return state.next;
587 } else {
588 futex_wait(&pool_state->end, state.end);
589 continue;
590 }
591 }
592 }
593
594 int32_t
595 anv_block_pool_alloc(struct anv_block_pool *pool,
596 uint32_t block_size)
597 {
598 return anv_block_pool_alloc_new(pool, &pool->state, block_size);
599 }
600
601 /* Allocates a block out of the back of the block pool.
602 *
603 * This will allocated a block earlier than the "start" of the block pool.
604 * The offsets returned from this function will be negative but will still
605 * be correct relative to the block pool's map pointer.
606 *
607 * If you ever use anv_block_pool_alloc_back, then you will have to do
608 * gymnastics with the block pool's BO when doing relocations.
609 */
610 int32_t
611 anv_block_pool_alloc_back(struct anv_block_pool *pool,
612 uint32_t block_size)
613 {
614 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
615 block_size);
616
617 /* The offset we get out of anv_block_pool_alloc_new() is actually the
618 * number of bytes downwards from the middle to the end of the block.
619 * We need to turn it into a (negative) offset from the middle to the
620 * start of the block.
621 */
622 assert(offset >= 0);
623 return -(offset + block_size);
624 }
625
626 VkResult
627 anv_state_pool_init(struct anv_state_pool *pool,
628 struct anv_device *device,
629 uint32_t block_size)
630 {
631 VkResult result = anv_block_pool_init(&pool->block_pool, device,
632 block_size * 16);
633 if (result != VK_SUCCESS)
634 return result;
635
636 assert(util_is_power_of_two(block_size));
637 pool->block_size = block_size;
638 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
639 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
640 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
641 pool->buckets[i].block.next = 0;
642 pool->buckets[i].block.end = 0;
643 }
644 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
645
646 return VK_SUCCESS;
647 }
648
649 void
650 anv_state_pool_finish(struct anv_state_pool *pool)
651 {
652 VG(VALGRIND_DESTROY_MEMPOOL(pool));
653 anv_block_pool_finish(&pool->block_pool);
654 }
655
656 static uint32_t
657 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
658 struct anv_block_pool *block_pool,
659 uint32_t state_size,
660 uint32_t block_size)
661 {
662 struct anv_block_state block, old, new;
663 uint32_t offset;
664
665 /* If our state is large, we don't need any sub-allocation from a block.
666 * Instead, we just grab whole (potentially large) blocks.
667 */
668 if (state_size >= block_size)
669 return anv_block_pool_alloc(block_pool, state_size);
670
671 restart:
672 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
673
674 if (block.next < block.end) {
675 return block.next;
676 } else if (block.next == block.end) {
677 offset = anv_block_pool_alloc(block_pool, block_size);
678 new.next = offset + state_size;
679 new.end = offset + block_size;
680 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
681 if (old.next != block.next)
682 futex_wake(&pool->block.end, INT_MAX);
683 return offset;
684 } else {
685 futex_wait(&pool->block.end, block.end);
686 goto restart;
687 }
688 }
689
690 static uint32_t
691 anv_state_pool_get_bucket(uint32_t size)
692 {
693 unsigned size_log2 = ilog2_round_up(size);
694 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
695 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
696 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
697 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
698 }
699
700 static uint32_t
701 anv_state_pool_get_bucket_size(uint32_t bucket)
702 {
703 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
704 return 1 << size_log2;
705 }
706
707 static struct anv_state
708 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
709 uint32_t size, uint32_t align)
710 {
711 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
712
713 struct anv_state state;
714 state.alloc_size = anv_state_pool_get_bucket_size(bucket);
715
716 /* Try free list first. */
717 if (anv_free_list_pop(&pool->buckets[bucket].free_list,
718 &pool->block_pool.map, &state.offset)) {
719 assert(state.offset >= 0);
720 goto done;
721 }
722
723 /* Try to grab a chunk from some larger bucket and split it up */
724 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
725 int32_t chunk_offset;
726 if (anv_free_list_pop(&pool->buckets[b].free_list,
727 &pool->block_pool.map, &chunk_offset)) {
728 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
729
730 /* We've found a chunk that's larger than the requested state size.
