anv/allocator: Remove pool->map.
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <linux/memfd.h>
29 #include <sys/mman.h>
30
31 #include "anv_private.h"
32
33 #include "util/hash_table.h"
34 #include "util/simple_mtx.h"
35
36 #ifdef HAVE_VALGRIND
37 #define VG_NOACCESS_READ(__ptr) ({ \
38 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39 __typeof(*(__ptr)) __val = *(__ptr); \
40 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41 __val; \
42 })
43 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
44 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
45 *(__ptr) = (__val); \
46 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
47 })
48 #else
49 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
50 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51 #endif
52
53 /* Design goals:
54 *
55 * - Lock free (except when resizing underlying bos)
56 *
57 * - Constant time allocation with typically only one atomic
58 *
59 * - Multiple allocation sizes without fragmentation
60 *
61 * - Can grow while keeping addresses and offset of contents stable
62 *
63 * - All allocations within one bo so we can point one of the
64 * STATE_BASE_ADDRESS pointers at it.
65 *
66 * The overall design is a two-level allocator: top level is a fixed size, big
67 * block (8k) allocator, which operates out of a bo. Allocation is done by
68 * either pulling a block from the free list or growing the used range of the
69 * bo. Growing the range may run out of space in the bo which we then need to
70 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
71 * we need to keep all pointers and contents in the old map valid. GEM bos in
72 * general can't grow, but we use a trick: we create a memfd and use ftruncate
73 * to grow it as necessary. We mmap the new size and then create a gem bo for
74 * it using the new gem userptr ioctl. Without heavy-handed locking around
75 * our allocation fast-path, there isn't really a way to munmap the old mmap,
76 * so we just keep it around until garbage collection time. While the block
77 * allocator is lockless for normal operations, we block other threads trying
78 * to allocate while we're growing the map. It sholdn't happen often, and
79 * growing is fast anyway.
80 *
81 * At the next level we can use various sub-allocators. The state pool is a
82 * pool of smaller, fixed size objects, which operates much like the block
83 * pool. It uses a free list for freeing objects, but when it runs out of
84 * space it just allocates a new block from the block pool. This allocator is
85 * intended for longer lived state objects such as SURFACE_STATE and most
86 * other persistent state objects in the API. We may need to track more info
87 * with these object and a pointer back to the CPU object (eg VkImage). In
88 * those cases we just allocate a slightly bigger object and put the extra
89 * state after the GPU state object.
90 *
91 * The state stream allocator works similar to how the i965 DRI driver streams
92 * all its state. Even with Vulkan, we need to emit transient state (whether
93 * surface state base or dynamic state base), and for that we can just get a
94 * block and fill it up. These cases are local to a command buffer and the
95 * sub-allocator need not be thread safe. The streaming allocator gets a new
96 * block when it runs out of space and chains them together so they can be
97 * easily freed.
98 */
99
100 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
101 * We use it to indicate the free list is empty. */
102 #define EMPTY UINT32_MAX
103
104 #define PAGE_SIZE 4096
105
106 struct anv_mmap_cleanup {
107 void *map;
108 size_t size;
109 uint32_t gem_handle;
110 };
111
112 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
113
114 #ifndef HAVE_MEMFD_CREATE
115 static inline int
116 memfd_create(const char *name, unsigned int flags)
117 {
118 return syscall(SYS_memfd_create, name, flags);
119 }
120 #endif
121
122 static inline uint32_t
123 ilog2_round_up(uint32_t value)
124 {
125 assert(value != 0);
126 return 32 - __builtin_clz(value - 1);
127 }
128
129 static inline uint32_t
130 round_to_power_of_two(uint32_t value)
131 {
132 return 1 << ilog2_round_up(value);
133 }
134
135 struct anv_state_table_cleanup {
136 void *map;
137 size_t size;
138 };
139
140 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
141 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
142
143 static VkResult
144 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
145
146 VkResult
147 anv_state_table_init(struct anv_state_table *table,
148 struct anv_device *device,
149 uint32_t initial_entries)
150 {
151 VkResult result;
152
153 table->device = device;
154
155 table->fd = memfd_create("state table", MFD_CLOEXEC);
156 if (table->fd == -1)
157 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
158
159 /* Just make it 2GB up-front. The Linux kernel won't actually back it
160 * with pages until we either map and fault on one of them or we use
161 * userptr and send a chunk of it off to the GPU.
162 */
163 if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
164 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
165 goto fail_fd;
166 }
167
168 if (!u_vector_init(&table->mmap_cleanups,
169 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
170 128)) {
171 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
172 goto fail_fd;
173 }
174
175 table->state.next = 0;
176 table->state.end = 0;
177 table->size = 0;
178
179 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
180 result = anv_state_table_expand_range(table, initial_size);
181 if (result != VK_SUCCESS)
182 goto fail_mmap_cleanups;
183
184 return VK_SUCCESS;
185
186 fail_mmap_cleanups:
187 u_vector_finish(&table->mmap_cleanups);
188 fail_fd:
189 close(table->fd);
190
191 return result;
192 }
193
194 static VkResult
195 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
196 {
197 void *map;
198 struct anv_mmap_cleanup *cleanup;
199
200 /* Assert that we only ever grow the pool */
201 assert(size >= table->state.end);
202
203 /* Make sure that we don't go outside the bounds of the memfd */
204 if (size > BLOCK_POOL_MEMFD_SIZE)
205 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
206
207 cleanup = u_vector_add(&table->mmap_cleanups);
208 if (!cleanup)
209 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
210
211 *cleanup = ANV_MMAP_CLEANUP_INIT;
212
213 /* Just leak the old map until we destroy the pool. We can't munmap it
214 * without races or imposing locking on the block allocate fast path. On
215 * the whole the leaked maps adds up to less than the size of the
216 * current map. MAP_POPULATE seems like the right thing to do, but we
217 * should try to get some numbers.
218 */
219 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
220 MAP_SHARED | MAP_POPULATE, table->fd, 0);
221 if (map == MAP_FAILED) {
222 return vk_errorf(table->device->instance, table->device,
223 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
224 }
225
226 cleanup->map = map;
227 cleanup->size = size;
228
229 table->map = map;
230 table->size = size;
231
232 return VK_SUCCESS;
233 }
234
235 static VkResult
236 anv_state_table_grow(struct anv_state_table *table)
237 {
238 VkResult result = VK_SUCCESS;
239
240 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
241 PAGE_SIZE);
242 uint32_t old_size = table->size;
243
244 /* The block pool is always initialized to a nonzero size and this function
245 * is always called after initialization.
