anv/pipeline: Store the (set, binding, index) tripple in the bind map
[mesa.git] / src / intel / vulkan / anv_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "vk_format_info.h"
33
34 /** \file anv_cmd_buffer.c
35 *
36 * This file contains all of the stuff for emitting commands into a command
37 * buffer. This includes implementations of most of the vkCmd*
38 * entrypoints. This file is concerned entirely with state emission and
39 * not with the command buffer data structure itself. As far as this file
40 * is concerned, most of anv_cmd_buffer is magic.
41 */
42
43 /* TODO: These are taken from GLES. We should check the Vulkan spec */
44 const struct anv_dynamic_state default_dynamic_state = {
45 .viewport = {
46 .count = 0,
47 },
48 .scissor = {
49 .count = 0,
50 },
51 .line_width = 1.0f,
52 .depth_bias = {
53 .bias = 0.0f,
54 .clamp = 0.0f,
55 .slope = 0.0f,
56 },
57 .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
58 .depth_bounds = {
59 .min = 0.0f,
60 .max = 1.0f,
61 },
62 .stencil_compare_mask = {
63 .front = ~0u,
64 .back = ~0u,
65 },
66 .stencil_write_mask = {
67 .front = ~0u,
68 .back = ~0u,
69 },
70 .stencil_reference = {
71 .front = 0u,
72 .back = 0u,
73 },
74 };
75
76 void
77 anv_dynamic_state_copy(struct anv_dynamic_state *dest,
78 const struct anv_dynamic_state *src,
79 uint32_t copy_mask)
80 {
81 if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
82 dest->viewport.count = src->viewport.count;
83 typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
84 src->viewport.count);
85 }
86
87 if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
88 dest->scissor.count = src->scissor.count;
89 typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
90 src->scissor.count);
91 }
92
93 if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
94 dest->line_width = src->line_width;
95
96 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
97 dest->depth_bias = src->depth_bias;
98
99 if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
100 typed_memcpy(dest->blend_constants, src->blend_constants, 4);
101
102 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
103 dest->depth_bounds = src->depth_bounds;
104
105 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
106 dest->stencil_compare_mask = src->stencil_compare_mask;
107
108 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
109 dest->stencil_write_mask = src->stencil_write_mask;
110
111 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
112 dest->stencil_reference = src->stencil_reference;
113 }
114
115 static void
116 anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer)
117 {
118 struct anv_cmd_state *state = &cmd_buffer->state;
119
120 memset(&state->descriptors, 0, sizeof(state->descriptors));
121 memset(&state->push_constants, 0, sizeof(state->push_constants));
122 memset(state->binding_tables, 0, sizeof(state->binding_tables));
123 memset(state->samplers, 0, sizeof(state->samplers));
124
125 /* 0 isn't a valid config. This ensures that we always configure L3$. */
126 cmd_buffer->state.current_l3_config = 0;
127
128 state->dirty = 0;
129 state->vb_dirty = 0;
130 state->pending_pipe_bits = 0;
131 state->descriptors_dirty = 0;
132 state->push_constants_dirty = 0;
133 state->pipeline = NULL;
134 state->push_constant_stages = 0;
135 state->restart_index = UINT32_MAX;
136 state->dynamic = default_dynamic_state;
137 state->need_query_wa = true;
138
139 if (state->attachments != NULL) {
140 anv_free(&cmd_buffer->pool->alloc, state->attachments);
141 state->attachments = NULL;
142 }
143
144 state->gen7.index_buffer = NULL;
145 }
146
147 /**
148 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
149 */
150 void
151 anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
152 const VkRenderPassBeginInfo *info)
153 {
154 struct anv_cmd_state *state = &cmd_buffer->state;
155 ANV_FROM_HANDLE(anv_render_pass, pass, info->renderPass);
156
157 anv_free(&cmd_buffer->pool->alloc, state->attachments);
158
159 if (pass->attachment_count == 0) {
160 state->attachments = NULL;
161 return;
162 }
163
164 state->attachments = anv_alloc(&cmd_buffer->pool->alloc,
165 pass->attachment_count *
166 sizeof(state->attachments[0]),
167 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
168 if (state->attachments == NULL) {
169 /* FIXME: Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
170 abort();
171 }
172
173 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
174 struct anv_render_pass_attachment *att = &pass->attachments[i];
175 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
176 VkImageAspectFlags clear_aspects = 0;
177
178 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
179 /* color attachment */
180 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
181 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
182 }
183 } else {
184 /* depthstencil attachment */
185 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
186 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
187 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
188 }
189 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
190 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
191 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
192 }
193 }
194
195 state->attachments[i].pending_clear_aspects = clear_aspects;
196 if (clear_aspects) {
197 assert(info->clearValueCount > i);
198 state->attachments[i].clear_value = info->pClearValues[i];
199 }
200 }
201 }
202
203 static VkResult
204 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
