mesa: Add new fast mtx_t mutex type for basic use cases
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <linux/memfd.h>
29 #include <sys/mman.h>
30
31 #include "anv_private.h"
32
33 #include "util/hash_table.h"
34 #include "util/simple_mtx.h"
35
36 #ifdef HAVE_VALGRIND
37 #define VG_NOACCESS_READ(__ptr) ({ \
38 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39 __typeof(*(__ptr)) __val = *(__ptr); \
40 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41 __val; \
42 })
43 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
44 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
45 *(__ptr) = (__val); \
46 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
47 })
48 #else
49 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
50 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51 #endif
52
53 /* Design goals:
54 *
55 * - Lock free (except when resizing underlying bos)
56 *
57 * - Constant time allocation with typically only one atomic
58 *
59 * - Multiple allocation sizes without fragmentation
60 *
61 * - Can grow while keeping addresses and offset of contents stable
62 *
63 * - All allocations within one bo so we can point one of the
64 * STATE_BASE_ADDRESS pointers at it.
65 *
66 * The overall design is a two-level allocator: top level is a fixed size, big
67 * block (8k) allocator, which operates out of a bo. Allocation is done by
68 * either pulling a block from the free list or growing the used range of the
69 * bo. Growing the range may run out of space in the bo which we then need to
70 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
71 * we need to keep all pointers and contents in the old map valid. GEM bos in
72 * general can't grow, but we use a trick: we create a memfd and use ftruncate
73 * to grow it as necessary. We mmap the new size and then create a gem bo for
74 * it using the new gem userptr ioctl. Without heavy-handed locking around
75 * our allocation fast-path, there isn't really a way to munmap the old mmap,
76 * so we just keep it around until garbage collection time. While the block
77 * allocator is lockless for normal operations, we block other threads trying
78 * to allocate while we're growing the map. It sholdn't happen often, and
79 * growing is fast anyway.
80 *
81 * At the next level we can use various sub-allocators. The state pool is a
82 * pool of smaller, fixed size objects, which operates much like the block
83 * pool. It uses a free list for freeing objects, but when it runs out of
84 * space it just allocates a new block from the block pool. This allocator is
85 * intended for longer lived state objects such as SURFACE_STATE and most
86 * other persistent state objects in the API. We may need to track more info
87 * with these object and a pointer back to the CPU object (eg VkImage). In
88 * those cases we just allocate a slightly bigger object and put the extra
89 * state after the GPU state object.
90 *
91 * The state stream allocator works similar to how the i965 DRI driver streams
92 * all its state. Even with Vulkan, we need to emit transient state (whether
93 * surface state base or dynamic state base), and for that we can just get a
94 * block and fill it up. These cases are local to a command buffer and the
95 * sub-allocator need not be thread safe. The streaming allocator gets a new
96 * block when it runs out of space and chains them together so they can be
97 * easily freed.
98 */
99
100 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
101 * We use it to indicate the free list is empty. */
102 #define EMPTY 1
103
104 struct anv_mmap_cleanup {
105 void *map;
106 size_t size;
107 uint32_t gem_handle;
108 };
109
110 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
111
112 static inline int
113 memfd_create(const char *name, unsigned int flags)
114 {
115 return syscall(SYS_memfd_create, name, flags);
116 }
117
118 static inline uint32_t
119 ilog2_round_up(uint32_t value)
120 {
121 assert(value != 0);
122 return 32 - __builtin_clz(value - 1);
123 }
124
125 static inline uint32_t
126 round_to_power_of_two(uint32_t value)
127 {
128 return 1 << ilog2_round_up(value);
129 }
130
131 static bool
132 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
133 {
134 union anv_free_list current, new, old;
135
136 current.u64 = list->u64;
137 while (current.offset != EMPTY) {
138 /* We have to add a memory barrier here so that the list head (and
139 * offset) gets read before we read the map pointer. This way we
140 * know that the map pointer is valid for the given offset at the
141 * point where we read it.
142 */
143 __sync_synchronize();
144
145 int32_t *next_ptr = *map + current.offset;
146 new.offset = VG_NOACCESS_READ(next_ptr);
147 new.count = current.count + 1;
148 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
149 if (old.u64 == current.u64) {
150 *offset = current.offset;
151 return true;
152 }
153 current = old;
154 }
155
156 return false;
157 }
158
159 static void
160 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset,
161 uint32_t size, uint32_t count)
162 {
163 union anv_free_list current, old, new;
164 int32_t *next_ptr = map + offset;
165
166 /* If we're returning more than one chunk, we need to build a chain to add
167 * to the list. Fortunately, we can do this without any atomics since we
168 * own everything in the chain right now. `offset` is left pointing to the
169 * head of our chain list while `next_ptr` points to the tail.
170 */
171 for (uint32_t i = 1; i < count; i++) {
172 VG_NOACCESS_WRITE(next_ptr, offset + i * size);
173 next_ptr = map + offset + i * size;
174 }
175
176 old = *list;
177 do {
178 current = old;
179 VG_NOACCESS_WRITE(next_ptr, current.offset);
180 new.offset = offset;
181 new.count = current.count + 1;
182 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
183 } while (old.u64 != current.u64);
184 }
185
186 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
187 * means that the bottom 12 bits should all be zero.