246 */
247 assert(old_size > 0);
248
249 uint32_t required = MAX2(used, old_size);
250 if (used * 2 <= required) {
251 /* If we're in this case then this isn't the firsta allocation and we
252 * already have enough space on both sides to hold double what we
253 * have allocated. There's nothing for us to do.
254 */
255 goto done;
256 }
257
258 uint32_t size = old_size * 2;
259 while (size < required)
260 size *= 2;
261
262 assert(size > table->size);
263
264 result = anv_state_table_expand_range(table, size);
265
266 done:
267 return result;
268 }
269
270 void
271 anv_state_table_finish(struct anv_state_table *table)
272 {
273 struct anv_state_table_cleanup *cleanup;
274
275 u_vector_foreach(cleanup, &table->mmap_cleanups) {
276 if (cleanup->map)
277 munmap(cleanup->map, cleanup->size);
278 }
279
280 u_vector_finish(&table->mmap_cleanups);
281
282 close(table->fd);
283 }
284
285 VkResult
286 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
287 uint32_t count)
288 {
289 struct anv_block_state state, old, new;
290 VkResult result;
291
292 assert(idx);
293
294 while(1) {
295 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
296 if (state.next + count <= state.end) {
297 assert(table->map);
298 struct anv_free_entry *entry = &table->map[state.next];
299 for (int i = 0; i < count; i++) {
300 entry[i].state.idx = state.next + i;
301 }
302 *idx = state.next;
303 return VK_SUCCESS;
304 } else if (state.next <= state.end) {
305 /* We allocated the first block outside the pool so we have to grow
306 * the pool. pool_state->next acts a mutex: threads who try to
307 * allocate now will get block indexes above the current limit and
308 * hit futex_wait below.
309 */
310 new.next = state.next + count;
311 do {
312 result = anv_state_table_grow(table);
313 if (result != VK_SUCCESS)
314 return result;
315 new.end = table->size / ANV_STATE_ENTRY_SIZE;
316 } while (new.end < new.next);
317
318 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
319 if (old.next != state.next)
320 futex_wake(&table->state.end, INT_MAX);
321 } else {
322 futex_wait(&table->state.end, state.end, NULL);
323 continue;
324 }
325 }
326 }
327
328 void
329 anv_free_list_push(union anv_free_list *list,
330 struct anv_state_table *table,
331 uint32_t first, uint32_t count)
332 {
333 union anv_free_list current, old, new;
334 uint32_t last = first;
335
336 for (uint32_t i = 1; i < count; i++, last++)
337 table->map[last].next = last + 1;
338
339 old = *list;
340 do {
341 current = old;
342 table->map[last].next = current.offset;
343 new.offset = first;
344 new.count = current.count + 1;
345 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
346 } while (old.u64 != current.u64);
347 }
348
349 struct anv_state *
350 anv_free_list_pop(union anv_free_list *list,
351 struct anv_state_table *table)
352 {
353 union anv_free_list current, new, old;
354
355 current.u64 = list->u64;
356 while (current.offset != EMPTY) {
357 __sync_synchronize();
358 new.offset = table->map[current.offset].next;
359 new.count = current.count + 1;
360 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
361 if (old.u64 == current.u64) {
362 struct anv_free_entry *entry = &table->map[current.offset];
363 return &entry->state;
364 }
365 current = old;
366 }
367
368 return NULL;
369 }
370
371 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
372 * means that the bottom 12 bits should all be zero.
373 */
374 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
375 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
376 #define PFL_PACK(ptr, count) ({ \
377 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
378 })
379
380 static bool
381 anv_ptr_free_list_pop(void **list, void **elem)
382 {
383 void *current = *list;
384 while (PFL_PTR(current) != NULL) {
385 void **next_ptr = PFL_PTR(current);
386 void *new_ptr = VG_NOACCESS_READ(next_ptr);
387 unsigned new_count = PFL_COUNT(current) + 1;
388 void *new = PFL_PACK(new_ptr, new_count);
389 void *old = __sync_val_compare_and_swap(list, current, new);
390 if (old == current) {
391 *elem = PFL_PTR(current);
392 return true;
393 }
394 current = old;
395 }
396
397 return false;
398 }
399
400 static void
401 anv_ptr_free_list_push(void **list, void *elem)
402 {
403 void *old, *current;
404 void **next_ptr = elem;
405
406 /* The pointer-based free list requires that the pointer be
407 * page-aligned. This is because we use the bottom 12 bits of the
408 * pointer to store a counter to solve the ABA concurrency problem.
409 */
410 assert(((uintptr_t)elem & 0xfff) == 0);
411
412 old = *list;
413 do {
414 current = old;
415 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
416 unsigned new_count = PFL_COUNT(current) + 1;
417 void *new = PFL_PACK(elem, new_count);
418 old = __sync_val_compare_and_swap(list, current, new);
419 } while (old != current);
420 }
421
422 static VkResult
423 anv_block_pool_expand_range(struct anv_block_pool *pool,
424 uint32_t center_bo_offset, uint32_t size);
425
426 VkResult
427 anv_block_pool_init(struct anv_block_pool *pool,
428 struct anv_device *device,
429 uint64_t start_address,
430 uint32_t initial_size,
431 uint64_t bo_flags)
432 {
433 VkResult result;
434
435 pool->device = device;
436 pool->bo_flags = bo_flags;
437 pool->start_address = gen_canonical_address(start_address);
438
439 anv_bo_init(&pool->bo, 0, 0);
440
441 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
442 if (pool->fd == -1)
443 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
444
445 /* Just make it 2GB up-front. The Linux kernel won't actually back it
446 * with pages until we either map and fault on one of them or we use
447 * userptr and send a chunk of it off to the GPU.
