anv/batch_chain: Simplify secondary batch return chaining
[mesa.git] / src / intel / vulkan / anv_batch_chain.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen8_pack.h"
33
34 #include "util/debug.h"
35
36 /** \file anv_batch_chain.c
37 *
38 * This file contains functions related to anv_cmd_buffer as a data
39 * structure. This involves everything required to create and destroy
40 * the actual batch buffers as well as link them together and handle
41 * relocations and surface state. It specifically does *not* contain any
42 * handling of actual vkCmd calls beyond vkCmdExecuteCommands.
43 */
44
45 /*-----------------------------------------------------------------------*
46 * Functions related to anv_reloc_list
47 *-----------------------------------------------------------------------*/
48
49 static VkResult
50 anv_reloc_list_init_clone(struct anv_reloc_list *list,
51 const VkAllocationCallbacks *alloc,
52 const struct anv_reloc_list *other_list)
53 {
54 if (other_list) {
55 list->num_relocs = other_list->num_relocs;
56 list->array_length = other_list->array_length;
57 } else {
58 list->num_relocs = 0;
59 list->array_length = 256;
60 }
61
62 list->relocs =
63 vk_alloc(alloc, list->array_length * sizeof(*list->relocs), 8,
64 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
65
66 if (list->relocs == NULL)
67 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
68
69 list->reloc_bos =
70 vk_alloc(alloc, list->array_length * sizeof(*list->reloc_bos), 8,
71 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
72
73 if (list->reloc_bos == NULL) {
74 vk_free(alloc, list->relocs);
75 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
76 }
77
78 list->deps = _mesa_set_create(NULL, _mesa_hash_pointer,
79 _mesa_key_pointer_equal);
80
81 if (!list->deps) {
82 vk_free(alloc, list->relocs);
83 vk_free(alloc, list->reloc_bos);
84 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
85 }
86
87 if (other_list) {
88 memcpy(list->relocs, other_list->relocs,
89 list->array_length * sizeof(*list->relocs));
90 memcpy(list->reloc_bos, other_list->reloc_bos,
91 list->array_length * sizeof(*list->reloc_bos));
92 struct set_entry *entry;
93 set_foreach(other_list->deps, entry) {
94 _mesa_set_add_pre_hashed(list->deps, entry->hash, entry->key);
95 }
96 }
97
98 return VK_SUCCESS;
99 }
100
101 VkResult
102 anv_reloc_list_init(struct anv_reloc_list *list,
103 const VkAllocationCallbacks *alloc)
104 {
105 return anv_reloc_list_init_clone(list, alloc, NULL);
106 }
107
108 void
109 anv_reloc_list_finish(struct anv_reloc_list *list,
110 const VkAllocationCallbacks *alloc)
111 {
112 vk_free(alloc, list->relocs);
113 vk_free(alloc, list->reloc_bos);
114 _mesa_set_destroy(list->deps, NULL);
115 }
116
117 static VkResult
118 anv_reloc_list_grow(struct anv_reloc_list *list,
119 const VkAllocationCallbacks *alloc,
120 size_t num_additional_relocs)
121 {
122 if (list->num_relocs + num_additional_relocs <= list->array_length)
123 return VK_SUCCESS;
124
125 size_t new_length = list->array_length * 2;
126 while (new_length < list->num_relocs + num_additional_relocs)
127 new_length *= 2;
128
129 struct drm_i915_gem_relocation_entry *new_relocs =
130 vk_alloc(alloc, new_length * sizeof(*list->relocs), 8,
131 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
132 if (new_relocs == NULL)
133 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
134
135 struct anv_bo **new_reloc_bos =
136 vk_alloc(alloc, new_length * sizeof(*list->reloc_bos), 8,
137 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
138 if (new_reloc_bos == NULL) {
139 vk_free(alloc, new_relocs);
140 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
141 }
142
143 memcpy(new_relocs, list->relocs, list->num_relocs * sizeof(*list->relocs));
144 memcpy(new_reloc_bos, list->reloc_bos,
145 list->num_relocs * sizeof(*list->reloc_bos));
146
147 vk_free(alloc, list->relocs);
148 vk_free(alloc, list->reloc_bos);
149
150 list->array_length = new_length;
151 list->relocs = new_relocs;
152 list->reloc_bos = new_reloc_bos;
153
154 return VK_SUCCESS;
155 }
156
157 VkResult
158 anv_reloc_list_add(struct anv_reloc_list *list,
159 const VkAllocationCallbacks *alloc,
160 uint32_t offset, struct anv_bo *target_bo, uint32_t delta)
161 {
162 struct drm_i915_gem_relocation_entry *entry;
163 int index;
164
165 if (target_bo->flags & EXEC_OBJECT_PINNED) {
166 _mesa_set_add(list->deps, target_bo);
167 return VK_SUCCESS;
168 }
169
170 VkResult result = anv_reloc_list_grow(list, alloc, 1);
171 if (result != VK_SUCCESS)
172 return result;
173
174 /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
175 index = list->num_relocs++;
176 list->reloc_bos[index] = target_bo;
177 entry = &list->relocs[index];
178 entry->target_handle = target_bo->gem_handle;
179 entry->delta = delta;
180 entry->offset = offset;
181 entry->presumed_offset = target_bo->offset;
182 entry->read_domains = 0;
183 entry->write_domain = 0;
184 VG(VALGRIND_CHECK_MEM_IS_DEFINED(entry, sizeof(*entry)));
185
186 return VK_SUCCESS;
187 }
188
189 static VkResult
190 anv_reloc_list_append(struct anv_reloc_list *list,
191 const VkAllocationCallbacks *alloc,
192 struct anv_reloc_list *other, uint32_t offset)
193 {
194 VkResult result = anv_reloc_list_grow(list, alloc, other->num_relocs);
195 if (result != VK_SUCCESS)
196 return result;
197
198 memcpy(&list->relocs[list->num_relocs], &other->relocs[0],
199 other->num_relocs * sizeof(other->relocs[0]));
200 memcpy(&list->reloc_bos[list->num_relocs], &other->reloc_bos[0],
201 other->num_relocs * sizeof(other->reloc_bos[0]));
202
203 for (uint32_t i = 0; i < other->num_relocs; i++)
204 list->relocs[i + list->num_relocs].offset += offset;
205
206 list->num_relocs += other->num_relocs;
207
208 struct set_entry *entry;
209 set_foreach(other->deps, entry) {
210 _mesa_set_add_pre_hashed(list->deps, entry->hash, entry->key);
211 }
212
213 return VK_SUCCESS;
214 }
215
216 /*-----------------------------------------------------------------------*
217 * Functions related to anv_batch
218 *-----------------------------------------------------------------------*/
219
220 void *
221 anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
222 {
223 if (batch->next + num_dwords * 4 > batch->end) {
224 VkResult result = batch->extend_cb(batch, batch->user_data);
225 if (result != VK_SUCCESS) {
226 anv_batch_set_error(batch, result);
227 return NULL;
228 }
229 }
230
231 void *p = batch->next;
232
233 batch->next += num_dwords * 4;
234 assert(batch->next <= batch->end);
235
236 return p;
237 }
238
239 uint64_t
240 anv_batch_emit_reloc(struct anv_batch *batch,
241 void *location, struct anv_bo *bo, uint32_t delta)
242 {
243 VkResult result = anv_reloc_list_add(batch->relocs, batch->alloc,
244 location - batch->start, bo, delta);
245 if (result != VK_SUCCESS) {
246 anv_batch_set_error(batch, result);
247 return 0;
248 }
249
250 return bo->offset + delta;
251 }
252
253 void
254 anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
255 {
256 uint32_t size, offset;
257
258 size = other->next - other->start;
259 assert(size % 4 == 0);
260
261 if (batch->next + size > batch->end) {
262 VkResult result = batch->extend_cb(batch, batch->user_data);
263 if (result != VK_SUCCESS) {
264 anv_batch_set_error(batch, result);
265 return;
266 }
267 }
268
269 assert(batch->next + size <= batch->end);
270
271 VG(VALGRIND_CHECK_MEM_IS_DEFINED(other->start, size));