731 * There are a couple of options as to what we do with it:
732 *
733 * 1) We could fully split the chunk into state.alloc_size sized
734 * pieces. However, this would mean that allocating a 16B
735 * state could potentially split a 2MB chunk into 512K smaller
736 * chunks. This would lead to unnecessary fragmentation.
737 *
738 * 2) The classic "buddy allocator" method would have us split the
739 * chunk in half and return one half. Then we would split the
740 * remaining half in half and return one half, and repeat as
741 * needed until we get down to the size we want. However, if
742 * you are allocating a bunch of the same size state (which is
743 * the common case), this means that every other allocation has
744 * to go up a level and every fourth goes up two levels, etc.
745 * This is not nearly as efficient as it could be if we did a
746 * little more work up-front.
747 *
748 * 3) Split the difference between (1) and (2) by doing a
749 * two-level split. If it's bigger than some fixed block_size,
750 * we split it into block_size sized chunks and return all but
751 * one of them. Then we split what remains into
752 * state.alloc_size sized chunks and return all but one.
753 *
754 * We choose option (3).
755 */
756 if (chunk_size > pool->block_size &&
757 state.alloc_size < pool->block_size) {
758 assert(chunk_size % pool->block_size == 0);
759 /* We don't want to split giant chunks into tiny chunks. Instead,
760 * break anything bigger than a block into block-sized chunks and
761 * then break it down into bucket-sized chunks from there. Return
762 * all but the first block of the chunk to the block bucket.
763 */
764 const uint32_t block_bucket =
765 anv_state_pool_get_bucket(pool->block_size);
766 anv_free_list_push(&pool->buckets[block_bucket].free_list,
767 pool->block_pool.map,
768 chunk_offset + pool->block_size,
769 pool->block_size,
770 (chunk_size / pool->block_size) - 1);
771 chunk_size = pool->block_size;
772 }
773
774 assert(chunk_size % state.alloc_size == 0);
775 anv_free_list_push(&pool->buckets[bucket].free_list,
776 pool->block_pool.map,
777 chunk_offset + state.alloc_size,
778 state.alloc_size,
779 (chunk_size / state.alloc_size) - 1);
780
781 state.offset = chunk_offset;
782 goto done;
783 }
784 }
785
786 state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
787 &pool->block_pool,
788 state.alloc_size,
789 pool->block_size);
790
791 done:
792 state.map = pool->block_pool.map + state.offset;
793 return state;
794 }
795
796 struct anv_state
797 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
798 {
799 if (size == 0)
800 return ANV_STATE_NULL;
801
802 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
803 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
804 return state;
805 }
806
807 struct anv_state
808 anv_state_pool_alloc_back(struct anv_state_pool *pool)
809 {
810 struct anv_state state;
811 state.alloc_size = pool->block_size;
812
813 if (anv_free_list_pop(&pool->back_alloc_free_list,
814 &pool->block_pool.map, &state.offset)) {
815 assert(state.offset < 0);
816 goto done;
817 }
818
819 state.offset = anv_block_pool_alloc_back(&pool->block_pool,
820 pool->block_size);
821
822 done:
823 state.map = pool->block_pool.map + state.offset;
824 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, state.alloc_size));
825 return state;
826 }
827
828 static void
829 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
830 {
831 assert(util_is_power_of_two(state.alloc_size));
832 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
833
834 if (state.offset < 0) {
835 assert(state.alloc_size == pool->block_size);
836 anv_free_list_push(&pool->back_alloc_free_list,
837 pool->block_pool.map, state.offset,
838 state.alloc_size, 1);
839 } else {
840 anv_free_list_push(&pool->buckets[bucket].free_list,
841 pool->block_pool.map, state.offset,
842 state.alloc_size, 1);
843 }
844 }
845
846 void
847 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
848 {
849 if (state.alloc_size == 0)
850 return;
851
852 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
853 anv_state_pool_free_no_vg(pool, state);
854 }
855
856 struct anv_state_stream_block {
857 struct anv_state block;
858
859 /* The next block */
860 struct anv_state_stream_block *next;
861
862 #ifdef HAVE_VALGRIND
863 /* A pointer to the first user-allocated thing in this block. This is
864 * what valgrind sees as the start of the block.