205 gl_shader_stage stage, uint32_t size)
206 {
207 struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
208
209 if (*ptr == NULL) {
210 *ptr = anv_alloc(&cmd_buffer->pool->alloc, size, 8,
211 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
212 if (*ptr == NULL)
213 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
214 } else if ((*ptr)->size < size) {
215 *ptr = anv_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8,
216 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
217 if (*ptr == NULL)
218 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
219 }
220 (*ptr)->size = size;
221
222 return VK_SUCCESS;
223 }
224
225 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
226 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
227 (offsetof(struct anv_push_constants, field) + \
228 sizeof(cmd_buffer->state.push_constants[0]->field)))
229
230 static VkResult anv_create_cmd_buffer(
231 struct anv_device * device,
232 struct anv_cmd_pool * pool,
233 VkCommandBufferLevel level,
234 VkCommandBuffer* pCommandBuffer)
235 {
236 struct anv_cmd_buffer *cmd_buffer;
237 VkResult result;
238
239 cmd_buffer = anv_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
240 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
241 if (cmd_buffer == NULL)
242 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
243
244 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
245 cmd_buffer->device = device;
246 cmd_buffer->pool = pool;
247 cmd_buffer->level = level;
248 cmd_buffer->state.attachments = NULL;
249
250 result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
251 if (result != VK_SUCCESS)
252 goto fail;
253
254 anv_state_stream_init(&cmd_buffer->surface_state_stream,
255 &device->surface_state_block_pool);
256 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
257 &device->dynamic_state_block_pool);
258
259 if (pool) {
260 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
261 } else {
262 /* Init the pool_link so we can safefly call list_del when we destroy
263 * the command buffer
264 */
265 list_inithead(&cmd_buffer->pool_link);
266 }
267
268 *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
269
270 return VK_SUCCESS;
271
272 fail:
273 anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
274
275 return result;
276 }
277
278 VkResult anv_AllocateCommandBuffers(
279 VkDevice _device,
280 const VkCommandBufferAllocateInfo* pAllocateInfo,
281 VkCommandBuffer* pCommandBuffers)
282 {
283 ANV_FROM_HANDLE(anv_device, device, _device);
284 ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool);
285
286 VkResult result = VK_SUCCESS;
287 uint32_t i;
288
289 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
290 result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level,
291 &pCommandBuffers[i]);
292 if (result != VK_SUCCESS)
293 break;
294 }
295
296 if (result != VK_SUCCESS)
297 anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
298 i, pCommandBuffers);
299
300 return result;
301 }
302
303 static void
304 anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer)
305 {
306 list_del(&cmd_buffer->pool_link);
307
308 anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
309
310 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
311 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
312
313 anv_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
314 anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
315 }
316
317 void anv_FreeCommandBuffers(
318 VkDevice device,
319 VkCommandPool commandPool,
320 uint32_t commandBufferCount,
321 const VkCommandBuffer* pCommandBuffers)
322 {
323 for (uint32_t i = 0; i < commandBufferCount; i++) {
324 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
325
326 anv_cmd_buffer_destroy(cmd_buffer);
327 }
328 }
329
330 static VkResult
331 anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer)
332 {
333 cmd_buffer->usage_flags = 0;
334 cmd_buffer->state.current_pipeline = UINT32_MAX;
335 anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
336 anv_cmd_state_reset(cmd_buffer);
337
338 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
339 anv_state_stream_init(&cmd_buffer->surface_state_stream,
340 &cmd_buffer->device->surface_state_block_pool);
341
342 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
343 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
344 &cmd_buffer->device->dynamic_state_block_pool);
345 return VK_SUCCESS;
346 }
347
348 VkResult anv_ResetCommandBuffer(
349 VkCommandBuffer commandBuffer,
350 VkCommandBufferResetFlags flags)
351 {
352 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
353 return anv_cmd_buffer_reset(cmd_buffer);
354 }
355
356 void
357 anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
358 {
359 switch (cmd_buffer->device->info.gen) {
360 case 7:
361 if (cmd_buffer->device->info.is_haswell)
362 return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
363 else
364 return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
365 case 8:
366 return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
367 case 9:
368 return gen9_cmd_buffer_emit_state_base_address(cmd_buffer);
369 default:
370 unreachable("unsupported gen\n");
371 }
372 }
373
374 VkResult anv_BeginCommandBuffer(
375 VkCommandBuffer commandBuffer,
376 const VkCommandBufferBeginInfo* pBeginInfo)
377 {
378 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
379
380 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
381 * command buffer's state. Otherwise, we must *reset* its state. In both
382 * cases we reset it.