272 memcpy(batch->next, other->start, size);
273
274 offset = batch->next - batch->start;
275 VkResult result = anv_reloc_list_append(batch->relocs, batch->alloc,
276 other->relocs, offset);
277 if (result != VK_SUCCESS) {
278 anv_batch_set_error(batch, result);
279 return;
280 }
281
282 batch->next += size;
283 }
284
285 /*-----------------------------------------------------------------------*
286 * Functions related to anv_batch_bo
287 *-----------------------------------------------------------------------*/
288
289 static VkResult
290 anv_batch_bo_create(struct anv_cmd_buffer *cmd_buffer,
291 struct anv_batch_bo **bbo_out)
292 {
293 VkResult result;
294
295 struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
296 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
297 if (bbo == NULL)
298 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
299
300 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
301 ANV_CMD_BUFFER_BATCH_SIZE);
302 if (result != VK_SUCCESS)
303 goto fail_alloc;
304
305 result = anv_reloc_list_init(&bbo->relocs, &cmd_buffer->pool->alloc);
306 if (result != VK_SUCCESS)
307 goto fail_bo_alloc;
308
309 *bbo_out = bbo;
310
311 return VK_SUCCESS;
312
313 fail_bo_alloc:
314 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
315 fail_alloc:
316 vk_free(&cmd_buffer->pool->alloc, bbo);
317
318 return result;
319 }
320
321 static VkResult
322 anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer,
323 const struct anv_batch_bo *other_bbo,
324 struct anv_batch_bo **bbo_out)
325 {
326 VkResult result;
327
328 struct anv_batch_bo *bbo = vk_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
329 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
330 if (bbo == NULL)
331 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
332
333 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
334 other_bbo->bo.size);
335 if (result != VK_SUCCESS)
336 goto fail_alloc;
337
338 result = anv_reloc_list_init_clone(&bbo->relocs, &cmd_buffer->pool->alloc,
339 &other_bbo->relocs);
340 if (result != VK_SUCCESS)
341 goto fail_bo_alloc;
342
343 bbo->length = other_bbo->length;
344 memcpy(bbo->bo.map, other_bbo->bo.map, other_bbo->length);
345
346 *bbo_out = bbo;
347
348 return VK_SUCCESS;
349
350 fail_bo_alloc:
351 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
352 fail_alloc:
353 vk_free(&cmd_buffer->pool->alloc, bbo);
354
355 return result;
356 }
357
358 static void
359 anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
360 size_t batch_padding)
361 {
362 batch->next = batch->start = bbo->bo.map;
363 batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
364 batch->relocs = &bbo->relocs;
365 bbo->relocs.num_relocs = 0;
366 _mesa_set_clear(bbo->relocs.deps, NULL);
367 }
368
369 static void
370 anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch,
371 size_t batch_padding)
372 {
373 batch->start = bbo->bo.map;
374 batch->next = bbo->bo.map + bbo->length;
375 batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
376 batch->relocs = &bbo->relocs;
377 }
378
379 static void
380 anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch)
381 {
382 assert(batch->start == bbo->bo.map);
383 bbo->length = batch->next - batch->start;
384 VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length));
385 }
386
387 static VkResult
388 anv_batch_bo_grow(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo,
389 struct anv_batch *batch, size_t aditional,
390 size_t batch_padding)
391 {
392 assert(batch->start == bbo->bo.map);
393 bbo->length = batch->next - batch->start;
394
395 size_t new_size = bbo->bo.size;
396 while (new_size <= bbo->length + aditional + batch_padding)
397 new_size *= 2;
398
399 if (new_size == bbo->bo.size)
400 return VK_SUCCESS;
401
402 struct anv_bo new_bo;
403 VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
404 &new_bo, new_size);
405 if (result != VK_SUCCESS)
406 return result;
407
408 memcpy(new_bo.map, bbo->bo.map, bbo->length);
409
410 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
411
412 bbo->bo = new_bo;
413 anv_batch_bo_continue(bbo, batch, batch_padding);
414
415 return VK_SUCCESS;
416 }
417
418 static void
419 anv_batch_bo_link(struct anv_cmd_buffer *cmd_buffer,
420 struct anv_batch_bo *prev_bbo,
421 struct anv_batch_bo *next_bbo,
422 uint32_t next_bbo_offset)
423 {
424 MAYBE_UNUSED const uint32_t bb_start_offset =
425 prev_bbo->length - GEN8_MI_BATCH_BUFFER_START_length * 4;
426 MAYBE_UNUSED const uint32_t *bb_start = prev_bbo->bo.map + bb_start_offset;
427
428 /* Make sure we're looking at a MI_BATCH_BUFFER_START */
429 assert(((*bb_start >> 29) & 0x07) == 0);
430 assert(((*bb_start >> 23) & 0x3f) == 49);
431
432 uint32_t reloc_idx = prev_bbo->relocs.num_relocs - 1;
433 assert(prev_bbo->relocs.relocs[reloc_idx].offset == bb_start_offset + 4);
434
435 prev_bbo->relocs.reloc_bos[reloc_idx] = &next_bbo->bo;
436 prev_bbo->relocs.relocs[reloc_idx].delta = next_bbo_offset;
437
438 /* Use a bogus presumed offset to force a relocation */
439 prev_bbo->relocs.relocs[reloc_idx].presumed_offset = -1;
440 }
441
442 static void
443 anv_batch_bo_destroy(struct anv_batch_bo *bbo,
444 struct anv_cmd_buffer *cmd_buffer)
445 {
446 anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->pool->alloc);
447 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
448 vk_free(&cmd_buffer->pool->alloc, bbo);
449 }
450
451 static VkResult
452 anv_batch_bo_list_clone(const struct list_head *list,
453 struct anv_cmd_buffer *cmd_buffer,
454 struct list_head *new_list)
455 {
456 VkResult result = VK_SUCCESS;
457
458 list_inithead(new_list);
459
460 struct anv_batch_bo *prev_bbo = NULL;
461 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
462 struct anv_batch_bo *new_bbo = NULL;
463 result = anv_batch_bo_clone(cmd_buffer, bbo, &new_bbo);
464 if (result != VK_SUCCESS)
465 break;
466 list_addtail(&new_bbo->link, new_list);
467
468 if (prev_bbo)
469 anv_batch_bo_link(cmd_buffer, prev_bbo, new_bbo, 0);
470
471 prev_bbo = new_bbo;
472 }
473
474 if (result != VK_SUCCESS) {
475 list_for_each_entry_safe(struct anv_batch_bo, bbo, new_list, link)
476 anv_batch_bo_destroy(bbo, cmd_buffer);
477 }
478
479 return result;
480 }
481
482 /*-----------------------------------------------------------------------*
483 * Functions related to anv_batch_bo
484 *-----------------------------------------------------------------------*/
485
486 static struct anv_batch_bo *
487 anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer *cmd_buffer)
488 {
489 return LIST_ENTRY(struct anv_batch_bo, cmd_buffer->batch_bos.prev, link);
490 }
491
492 struct anv_address
493 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer)
494 {
495 struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states);
496 return (struct anv_address) {
497 .bo = &anv_binding_table_pool(cmd_buffer->device)->block_pool.bo,
498 .offset = bt_block->offset,
499 };
500 }
501
502 static void
503 emit_batch_buffer_start(struct anv_cmd_buffer *cmd_buffer,
504 struct anv_bo *bo, uint32_t offset)
505 {
506 /* In gen8+ the address field grew to two dwords to accomodate 48 bit
507 * offsets. The high 16 bits are in the last dword, so we can use the gen8
508 * version in either case, as long as we set the instruction length in the
509 * header accordingly. This means that we always emit three dwords here
510 * and all the padding and adjustment we do in this file works for all
511 * gens.