448 */
449 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
450 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
451 goto fail_fd;
452 }
453
454 if (!u_vector_init(&pool->mmap_cleanups,
455 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
456 128)) {
457 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
458 goto fail_fd;
459 }
460
461 pool->state.next = 0;
462 pool->state.end = 0;
463 pool->back_state.next = 0;
464 pool->back_state.end = 0;
465
466 result = anv_block_pool_expand_range(pool, 0, initial_size);
467 if (result != VK_SUCCESS)
468 goto fail_mmap_cleanups;
469
470 return VK_SUCCESS;
471
472 fail_mmap_cleanups:
473 u_vector_finish(&pool->mmap_cleanups);
474 fail_fd:
475 close(pool->fd);
476
477 return result;
478 }
479
480 void
481 anv_block_pool_finish(struct anv_block_pool *pool)
482 {
483 struct anv_mmap_cleanup *cleanup;
484
485 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
486 if (cleanup->map)
487 munmap(cleanup->map, cleanup->size);
488 if (cleanup->gem_handle)
489 anv_gem_close(pool->device, cleanup->gem_handle);
490 }
491
492 u_vector_finish(&pool->mmap_cleanups);
493
494 close(pool->fd);
495 }
496
497 static VkResult
498 anv_block_pool_expand_range(struct anv_block_pool *pool,
499 uint32_t center_bo_offset, uint32_t size)
500 {
501 void *map;
502 uint32_t gem_handle;
503 struct anv_mmap_cleanup *cleanup;
504
505 /* Assert that we only ever grow the pool */
506 assert(center_bo_offset >= pool->back_state.end);
507 assert(size - center_bo_offset >= pool->state.end);
508
509 /* Assert that we don't go outside the bounds of the memfd */
510 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
511 assert(size - center_bo_offset <=
512 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
513
514 cleanup = u_vector_add(&pool->mmap_cleanups);
515 if (!cleanup)
516 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
517
518 *cleanup = ANV_MMAP_CLEANUP_INIT;
519
520 /* Just leak the old map until we destroy the pool. We can't munmap it
521 * without races or imposing locking on the block allocate fast path. On
522 * the whole the leaked maps adds up to less than the size of the
523 * current map. MAP_POPULATE seems like the right thing to do, but we
524 * should try to get some numbers.
525 */
526 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
527 MAP_SHARED | MAP_POPULATE, pool->fd,
528 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
529 if (map == MAP_FAILED)
530 return vk_errorf(pool->device->instance, pool->device,
531 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
532
533 gem_handle = anv_gem_userptr(pool->device, map, size);
534 if (gem_handle == 0) {
535 munmap(map, size);
536 return vk_errorf(pool->device->instance, pool->device,
537 VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
538 }
539
540 cleanup->map = map;
541 cleanup->size = size;
542 cleanup->gem_handle = gem_handle;
543
544 #if 0
545 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
546 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
547 * always created as I915_CACHING_CACHED, which on non-LLC means
548 * snooped. That can be useful but comes with a bit of overheard. Since
549 * we're eplicitly clflushing and don't want the overhead we need to turn
550 * it off. */
551 if (!pool->device->info.has_llc) {
552 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
553 anv_gem_set_domain(pool->device, gem_handle,
554 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
555 }
556 #endif
557
558 /* Now that we successfull allocated everything, we can write the new
559 * center_bo_offset back into pool. */
560 pool->center_bo_offset = center_bo_offset;
561
562 /* For block pool BOs we have to be a bit careful about where we place them
563 * in the GTT. There are two documented workarounds for state base address
564 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
565 * which state that those two base addresses do not support 48-bit
566 * addresses and need to be placed in the bottom 32-bit range.
567 * Unfortunately, this is not quite accurate.
568 *
569 * The real problem is that we always set the size of our state pools in
570 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
571 * likely significantly smaller. We do this because we do not no at the
572 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
573 * the pool during command buffer building so we don't actually have a
574 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
575 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
576 * as being out of bounds and returns zero. For dynamic state, this
577 * usually just leads to rendering corruptions, but shaders that are all
578 * zero hang the GPU immediately.
579 *
580 * The easiest solution to do is exactly what the bogus workarounds say to
581 * do: restrict these buffers to 32-bit addresses. We could also pin the
582 * BO to some particular location of our choosing, but that's significantly
583 * more work than just not setting a flag. So, we explicitly DO NOT set
584 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
585 * hard work for us.
586 */
587 anv_bo_init(&pool->bo, gem_handle, size);
588 if (pool->bo_flags & EXEC_OBJECT_PINNED) {
589 pool->bo.offset = pool->start_address + BLOCK_POOL_MEMFD_CENTER -
590 center_bo_offset;
591 }
592 pool->bo.flags = pool->bo_flags;
593 pool->bo.map = map;
594
595 return VK_SUCCESS;
596 }
597
598 /** Returns current memory map of the block pool.
599 *
600 * The returned pointer points to the map for the memory at the specified
601 * offset. The offset parameter is relative to the "center" of the block pool
602 * rather than the start of the block pool BO map.
603 */
604 void*
605 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
606 {
607 return pool->bo.map + pool->center_bo_offset + offset;
608 }
609
610 /** Grows and re-centers the block pool.
611 *
612 * We grow the block pool in one or both directions in such a way that the
613 * following conditions are met:
614 *
615 * 1) The size of the entire pool is always a power of two.
616 *
617 * 2) The pool only grows on both ends. Neither end can get
618 * shortened.
619 *
620 * 3) At the end of the allocation, we have about twice as much space
621 * allocated for each end as we have used. This way the pool doesn't
622 * grow too far in one direction or the other.
623 *
624 * 4) If the _alloc_back() has never been called, then the back portion of
625 * the pool retains a size of zero. (This makes it easier for users of
626 * the block pool that only want a one-sided pool.)
627 *
628 * 5) We have enough space allocated for at least one more block in
629 * whichever side `state` points to.
630 *
631 * 6) The center of the pool is always aligned to both the block_size of
632 * the pool and a 4K CPU page.
633 */
634 static uint32_t
635 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
636 {
637 VkResult result = VK_SUCCESS;
638
639 pthread_mutex_lock(&pool->device->mutex);
640
641 assert(state == &pool->state || state == &pool->back_state);
642
643 /* Gather a little usage information on the pool. Since we may have
644 * threadsd waiting in queue to get some storage while we resize, it's
645 * actually possible that total_used will be larger than old_size. In
646 * particular, block_pool_alloc() increments state->next prior to
647 * calling block_pool_grow, so this ensures that we get enough space for
648 * which ever side tries to grow the pool.
649 *
650 * We align to a page size because it makes it easier to do our
651 * calculations later in such a way that we state page-aigned.
652 */
653 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
654 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
655 uint32_t total_used = front_used + back_used;
656
657 assert(state == &pool->state || back_used > 0);
658
659 uint32_t old_size = pool->bo.size;
660
661 /* The block pool is always initialized to a nonzero size and this function
662 * is always called after initialization.
663 */
664 assert(old_size > 0);
665
666 /* The back_used and front_used may actually be smaller than the actual
667 * requirement because they are based on the next pointers which are
668 * updated prior to calling this function.