865 */
866 void *_vg_ptr;
867 #endif
868 };
869
870 /* The state stream allocator is a one-shot, single threaded allocator for
871 * variable sized blocks. We use it for allocating dynamic state.
872 */
873 void
874 anv_state_stream_init(struct anv_state_stream *stream,
875 struct anv_state_pool *state_pool,
876 uint32_t block_size)
877 {
878 stream->state_pool = state_pool;
879 stream->block_size = block_size;
880
881 stream->block = ANV_STATE_NULL;
882
883 stream->block_list = NULL;
884
885 /* Ensure that next + whatever > block_size. This way the first call to
886 * state_stream_alloc fetches a new block.
887 */
888 stream->next = block_size;
889
890 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
891 }
892
893 void
894 anv_state_stream_finish(struct anv_state_stream *stream)
895 {
896 struct anv_state_stream_block *next = stream->block_list;
897 while (next != NULL) {
898 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
899 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
900 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
901 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
902 next = sb.next;
903 }
904
905 VG(VALGRIND_DESTROY_MEMPOOL(stream));
906 }
907
908 struct anv_state
909 anv_state_stream_alloc(struct anv_state_stream *stream,
910 uint32_t size, uint32_t alignment)
911 {
912 if (size == 0)
913 return ANV_STATE_NULL;
914
915 assert(alignment <= PAGE_SIZE);
916
917 uint32_t offset = align_u32(stream->next, alignment);
918 if (offset + size > stream->block.alloc_size) {
919 uint32_t block_size = stream->block_size;
920 if (block_size < size)
921 block_size = round_to_power_of_two(size);
922
923 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
924 block_size, PAGE_SIZE);
925
926 struct anv_state_stream_block *sb = stream->block.map;
927 VG_NOACCESS_WRITE(&sb->block, stream->block);
928 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
929 stream->block_list = sb;
930 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
931
932 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
933
934 /* Reset back to the start plus space for the header */
935 stream->next = sizeof(*sb);
936
937 offset = align_u32(stream->next, alignment);
938 assert(offset + size <= stream->block.alloc_size);
939 }
940
941 struct anv_state state = stream->block;
942 state.offset += offset;
943 state.alloc_size = size;
944 state.map += offset;
945
946 stream->next = offset + size;
947
948 #ifdef HAVE_VALGRIND
949 struct anv_state_stream_block *sb = stream->block_list;
950 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
951 if (vg_ptr == NULL) {
952 vg_ptr = state.map;
953 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
954 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
955 } else {
956 void *state_end = state.map + state.alloc_size;
957 /* This only updates the mempool. The newly allocated chunk is still
958 * marked as NOACCESS. */
959 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
960 /* Mark the newly allocated chunk as undefined */
961 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
962 }
963 #endif
964
965 return state;
966 }
967
968 struct bo_pool_bo_link {
969 struct bo_pool_bo_link *next;
970 struct anv_bo bo;
971 };
972
973 void
974 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
975 {
976 pool->device = device;
977 memset(pool->free_list, 0, sizeof(pool->free_list));
978
979 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
980 }
981
982 void
983 anv_bo_pool_finish(struct anv_bo_pool *pool)
984 {
985 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
986 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
987 while (link != NULL) {
988 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
989
990 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
991 anv_gem_close(pool->device, link_copy.bo.gem_handle);
992 link = link_copy.next;
993 }
994 }
995
996 VG(VALGRIND_DESTROY_MEMPOOL(pool));
997 }
998
999 VkResult
1000 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1001 {
1002 VkResult result;
1003
1004 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1005 const unsigned pow2_size = 1 << size_log2;
1006 const unsigned bucket = size_log2 - 12;
1007 assert(bucket < ARRAY_SIZE(pool->free_list));
1008
1009 void *next_free_void;
1010 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1011 struct bo_pool_bo_link *next_free = next_free_void;
1012 *bo = VG_NOACCESS_READ(&next_free->bo);
1013 assert(bo->gem_handle);
1014 assert(bo->map == next_free);