512 */
513
514 #define GEN7_MI_BATCH_BUFFER_START_length 2
515 #define GEN7_MI_BATCH_BUFFER_START_length_bias 2
516
517 const uint32_t gen7_length =
518 GEN7_MI_BATCH_BUFFER_START_length - GEN7_MI_BATCH_BUFFER_START_length_bias;
519 const uint32_t gen8_length =
520 GEN8_MI_BATCH_BUFFER_START_length - GEN8_MI_BATCH_BUFFER_START_length_bias;
521
522 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_START, bbs) {
523 bbs.DWordLength = cmd_buffer->device->info.gen < 8 ?
524 gen7_length : gen8_length;
525 bbs._2ndLevelBatchBuffer = _1stlevelbatch;
526 bbs.AddressSpaceIndicator = ASI_PPGTT;
527 bbs.BatchBufferStartAddress = (struct anv_address) { bo, offset };
528 }
529 }
530
531 static void
532 cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer *cmd_buffer,
533 struct anv_batch_bo *bbo)
534 {
535 struct anv_batch *batch = &cmd_buffer->batch;
536 struct anv_batch_bo *current_bbo =
537 anv_cmd_buffer_current_batch_bo(cmd_buffer);
538
539 /* We set the end of the batch a little short so we would be sure we
540 * have room for the chaining command. Since we're about to emit the
541 * chaining command, let's set it back where it should go.
542 */
543 batch->end += GEN8_MI_BATCH_BUFFER_START_length * 4;
544 assert(batch->end == current_bbo->bo.map + current_bbo->bo.size);
545
546 emit_batch_buffer_start(cmd_buffer, &bbo->bo, 0);
547
548 anv_batch_bo_finish(current_bbo, batch);
549 }
550
551 static VkResult
552 anv_cmd_buffer_chain_batch(struct anv_batch *batch, void *_data)
553 {
554 struct anv_cmd_buffer *cmd_buffer = _data;
555 struct anv_batch_bo *new_bbo;
556
557 VkResult result = anv_batch_bo_create(cmd_buffer, &new_bbo);
558 if (result != VK_SUCCESS)
559 return result;
560
561 struct anv_batch_bo **seen_bbo = u_vector_add(&cmd_buffer->seen_bbos);
562 if (seen_bbo == NULL) {
563 anv_batch_bo_destroy(new_bbo, cmd_buffer);
564 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
565 }
566 *seen_bbo = new_bbo;
567
568 cmd_buffer_chain_to_batch_bo(cmd_buffer, new_bbo);
569
570 list_addtail(&new_bbo->link, &cmd_buffer->batch_bos);
571
572 anv_batch_bo_start(new_bbo, batch, GEN8_MI_BATCH_BUFFER_START_length * 4);
573
574 return VK_SUCCESS;
575 }
576
577 static VkResult
578 anv_cmd_buffer_grow_batch(struct anv_batch *batch, void *_data)
579 {
580 struct anv_cmd_buffer *cmd_buffer = _data;
581 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
582
583 anv_batch_bo_grow(cmd_buffer, bbo, &cmd_buffer->batch, 4096,
584 GEN8_MI_BATCH_BUFFER_START_length * 4);
585
586 return VK_SUCCESS;
587 }
588
589 /** Allocate a binding table
590 *
591 * This function allocates a binding table. This is a bit more complicated
592 * than one would think due to a combination of Vulkan driver design and some
593 * unfortunate hardware restrictions.
594 *
595 * The 3DSTATE_BINDING_TABLE_POINTERS_* packets only have a 16-bit field for
596 * the binding table pointer which means that all binding tables need to live
597 * in the bottom 64k of surface state base address. The way the GL driver has
598 * classically dealt with this restriction is to emit all surface states
599 * on-the-fly into the batch and have a batch buffer smaller than 64k. This
600 * isn't really an option in Vulkan for a couple of reasons:
601 *
602 * 1) In Vulkan, we have growing (or chaining) batches so surface states have
603 * to live in their own buffer and we have to be able to re-emit
604 * STATE_BASE_ADDRESS as needed which requires a full pipeline stall. In
605 * order to avoid emitting STATE_BASE_ADDRESS any more often than needed
606 * (it's not that hard to hit 64k of just binding tables), we allocate
607 * surface state objects up-front when VkImageView is created. In order
608 * for this to work, surface state objects need to be allocated from a
609 * global buffer.
610 *
611 * 2) We tried to design the surface state system in such a way that it's
612 * already ready for bindless texturing. The way bindless texturing works
613 * on our hardware is that you have a big pool of surface state objects
614 * (with its own state base address) and the bindless handles are simply
615 * offsets into that pool. With the architecture we chose, we already
616 * have that pool and it's exactly the same pool that we use for regular
617 * surface states so we should already be ready for bindless.
618 *
619 * 3) For render targets, we need to be able to fill out the surface states
620 * later in vkBeginRenderPass so that we can assign clear colors
621 * correctly. One way to do this would be to just create the surface
622 * state data and then repeatedly copy it into the surface state BO every
623 * time we have to re-emit STATE_BASE_ADDRESS. While this works, it's
624 * rather annoying and just being able to allocate them up-front and
625 * re-use them for the entire render pass.
626 *
627 * While none of these are technically blockers for emitting state on the fly
628 * like we do in GL, the ability to have a single surface state pool is
629 * simplifies things greatly. Unfortunately, it comes at a cost...
630 *
631 * Because of the 64k limitation of 3DSTATE_BINDING_TABLE_POINTERS_*, we can't
632 * place the binding tables just anywhere in surface state base address.
633 * Because 64k isn't a whole lot of space, we can't simply restrict the
634 * surface state buffer to 64k, we have to be more clever. The solution we've
635 * chosen is to have a block pool with a maximum size of 2G that starts at
636 * zero and grows in both directions. All surface states are allocated from
637 * the top of the pool (positive offsets) and we allocate blocks (< 64k) of
638 * binding tables from the bottom of the pool (negative offsets). Every time
639 * we allocate a new binding table block, we set surface state base address to
640 * point to the bottom of the binding table block. This way all of the
641 * binding tables in the block are in the bottom 64k of surface state base
642 * address. When we fill out the binding table, we add the distance between
643 * the bottom of our binding table block and zero of the block pool to the
644 * surface state offsets so that they are correct relative to out new surface
645 * state base address at the bottom of the binding table block.
646 *
647 * \see adjust_relocations_from_block_pool()
648 * \see adjust_relocations_too_block_pool()
649 *
650 * \param[in] entries The number of surface state entries the binding
651 * table should be able to hold.
652 *
653 * \param[out] state_offset The offset surface surface state base address
654 * where the surface states live. This must be
655 * added to the surface state offset when it is
656 * written into the binding table entry.