669 */
670 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
671 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
672
673 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
674 /* If we're in this case then this isn't the firsta allocation and we
675 * already have enough space on both sides to hold double what we
676 * have allocated. There's nothing for us to do.
677 */
678 goto done;
679 }
680
681 uint32_t size = old_size * 2;
682 while (size < back_required + front_required)
683 size *= 2;
684
685 assert(size > pool->bo.size);
686
687 /* We compute a new center_bo_offset such that, when we double the size
688 * of the pool, we maintain the ratio of how much is used by each side.
689 * This way things should remain more-or-less balanced.
690 */
691 uint32_t center_bo_offset;
692 if (back_used == 0) {
693 /* If we're in this case then we have never called alloc_back(). In
694 * this case, we want keep the offset at 0 to make things as simple
695 * as possible for users that don't care about back allocations.
696 */
697 center_bo_offset = 0;
698 } else {
699 /* Try to "center" the allocation based on how much is currently in
700 * use on each side of the center line.
701 */
702 center_bo_offset = ((uint64_t)size * back_used) / total_used;
703
704 /* Align down to a multiple of the page size */
705 center_bo_offset &= ~(PAGE_SIZE - 1);
706
707 assert(center_bo_offset >= back_used);
708
709 /* Make sure we don't shrink the back end of the pool */
710 if (center_bo_offset < back_required)
711 center_bo_offset = back_required;
712
713 /* Make sure that we don't shrink the front end of the pool */
714 if (size - center_bo_offset < front_required)
715 center_bo_offset = size - front_required;
716 }
717
718 assert(center_bo_offset % PAGE_SIZE == 0);
719
720 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
721
722 pool->bo.flags = pool->bo_flags;
723
724 done:
725 pthread_mutex_unlock(&pool->device->mutex);
726
727 if (result == VK_SUCCESS) {
728 /* Return the appropriate new size. This function never actually
729 * updates state->next. Instead, we let the caller do that because it
730 * needs to do so in order to maintain its concurrency model.
731 */
732 if (state == &pool->state) {
733 return pool->bo.size - pool->center_bo_offset;
734 } else {
735 assert(pool->center_bo_offset > 0);
736 return pool->center_bo_offset;
737 }
738 } else {
739 return 0;
740 }
741 }
742
743 static uint32_t
744 anv_block_pool_alloc_new(struct anv_block_pool *pool,
745 struct anv_block_state *pool_state,
746 uint32_t block_size)
747 {
748 struct anv_block_state state, old, new;
749
750 while (1) {
751 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
752 if (state.next + block_size <= state.end) {
753 return state.next;
754 } else if (state.next <= state.end) {
755 /* We allocated the first block outside the pool so we have to grow
756 * the pool. pool_state->next acts a mutex: threads who try to
757 * allocate now will get block indexes above the current limit and
758 * hit futex_wait below.
759 */
760 new.next = state.next + block_size;
761 do {
762 new.end = anv_block_pool_grow(pool, pool_state);
763 } while (new.end < new.next);
764
765 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
766 if (old.next != state.next)
767 futex_wake(&pool_state->end, INT_MAX);
768 return state.next;
769 } else {
770 futex_wait(&pool_state->end, state.end, NULL);
771 continue;
772 }
773 }
774 }
775
776 int32_t
777 anv_block_pool_alloc(struct anv_block_pool *pool,
778 uint32_t block_size)
779 {
780 return anv_block_pool_alloc_new(pool, &pool->state, block_size);
781 }
782
783 /* Allocates a block out of the back of the block pool.
784 *
785 * This will allocated a block earlier than the "start" of the block pool.
786 * The offsets returned from this function will be negative but will still
787 * be correct relative to the block pool's map pointer.
788 *
789 * If you ever use anv_block_pool_alloc_back, then you will have to do
790 * gymnastics with the block pool's BO when doing relocations.
791 */
792 int32_t
793 anv_block_pool_alloc_back(struct anv_block_pool *pool,
794 uint32_t block_size)
795 {
796 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
797 block_size);
798
799 /* The offset we get out of anv_block_pool_alloc_new() is actually the
800 * number of bytes downwards from the middle to the end of the block.
801 * We need to turn it into a (negative) offset from the middle to the
802 * start of the block.
803 */
804 assert(offset >= 0);
805 return -(offset + block_size);
806 }
807
808 VkResult
809 anv_state_pool_init(struct anv_state_pool *pool,
810 struct anv_device *device,
811 uint64_t start_address,
812 uint32_t block_size,
813 uint64_t bo_flags)
814 {
815 VkResult result = anv_block_pool_init(&pool->block_pool, device,
816 start_address,
817 block_size * 16,
818 bo_flags);
819 if (result != VK_SUCCESS)
820 return result;
821
822 result = anv_state_table_init(&pool->table, device, 64);
823 if (result != VK_SUCCESS) {
824 anv_block_pool_finish(&pool->block_pool);
825 return result;
826 }
827
828 assert(util_is_power_of_two_or_zero(block_size));
829 pool->block_size = block_size;
830 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
831 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
832 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
833 pool->buckets[i].block.next = 0;
834 pool->buckets[i].block.end = 0;
835 }
836 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
837
838 return VK_SUCCESS;
839 }
840
841 void
842 anv_state_pool_finish(struct anv_state_pool *pool)
843 {
844 VG(VALGRIND_DESTROY_MEMPOOL(pool));
845 anv_state_table_finish(&pool->table);
846 anv_block_pool_finish(&pool->block_pool);
847 }
848
849 static uint32_t
850 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
851 struct anv_block_pool *block_pool,
852 uint32_t state_size,
853 uint32_t block_size)
854 {
855 struct anv_block_state block, old, new;
856 uint32_t offset;
857
858 /* If our state is large, we don't need any sub-allocation from a block.
859 * Instead, we just grab whole (potentially large) blocks.
860 */
861 if (state_size >= block_size)
862 return anv_block_pool_alloc(block_pool, state_size);
863
864 restart:
865 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
866
867 if (block.next < block.end) {
868 return block.next;
869 } else if (block.next == block.end) {
870 offset = anv_block_pool_alloc(block_pool, block_size);
871 new.next = offset + state_size;
872 new.end = offset + block_size;
873 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
874 if (old.next != block.next)
875 futex_wake(&pool->block.end, INT_MAX);
876 return offset;
877 } else {
878 futex_wait(&pool->block.end, block.end, NULL);
879 goto restart;
880 }
881 }
882
883 static uint32_t
884 anv_state_pool_get_bucket(uint32_t size)
885 {
886 unsigned size_log2 = ilog2_round_up(size);
887 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
888 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
889 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
890 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
891 }
892
893 static uint32_t
894 anv_state_pool_get_bucket_size(uint32_t bucket)
895 {
896 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
897 return 1 << size_log2;
898 }
899
900 /** Helper to push a chunk into the state table.