188 */
189 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
190 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
191 #define PFL_PACK(ptr, count) ({ \
192 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
193 })
194
195 static bool
196 anv_ptr_free_list_pop(void **list, void **elem)
197 {
198 void *current = *list;
199 while (PFL_PTR(current) != NULL) {
200 void **next_ptr = PFL_PTR(current);
201 void *new_ptr = VG_NOACCESS_READ(next_ptr);
202 unsigned new_count = PFL_COUNT(current) + 1;
203 void *new = PFL_PACK(new_ptr, new_count);
204 void *old = __sync_val_compare_and_swap(list, current, new);
205 if (old == current) {
206 *elem = PFL_PTR(current);
207 return true;
208 }
209 current = old;
210 }
211
212 return false;
213 }
214
215 static void
216 anv_ptr_free_list_push(void **list, void *elem)
217 {
218 void *old, *current;
219 void **next_ptr = elem;
220
221 /* The pointer-based free list requires that the pointer be
222 * page-aligned. This is because we use the bottom 12 bits of the
223 * pointer to store a counter to solve the ABA concurrency problem.
224 */
225 assert(((uintptr_t)elem & 0xfff) == 0);
226
227 old = *list;
228 do {
229 current = old;
230 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
231 unsigned new_count = PFL_COUNT(current) + 1;
232 void *new = PFL_PACK(elem, new_count);
233 old = __sync_val_compare_and_swap(list, current, new);
234 } while (old != current);
235 }
236
237 static VkResult
238 anv_block_pool_expand_range(struct anv_block_pool *pool,
239 uint32_t center_bo_offset, uint32_t size);
240
241 VkResult
242 anv_block_pool_init(struct anv_block_pool *pool,
243 struct anv_device *device,
244 uint32_t initial_size)
245 {
246 VkResult result;
247
248 pool->device = device;
249 anv_bo_init(&pool->bo, 0, 0);
250
251 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
252 if (pool->fd == -1)
253 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
254
255 /* Just make it 2GB up-front. The Linux kernel won't actually back it
256 * with pages until we either map and fault on one of them or we use
257 * userptr and send a chunk of it off to the GPU.
258 */
259 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
260 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
261 goto fail_fd;
262 }
263
264 if (!u_vector_init(&pool->mmap_cleanups,
265 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
266 128)) {
267 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
268 goto fail_fd;
269 }
270
271 pool->state.next = 0;
272 pool->state.end = 0;
273 pool->back_state.next = 0;
274 pool->back_state.end = 0;
275
276 result = anv_block_pool_expand_range(pool, 0, initial_size);
277 if (result != VK_SUCCESS)
278 goto fail_mmap_cleanups;
279
280 return VK_SUCCESS;
281
282 fail_mmap_cleanups:
283 u_vector_finish(&pool->mmap_cleanups);
284 fail_fd:
285 close(pool->fd);
286
287 return result;
288 }
289
290 void
291 anv_block_pool_finish(struct anv_block_pool *pool)
292 {
293 struct anv_mmap_cleanup *cleanup;
294
295 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
296 if (cleanup->map)
297 munmap(cleanup->map, cleanup->size);
298 if (cleanup->gem_handle)
299 anv_gem_close(pool->device, cleanup->gem_handle);
300 }
301
302 u_vector_finish(&pool->mmap_cleanups);
303
304 close(pool->fd);
305 }
306
307 #define PAGE_SIZE 4096
308
309 static VkResult
310 anv_block_pool_expand_range(struct anv_block_pool *pool,
311 uint32_t center_bo_offset, uint32_t size)
312 {
313 void *map;
314 uint32_t gem_handle;
315 struct anv_mmap_cleanup *cleanup;
316
317 /* Assert that we only ever grow the pool */
318 assert(center_bo_offset >= pool->back_state.end);
319 assert(size - center_bo_offset >= pool->state.end);
320
321 /* Assert that we don't go outside the bounds of the memfd */
322 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
323 assert(size - center_bo_offset <=
324 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
325
326 cleanup = u_vector_add(&pool->mmap_cleanups);
327 if (!cleanup)
328 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
329
330 *cleanup = ANV_MMAP_CLEANUP_INIT;
331
332 /* Just leak the old map until we destroy the pool. We can't munmap it
333 * without races or imposing locking on the block allocate fast path. On
334 * the whole the leaked maps adds up to less than the size of the
335 * current map. MAP_POPULATE seems like the right thing to do, but we
336 * should try to get some numbers.