657 *
658 * \return An anv_state representing the binding table
659 */
660 struct anv_state
661 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
662 uint32_t entries, uint32_t *state_offset)
663 {
664 struct anv_device *device = cmd_buffer->device;
665 struct anv_state_pool *state_pool = &device->surface_state_pool;
666 struct anv_state *bt_block = u_vector_head(&cmd_buffer->bt_block_states);
667 struct anv_state state;
668
669 state.alloc_size = align_u32(entries * 4, 32);
670
671 if (cmd_buffer->bt_next + state.alloc_size > state_pool->block_size)
672 return (struct anv_state) { 0 };
673
674 state.offset = cmd_buffer->bt_next;
675 state.map = anv_binding_table_pool(device)->block_pool.map +
676 bt_block->offset + state.offset;
677
678 cmd_buffer->bt_next += state.alloc_size;
679
680 if (device->instance->physicalDevice.use_softpin) {
681 assert(bt_block->offset >= 0);
682 *state_offset = device->surface_state_pool.block_pool.start_address -
683 device->binding_table_pool.block_pool.start_address - bt_block->offset;
684 } else {
685 assert(bt_block->offset < 0);
686 *state_offset = -bt_block->offset;
687 }
688
689 return state;
690 }
691
692 struct anv_state
693 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer)
694 {
695 struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
696 return anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
697 isl_dev->ss.size, isl_dev->ss.align);
698 }
699
700 struct anv_state
701 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
702 uint32_t size, uint32_t alignment)
703 {
704 return anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
705 size, alignment);
706 }
707
708 VkResult
709 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer)
710 {
711 struct anv_state *bt_block = u_vector_add(&cmd_buffer->bt_block_states);
712 if (bt_block == NULL) {
713 anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY);
714 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
715 }
716
717 *bt_block = anv_binding_table_pool_alloc(cmd_buffer->device);
718 cmd_buffer->bt_next = 0;
719
720 return VK_SUCCESS;
721 }
722
723 VkResult
724 anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
725 {
726 struct anv_batch_bo *batch_bo;
727 VkResult result;
728
729 list_inithead(&cmd_buffer->batch_bos);
730
731 result = anv_batch_bo_create(cmd_buffer, &batch_bo);
732 if (result != VK_SUCCESS)
733 return result;
734
735 list_addtail(&batch_bo->link, &cmd_buffer->batch_bos);
736
737 cmd_buffer->batch.alloc = &cmd_buffer->pool->alloc;
738 cmd_buffer->batch.user_data = cmd_buffer;
739
740 if (cmd_buffer->device->can_chain_batches) {
741 cmd_buffer->batch.extend_cb = anv_cmd_buffer_chain_batch;
742 } else {
743 cmd_buffer->batch.extend_cb = anv_cmd_buffer_grow_batch;
744 }
745
746 anv_batch_bo_start(batch_bo, &cmd_buffer->batch,
747 GEN8_MI_BATCH_BUFFER_START_length * 4);
748
749 int success = u_vector_init(&cmd_buffer->seen_bbos,
750 sizeof(struct anv_bo *),
751 8 * sizeof(struct anv_bo *));
752 if (!success)
753 goto fail_batch_bo;
754
755 *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) = batch_bo;
756
757 /* u_vector requires power-of-two size elements */
758 unsigned pow2_state_size = util_next_power_of_two(sizeof(struct anv_state));
759 success = u_vector_init(&cmd_buffer->bt_block_states,
760 pow2_state_size, 8 * pow2_state_size);
761 if (!success)
762 goto fail_seen_bbos;
763
764 result = anv_reloc_list_init(&cmd_buffer->surface_relocs,
765 &cmd_buffer->pool->alloc);
766 if (result != VK_SUCCESS)
767 goto fail_bt_blocks;
768 cmd_buffer->last_ss_pool_center = 0;
769
770 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
771 if (result != VK_SUCCESS)
772 goto fail_bt_blocks;
773
774 return VK_SUCCESS;
775
776 fail_bt_blocks:
777 u_vector_finish(&cmd_buffer->bt_block_states);
778 fail_seen_bbos:
779 u_vector_finish(&cmd_buffer->seen_bbos);
780 fail_batch_bo:
781 anv_batch_bo_destroy(batch_bo, cmd_buffer);
782
783 return result;
784 }
785
786 void
787 anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
788 {
789 struct anv_state *bt_block;
790 u_vector_foreach(bt_block, &cmd_buffer->bt_block_states)
791 anv_binding_table_pool_free(cmd_buffer->device, *bt_block);
792 u_vector_finish(&cmd_buffer->bt_block_states);
793
794 anv_reloc_list_finish(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc);
795
796 u_vector_finish(&cmd_buffer->seen_bbos);
797
798 /* Destroy all of the batch buffers */
799 list_for_each_entry_safe(struct anv_batch_bo, bbo,
800 &cmd_buffer->batch_bos, link) {
801 anv_batch_bo_destroy(bbo, cmd_buffer);
802 }
803 }
804
805 void
806 anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
807 {
808 /* Delete all but the first batch bo */
809 assert(!list_empty(&cmd_buffer->batch_bos));
810 while (cmd_buffer->batch_bos.next != cmd_buffer->batch_bos.prev) {
811 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
812 list_del(&bbo->link);
813 anv_batch_bo_destroy(bbo, cmd_buffer);
814 }
815 assert(!list_empty(&cmd_buffer->batch_bos));
816
817 anv_batch_bo_start(anv_cmd_buffer_current_batch_bo(cmd_buffer),
818 &cmd_buffer->batch,
819 GEN8_MI_BATCH_BUFFER_START_length * 4);
820
821 while (u_vector_length(&cmd_buffer->bt_block_states) > 1) {
822 struct anv_state *bt_block = u_vector_remove(&cmd_buffer->bt_block_states);
823 anv_binding_table_pool_free(cmd_buffer->device, *bt_block);
824 }
825 assert(u_vector_length(&cmd_buffer->bt_block_states) == 1);
826 cmd_buffer->bt_next = 0;
827
828 cmd_buffer->surface_relocs.num_relocs = 0;
829 _mesa_set_clear(cmd_buffer->surface_relocs.deps, NULL);
830 cmd_buffer->last_ss_pool_center = 0;
831
832 /* Reset the list of seen buffers */
833 cmd_buffer->seen_bbos.head = 0;
834 cmd_buffer->seen_bbos.tail = 0;
835
836 *(struct anv_batch_bo **)u_vector_add(&cmd_buffer->seen_bbos) =
837 anv_cmd_buffer_current_batch_bo(cmd_buffer);
838 }
839
840 void
841 anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer)
842 {
843 struct anv_batch_bo *batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
844
845 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
846 /* When we start a batch buffer, we subtract a certain amount of
847 * padding from the end to ensure that we always have room to emit a
848 * BATCH_BUFFER_START to chain to the next BO. We need to remove
849 * that padding before we end the batch; otherwise, we may end up
850 * with our BATCH_BUFFER_END in another BO.
851 */
852 cmd_buffer->batch.end += GEN8_MI_BATCH_BUFFER_START_length * 4;
853 assert(cmd_buffer->batch.end == batch_bo->bo.map + batch_bo->bo.size);
854
855 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_END, bbe);
856
857 /* Round batch up to an even number of dwords. */
858 if ((cmd_buffer->batch.next - cmd_buffer->batch.start) & 4)
859 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_NOOP, noop);
860
861 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_PRIMARY;
862 } else {
863 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
864 /* If this is a secondary command buffer, we need to determine the
865 * mode in which it will be executed with vkExecuteCommands. We
866 * determine this statically here so that this stays in sync with the
867 * actual ExecuteCommands implementation.
868 */
869 const uint32_t length = cmd_buffer->batch.next - cmd_buffer->batch.start;
870 if (!cmd_buffer->device->can_chain_batches) {
871 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT;
872 } else if ((cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) &&
873 (length < ANV_CMD_BUFFER_BATCH_SIZE / 2)) {
874 /* If the secondary has exactly one batch buffer in its list *and*
875 * that batch buffer is less than half of the maximum size, we're
876 * probably better of simply copying it into our batch.
877 */
878 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_EMIT;
879 } else if (!(cmd_buffer->usage_flags &
880 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
881 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CHAIN;
882
883 /* In order to chain, we need this command buffer to contain an
884 * MI_BATCH_BUFFER_START which will jump back to the calling batch.
885 * It doesn't matter where it points now so long as has a valid
886 * relocation. We'll adjust it later as part of the chaining
887 * process.