901 *
902 * It creates 'count' entries into the state table and update their sizes,
903 * offsets and maps, also pushing them as "free" states.
904 */
905 static void
906 anv_state_pool_return_blocks(struct anv_state_pool *pool,
907 uint32_t chunk_offset, uint32_t count,
908 uint32_t block_size)
909 {
910 if (count == 0)
911 return;
912
913 /* Make sure we always return chunks aligned to the block_size */
914 assert(chunk_offset % block_size == 0);
915
916 uint32_t st_idx;
917 VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
918 assert(result == VK_SUCCESS);
919 for (int i = 0; i < count; i++) {
920 /* update states that were added back to the state table */
921 struct anv_state *state_i = anv_state_table_get(&pool->table,
922 st_idx + i);
923 state_i->alloc_size = block_size;
924 state_i->offset = chunk_offset + block_size * i;
925 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
926 }
927
928 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
929 anv_free_list_push(&pool->buckets[block_bucket].free_list,
930 &pool->table, st_idx, count);
931 }
932
933 static struct anv_state
934 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
935 uint32_t size, uint32_t align)
936 {
937 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
938
939 struct anv_state *state;
940 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
941 int32_t offset;
942
943 /* Try free list first. */
944 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
945 &pool->table);
946 if (state) {
947 assert(state->offset >= 0);
948 goto done;
949 }
950
951 /* Try to grab a chunk from some larger bucket and split it up */
952 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
953 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
954 if (state) {
955 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
956 int32_t chunk_offset = state->offset;
957
958 /* First lets update the state we got to its new size. offset and map
959 * remain the same.
960 */
961 state->alloc_size = alloc_size;
962
963 /* We've found a chunk that's larger than the requested state size.
964 * There are a couple of options as to what we do with it:
965 *
966 * 1) We could fully split the chunk into state.alloc_size sized
967 * pieces. However, this would mean that allocating a 16B
968 * state could potentially split a 2MB chunk into 512K smaller
969 * chunks. This would lead to unnecessary fragmentation.
970 *
971 * 2) The classic "buddy allocator" method would have us split the
972 * chunk in half and return one half. Then we would split the
973 * remaining half in half and return one half, and repeat as
974 * needed until we get down to the size we want. However, if
975 * you are allocating a bunch of the same size state (which is
976 * the common case), this means that every other allocation has
977 * to go up a level and every fourth goes up two levels, etc.
978 * This is not nearly as efficient as it could be if we did a
979 * little more work up-front.
980 *
981 * 3) Split the difference between (1) and (2) by doing a
982 * two-level split. If it's bigger than some fixed block_size,
983 * we split it into block_size sized chunks and return all but
984 * one of them. Then we split what remains into
985 * state.alloc_size sized chunks and return all but one.
986 *
987 * We choose option (3).
988 */
989 if (chunk_size > pool->block_size &&
990 alloc_size < pool->block_size) {
991 assert(chunk_size % pool->block_size == 0);
992 /* We don't want to split giant chunks into tiny chunks. Instead,
993 * break anything bigger than a block into block-sized chunks and
994 * then break it down into bucket-sized chunks from there. Return
995 * all but the first block of the chunk to the block bucket.
996 */
997 uint32_t push_back = (chunk_size / pool->block_size) - 1;
998 anv_state_pool_return_blocks(pool, chunk_offset + pool->block_size,
999 push_back, pool->block_size);
1000 chunk_size = pool->block_size;
1001 }
1002
1003 assert(chunk_size % alloc_size == 0);
1004 uint32_t push_back = (chunk_size / alloc_size) - 1;
1005 anv_state_pool_return_blocks(pool, chunk_offset + alloc_size,
1006 push_back, alloc_size);
1007 goto done;
1008 }
1009 }
1010
1011 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1012 &pool->block_pool,
1013 alloc_size,
1014 pool->block_size);
1015 /* Everytime we allocate a new state, add it to the state pool */
1016 uint32_t idx;
1017 VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1018 assert(result == VK_SUCCESS);
1019
1020 state = anv_state_table_get(&pool->table, idx);
1021 state->offset = offset;
1022 state->alloc_size = alloc_size;
1023 state->map = anv_block_pool_map(&pool->block_pool, offset);
1024
1025 done:
1026 return *state;
1027 }
1028
1029 struct anv_state
1030 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1031 {
1032 if (size == 0)
1033 return ANV_STATE_NULL;
1034
1035 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1036 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1037 return state;
1038 }
1039
1040 struct anv_state
1041 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1042 {
1043 struct anv_state *state;
1044 uint32_t alloc_size = pool->block_size;
1045
1046 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1047 if (state) {
1048 assert(state->offset < 0);
1049 goto done;
1050 }
1051
1052 int32_t offset;
1053 offset = anv_block_pool_alloc_back(&pool->block_pool,
1054 pool->block_size);
1055 uint32_t idx;
1056 VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1057 assert(result == VK_SUCCESS);
1058
1059 state = anv_state_table_get(&pool->table, idx);
1060 state->offset = offset;
1061 state->alloc_size = alloc_size;
1062 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1063
1064 done:
1065 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1066 return *state;
1067 }
1068
1069 static void
1070 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1071 {
1072 assert(util_is_power_of_two_or_zero(state.alloc_size));
1073 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1074
1075 if (state.offset < 0) {
1076 assert(state.alloc_size == pool->block_size);
1077 anv_free_list_push(&pool->back_alloc_free_list,
1078 &pool->table, state.idx, 1);
1079 } else {
1080 anv_free_list_push(&pool->buckets[bucket].free_list,
1081 &pool->table, state.idx, 1);
1082 }
1083 }
1084
1085 void
1086 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1087 {
1088 if (state.alloc_size == 0)
1089 return;
1090
1091 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1092 anv_state_pool_free_no_vg(pool, state);
1093 }
1094
1095 struct anv_state_stream_block {
1096 struct anv_state block;
1097
1098 /* The next block */
1099 struct anv_state_stream_block *next;
1100
1101 #ifdef HAVE_VALGRIND
1102 /* A pointer to the first user-allocated thing in this block. This is
1103 * what valgrind sees as the start of the block.