337 */
338 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
339 MAP_SHARED | MAP_POPULATE, pool->fd,
340 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
341 if (map == MAP_FAILED)
342 return vk_errorf(pool->device->instance, pool->device,
343 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
344
345 gem_handle = anv_gem_userptr(pool->device, map, size);
346 if (gem_handle == 0) {
347 munmap(map, size);
348 return vk_errorf(pool->device->instance, pool->device,
349 VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
350 }
351
352 cleanup->map = map;
353 cleanup->size = size;
354 cleanup->gem_handle = gem_handle;
355
356 #if 0
357 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
358 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
359 * always created as I915_CACHING_CACHED, which on non-LLC means
360 * snooped. That can be useful but comes with a bit of overheard. Since
361 * we're eplicitly clflushing and don't want the overhead we need to turn
362 * it off. */
363 if (!pool->device->info.has_llc) {
364 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
365 anv_gem_set_domain(pool->device, gem_handle,
366 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
367 }
368 #endif
369
370 /* Now that we successfull allocated everything, we can write the new
371 * values back into pool. */
372 pool->map = map + center_bo_offset;
373 pool->center_bo_offset = center_bo_offset;
374
375 /* For block pool BOs we have to be a bit careful about where we place them
376 * in the GTT. There are two documented workarounds for state base address
377 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
378 * which state that those two base addresses do not support 48-bit
379 * addresses and need to be placed in the bottom 32-bit range.
380 * Unfortunately, this is not quite accurate.
381 *
382 * The real problem is that we always set the size of our state pools in
383 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
384 * likely significantly smaller. We do this because we do not no at the
385 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
386 * the pool during command buffer building so we don't actually have a
387 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
388 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
389 * as being out of bounds and returns zero. For dynamic state, this
390 * usually just leads to rendering corruptions, but shaders that are all
391 * zero hang the GPU immediately.
392 *
393 * The easiest solution to do is exactly what the bogus workarounds say to
394 * do: restrict these buffers to 32-bit addresses. We could also pin the
395 * BO to some particular location of our choosing, but that's significantly
396 * more work than just not setting a flag. So, we explicitly DO NOT set
397 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
398 * hard work for us.
399 */
400 anv_bo_init(&pool->bo, gem_handle, size);
401 pool->bo.map = map;
402
403 return VK_SUCCESS;
404 }
405
406 /** Grows and re-centers the block pool.
407 *
408 * We grow the block pool in one or both directions in such a way that the
409 * following conditions are met:
410 *
411 * 1) The size of the entire pool is always a power of two.
412 *
413 * 2) The pool only grows on both ends. Neither end can get
414 * shortened.
415 *
416 * 3) At the end of the allocation, we have about twice as much space
417 * allocated for each end as we have used. This way the pool doesn't
418 * grow too far in one direction or the other.
419 *
420 * 4) If the _alloc_back() has never been called, then the back portion of
421 * the pool retains a size of zero. (This makes it easier for users of
422 * the block pool that only want a one-sided pool.)
423 *
424 * 5) We have enough space allocated for at least one more block in
425 * whichever side `state` points to.
426 *
427 * 6) The center of the pool is always aligned to both the block_size of
428 * the pool and a 4K CPU page.
429 */
430 static uint32_t
431 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
432 {
433 VkResult result = VK_SUCCESS;
434
435 pthread_mutex_lock(&pool->device->mutex);
436
437 assert(state == &pool->state || state == &pool->back_state);
438
439 /* Gather a little usage information on the pool. Since we may have
440 * threadsd waiting in queue to get some storage while we resize, it's
441 * actually possible that total_used will be larger than old_size. In
442 * particular, block_pool_alloc() increments state->next prior to
443 * calling block_pool_grow, so this ensures that we get enough space for
444 * which ever side tries to grow the pool.
445 *
446 * We align to a page size because it makes it easier to do our
447 * calculations later in such a way that we state page-aigned.
448 */
449 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
450 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
451 uint32_t total_used = front_used + back_used;
452
453 assert(state == &pool->state || back_used > 0);
454
455 uint32_t old_size = pool->bo.size;
456
457 /* The block pool is always initialized to a nonzero size and this function
458 * is always called after initialization.
459 */
460 assert(old_size > 0);
461
462 /* The back_used and front_used may actually be smaller than the actual
463 * requirement because they are based on the next pointers which are
464 * updated prior to calling this function.
465 */
466 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
467 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
468
469 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
470 /* If we're in this case then this isn't the firsta allocation and we
471 * already have enough space on both sides to hold double what we
472 * have allocated. There's nothing for us to do.
473 */
474 goto done;
475 }
476
477 uint32_t size = old_size * 2;
478 while (size < back_required + front_required)
479 size *= 2;
480
481 assert(size > pool->bo.size);
482
483 /* We compute a new center_bo_offset such that, when we double the size
484 * of the pool, we maintain the ratio of how much is used by each side.
485 * This way things should remain more-or-less balanced.
486 */
487 uint32_t center_bo_offset;
488 if (back_used == 0) {
489 /* If we're in this case then we have never called alloc_back(). In
490 * this case, we want keep the offset at 0 to make things as simple
491 * as possible for users that don't care about back allocations.
492 */
493 center_bo_offset = 0;
494 } else {
495 /* Try to "center" the allocation based on how much is currently in
496 * use on each side of the center line.