888 */
889 emit_batch_buffer_start(cmd_buffer, &batch_bo->bo, 0);
890 } else {
891 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN;
892 }
893 }
894
895 anv_batch_bo_finish(batch_bo, &cmd_buffer->batch);
896 }
897
898 static VkResult
899 anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer *cmd_buffer,
900 struct list_head *list)
901 {
902 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
903 struct anv_batch_bo **bbo_ptr = u_vector_add(&cmd_buffer->seen_bbos);
904 if (bbo_ptr == NULL)
905 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
906
907 *bbo_ptr = bbo;
908 }
909
910 return VK_SUCCESS;
911 }
912
913 void
914 anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
915 struct anv_cmd_buffer *secondary)
916 {
917 switch (secondary->exec_mode) {
918 case ANV_CMD_BUFFER_EXEC_MODE_EMIT:
919 anv_batch_emit_batch(&primary->batch, &secondary->batch);
920 break;
921 case ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT: {
922 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(primary);
923 unsigned length = secondary->batch.end - secondary->batch.start;
924 anv_batch_bo_grow(primary, bbo, &primary->batch, length,
925 GEN8_MI_BATCH_BUFFER_START_length * 4);
926 anv_batch_emit_batch(&primary->batch, &secondary->batch);
927 break;
928 }
929 case ANV_CMD_BUFFER_EXEC_MODE_CHAIN: {
930 struct anv_batch_bo *first_bbo =
931 list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link);
932 struct anv_batch_bo *last_bbo =
933 list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link);
934
935 emit_batch_buffer_start(primary, &first_bbo->bo, 0);
936
937 struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary);
938 assert(primary->batch.start == this_bbo->bo.map);
939 uint32_t offset = primary->batch.next - primary->batch.start;
940
941 /* Make the tail of the secondary point back to right after the
942 * MI_BATCH_BUFFER_START in the primary batch.
943 */
944 anv_batch_bo_link(primary, last_bbo, this_bbo, offset);
945
946 anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos);
947 break;
948 }
949 case ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN: {
950 struct list_head copy_list;
951 VkResult result = anv_batch_bo_list_clone(&secondary->batch_bos,
952 secondary,
953 &copy_list);
954 if (result != VK_SUCCESS)
955 return; /* FIXME */
956
957 anv_cmd_buffer_add_seen_bbos(primary, &copy_list);
958
959 struct anv_batch_bo *first_bbo =
960 list_first_entry(&copy_list, struct anv_batch_bo, link);
961 struct anv_batch_bo *last_bbo =
962 list_last_entry(&copy_list, struct anv_batch_bo, link);
963
964 cmd_buffer_chain_to_batch_bo(primary, first_bbo);
965
966 list_splicetail(&copy_list, &primary->batch_bos);
967
968 anv_batch_bo_continue(last_bbo, &primary->batch,
969 GEN8_MI_BATCH_BUFFER_START_length * 4);
970 break;
971 }
972 default:
973 assert(!"Invalid execution mode");
974 }
975
976 anv_reloc_list_append(&primary->surface_relocs, &primary->pool->alloc,
977 &secondary->surface_relocs, 0);
978 }
979
980 struct anv_execbuf {
981 struct drm_i915_gem_execbuffer2 execbuf;
982
983 struct drm_i915_gem_exec_object2 * objects;
984 uint32_t bo_count;
985 struct anv_bo ** bos;
986
987 /* Allocated length of the 'objects' and 'bos' arrays */
988 uint32_t array_length;
989
990 uint32_t fence_count;
991 uint32_t fence_array_length;
992 struct drm_i915_gem_exec_fence * fences;
993 struct anv_syncobj ** syncobjs;
994 };
995
996 static void
997 anv_execbuf_init(struct anv_execbuf *exec)
998 {
999 memset(exec, 0, sizeof(*exec));
1000 }
1001
1002 static void
1003 anv_execbuf_finish(struct anv_execbuf *exec,
1004 const VkAllocationCallbacks *alloc)
1005 {
1006 vk_free(alloc, exec->objects);
1007 vk_free(alloc, exec->bos);
1008 vk_free(alloc, exec->fences);
1009 vk_free(alloc, exec->syncobjs);
1010 }
1011
1012 static int
1013 _compare_bo_handles(const void *_bo1, const void *_bo2)
1014 {
1015 struct anv_bo * const *bo1 = _bo1;
1016 struct anv_bo * const *bo2 = _bo2;
1017
1018 return (*bo1)->gem_handle - (*bo2)->gem_handle;
1019 }
1020
1021 static VkResult
1022 anv_execbuf_add_bo(struct anv_execbuf *exec,
1023 struct anv_bo *bo,
1024 struct anv_reloc_list *relocs,
1025 uint32_t extra_flags,
1026 const VkAllocationCallbacks *alloc)
1027 {
1028 struct drm_i915_gem_exec_object2 *obj = NULL;
1029
1030 if (bo->index < exec->bo_count && exec->bos[bo->index] == bo)
1031 obj = &exec->objects[bo->index];
1032
1033 if (obj == NULL) {
1034 /* We've never seen this one before. Add it to the list and assign
1035 * an id that we can use later.
1036 */
1037 if (exec->bo_count >= exec->array_length) {
1038 uint32_t new_len = exec->objects ? exec->array_length * 2 : 64;
1039
1040 struct drm_i915_gem_exec_object2 *new_objects =
1041 vk_alloc(alloc, new_len * sizeof(*new_objects),
1042 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
1043 if (new_objects == NULL)
1044 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1045
1046 struct anv_bo **new_bos =
1047 vk_alloc(alloc, new_len * sizeof(*new_bos),
1048 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
1049 if (new_bos == NULL) {
1050 vk_free(alloc, new_objects);
1051 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1052 }
1053
1054 if (exec->objects) {
1055 memcpy(new_objects, exec->objects,
1056 exec->bo_count * sizeof(*new_objects));
1057 memcpy(new_bos, exec->bos,
1058 exec->bo_count * sizeof(*new_bos));
1059 }
1060
1061 vk_free(alloc, exec->objects);
1062 vk_free(alloc, exec->bos);
1063
1064 exec->objects = new_objects;
1065 exec->bos = new_bos;
1066 exec->array_length = new_len;
1067 }
1068
1069 assert(exec->bo_count < exec->array_length);
1070
1071 bo->index = exec->bo_count++;
1072 obj = &exec->objects[bo->index];
1073 exec->bos[bo->index] = bo;
1074
1075 obj->handle = bo->gem_handle;
1076 obj->relocation_count = 0;
1077 obj->relocs_ptr = 0;
1078 obj->alignment = 0;
1079 obj->offset = bo->offset;
1080 obj->flags = bo->flags | extra_flags;
1081 obj->rsvd1 = 0;
1082 obj->rsvd2 = 0;
1083 }
1084
1085 if (relocs != NULL && obj->relocation_count == 0) {
1086 /* This is the first time we've ever seen a list of relocations for
1087 * this BO. Go ahead and set the relocations and then walk the list
1088 * of relocations and add them all.
1089 */
1090 obj->relocation_count = relocs->num_relocs;
1091 obj->relocs_ptr = (uintptr_t) relocs->relocs;
1092
1093 for (size_t i = 0; i < relocs->num_relocs; i++) {
1094 VkResult result;
1095
1096 /* A quick sanity check on relocations */
1097 assert(relocs->relocs[i].offset < bo->size);
1098 result = anv_execbuf_add_bo(exec, relocs->reloc_bos[i], NULL,
1099 extra_flags, alloc);
1100
1101 if (result != VK_SUCCESS)
1102 return result;
1103 }
1104
1105 const uint32_t entries = relocs->deps->entries;
1106 struct anv_bo **bos =
1107 vk_alloc(alloc, entries * sizeof(*bos),
1108 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
1109 if (bos == NULL)
1110 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1111
1112 struct set_entry *entry;
1113 struct anv_bo **bo = bos;
1114 set_foreach(relocs->deps, entry) {
1115 *bo++ = (void *)entry->key;
1116 }
1117
1118 qsort(bos, entries, sizeof(struct anv_bo*), _compare_bo_handles);
1119
1120 VkResult result = VK_SUCCESS;
1121 for (bo = bos; bo < bos + entries; bo++) {
1122 result = anv_execbuf_add_bo(exec, *bo, NULL, extra_flags, alloc);
1123 if (result != VK_SUCCESS)
1124 break;
1125 }
1126
1127 vk_free(alloc, bos);
1128
1129 if (result != VK_SUCCESS)
1130 return result;
1131 }
1132
1133 return VK_SUCCESS;
1134 }
1135
1136 static VkResult
1137 anv_execbuf_add_syncobj(struct anv_execbuf *exec,
1138 uint32_t handle, uint32_t flags,
1139 const VkAllocationCallbacks *alloc)
1140 {
1141 assert(flags != 0);
1142
1143 if (exec->fence_count >= exec->fence_array_length) {
1144 uint32_t new_len = MAX2(exec->fence_array_length * 2, 64);
1145
1146 exec->fences = vk_realloc(alloc, exec->fences,
1147 new_len * sizeof(*exec->fences),
1148 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
1149 if (exec->fences == NULL)
1150 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1151
1152 exec->fence_array_length = new_len;
1153 }
1154
1155 exec->fences[exec->fence_count] = (struct drm_i915_gem_exec_fence) {
1156 .handle = handle,
1157 .flags = flags,
1158 };
1159
1160 exec->fence_count++;
1161
1162 return VK_SUCCESS;
1163 }
1164
1165 static void
1166 anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
1167 struct anv_reloc_list *list)
1168 {
1169 for (size_t i = 0; i < list->num_relocs; i++)
1170 list->relocs[i].target_handle = list->reloc_bos[i]->index;
1171 }
1172
1173 static void
1174 adjust_relocations_from_state_pool(struct anv_state_pool *pool,
1175 struct anv_reloc_list *relocs,
1176 uint32_t last_pool_center_bo_offset)
1177 {
1178 assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset);
1179 uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset;
1180
1181 for (size_t i = 0; i < relocs->num_relocs; i++) {
1182 /* All of the relocations from this block pool to other BO's should
1183 * have been emitted relative to the surface block pool center. We
1184 * need to add the center offset to make them relative to the
1185 * beginning of the actual GEM bo.