1104 */
1105 void *_vg_ptr;
1106 #endif
1107 };
1108
1109 /* The state stream allocator is a one-shot, single threaded allocator for
1110 * variable sized blocks. We use it for allocating dynamic state.
1111 */
1112 void
1113 anv_state_stream_init(struct anv_state_stream *stream,
1114 struct anv_state_pool *state_pool,
1115 uint32_t block_size)
1116 {
1117 stream->state_pool = state_pool;
1118 stream->block_size = block_size;
1119
1120 stream->block = ANV_STATE_NULL;
1121
1122 stream->block_list = NULL;
1123
1124 /* Ensure that next + whatever > block_size. This way the first call to
1125 * state_stream_alloc fetches a new block.
1126 */
1127 stream->next = block_size;
1128
1129 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1130 }
1131
1132 void
1133 anv_state_stream_finish(struct anv_state_stream *stream)
1134 {
1135 struct anv_state_stream_block *next = stream->block_list;
1136 while (next != NULL) {
1137 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1138 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1139 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1140 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1141 next = sb.next;
1142 }
1143
1144 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1145 }
1146
1147 struct anv_state
1148 anv_state_stream_alloc(struct anv_state_stream *stream,
1149 uint32_t size, uint32_t alignment)
1150 {
1151 if (size == 0)
1152 return ANV_STATE_NULL;
1153
1154 assert(alignment <= PAGE_SIZE);
1155
1156 uint32_t offset = align_u32(stream->next, alignment);
1157 if (offset + size > stream->block.alloc_size) {
1158 uint32_t block_size = stream->block_size;
1159 if (block_size < size)
1160 block_size = round_to_power_of_two(size);
1161
1162 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1163 block_size, PAGE_SIZE);
1164
1165 struct anv_state_stream_block *sb = stream->block.map;
1166 VG_NOACCESS_WRITE(&sb->block, stream->block);
1167 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1168 stream->block_list = sb;
1169 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1170
1171 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1172
1173 /* Reset back to the start plus space for the header */
1174 stream->next = sizeof(*sb);
1175
1176 offset = align_u32(stream->next, alignment);
1177 assert(offset + size <= stream->block.alloc_size);
1178 }
1179
1180 struct anv_state state = stream->block;
1181 state.offset += offset;
1182 state.alloc_size = size;
1183 state.map += offset;
1184
1185 stream->next = offset + size;
1186
1187 #ifdef HAVE_VALGRIND
1188 struct anv_state_stream_block *sb = stream->block_list;
1189 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1190 if (vg_ptr == NULL) {
1191 vg_ptr = state.map;
1192 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1193 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1194 } else {
1195 void *state_end = state.map + state.alloc_size;
1196 /* This only updates the mempool. The newly allocated chunk is still
1197 * marked as NOACCESS. */
1198 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1199 /* Mark the newly allocated chunk as undefined */
1200 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1201 }
1202 #endif
1203
1204 return state;
1205 }
1206
1207 struct bo_pool_bo_link {
1208 struct bo_pool_bo_link *next;
1209 struct anv_bo bo;
1210 };
1211
1212 void
1213 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1214 uint64_t bo_flags)
1215 {
1216 pool->device = device;
1217 pool->bo_flags = bo_flags;
1218 memset(pool->free_list, 0, sizeof(pool->free_list));
1219
1220 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1221 }
1222
1223 void
1224 anv_bo_pool_finish(struct anv_bo_pool *pool)
1225 {
1226 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1227 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
1228 while (link != NULL) {
1229 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
1230
1231 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
1232 anv_vma_free(pool->device, &link_copy.bo);
1233 anv_gem_close(pool->device, link_copy.bo.gem_handle);
1234 link = link_copy.next;
1235 }
1236 }
1237
1238 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1239 }
1240
1241 VkResult
1242 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1243 {
1244 VkResult result;
1245
1246 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1247 const unsigned pow2_size = 1 << size_log2;
1248 const unsigned bucket = size_log2 - 12;
1249 assert(bucket < ARRAY_SIZE(pool->free_list));
1250
1251 void *next_free_void;
1252 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1253 struct bo_pool_bo_link *next_free = next_free_void;
1254 *bo = VG_NOACCESS_READ(&next_free->bo);
1255 assert(bo->gem_handle);
1256 assert(bo->map == next_free);
1257 assert(size <= bo->size);
1258
1259 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1260
1261 return VK_SUCCESS;
1262 }
1263
1264 struct anv_bo new_bo;
1265
1266 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1267 if (result != VK_SUCCESS)
1268 return result;
1269
1270 new_bo.flags = pool->bo_flags;
1271
1272 if (!anv_vma_alloc(pool->device, &new_bo))
1273 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1274
1275 assert(new_bo.size == pow2_size);
1276
1277 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1278 if (new_bo.map == MAP_FAILED) {
1279 anv_gem_close(pool->device, new_bo.gem_handle);
1280 anv_vma_free(pool->device, &new_bo);
1281 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1282 }
1283
1284 *bo = new_bo;
1285
1286 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1287
1288 return VK_SUCCESS;
1289 }
1290
1291 void
1292 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1293 {
1294 /* Make a copy in case the anv_bo happens to be storred in the BO */
1295 struct anv_bo bo = *bo_in;
1296
1297 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1298
1299 struct bo_pool_bo_link *link = bo.map;
1300 VG_NOACCESS_WRITE(&link->bo, bo);
1301
1302 assert(util_is_power_of_two_or_zero(bo.size));
1303 const unsigned size_log2 = ilog2_round_up(bo.size);
1304 const unsigned bucket = size_log2 - 12;
1305 assert(bucket < ARRAY_SIZE(pool->free_list));
1306
1307 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1308 }
1309
1310 // Scratch pool
1311
1312 void
1313 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1314 {
1315 memset(pool, 0, sizeof(*pool));
1316 }
1317
1318 void
1319 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1320 {
1321 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1322 for (unsigned i = 0; i < 16; i++) {
1323 struct anv_scratch_bo *bo = &pool->bos[i][s];
1324 if (bo->exists > 0) {
1325 anv_vma_free(device, &bo->bo);
1326 anv_gem_close(device, bo->bo.gem_handle);
1327 }
1328 }
1329 }
1330 }
1331
1332 struct anv_bo *
1333 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1334 gl_shader_stage stage, unsigned per_thread_scratch)
1335 {
1336 if (per_thread_scratch == 0)
1337 return NULL;
1338
1339 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1340 assert(scratch_size_log2 < 16);
1341
1342 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1343
1344 /* We can use "exists" to shortcut and ignore the critical section */
1345 if (bo->exists)
1346 return &bo->bo;
1347
1348 pthread_mutex_lock(&device->mutex);
1349
1350 __sync_synchronize();
1351 if (bo->exists) {
1352 pthread_mutex_unlock(&device->mutex);
1353 return &bo->bo;
1354 }
1355
1356 const struct anv_physical_device *physical_device =
1357 &device->instance->physicalDevice;
1358 const struct gen_device_info *devinfo = &physical_device->info;
1359
1360 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1361
1362 unsigned scratch_ids_per_subslice;
1363 if (devinfo->is_haswell) {
1364 /* WaCSScratchSize:hsw
1365 *
1366 * Haswell's scratch space address calculation appears to be sparse
1367 * rather than tightly packed. The Thread ID has bits indicating
1368 * which subslice, EU within a subslice, and thread within an EU it
1369 * is. There's a maximum of two slices and two subslices, so these
1370 * can be stored with a single bit. Even though there are only 10 EUs
1371 * per subslice, this is stored in 4 bits, so there's an effective
1372 * maximum value of 16 EUs. Similarly, although there are only 7
1373 * threads per EU, this is stored in a 3 bit number, giving an
1374 * effective maximum value of 8 threads per EU.