497 */
498 center_bo_offset = ((uint64_t)size * back_used) / total_used;
499
500 /* Align down to a multiple of the page size */
501 center_bo_offset &= ~(PAGE_SIZE - 1);
502
503 assert(center_bo_offset >= back_used);
504
505 /* Make sure we don't shrink the back end of the pool */
506 if (center_bo_offset < pool->back_state.end)
507 center_bo_offset = pool->back_state.end;
508
509 /* Make sure that we don't shrink the front end of the pool */
510 if (size - center_bo_offset < pool->state.end)
511 center_bo_offset = size - pool->state.end;
512 }
513
514 assert(center_bo_offset % PAGE_SIZE == 0);
515
516 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
517
518 if (pool->device->instance->physicalDevice.has_exec_async)
519 pool->bo.flags |= EXEC_OBJECT_ASYNC;
520
521 done:
522 pthread_mutex_unlock(&pool->device->mutex);
523
524 if (result == VK_SUCCESS) {
525 /* Return the appropriate new size. This function never actually
526 * updates state->next. Instead, we let the caller do that because it
527 * needs to do so in order to maintain its concurrency model.
528 */
529 if (state == &pool->state) {
530 return pool->bo.size - pool->center_bo_offset;
531 } else {
532 assert(pool->center_bo_offset > 0);
533 return pool->center_bo_offset;
534 }
535 } else {
536 return 0;
537 }
538 }
539
540 static uint32_t
541 anv_block_pool_alloc_new(struct anv_block_pool *pool,
542 struct anv_block_state *pool_state,
543 uint32_t block_size)
544 {
545 struct anv_block_state state, old, new;
546
547 while (1) {
548 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
549 if (state.next + block_size <= state.end) {
550 assert(pool->map);
551 return state.next;
552 } else if (state.next <= state.end) {
553 /* We allocated the first block outside the pool so we have to grow
554 * the pool. pool_state->next acts a mutex: threads who try to
555 * allocate now will get block indexes above the current limit and
556 * hit futex_wait below.
557 */
558 new.next = state.next + block_size;
559 do {
560 new.end = anv_block_pool_grow(pool, pool_state);
561 } while (new.end < new.next);
562
563 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
564 if (old.next != state.next)
565 futex_wake(&pool_state->end, INT_MAX);
566 return state.next;
567 } else {
568 futex_wait(&pool_state->end, state.end);
569 continue;
570 }
571 }
572 }
573
574 int32_t
575 anv_block_pool_alloc(struct anv_block_pool *pool,
576 uint32_t block_size)
577 {
578 return anv_block_pool_alloc_new(pool, &pool->state, block_size);
579 }
580
581 /* Allocates a block out of the back of the block pool.
582 *
583 * This will allocated a block earlier than the "start" of the block pool.
584 * The offsets returned from this function will be negative but will still
585 * be correct relative to the block pool's map pointer.
586 *
587 * If you ever use anv_block_pool_alloc_back, then you will have to do
588 * gymnastics with the block pool's BO when doing relocations.
589 */
590 int32_t
591 anv_block_pool_alloc_back(struct anv_block_pool *pool,
592 uint32_t block_size)
593 {
594 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
595 block_size);
596
597 /* The offset we get out of anv_block_pool_alloc_new() is actually the
598 * number of bytes downwards from the middle to the end of the block.
599 * We need to turn it into a (negative) offset from the middle to the
600 * start of the block.
601 */
602 assert(offset >= 0);
603 return -(offset + block_size);
604 }
605
606 VkResult
607 anv_state_pool_init(struct anv_state_pool *pool,
608 struct anv_device *device,
609 uint32_t block_size)
610 {
611 VkResult result = anv_block_pool_init(&pool->block_pool, device,
612 block_size * 16);
613 if (result != VK_SUCCESS)
614 return result;
615
616 assert(util_is_power_of_two(block_size));
617 pool->block_size = block_size;
618 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
619 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
620 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
621 pool->buckets[i].block.next = 0;
622 pool->buckets[i].block.end = 0;
623 }
624 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
625
626 return VK_SUCCESS;
627 }
628
629 void
630 anv_state_pool_finish(struct anv_state_pool *pool)
631 {
632 VG(VALGRIND_DESTROY_MEMPOOL(pool));
633 anv_block_pool_finish(&pool->block_pool);
634 }
635
636 static uint32_t
637 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
638 struct anv_block_pool *block_pool,
639 uint32_t state_size,
640 uint32_t block_size)
641 {
642 struct anv_block_state block, old, new;
643 uint32_t offset;
644
645 /* If our state is large, we don't need any sub-allocation from a block.
646 * Instead, we just grab whole (potentially large) blocks.