383 *
384 * From the Vulkan 1.0 spec:
385 *
386 * If a command buffer is in the executable state and the command buffer
387 * was allocated from a command pool with the
388 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
389 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
390 * as if vkResetCommandBuffer had been called with
391 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
392 * the command buffer in the recording state.
393 */
394 anv_cmd_buffer_reset(cmd_buffer);
395
396 cmd_buffer->usage_flags = pBeginInfo->flags;
397
398 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
399 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
400
401 anv_cmd_buffer_emit_state_base_address(cmd_buffer);
402
403 if (cmd_buffer->usage_flags &
404 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
405 cmd_buffer->state.framebuffer =
406 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
407 cmd_buffer->state.pass =
408 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
409
410 struct anv_subpass *subpass =
411 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
412
413 anv_cmd_buffer_set_subpass(cmd_buffer, subpass);
414 }
415
416 return VK_SUCCESS;
417 }
418
419 VkResult anv_EndCommandBuffer(
420 VkCommandBuffer commandBuffer)
421 {
422 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
423 struct anv_device *device = cmd_buffer->device;
424
425 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
426
427 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
428 /* The algorithm used to compute the validate list is not threadsafe as
429 * it uses the bo->index field. We have to lock the device around it.
430 * Fortunately, the chances for contention here are probably very low.
431 */
432 pthread_mutex_lock(&device->mutex);
433 anv_cmd_buffer_prepare_execbuf(cmd_buffer);
434 pthread_mutex_unlock(&device->mutex);
435 }
436
437 return VK_SUCCESS;
438 }
439
440 void anv_CmdBindPipeline(
441 VkCommandBuffer commandBuffer,
442 VkPipelineBindPoint pipelineBindPoint,
443 VkPipeline _pipeline)
444 {
445 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
446 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
447
448 switch (pipelineBindPoint) {
449 case VK_PIPELINE_BIND_POINT_COMPUTE:
450 cmd_buffer->state.compute_pipeline = pipeline;
451 cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
452 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
453 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
454 break;
455
456 case VK_PIPELINE_BIND_POINT_GRAPHICS:
457 cmd_buffer->state.pipeline = pipeline;
458 cmd_buffer->state.vb_dirty |= pipeline->vb_used;
459 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
460 cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
461 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
462
463 /* Apply the dynamic state from the pipeline */
464 cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
465 anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
466 &pipeline->dynamic_state,
467 pipeline->dynamic_state_mask);
468 break;
469
470 default:
471 assert(!"invalid bind point");
472 break;
473 }
474 }
475
476 void anv_CmdSetViewport(
477 VkCommandBuffer commandBuffer,
478 uint32_t firstViewport,
479 uint32_t viewportCount,
480 const VkViewport* pViewports)
481 {
482 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
483
484 const uint32_t total_count = firstViewport + viewportCount;
485 if (cmd_buffer->state.dynamic.viewport.count < total_count)
486 cmd_buffer->state.dynamic.viewport.count = total_count;
487
488 memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport,
489 pViewports, viewportCount * sizeof(*pViewports));
490
491 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
492 }
493
494 void anv_CmdSetScissor(
495 VkCommandBuffer commandBuffer,
496 uint32_t firstScissor,
497 uint32_t scissorCount,
498 const VkRect2D* pScissors)
499 {
500 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
501
502 const uint32_t total_count = firstScissor + scissorCount;
503 if (cmd_buffer->state.dynamic.scissor.count < total_count)
504 cmd_buffer->state.dynamic.scissor.count = total_count;
505
506 memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor,
507 pScissors, scissorCount * sizeof(*pScissors));
508
509 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
510 }
511
512 void anv_CmdSetLineWidth(
513 VkCommandBuffer commandBuffer,
514 float lineWidth)
515 {
516 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
517
518 cmd_buffer->state.dynamic.line_width = lineWidth;
519 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