1015 assert(size <= bo->size);
1016
1017 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1018
1019 return VK_SUCCESS;
1020 }
1021
1022 struct anv_bo new_bo;
1023
1024 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1025 if (result != VK_SUCCESS)
1026 return result;
1027
1028 assert(new_bo.size == pow2_size);
1029
1030 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1031 if (new_bo.map == MAP_FAILED) {
1032 anv_gem_close(pool->device, new_bo.gem_handle);
1033 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1034 }
1035
1036 *bo = new_bo;
1037
1038 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1039
1040 return VK_SUCCESS;
1041 }
1042
1043 void
1044 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1045 {
1046 /* Make a copy in case the anv_bo happens to be storred in the BO */
1047 struct anv_bo bo = *bo_in;
1048
1049 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1050
1051 struct bo_pool_bo_link *link = bo.map;
1052 VG_NOACCESS_WRITE(&link->bo, bo);
1053
1054 assert(util_is_power_of_two(bo.size));
1055 const unsigned size_log2 = ilog2_round_up(bo.size);
1056 const unsigned bucket = size_log2 - 12;
1057 assert(bucket < ARRAY_SIZE(pool->free_list));
1058
1059 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1060 }
1061
1062 // Scratch pool
1063
1064 void
1065 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1066 {
1067 memset(pool, 0, sizeof(*pool));
1068 }
1069
1070 void
1071 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1072 {
1073 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1074 for (unsigned i = 0; i < 16; i++) {
1075 struct anv_scratch_bo *bo = &pool->bos[i][s];
1076 if (bo->exists > 0)
1077 anv_gem_close(device, bo->bo.gem_handle);
1078 }
1079 }
1080 }
1081
1082 struct anv_bo *
1083 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1084 gl_shader_stage stage, unsigned per_thread_scratch)
1085 {
1086 if (per_thread_scratch == 0)
1087 return NULL;
1088
1089 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1090 assert(scratch_size_log2 < 16);
1091
1092 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1093
1094 /* We can use "exists" to shortcut and ignore the critical section */
1095 if (bo->exists)
1096 return &bo->bo;
1097
1098 pthread_mutex_lock(&device->mutex);
1099
1100 __sync_synchronize();
1101 if (bo->exists)
1102 return &bo->bo;
1103
1104 const struct anv_physical_device *physical_device =
1105 &device->instance->physicalDevice;
1106 const struct gen_device_info *devinfo = &physical_device->info;
1107
1108 /* WaCSScratchSize:hsw
1109 *
1110 * Haswell's scratch space address calculation appears to be sparse
1111 * rather than tightly packed. The Thread ID has bits indicating which
1112 * subslice, EU within a subslice, and thread within an EU it is.
1113 * There's a maximum of two slices and two subslices, so these can be
1114 * stored with a single bit. Even though there are only 10 EUs per
1115 * subslice, this is stored in 4 bits, so there's an effective maximum
1116 * value of 16 EUs. Similarly, although there are only 7 threads per EU,
1117 * this is stored in a 3 bit number, giving an effective maximum value
1118 * of 8 threads per EU.
1119 *
1120 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1121 * number of threads per subslice.
1122 */
1123 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1124 const unsigned scratch_ids_per_subslice =
1125 device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads;
1126
1127 uint32_t max_threads[] = {
1128 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1129 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1130 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1131 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1132 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1133 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1134 };
1135
1136 uint32_t size = per_thread_scratch * max_threads[stage];
1137
1138 anv_bo_init_new(&bo->bo, device, size);
1139
1140 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1141 * are still relative to the general state base address. When we emit
1142 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1143 * to the maximum (1 page under 4GB). This allows us to just place the
1144 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1145 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1146 * However, in order to do so, we need to ensure that the kernel does not
1147 * place the scratch BO above the 32-bit boundary.