647 */
648 if (state_size >= block_size)
649 return anv_block_pool_alloc(block_pool, state_size);
650
651 restart:
652 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
653
654 if (block.next < block.end) {
655 return block.next;
656 } else if (block.next == block.end) {
657 offset = anv_block_pool_alloc(block_pool, block_size);
658 new.next = offset + state_size;
659 new.end = offset + block_size;
660 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
661 if (old.next != block.next)
662 futex_wake(&pool->block.end, INT_MAX);
663 return offset;
664 } else {
665 futex_wait(&pool->block.end, block.end);
666 goto restart;
667 }
668 }
669
670 static uint32_t
671 anv_state_pool_get_bucket(uint32_t size)
672 {
673 unsigned size_log2 = ilog2_round_up(size);
674 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
675 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
676 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
677 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
678 }
679
680 static uint32_t
681 anv_state_pool_get_bucket_size(uint32_t bucket)
682 {
683 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
684 return 1 << size_log2;
685 }
686
687 static struct anv_state
688 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
689 uint32_t size, uint32_t align)
690 {
691 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
692
693 struct anv_state state;
694 state.alloc_size = anv_state_pool_get_bucket_size(bucket);
695
696 /* Try free list first. */
697 if (anv_free_list_pop(&pool->buckets[bucket].free_list,
698 &pool->block_pool.map, &state.offset)) {
699 assert(state.offset >= 0);
700 goto done;
701 }
702
703 /* Try to grab a chunk from some larger bucket and split it up */
704 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
705 int32_t chunk_offset;
706 if (anv_free_list_pop(&pool->buckets[b].free_list,
707 &pool->block_pool.map, &chunk_offset)) {
708 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
709
710 /* We've found a chunk that's larger than the requested state size.
711 * There are a couple of options as to what we do with it:
712 *
713 * 1) We could fully split the chunk into state.alloc_size sized
714 * pieces. However, this would mean that allocating a 16B
715 * state could potentially split a 2MB chunk into 512K smaller
716 * chunks. This would lead to unnecessary fragmentation.
717 *
718 * 2) The classic "buddy allocator" method would have us split the
719 * chunk in half and return one half. Then we would split the
720 * remaining half in half and return one half, and repeat as
721 * needed until we get down to the size we want. However, if
722 * you are allocating a bunch of the same size state (which is
723 * the common case), this means that every other allocation has
724 * to go up a level and every fourth goes up two levels, etc.
725 * This is not nearly as efficient as it could be if we did a
726 * little more work up-front.
727 *
728 * 3) Split the difference between (1) and (2) by doing a
729 * two-level split. If it's bigger than some fixed block_size,
730 * we split it into block_size sized chunks and return all but
731 * one of them. Then we split what remains into
732 * state.alloc_size sized chunks and return all but one.
733 *
734 * We choose option (3).
735 */
736 if (chunk_size > pool->block_size &&
737 state.alloc_size < pool->block_size) {
738 assert(chunk_size % pool->block_size == 0);
739 /* We don't want to split giant chunks into tiny chunks. Instead,
740 * break anything bigger than a block into block-sized chunks and
741 * then break it down into bucket-sized chunks from there. Return
742 * all but the first block of the chunk to the block bucket.
743 */
744 const uint32_t block_bucket =
745 anv_state_pool_get_bucket(pool->block_size);
746 anv_free_list_push(&pool->buckets[block_bucket].free_list,
747 pool->block_pool.map,
748 chunk_offset + pool->block_size,
749 pool->block_size,
750 (chunk_size / pool->block_size) - 1);
751 chunk_size = pool->block_size;
752 }
753
754 assert(chunk_size % state.alloc_size == 0);
755 anv_free_list_push(&pool->buckets[bucket].free_list,
756 pool->block_pool.map,
757 chunk_offset + state.alloc_size,
758 state.alloc_size,
759 (chunk_size / state.alloc_size) - 1);
760
761 state.offset = chunk_offset;
762 goto done;
763 }
764 }
765
766 state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
767 &pool->block_pool,
768 state.alloc_size,
769 pool->block_size);
770
771 done:
772 state.map = pool->block_pool.map + state.offset;
773 return state;
774 }
775
776 struct anv_state
777 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
778 {
779 if (size == 0)
780 return ANV_STATE_NULL;
781
782 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
783 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
784 return state;
785 }
786
787 struct anv_state
788 anv_state_pool_alloc_back(struct anv_state_pool *pool)
789 {
790 struct anv_state state;
791 state.alloc_size = pool->block_size;
792
793 if (anv_free_list_pop(&pool->back_alloc_free_list,
794 &pool->block_pool.map, &state.offset)) {
795 assert(state.offset < 0);
796 goto done;
797 }
798
799 state.offset = anv_block_pool_alloc_back(&pool->block_pool,
800 pool->block_size);
801
802 done:
803 state.map = pool->block_pool.map + state.offset;
804 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, state.alloc_size));
805 return state;
806 }
807
808 static void
809 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
810 {
811 assert(util_is_power_of_two(state.alloc_size));
812 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
813
814 if (state.offset < 0) {
815 assert(state.alloc_size == pool->block_size);
816 anv_free_list_push(&pool->back_alloc_free_list,
817 pool->block_pool.map, state.offset,
818 state.alloc_size, 1);
819 } else {
820 anv_free_list_push(&pool->buckets[bucket].free_list,
821 pool->block_pool.map, state.offset,
822 state.alloc_size, 1);
823 }
824 }
825
826 void
827 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
828 {
829 if (state.alloc_size == 0)
830 return;
831
832 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
833 anv_state_pool_free_no_vg(pool, state);
834 }
835
836 struct anv_state_stream_block {
837 struct anv_state block;
838
839 /* The next block */
840 struct anv_state_stream_block *next;
841
842 #ifdef HAVE_VALGRIND
843 /* A pointer to the first user-allocated thing in this block. This is
844 * what valgrind sees as the start of the block.