1375 *
1376 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1377 * number of threads per subslice.
1378 */
1379 scratch_ids_per_subslice = 16 * 8;
1380 } else if (devinfo->is_cherryview) {
1381 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1382 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1383 * it had 8 EUs.
1384 */
1385 scratch_ids_per_subslice = 8 * 7;
1386 } else {
1387 scratch_ids_per_subslice = devinfo->max_cs_threads;
1388 }
1389
1390 uint32_t max_threads[] = {
1391 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1392 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1393 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1394 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1395 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1396 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1397 };
1398
1399 uint32_t size = per_thread_scratch * max_threads[stage];
1400
1401 anv_bo_init_new(&bo->bo, device, size);
1402
1403 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1404 * are still relative to the general state base address. When we emit
1405 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1406 * to the maximum (1 page under 4GB). This allows us to just place the
1407 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1408 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1409 * However, in order to do so, we need to ensure that the kernel does not
1410 * place the scratch BO above the 32-bit boundary.
1411 *
1412 * NOTE: Technically, it can't go "anywhere" because the top page is off
1413 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1414 * kernel allocates space using
1415 *
1416 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1417 *
1418 * so nothing will ever touch the top page.
1419 */
1420 assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1421
1422 if (device->instance->physicalDevice.has_exec_async)
1423 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1424
1425 if (device->instance->physicalDevice.use_softpin)
1426 bo->bo.flags |= EXEC_OBJECT_PINNED;
1427
1428 anv_vma_alloc(device, &bo->bo);
1429
1430 /* Set the exists last because it may be read by other threads */
1431 __sync_synchronize();
1432 bo->exists = true;
1433
1434 pthread_mutex_unlock(&device->mutex);
1435
1436 return &bo->bo;
1437 }
1438
1439 struct anv_cached_bo {
1440 struct anv_bo bo;
1441
1442 uint32_t refcount;
1443 };
1444
1445 VkResult
1446 anv_bo_cache_init(struct anv_bo_cache *cache)
1447 {
1448 cache->bo_map = _mesa_pointer_hash_table_create(NULL);
1449 if (!cache->bo_map)
1450 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1451
1452 if (pthread_mutex_init(&cache->mutex, NULL)) {
1453 _mesa_hash_table_destroy(cache->bo_map, NULL);
1454 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1455 "pthread_mutex_init failed: %m");
1456 }
1457
1458 return VK_SUCCESS;
1459 }
1460
1461 void
1462 anv_bo_cache_finish(struct anv_bo_cache *cache)
1463 {
1464 _mesa_hash_table_destroy(cache->bo_map, NULL);
1465 pthread_mutex_destroy(&cache->mutex);
1466 }
1467
1468 static struct anv_cached_bo *
1469 anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1470 {
1471 struct hash_entry *entry =
1472 _mesa_hash_table_search(cache->bo_map,
1473 (const void *)(uintptr_t)gem_handle);
1474 if (!entry)
1475 return NULL;
1476
1477 struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1478 assert(bo->bo.gem_handle == gem_handle);
1479
1480 return bo;
1481 }
1482
1483 UNUSED static struct anv_bo *
1484 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1485 {
1486 pthread_mutex_lock(&cache->mutex);
1487
1488 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1489
1490 pthread_mutex_unlock(&cache->mutex);
1491
1492 return bo ? &bo->bo : NULL;
1493 }
1494
1495 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1496 (EXEC_OBJECT_WRITE | \
1497 EXEC_OBJECT_ASYNC | \
1498 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1499 EXEC_OBJECT_PINNED | \
1500 ANV_BO_EXTERNAL)
1501
1502 VkResult
1503 anv_bo_cache_alloc(struct anv_device *device,
1504 struct anv_bo_cache *cache,
1505 uint64_t size, uint64_t bo_flags,
1506 struct anv_bo **bo_out)
1507 {
1508 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1509
1510 struct anv_cached_bo *bo =
1511 vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1512 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1513 if (!bo)
1514 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1515
1516 bo->refcount = 1;
1517
1518 /* The kernel is going to give us whole pages anyway */
1519 size = align_u64(size, 4096);
1520
1521 VkResult result = anv_bo_init_new(&bo->bo, device, size);
1522 if (result != VK_SUCCESS) {
1523 vk_free(&device->alloc, bo);
1524 return result;
1525 }
1526
1527 bo->bo.flags = bo_flags;
1528
1529 if (!anv_vma_alloc(device, &bo->bo)) {
1530 anv_gem_close(device, bo->bo.gem_handle);
1531 vk_free(&device->alloc, bo);
1532 return vk_errorf(device->instance, NULL,
1533 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1534 "failed to allocate virtual address for BO");
1535 }
1536
1537 assert(bo->bo.gem_handle);
1538
1539 pthread_mutex_lock(&cache->mutex);
1540
1541 _mesa_hash_table_insert(cache->bo_map,
1542 (void *)(uintptr_t)bo->bo.gem_handle, bo);
1543
1544 pthread_mutex_unlock(&cache->mutex);
1545
1546 *bo_out = &bo->bo;
1547
1548 return VK_SUCCESS;
1549 }
1550
1551 VkResult
1552 anv_bo_cache_import(struct anv_device *device,
1553 struct anv_bo_cache *cache,
1554 int fd, uint64_t bo_flags,
1555 struct anv_bo **bo_out)
1556 {
1557 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1558 assert(bo_flags & ANV_BO_EXTERNAL);
1559
1560 pthread_mutex_lock(&cache->mutex);
1561
1562 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1563 if (!gem_handle) {
1564 pthread_mutex_unlock(&cache->mutex);
1565 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1566 }
1567
1568 struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1569 if (bo) {
1570 /* We have to be careful how we combine flags so that it makes sense.