1148 *
1149 * NOTE: Technically, it can't go "anywhere" because the top page is off
1150 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1151 * kernel allocates space using
1152 *
1153 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1154 *
1155 * so nothing will ever touch the top page.
1156 */
1157 bo->bo.flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1158
1159 /* Set the exists last because it may be read by other threads */
1160 __sync_synchronize();
1161 bo->exists = true;
1162
1163 pthread_mutex_unlock(&device->mutex);
1164
1165 return &bo->bo;
1166 }
1167
1168 struct anv_cached_bo {
1169 struct anv_bo bo;
1170
1171 uint32_t refcount;
1172 };
1173
1174 VkResult
1175 anv_bo_cache_init(struct anv_bo_cache *cache)
1176 {
1177 cache->bo_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1178 _mesa_key_pointer_equal);
1179 if (!cache->bo_map)
1180 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1181
1182 if (pthread_mutex_init(&cache->mutex, NULL)) {
1183 _mesa_hash_table_destroy(cache->bo_map, NULL);
1184 return vk_errorf(VK_ERROR_OUT_OF_HOST_MEMORY,
1185 "pthread_mutex_init failed: %m");
1186 }
1187
1188 return VK_SUCCESS;
1189 }
1190
1191 void
1192 anv_bo_cache_finish(struct anv_bo_cache *cache)
1193 {
1194 _mesa_hash_table_destroy(cache->bo_map, NULL);
1195 pthread_mutex_destroy(&cache->mutex);
1196 }
1197
1198 static struct anv_cached_bo *
1199 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1200 {
1201 struct hash_entry *entry =
1202 _mesa_hash_table_search(cache->bo_map,
1203 (const void *)(uintptr_t)gem_handle);
1204 if (!entry)
1205 return NULL;
1206
1207 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1208 assert(bo->bo.gem_handle == gem_handle);
1209
1210 return bo;
1211 }
1212
1213 static struct anv_bo *
1214 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1215 {
1216 pthread_mutex_lock(&cache->mutex);
1217
1218 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1219
1220 pthread_mutex_unlock(&cache->mutex);
1221
1222 return bo ? &bo->bo : NULL;
1223 }
1224
1225 VkResult
1226 anv_bo_cache_alloc(struct anv_device *device,
1227 struct anv_bo_cache *cache,
1228 uint64_t size, struct anv_bo **bo_out)
1229 {
1230 struct anv_cached_bo *bo =
1231 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1232 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1233 if (!bo)
1234 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1235
1236 bo->refcount = 1;
1237
1238 /* The kernel is going to give us whole pages anyway */
1239 size = align_u64(size, 4096);
1240
1241 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1242 if (result != VK_SUCCESS) {
1243 vk_free(&device->alloc, bo);
1244 return result;
1245 }
1246
1247 assert(bo->bo.gem_handle);
1248
1249 pthread_mutex_lock(&cache->mutex);
1250
1251 _mesa_hash_table_insert(cache->bo_map,
1252 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1253
1254 pthread_mutex_unlock(&cache->mutex);
1255
1256 *bo_out = &bo->bo;
1257
1258 return VK_SUCCESS;
1259 }
1260
1261 VkResult
1262 anv_bo_cache_import(struct anv_device *device,
1263 struct anv_bo_cache *cache,
1264 int fd, uint64_t size, struct anv_bo **bo_out)
1265 {
1266 pthread_mutex_lock(&cache->mutex);
1267
1268 /* The kernel is going to give us whole pages anyway */
1269 size = align_u64(size, 4096);
1270
1271 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1272 if (!gem_handle) {
1273 pthread_mutex_unlock(&cache->mutex);
1274 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1275 }
1276
1277 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1278 if (bo) {
1279 if (bo->bo.size != size) {
1280 pthread_mutex_unlock(&cache->mutex);
1281 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1282 }
1283 __sync_fetch_and_add(&bo->refcount, 1);
1284 } else {
1285 /* For security purposes, we reject BO imports where the size does not
1286 * match exactly. This prevents a malicious client from passing a
1287 * buffer to a trusted client, lying about the size, and telling the
1288 * trusted client to try and texture from an image that goes
1289 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1290 * in the trusted client. The trusted client can protect itself against
1291 * this sort of attack but only if it can trust the buffer size.