520 }
521
522 void anv_CmdSetDepthBias(
523 VkCommandBuffer commandBuffer,
524 float depthBiasConstantFactor,
525 float depthBiasClamp,
526 float depthBiasSlopeFactor)
527 {
528 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
529
530 cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
531 cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
532 cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
533
534 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
535 }
536
537 void anv_CmdSetBlendConstants(
538 VkCommandBuffer commandBuffer,
539 const float blendConstants[4])
540 {
541 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
542
543 memcpy(cmd_buffer->state.dynamic.blend_constants,
544 blendConstants, sizeof(float) * 4);
545
546 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
547 }
548
549 void anv_CmdSetDepthBounds(
550 VkCommandBuffer commandBuffer,
551 float minDepthBounds,
552 float maxDepthBounds)
553 {
554 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
555
556 cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
557 cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
558
559 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
560 }
561
562 void anv_CmdSetStencilCompareMask(
563 VkCommandBuffer commandBuffer,
564 VkStencilFaceFlags faceMask,
565 uint32_t compareMask)
566 {
567 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
568
569 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
570 cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
571 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
572 cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
573
574 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
575 }
576
577 void anv_CmdSetStencilWriteMask(
578 VkCommandBuffer commandBuffer,
579 VkStencilFaceFlags faceMask,
580 uint32_t writeMask)
581 {
582 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
583
584 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
585 cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
586 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
587 cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
588
589 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
590 }
591
592 void anv_CmdSetStencilReference(
593 VkCommandBuffer commandBuffer,
594 VkStencilFaceFlags faceMask,
595 uint32_t reference)
596 {
597 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
598
599 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
600 cmd_buffer->state.dynamic.stencil_reference.front = reference;
601 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
602 cmd_buffer->state.dynamic.stencil_reference.back = reference;
603
604 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
605 }
606
607 void anv_CmdBindDescriptorSets(
608 VkCommandBuffer commandBuffer,
609 VkPipelineBindPoint pipelineBindPoint,
610 VkPipelineLayout _layout,
611 uint32_t firstSet,
612 uint32_t descriptorSetCount,
613 const VkDescriptorSet* pDescriptorSets,
614 uint32_t dynamicOffsetCount,
615 const uint32_t* pDynamicOffsets)
616 {
617 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
618 ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
619 struct anv_descriptor_set_layout *set_layout;
620
621 assert(firstSet + descriptorSetCount < MAX_SETS);
622
623 uint32_t dynamic_slot = 0;
624 for (uint32_t i = 0; i < descriptorSetCount; i++) {
625 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
626 set_layout = layout->set[firstSet + i].layout;
627
628 if (cmd_buffer->state.descriptors[firstSet + i] != set) {
629 cmd_buffer->state.descriptors[firstSet + i] = set;
630 cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
631 }
632
633 if (set_layout->dynamic_offset_count > 0) {
634 anv_foreach_stage(s, set_layout->shader_stages) {
635 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);
636
637 struct anv_push_constants *push =
638 cmd_buffer->state.push_constants[s];
639
640 unsigned d = layout->set[firstSet + i].dynamic_offset_start;
641 const uint32_t *offsets = pDynamicOffsets + dynamic_slot;
642 struct anv_descriptor *desc = set->descriptors;
643
644 for (unsigned b = 0; b < set_layout->binding_count; b++) {
645 if (set_layout->binding[b].dynamic_offset_index < 0)
646 continue;
647
648 unsigned array_size = set_layout->binding[b].array_size;
649 for (unsigned j = 0; j < array_size; j++) {
650 uint32_t range = 0;
651 if (desc->buffer_view)
652 range = desc->buffer_view->range;
653 push->dynamic[d].offset = *(offsets++);
654 push->dynamic[d].range = range;
655 desc++;
656 d++;
657 }
658 }
659 }