1186 */
1187 relocs->relocs[i].offset += delta;
1188 }
1189 }
1190
1191 static void
1192 adjust_relocations_to_state_pool(struct anv_state_pool *pool,
1193 struct anv_bo *from_bo,
1194 struct anv_reloc_list *relocs,
1195 uint32_t last_pool_center_bo_offset)
1196 {
1197 assert(last_pool_center_bo_offset <= pool->block_pool.center_bo_offset);
1198 uint32_t delta = pool->block_pool.center_bo_offset - last_pool_center_bo_offset;
1199
1200 /* When we initially emit relocations into a block pool, we don't
1201 * actually know what the final center_bo_offset will be so we just emit
1202 * it as if center_bo_offset == 0. Now that we know what the center
1203 * offset is, we need to walk the list of relocations and adjust any
1204 * relocations that point to the pool bo with the correct offset.
1205 */
1206 for (size_t i = 0; i < relocs->num_relocs; i++) {
1207 if (relocs->reloc_bos[i] == &pool->block_pool.bo) {
1208 /* Adjust the delta value in the relocation to correctly
1209 * correspond to the new delta. Initially, this value may have
1210 * been negative (if treated as unsigned), but we trust in
1211 * uint32_t roll-over to fix that for us at this point.
1212 */
1213 relocs->relocs[i].delta += delta;
1214
1215 /* Since the delta has changed, we need to update the actual
1216 * relocated value with the new presumed value. This function
1217 * should only be called on batch buffers, so we know it isn't in
1218 * use by the GPU at the moment.
1219 */
1220 assert(relocs->relocs[i].offset < from_bo->size);
1221 write_reloc(pool->block_pool.device,
1222 from_bo->map + relocs->relocs[i].offset,
1223 relocs->relocs[i].presumed_offset +
1224 relocs->relocs[i].delta, false);
1225 }
1226 }
1227 }
1228
1229 static void
1230 anv_reloc_list_apply(struct anv_device *device,
1231 struct anv_reloc_list *list,
1232 struct anv_bo *bo,
1233 bool always_relocate)
1234 {
1235 for (size_t i = 0; i < list->num_relocs; i++) {
1236 struct anv_bo *target_bo = list->reloc_bos[i];
1237 if (list->relocs[i].presumed_offset == target_bo->offset &&
1238 !always_relocate)
1239 continue;
1240
1241 void *p = bo->map + list->relocs[i].offset;
1242 write_reloc(device, p, target_bo->offset + list->relocs[i].delta, true);
1243 list->relocs[i].presumed_offset = target_bo->offset;
1244 }
1245 }
1246
1247 /**
1248 * This function applies the relocation for a command buffer and writes the
1249 * actual addresses into the buffers as per what we were told by the kernel on
1250 * the previous execbuf2 call. This should be safe to do because, for each
1251 * relocated address, we have two cases:
1252 *
1253 * 1) The target BO is inactive (as seen by the kernel). In this case, it is
1254 * not in use by the GPU so updating the address is 100% ok. It won't be
1255 * in-use by the GPU (from our context) again until the next execbuf2
1256 * happens. If the kernel decides to move it in the next execbuf2, it
1257 * will have to do the relocations itself, but that's ok because it should
1258 * have all of the information needed to do so.
1259 *
1260 * 2) The target BO is active (as seen by the kernel). In this case, it
1261 * hasn't moved since the last execbuffer2 call because GTT shuffling
1262 * *only* happens when the BO is idle. (From our perspective, it only
1263 * happens inside the execbuffer2 ioctl, but the shuffling may be
1264 * triggered by another ioctl, with full-ppgtt this is limited to only
1265 * execbuffer2 ioctls on the same context, or memory pressure.) Since the
1266 * target BO hasn't moved, our anv_bo::offset exactly matches the BO's GTT
1267 * address and the relocated value we are writing into the BO will be the
1268 * same as the value that is already there.
1269 *
1270 * There is also a possibility that the target BO is active but the exact
1271 * RENDER_SURFACE_STATE object we are writing the relocation into isn't in
1272 * use. In this case, the address currently in the RENDER_SURFACE_STATE
1273 * may be stale but it's still safe to write the relocation because that
1274 * particular RENDER_SURFACE_STATE object isn't in-use by the GPU and
1275 * won't be until the next execbuf2 call.
1276 *
1277 * By doing relocations on the CPU, we can tell the kernel that it doesn't
1278 * need to bother. We want to do this because the surface state buffer is
1279 * used by every command buffer so, if the kernel does the relocations, it
1280 * will always be busy and the kernel will always stall. This is also
1281 * probably the fastest mechanism for doing relocations since the kernel would
1282 * have to make a full copy of all the relocations lists.
1283 */
1284 static bool
1285 relocate_cmd_buffer(struct anv_cmd_buffer *cmd_buffer,
1286 struct anv_execbuf *exec)
1287 {
1288 static int userspace_relocs = -1;
1289 if (userspace_relocs < 0)
1290 userspace_relocs = env_var_as_boolean("ANV_USERSPACE_RELOCS", true);
1291 if (!userspace_relocs)
1292 return false;
1293
1294 /* First, we have to check to see whether or not we can even do the
1295 * relocation. New buffers which have never been submitted to the kernel
1296 * don't have a valid offset so we need to let the kernel do relocations so
1297 * that we can get offsets for them. On future execbuf2 calls, those
1298 * buffers will have offsets and we will be able to skip relocating.
1299 * Invalid offsets are indicated by anv_bo::offset == (uint64_t)-1.
1300 */
1301 for (uint32_t i = 0; i < exec->bo_count; i++) {
1302 if (exec->bos[i]->offset == (uint64_t)-1)
1303 return false;
1304 }
1305
1306 /* Since surface states are shared between command buffers and we don't
1307 * know what order they will be submitted to the kernel, we don't know
1308 * what address is actually written in the surface state object at any
1309 * given time. The only option is to always relocate them.
1310 */
1311 anv_reloc_list_apply(cmd_buffer->device, &cmd_buffer->surface_relocs,
1312 &cmd_buffer->device->surface_state_pool.block_pool.bo,
1313 true /* always relocate surface states */);
1314
1315 /* Since we own all of the batch buffers, we know what values are stored
1316 * in the relocated addresses and only have to update them if the offsets
1317 * have changed.