845 */
846 void *_vg_ptr;
847 #endif
848 };
849
850 /* The state stream allocator is a one-shot, single threaded allocator for
851 * variable sized blocks. We use it for allocating dynamic state.
852 */
853 void
854 anv_state_stream_init(struct anv_state_stream *stream,
855 struct anv_state_pool *state_pool,
856 uint32_t block_size)
857 {
858 stream->state_pool = state_pool;
859 stream->block_size = block_size;
860
861 stream->block = ANV_STATE_NULL;
862
863 stream->block_list = NULL;
864
865 /* Ensure that next + whatever > block_size. This way the first call to
866 * state_stream_alloc fetches a new block.
867 */
868 stream->next = block_size;
869
870 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
871 }
872
873 void
874 anv_state_stream_finish(struct anv_state_stream *stream)
875 {
876 struct anv_state_stream_block *next = stream->block_list;
877 while (next != NULL) {
878 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
879 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
880 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
881 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
882 next = sb.next;
883 }
884
885 VG(VALGRIND_DESTROY_MEMPOOL(stream));
886 }
887
888 struct anv_state
889 anv_state_stream_alloc(struct anv_state_stream *stream,
890 uint32_t size, uint32_t alignment)
891 {
892 if (size == 0)
893 return ANV_STATE_NULL;
894
895 assert(alignment <= PAGE_SIZE);
896
897 uint32_t offset = align_u32(stream->next, alignment);
898 if (offset + size > stream->block.alloc_size) {
899 uint32_t block_size = stream->block_size;
900 if (block_size < size)
901 block_size = round_to_power_of_two(size);
902
903 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
904 block_size, PAGE_SIZE);
905
906 struct anv_state_stream_block *sb = stream->block.map;
907 VG_NOACCESS_WRITE(&sb->block, stream->block);
908 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
909 stream->block_list = sb;
910 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
911
912 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
913
914 /* Reset back to the start plus space for the header */
915 stream->next = sizeof(*sb);
916
917 offset = align_u32(stream->next, alignment);
918 assert(offset + size <= stream->block.alloc_size);
919 }
920
921 struct anv_state state = stream->block;
922 state.offset += offset;
923 state.alloc_size = size;
924 state.map += offset;
925
926 stream->next = offset + size;
927
928 #ifdef HAVE_VALGRIND
929 struct anv_state_stream_block *sb = stream->block_list;
930 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
931 if (vg_ptr == NULL) {
932 vg_ptr = state.map;
933 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
934 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
935 } else {
936 void *state_end = state.map + state.alloc_size;
937 /* This only updates the mempool. The newly allocated chunk is still
938 * marked as NOACCESS. */
939 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
940 /* Mark the newly allocated chunk as undefined */
941 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
942 }
943 #endif
944
945 return state;
946 }
947
948 struct bo_pool_bo_link {
949 struct bo_pool_bo_link *next;
950 struct anv_bo bo;
951 };
952
953 void
954 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
955 {
956 pool->device = device;
957 memset(pool->free_list, 0, sizeof(pool->free_list));
958
959 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
960 }
961
962 void
963 anv_bo_pool_finish(struct anv_bo_pool *pool)
964 {
965 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
966 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
967 while (link != NULL) {
968 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
969
970 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
971 anv_gem_close(pool->device, link_copy.bo.gem_handle);
972 link = link_copy.next;
973 }
974 }
975
976 VG(VALGRIND_DESTROY_MEMPOOL(pool));
977 }
978
979 VkResult
980 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
981 {
982 VkResult result;
983
984 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
985 const unsigned pow2_size = 1 << size_log2;
986 const unsigned bucket = size_log2 - 12;
987 assert(bucket < ARRAY_SIZE(pool->free_list));
988
989 void *next_free_void;
990 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
991 struct bo_pool_bo_link *next_free = next_free_void;
992 *bo = VG_NOACCESS_READ(&next_free->bo);
993 assert(bo->gem_handle);
994 assert(bo->map == next_free);
995 assert(size <= bo->size);
996
997 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
998
999 return VK_SUCCESS;
1000 }
1001
1002 struct anv_bo new_bo;
1003
1004 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1005 if (result != VK_SUCCESS)
1006 return result;
1007
1008 if (pool->device->instance->physicalDevice.supports_48bit_addresses)
1009 new_bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1010
1011 if (pool->device->instance->physicalDevice.has_exec_async)
1012 new_bo.flags |= EXEC_OBJECT_ASYNC;
1013
1014 assert(new_bo.size == pow2_size);
1015
1016 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1017 if (new_bo.map == MAP_FAILED) {
1018 anv_gem_close(pool->device, new_bo.gem_handle);
1019 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1020 }
1021
1022 *bo = new_bo;
1023
1024 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1025