1292 */
1293 off_t import_size = lseek(fd, 0, SEEK_END);
1294 if (import_size == (off_t)-1 || import_size != size) {
1295 anv_gem_close(device, gem_handle);
1296 pthread_mutex_unlock(&cache->mutex);
1297 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX);
1298 }
1299
1300 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1301 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1302 if (!bo) {
1303 anv_gem_close(device, gem_handle);
1304 pthread_mutex_unlock(&cache->mutex);
1305 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1306 }
1307
1308 bo->refcount = 1;
1309
1310 anv_bo_init(&bo->bo, gem_handle, size);
1311
1312 if (device->instance->physicalDevice.supports_48bit_addresses)
1313 bo->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1314
1315 if (device->instance->physicalDevice.has_exec_async)
1316 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1317
1318 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1319 }
1320
1321 pthread_mutex_unlock(&cache->mutex);
1322
1323 /* From the Vulkan spec:
1324 *
1325 * "Importing memory from a file descriptor transfers ownership of
1326 * the file descriptor from the application to the Vulkan
1327 * implementation. The application must not perform any operations on
1328 * the file descriptor after a successful import."
1329 *
1330 * If the import fails, we leave the file descriptor open.
1331 */
1332 close(fd);
1333
1334 *bo_out = &bo->bo;
1335
1336 return VK_SUCCESS;
1337 }
1338
1339 VkResult
1340 anv_bo_cache_export(struct anv_device *device,
1341 struct anv_bo_cache *cache,
1342 struct anv_bo *bo_in, int *fd_out)
1343 {
1344 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1345 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1346
1347 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1348 if (fd < 0)
1349 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1350
1351 *fd_out = fd;
1352
1353 return VK_SUCCESS;
1354 }
1355
1356 static bool
1357 atomic_dec_not_one(uint32_t *counter)
1358 {
1359 uint32_t old, val;
1360
1361 val = *counter;
1362 while (1) {
1363 if (val == 1)
1364 return false;
1365
1366 old = __sync_val_compare_and_swap(counter, val, val - 1);
1367 if (old == val)
1368 return true;
1369
1370 val = old;
1371 }
1372 }
1373
1374 void
1375 anv_bo_cache_release(struct anv_device *device,
1376 struct anv_bo_cache *cache,
1377 struct anv_bo *bo_in)
1378 {
1379 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1380 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1381
1382 /* Try to decrement the counter but don't go below one. If this succeeds
1383 * then the refcount has been decremented and we are not the last
1384 * reference.
1385 */
1386 if (atomic_dec_not_one(&bo->refcount))
1387 return;
1388
1389 pthread_mutex_lock(&cache->mutex);
1390
1391 /* We are probably the last reference since our attempt to decrement above
1392 * failed. However, we can't actually know until we are inside the mutex.
1393 * Otherwise, someone could import the BO between the decrement and our
1394 * taking the mutex.
1395 */
1396 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1397 /* Turns out we're not the last reference. Unlock and bail. */
1398 pthread_mutex_unlock(&cache->mutex);
1399 return;
1400 }
1401
1402 struct hash_entry *entry =
1403 _mesa_hash_table_search(cache->bo_map,
1404 (const void *)(uintptr_t)bo->bo.gem_handle);
1405 assert(entry);
1406 _mesa_hash_table_remove(cache->bo_map, entry);
1407
1408 if (bo->bo.map)
1409 anv_gem_munmap(bo->bo.map, bo->bo.size);
1410
1411 anv_gem_close(device, bo->bo.gem_handle);
1412
1413 /* Don't unlock until we've actually closed the BO. The whole point of
1414 * the BO cache is to ensure that we correctly handle races with creating
1415 * and releasing GEM handles and we don't want to let someone import the BO
1416 * again between mutex unlock and closing the GEM handle.
1417 */
1418 pthread_mutex_unlock(&cache->mutex);
1419
1420 vk_free(&device->alloc, bo);
1421 }