1318 */
1319 struct anv_batch_bo **bbo;
1320 u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1321 anv_reloc_list_apply(cmd_buffer->device,
1322 &(*bbo)->relocs, &(*bbo)->bo, false);
1323 }
1324
1325 for (uint32_t i = 0; i < exec->bo_count; i++)
1326 exec->objects[i].offset = exec->bos[i]->offset;
1327
1328 return true;
1329 }
1330
1331 static VkResult
1332 setup_execbuf_for_cmd_buffer(struct anv_execbuf *execbuf,
1333 struct anv_cmd_buffer *cmd_buffer)
1334 {
1335 struct anv_batch *batch = &cmd_buffer->batch;
1336 struct anv_state_pool *ss_pool =
1337 &cmd_buffer->device->surface_state_pool;
1338
1339 adjust_relocations_from_state_pool(ss_pool, &cmd_buffer->surface_relocs,
1340 cmd_buffer->last_ss_pool_center);
1341 VkResult result = anv_execbuf_add_bo(execbuf, &ss_pool->block_pool.bo,
1342 &cmd_buffer->surface_relocs, 0,
1343 &cmd_buffer->device->alloc);
1344 if (result != VK_SUCCESS)
1345 return result;
1346
1347 /* First, we walk over all of the bos we've seen and add them and their
1348 * relocations to the validate list.
1349 */
1350 struct anv_batch_bo **bbo;
1351 u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1352 adjust_relocations_to_state_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
1353 cmd_buffer->last_ss_pool_center);
1354
1355 result = anv_execbuf_add_bo(execbuf, &(*bbo)->bo, &(*bbo)->relocs, 0,
1356 &cmd_buffer->device->alloc);
1357 if (result != VK_SUCCESS)
1358 return result;
1359 }
1360
1361 /* Now that we've adjusted all of the surface state relocations, we need to
1362 * record the surface state pool center so future executions of the command
1363 * buffer can adjust correctly.
1364 */
1365 cmd_buffer->last_ss_pool_center = ss_pool->block_pool.center_bo_offset;
1366
1367 struct anv_batch_bo *first_batch_bo =
1368 list_first_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link);
1369
1370 /* The kernel requires that the last entry in the validation list be the
1371 * batch buffer to execute. We can simply swap the element
1372 * corresponding to the first batch_bo in the chain with the last
1373 * element in the list.
1374 */
1375 if (first_batch_bo->bo.index != execbuf->bo_count - 1) {
1376 uint32_t idx = first_batch_bo->bo.index;
1377 uint32_t last_idx = execbuf->bo_count - 1;
1378
1379 struct drm_i915_gem_exec_object2 tmp_obj = execbuf->objects[idx];
1380 assert(execbuf->bos[idx] == &first_batch_bo->bo);
1381
1382 execbuf->objects[idx] = execbuf->objects[last_idx];
1383 execbuf->bos[idx] = execbuf->bos[last_idx];
1384 execbuf->bos[idx]->index = idx;
1385
1386 execbuf->objects[last_idx] = tmp_obj;
1387 execbuf->bos[last_idx] = &first_batch_bo->bo;
1388 first_batch_bo->bo.index = last_idx;
1389 }
1390
1391 /* Now we go through and fixup all of the relocation lists to point to
1392 * the correct indices in the object array. We have to do this after we
1393 * reorder the list above as some of the indices may have changed.
1394 */
1395 u_vector_foreach(bbo, &cmd_buffer->seen_bbos)
1396 anv_cmd_buffer_process_relocs(cmd_buffer, &(*bbo)->relocs);
1397
1398 anv_cmd_buffer_process_relocs(cmd_buffer, &cmd_buffer->surface_relocs);
1399
1400 if (!cmd_buffer->device->info.has_llc) {
1401 __builtin_ia32_mfence();
1402 u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1403 for (uint32_t i = 0; i < (*bbo)->length; i += CACHELINE_SIZE)
1404 __builtin_ia32_clflush((*bbo)->bo.map + i);
1405 }
1406 }
1407
1408 execbuf->execbuf = (struct drm_i915_gem_execbuffer2) {
1409 .buffers_ptr = (uintptr_t) execbuf->objects,
1410 .buffer_count = execbuf->bo_count,
1411 .batch_start_offset = 0,
1412 .batch_len = batch->next - batch->start,
1413 .cliprects_ptr = 0,
1414 .num_cliprects = 0,
1415 .DR1 = 0,
1416 .DR4 = 0,
1417 .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER,
1418 .rsvd1 = cmd_buffer->device->context_id,
1419 .rsvd2 = 0,
1420 };
1421
1422 if (relocate_cmd_buffer(cmd_buffer, execbuf)) {
1423 /* If we were able to successfully relocate everything, tell the kernel
1424 * that it can skip doing relocations. The requirement for using
1425 * NO_RELOC is:
1426 *
1427 * 1) The addresses written in the objects must match the corresponding
1428 * reloc.presumed_offset which in turn must match the corresponding
1429 * execobject.offset.
1430 *
1431 * 2) To avoid stalling, execobject.offset should match the current
1432 * address of that object within the active context.
1433 *
1434 * In order to satisfy all of the invariants that make userspace
1435 * relocations to be safe (see relocate_cmd_buffer()), we need to
1436 * further ensure that the addresses we use match those used by the
1437 * kernel for the most recent execbuf2.
1438 *
1439 * The kernel may still choose to do relocations anyway if something has
1440 * moved in the GTT. In this case, the relocation list still needs to be
1441 * valid. All relocations on the batch buffers are already valid and
1442 * kept up-to-date. For surface state relocations, by applying the
1443 * relocations in relocate_cmd_buffer, we ensured that the address in
1444 * the RENDER_SURFACE_STATE matches presumed_offset, so it should be
1445 * safe for the kernel to relocate them as needed.
1446 */
1447 execbuf->execbuf.flags |= I915_EXEC_NO_RELOC;
1448 } else {
1449 /* In the case where we fall back to doing kernel relocations, we need
1450 * to ensure that the relocation list is valid. All relocations on the
1451 * batch buffers are already valid and kept up-to-date. Since surface
1452 * states are shared between command buffers and we don't know what
1453 * order they will be submitted to the kernel, we don't know what
1454 * address is actually written in the surface state object at any given
1455 * time. The only option is to set a bogus presumed offset and let the
1456 * kernel relocate them.
1457 */
1458 for (size_t i = 0; i < cmd_buffer->surface_relocs.num_relocs; i++)
1459 cmd_buffer->surface_relocs.relocs[i].presumed_offset = -1;
1460 }
1461
1462 return VK_SUCCESS;
1463 }
1464
1465 static VkResult
1466 setup_empty_execbuf(struct anv_execbuf *execbuf, struct anv_device *device)
1467 {
1468 VkResult result = anv_execbuf_add_bo(execbuf, &device->trivial_batch_bo,
1469 NULL, 0, &device->alloc);
1470 if (result != VK_SUCCESS)
1471 return result;
1472
1473 execbuf->execbuf = (struct drm_i915_gem_execbuffer2) {
1474 .buffers_ptr = (uintptr_t) execbuf->objects,
1475 .buffer_count = execbuf->bo_count,
1476 .batch_start_offset = 0,
1477 .batch_len = 8, /* GEN7_MI_BATCH_BUFFER_END and NOOP */
1478 .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER,
1479 .rsvd1 = device->context_id,
1480 .rsvd2 = 0,
1481 };
1482
1483 return VK_SUCCESS;
1484 }
1485
1486 VkResult
1487 anv_cmd_buffer_execbuf(struct anv_device *device,
1488 struct anv_cmd_buffer *cmd_buffer,
1489 const VkSemaphore *in_semaphores,
1490 uint32_t num_in_semaphores,
1491 const VkSemaphore *out_semaphores,
1492 uint32_t num_out_semaphores,
1493 VkFence _fence)
1494 {
1495 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1496
1497 struct anv_execbuf execbuf;
1498 anv_execbuf_init(&execbuf);
1499
1500 int in_fence = -1;
1501 VkResult result = VK_SUCCESS;
1502 for (uint32_t i = 0; i < num_in_semaphores; i++) {
1503 ANV_FROM_HANDLE(anv_semaphore, semaphore, in_semaphores[i]);
1504 struct anv_semaphore_impl *impl =
1505 semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
1506 &semaphore->temporary : &semaphore->permanent;
1507
1508 switch (impl->type) {
1509 case ANV_SEMAPHORE_TYPE_BO:
1510 result = anv_execbuf_add_bo(&execbuf, impl->bo, NULL,
1511 0, &device->alloc);
1512 if (result != VK_SUCCESS)
1513 return result;
1514 break;
1515
1516 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
1517 if (in_fence == -1) {
1518 in_fence = impl->fd;
1519 } else {
1520 int merge = anv_gem_sync_file_merge(device, in_fence, impl->fd);
1521 if (merge == -1)
1522 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1523
1524 close(impl->fd);
1525 close(in_fence);
1526 in_fence = merge;
1527 }
1528
1529 impl->fd = -1;
1530 break;
1531
1532 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
1533 result = anv_execbuf_add_syncobj(&execbuf, impl->syncobj,
1534 I915_EXEC_FENCE_WAIT,
1535 &device->alloc);
1536 if (result != VK_SUCCESS)
1537 return result;
1538 break;
1539
1540 default:
1541 break;
1542 }
1543 }
1544
1545 bool need_out_fence = false;
1546 for (uint32_t i = 0; i < num_out_semaphores; i++) {
1547 ANV_FROM_HANDLE(anv_semaphore, semaphore, out_semaphores[i]);
1548
1549 /* Under most circumstances, out fences won't be temporary. However,
1550 * the spec does allow it for opaque_fd. From the Vulkan 1.0.53 spec:
1551 *
1552 * "If the import is temporary, the implementation must restore the
1553 * semaphore to its prior permanent state after submitting the next
1554 * semaphore wait operation."