1026 return VK_SUCCESS;
1027 }
1028
1029 void
1030 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1031 {
1032 /* Make a copy in case the anv_bo happens to be storred in the BO */
1033 struct anv_bo bo = *bo_in;
1034
1035 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1036
1037 struct bo_pool_bo_link *link = bo.map;
1038 VG_NOACCESS_WRITE(&link->bo, bo);
1039
1040 assert(util_is_power_of_two(bo.size));
1041 const unsigned size_log2 = ilog2_round_up(bo.size);
1042 const unsigned bucket = size_log2 - 12;
1043 assert(bucket < ARRAY_SIZE(pool->free_list));
1044
1045 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1046 }
1047
1048 // Scratch pool
1049
1050 void
1051 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1052 {
1053 memset(pool, 0, sizeof(*pool));
1054 }
1055
1056 void
1057 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1058 {
1059 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1060 for (unsigned i = 0; i < 16; i++) {
1061 struct anv_scratch_bo *bo = &pool->bos[i][s];
1062 if (bo->exists > 0)
1063 anv_gem_close(device, bo->bo.gem_handle);
1064 }
1065 }
1066 }
1067
1068 struct anv_bo *
1069 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1070 gl_shader_stage stage, unsigned per_thread_scratch)
1071 {
1072 if (per_thread_scratch == 0)
1073 return NULL;
1074
1075 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1076 assert(scratch_size_log2 < 16);
1077
1078 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1079
1080 /* We can use "exists" to shortcut and ignore the critical section */
1081 if (bo->exists)
1082 return &bo->bo;
1083
1084 pthread_mutex_lock(&device->mutex);
1085
1086 __sync_synchronize();
1087 if (bo->exists)
1088 return &bo->bo;
1089
1090 const struct anv_physical_device *physical_device =
1091 &device->instance->physicalDevice;
1092 const struct gen_device_info *devinfo = &physical_device->info;
1093
1094 /* WaCSScratchSize:hsw
1095 *
1096 * Haswell's scratch space address calculation appears to be sparse
1097 * rather than tightly packed. The Thread ID has bits indicating which
1098 * subslice, EU within a subslice, and thread within an EU it is.
1099 * There's a maximum of two slices and two subslices, so these can be
1100 * stored with a single bit. Even though there are only 10 EUs per
1101 * subslice, this is stored in 4 bits, so there's an effective maximum
1102 * value of 16 EUs. Similarly, although there are only 7 threads per EU,
1103 * this is stored in a 3 bit number, giving an effective maximum value
1104 * of 8 threads per EU.
1105 *
1106 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1107 * number of threads per subslice.
1108 */
1109 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1110 const unsigned scratch_ids_per_subslice =
1111 device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads;
1112
1113 uint32_t max_threads[] = {
1114 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1115 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1116 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1117 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1118 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1119 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1120 };
1121
1122 uint32_t size = per_thread_scratch * max_threads[stage];
1123
1124 anv_bo_init_new(&bo->bo, device, size);
1125
1126 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1127 * are still relative to the general state base address. When we emit
1128 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1129 * to the maximum (1 page under 4GB). This allows us to just place the
1130 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1131 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1132 * However, in order to do so, we need to ensure that the kernel does not
1133 * place the scratch BO above the 32-bit boundary.
1134 *
1135 * NOTE: Technically, it can't go "anywhere" because the top page is off
1136 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1137 * kernel allocates space using
1138 *
1139 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1140 *
1141 * so nothing will ever touch the top page.
1142 */
1143 assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1144
1145 if (device->instance->physicalDevice.has_exec_async)
1146 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1147
1148 /* Set the exists last because it may be read by other threads */
1149 __sync_synchronize();
1150 bo->exists = true;
1151
1152 pthread_mutex_unlock(&device->mutex);
1153
1154 return &bo->bo;
1155 }
1156
1157 struct anv_cached_bo {
1158 struct anv_bo bo;
1159
1160 uint32_t refcount;
1161 };
1162
1163 VkResult
1164 anv_bo_cache_init(struct anv_bo_cache *cache)
1165 {
1166 cache->bo_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1167 _mesa_key_pointer_equal);
1168 if (!cache->bo_map)
1169 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1170
1171 if (pthread_mutex_init(&cache->mutex, NULL)) {
1172 _mesa_hash_table_destroy(cache->bo_map, NULL);
1173 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1174 "pthread_mutex_init failed: %m");
1175 }
1176
1177 return VK_SUCCESS;
1178 }
1179
1180 void
1181 anv_bo_cache_finish(struct anv_bo_cache *cache)
1182 {
1183 _mesa_hash_table_destroy(cache->bo_map, NULL);
1184 pthread_mutex_destroy(&cache->mutex);
1185 }
1186
1187 static struct anv_cached_bo *