1571 * Really, though, if we get to this case and it actually matters, the
1572 * client has imported a BO twice in different ways and they get what
1573 * they have coming.
1574 */
1575 uint64_t new_flags = ANV_BO_EXTERNAL;
1576 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
1577 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
1578 new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1579 new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
1580
1581 /* It's theoretically possible for a BO to get imported such that it's
1582 * both pinned and not pinned. The only way this can happen is if it
1583 * gets imported as both a semaphore and a memory object and that would
1584 * be an application error. Just fail out in that case.
1585 */
1586 if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
1587 (bo_flags & EXEC_OBJECT_PINNED)) {
1588 pthread_mutex_unlock(&cache->mutex);
1589 return vk_errorf(device->instance, NULL,
1590 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1591 "The same BO was imported two different ways");
1592 }
1593
1594 /* It's also theoretically possible that someone could export a BO from
1595 * one heap and import it into another or to import the same BO into two
1596 * different heaps. If this happens, we could potentially end up both
1597 * allowing and disallowing 48-bit addresses. There's not much we can
1598 * do about it if we're pinning so we just throw an error and hope no
1599 * app is actually that stupid.
1600 */
1601 if ((new_flags & EXEC_OBJECT_PINNED) &&
1602 (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1603 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1604 pthread_mutex_unlock(&cache->mutex);
1605 return vk_errorf(device->instance, NULL,
1606 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1607 "The same BO was imported on two different heaps");
1608 }
1609
1610 bo->bo.flags = new_flags;
1611
1612 __sync_fetch_and_add(&bo->refcount, 1);
1613 } else {
1614 off_t size = lseek(fd, 0, SEEK_END);
1615 if (size == (off_t)-1) {
1616 anv_gem_close(device, gem_handle);
1617 pthread_mutex_unlock(&cache->mutex);
1618 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1619 }
1620
1621 bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1622 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1623 if (!bo) {
1624 anv_gem_close(device, gem_handle);
1625 pthread_mutex_unlock(&cache->mutex);
1626 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1627 }
1628
1629 bo->refcount = 1;
1630
1631 anv_bo_init(&bo->bo, gem_handle, size);
1632 bo->bo.flags = bo_flags;
1633
1634 if (!anv_vma_alloc(device, &bo->bo)) {
1635 anv_gem_close(device, bo->bo.gem_handle);
1636 pthread_mutex_unlock(&cache->mutex);
1637 vk_free(&device->alloc, bo);
1638 return vk_errorf(device->instance, NULL,
1639 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1640 "failed to allocate virtual address for BO");
1641 }
1642
1643 _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1644 }
1645
1646 pthread_mutex_unlock(&cache->mutex);
1647 *bo_out = &bo->bo;
1648
1649 return VK_SUCCESS;
1650 }
1651
1652 VkResult
1653 anv_bo_cache_export(struct anv_device *device,
1654 struct anv_bo_cache *cache,
1655 struct anv_bo *bo_in, int *fd_out)
1656 {
1657 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1658 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1659
1660 /* This BO must have been flagged external in order for us to be able
1661 * to export it. This is done based on external options passed into
1662 * anv_AllocateMemory.
1663 */
1664 assert(bo->bo.flags & ANV_BO_EXTERNAL);
1665
1666 int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1667 if (fd < 0)
1668 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1669
1670 *fd_out = fd;
1671
1672 return VK_SUCCESS;
1673 }
1674
1675 static bool
1676 atomic_dec_not_one(uint32_t *counter)
1677 {
1678 uint32_t old, val;
1679
1680 val = *counter;
1681 while (1) {
1682 if (val == 1)
1683 return false;
1684
1685 old = __sync_val_compare_and_swap(counter, val, val - 1);
1686 if (old == val)
1687 return true;
1688
1689 val = old;
1690 }
1691 }
1692
1693 void
1694 anv_bo_cache_release(struct anv_device *device,
1695 struct anv_bo_cache *cache,
1696 struct anv_bo *bo_in)
1697 {
1698 assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1699 struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1700
1701 /* Try to decrement the counter but don't go below one. If this succeeds
1702 * then the refcount has been decremented and we are not the last
1703 * reference.
1704 */
1705 if (atomic_dec_not_one(&bo->refcount))
1706 return;
1707
1708 pthread_mutex_lock(&cache->mutex);
1709
1710 /* We are probably the last reference since our attempt to decrement above
1711 * failed. However, we can't actually know until we are inside the mutex.
1712 * Otherwise, someone could import the BO between the decrement and our
1713 * taking the mutex.
1714 */
1715 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1716 /* Turns out we're not the last reference. Unlock and bail. */
1717 pthread_mutex_unlock(&cache->mutex);
1718 return;
1719 }
1720
1721 struct hash_entry *entry =
1722 _mesa_hash_table_search(cache->bo_map,
1723 (const void *)(uintptr_t)bo->bo.gem_handle);
1724 assert(entry);
1725 _mesa_hash_table_remove(cache->bo_map, entry);
1726
1727 if (bo->bo.map)
1728 anv_gem_munmap(bo->bo.map, bo->bo.size);
1729
1730 anv_vma_free(device, &bo->bo);
1731
1732 anv_gem_close(device, bo->bo.gem_handle);
1733
1734 /* Don't unlock until we've actually closed the BO. The whole point of
1735 * the BO cache is to ensure that we correctly handle races with creating
1736 * and releasing GEM handles and we don't want to let someone import the BO
1737 * again between mutex unlock and closing the GEM handle.
1738 */
1739 pthread_mutex_unlock(&cache->mutex);
1740
1741 vk_free(&device->alloc, bo);
1742 }