1555 *
1556 * The spec says nothing whatsoever about signal operations on
1557 * temporarily imported semaphores so it appears they are allowed.
1558 * There are also CTS tests that require this to work.
1559 */
1560 struct anv_semaphore_impl *impl =
1561 semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
1562 &semaphore->temporary : &semaphore->permanent;
1563
1564 switch (impl->type) {
1565 case ANV_SEMAPHORE_TYPE_BO:
1566 result = anv_execbuf_add_bo(&execbuf, impl->bo, NULL,
1567 EXEC_OBJECT_WRITE, &device->alloc);
1568 if (result != VK_SUCCESS)
1569 return result;
1570 break;
1571
1572 case ANV_SEMAPHORE_TYPE_SYNC_FILE:
1573 need_out_fence = true;
1574 break;
1575
1576 case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ:
1577 result = anv_execbuf_add_syncobj(&execbuf, impl->syncobj,
1578 I915_EXEC_FENCE_SIGNAL,
1579 &device->alloc);
1580 if (result != VK_SUCCESS)
1581 return result;
1582 break;
1583
1584 default:
1585 break;
1586 }
1587 }
1588
1589 if (fence) {
1590 /* Under most circumstances, out fences won't be temporary. However,
1591 * the spec does allow it for opaque_fd. From the Vulkan 1.0.53 spec:
1592 *
1593 * "If the import is temporary, the implementation must restore the
1594 * semaphore to its prior permanent state after submitting the next
1595 * semaphore wait operation."
1596 *
1597 * The spec says nothing whatsoever about signal operations on
1598 * temporarily imported semaphores so it appears they are allowed.
1599 * There are also CTS tests that require this to work.
1600 */
1601 struct anv_fence_impl *impl =
1602 fence->temporary.type != ANV_FENCE_TYPE_NONE ?
1603 &fence->temporary : &fence->permanent;
1604
1605 switch (impl->type) {
1606 case ANV_FENCE_TYPE_BO:
1607 result = anv_execbuf_add_bo(&execbuf, &impl->bo.bo, NULL,
1608 EXEC_OBJECT_WRITE, &device->alloc);
1609 if (result != VK_SUCCESS)
1610 return result;
1611 break;
1612
1613 case ANV_FENCE_TYPE_SYNCOBJ:
1614 result = anv_execbuf_add_syncobj(&execbuf, impl->syncobj,
1615 I915_EXEC_FENCE_SIGNAL,
1616 &device->alloc);
1617 if (result != VK_SUCCESS)
1618 return result;
1619 break;
1620
1621 default:
1622 unreachable("Invalid fence type");
1623 }
1624 }
1625
1626 if (cmd_buffer)
1627 result = setup_execbuf_for_cmd_buffer(&execbuf, cmd_buffer);
1628 else
1629 result = setup_empty_execbuf(&execbuf, device);
1630
1631 if (result != VK_SUCCESS)
1632 return result;
1633
1634 if (execbuf.fence_count > 0) {
1635 assert(device->instance->physicalDevice.has_syncobj);
1636 execbuf.execbuf.flags |= I915_EXEC_FENCE_ARRAY;
1637 execbuf.execbuf.num_cliprects = execbuf.fence_count;
1638 execbuf.execbuf.cliprects_ptr = (uintptr_t) execbuf.fences;
1639 }
1640
1641 if (in_fence != -1) {
1642 execbuf.execbuf.flags |= I915_EXEC_FENCE_IN;
1643 execbuf.execbuf.rsvd2 |= (uint32_t)in_fence;
1644 }
1645
1646 if (need_out_fence)
1647 execbuf.execbuf.flags |= I915_EXEC_FENCE_OUT;
1648
1649 result = anv_device_execbuf(device, &execbuf.execbuf, execbuf.bos);
1650
1651 /* Execbuf does not consume the in_fence. It's our job to close it. */
1652 if (in_fence != -1)
1653 close(in_fence);
1654
1655 for (uint32_t i = 0; i < num_in_semaphores; i++) {
1656 ANV_FROM_HANDLE(anv_semaphore, semaphore, in_semaphores[i]);
1657 /* From the Vulkan 1.0.53 spec:
1658 *
1659 * "If the import is temporary, the implementation must restore the
1660 * semaphore to its prior permanent state after submitting the next
1661 * semaphore wait operation."
1662 *
1663 * This has to happen after the execbuf in case we close any syncobjs in
1664 * the process.
1665 */
1666 anv_semaphore_reset_temporary(device, semaphore);
1667 }
1668
1669 if (fence && fence->permanent.type == ANV_FENCE_TYPE_BO) {
1670 /* BO fences can't be shared, so they can't be temporary. */
1671 assert(fence->temporary.type == ANV_FENCE_TYPE_NONE);
1672
1673 /* Once the execbuf has returned, we need to set the fence state to
1674 * SUBMITTED. We can't do this before calling execbuf because
1675 * anv_GetFenceStatus does take the global device lock before checking
1676 * fence->state.
1677 *
1678 * We set the fence state to SUBMITTED regardless of whether or not the
1679 * execbuf succeeds because we need to ensure that vkWaitForFences() and
1680 * vkGetFenceStatus() return a valid result (VK_ERROR_DEVICE_LOST or
1681 * VK_SUCCESS) in a finite amount of time even if execbuf fails.
1682 */
1683 fence->permanent.bo.state = ANV_BO_FENCE_STATE_SUBMITTED;
1684 }
1685
1686 if (result == VK_SUCCESS && need_out_fence) {
1687 int out_fence = execbuf.execbuf.rsvd2 >> 32;
1688 for (uint32_t i = 0; i < num_out_semaphores; i++) {
1689 ANV_FROM_HANDLE(anv_semaphore, semaphore, out_semaphores[i]);
1690 /* Out fences can't have temporary state because that would imply
1691 * that we imported a sync file and are trying to signal it.
1692 */
1693 assert(semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE);
1694 struct anv_semaphore_impl *impl = &semaphore->permanent;
1695
1696 if (impl->type == ANV_SEMAPHORE_TYPE_SYNC_FILE) {
1697 assert(impl->fd == -1);
1698 impl->fd = dup(out_fence);
1699 }
1700 }
1701 close(out_fence);
1702 }
1703
1704 anv_execbuf_finish(&execbuf, &device->alloc);
1705
1706 return result;
1707 }