1188 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1189 {
1190 struct hash_entry *entry =
1191 _mesa_hash_table_search(cache->bo_map,
1192 (const void *)(uintptr_t)gem_handle);
1193 if (!entry)
1194 return NULL;
1195
1196 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1197 assert(bo->bo.gem_handle == gem_handle);
1198
1199 return bo;
1200 }
1201
1202 UNUSED static struct anv_bo *
1203 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1204 {
1205 pthread_mutex_lock(&cache->mutex);
1206
1207 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1208
1209 pthread_mutex_unlock(&cache->mutex);
1210
1211 return bo ? &bo->bo : NULL;
1212 }
1213
1214 VkResult
1215 anv_bo_cache_alloc(struct anv_device *device,
1216 struct anv_bo_cache *cache,
1217 uint64_t size, struct anv_bo **bo_out)
1218 {
1219 struct anv_cached_bo *bo =
1220 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1221 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1222 if (!bo)
1223 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1224
1225 bo->refcount = 1;
1226
1227 /* The kernel is going to give us whole pages anyway */
1228 size = align_u64(size, 4096);
1229
1230 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1231 if (result != VK_SUCCESS) {
1232 vk_free(&device->alloc, bo);
1233 return result;
1234 }
1235
1236 assert(bo->bo.gem_handle);
1237
1238 pthread_mutex_lock(&cache->mutex);
1239
1240 _mesa_hash_table_insert(cache->bo_map,
1241 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1242
1243 pthread_mutex_unlock(&cache->mutex);
1244
1245 *bo_out = &bo->bo;
1246
1247 return VK_SUCCESS;
1248 }
1249
1250 VkResult
1251 anv_bo_cache_import(struct anv_device *device,
1252 struct anv_bo_cache *cache,
1253 int fd, struct anv_bo **bo_out)
1254 {
1255 pthread_mutex_lock(&cache->mutex);
1256
1257 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1258 if (!gem_handle) {
1259 pthread_mutex_unlock(&cache->mutex);
1260 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
1261 }
1262
1263 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1264 if (bo) {
1265 __sync_fetch_and_add(&bo->refcount, 1);
1266 } else {
1267 off_t size = lseek(fd, 0, SEEK_END);
1268 if (size == (off_t)-1) {
1269 anv_gem_close(device, gem_handle);
1270 pthread_mutex_unlock(&cache->mutex);
1271 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
1272 }
1273
1274 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1275 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1276 if (!bo) {
1277 anv_gem_close(device, gem_handle);
1278 pthread_mutex_unlock(&cache->mutex);
1279 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1280 }
1281
1282 bo->refcount = 1;
1283
1284 anv_bo_init(&bo->bo, gem_handle, size);
1285
1286 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1287 }
1288
1289 pthread_mutex_unlock(&cache->mutex);
1290 *bo_out = &bo->bo;
1291
1292 return VK_SUCCESS;
1293 }
1294
1295 VkResult
1296 anv_bo_cache_export(struct anv_device *device,
1297 struct anv_bo_cache *cache,
1298 struct anv_bo *bo_in, int *fd_out)
1299 {
1300 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1301 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1302
1303 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1304 if (fd < 0)
1305 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1306
1307 *fd_out = fd;
1308
1309 return VK_SUCCESS;
1310 }
1311
1312 static bool
1313 atomic_dec_not_one(uint32_t *counter)
1314 {
1315 uint32_t old, val;
1316
1317 val = *counter;
1318 while (1) {
1319 if (val == 1)
1320 return false;
1321
1322 old = __sync_val_compare_and_swap(counter, val, val - 1);
1323 if (old == val)
1324 return true;
1325
1326 val = old;
1327 }
1328 }
1329
1330 void
1331 anv_bo_cache_release(struct anv_device *device,
1332 struct anv_bo_cache *cache,
1333 struct anv_bo *bo_in)
1334 {
1335 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1336 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1337
1338 /* Try to decrement the counter but don't go below one. If this succeeds
1339 * then the refcount has been decremented and we are not the last
1340 * reference.
1341 */
1342 if (atomic_dec_not_one(&bo->refcount))
1343 return;
1344
1345 pthread_mutex_lock(&cache->mutex);
1346
1347 /* We are probably the last reference since our attempt to decrement above
1348 * failed. However, we can't actually know until we are inside the mutex.
1349 * Otherwise, someone could import the BO between the decrement and our
1350 * taking the mutex.
1351 */
1352 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1353 /* Turns out we're not the last reference. Unlock and bail. */
1354 pthread_mutex_unlock(&cache->mutex);
1355 return;
1356 }
1357
1358 struct hash_entry *entry =
1359 _mesa_hash_table_search(cache->bo_map,
1360 (const void *)(uintptr_t)bo->bo.gem_handle);
1361 assert(entry);
1362 _mesa_hash_table_remove(cache->bo_map, entry);
1363
1364 if (bo->bo.map)
1365 anv_gem_munmap(bo->bo.map, bo->bo.size);
1366
1367 anv_gem_close(device, bo->bo.gem_handle);
1368
1369 /* Don't unlock until we've actually closed the BO. The whole point of
1370 * the BO cache is to ensure that we correctly handle races with creating
1371 * and releasing GEM handles and we don't want to let someone import the BO
1372 * again between mutex unlock and closing the GEM handle.
1373 */
1374 pthread_mutex_unlock(&cache->mutex);
1375
1376 vk_free(&device->alloc, bo);
1377 }