660 cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
661 }
662 }
663 }
664
665 void anv_CmdBindVertexBuffers(
666 VkCommandBuffer commandBuffer,
667 uint32_t firstBinding,
668 uint32_t bindingCount,
669 const VkBuffer* pBuffers,
670 const VkDeviceSize* pOffsets)
671 {
672 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
673 struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
674
675 /* We have to defer setting up vertex buffer since we need the buffer
676 * stride from the pipeline. */
677
678 assert(firstBinding + bindingCount < MAX_VBS);
679 for (uint32_t i = 0; i < bindingCount; i++) {
680 vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
681 vb[firstBinding + i].offset = pOffsets[i];
682 cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i);
683 }
684 }
685
686 static void
687 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
688 struct anv_state state, struct anv_bo *bo, uint32_t offset)
689 {
690 /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
691 * 9 for gen8+. We only write the first dword for gen8+ here and rely on
692 * the initial state to set the high bits to 0. */
693
694 const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8;
695
696 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
697 state.offset + dword * 4, bo, offset);
698 }
699
700 enum isl_format
701 anv_isl_format_for_descriptor_type(VkDescriptorType type)
702 {
703 switch (type) {
704 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
705 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
706 return ISL_FORMAT_R32G32B32A32_FLOAT;
707
708 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
709 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
710 return ISL_FORMAT_RAW;
711
712 default:
713 unreachable("Invalid descriptor type");
714 }
715 }
716
717 static struct anv_state
718 anv_cmd_buffer_alloc_null_surface_state(struct anv_cmd_buffer *cmd_buffer,
719 struct anv_framebuffer *fb)
720 {
721 switch (cmd_buffer->device->info.gen) {
722 case 7:
723 if (cmd_buffer->device->info.is_haswell) {
724 return gen75_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
725 } else {
726 return gen7_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
727 }
728 case 8:
729 return gen8_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
730 case 9:
731 return gen9_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
732 default:
733 unreachable("Invalid hardware generation");
734 }
735 }
736
737 VkResult
738 anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
739 gl_shader_stage stage,
740 struct anv_state *bt_state)
741 {
742 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
743 struct anv_subpass *subpass = cmd_buffer->state.subpass;
744 struct anv_pipeline_bind_map *map;
745 uint32_t bias, state_offset;
746
747 switch (stage) {
748 case MESA_SHADER_COMPUTE:
749 map = &cmd_buffer->state.compute_pipeline->bindings[stage];
750 bias = 1;
751 break;
752 default:
753 map = &cmd_buffer->state.pipeline->bindings[stage];
754 bias = 0;
755 break;
756 }
757
758 if (bias + map->surface_count == 0) {
759 *bt_state = (struct anv_state) { 0, };
760 return VK_SUCCESS;
761 }
762
763 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
764 bias + map->surface_count,
765 &state_offset);
766 uint32_t *bt_map = bt_state->map;
767
768 if (bt_state->map == NULL)
769 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
770
771 if (stage == MESA_SHADER_COMPUTE &&
772 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
773 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
774 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
775
776 struct anv_state surface_state;
777 surface_state =
778 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
779
780 const enum isl_format format =
781 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
782 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
783 format, bo_offset, 12, 1);
784
785 bt_map[0] = surface_state.offset + state_offset;
786 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
787 }
788
789 if (map->surface_count == 0)
790 goto out;
791
792 if (map->image_count > 0) {
793 VkResult result =
794 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
795 if (result != VK_SUCCESS)
796 return result;
797
798 cmd_buffer->state.push_constants_dirty |= 1 << stage;
799 }
800
801 uint32_t image = 0;
802 for (uint32_t s = 0; s < map->surface_count; s++) {
803 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
804
805 struct anv_state surface_state;
806 struct anv_bo *bo;
807 uint32_t bo_offset;
808
809 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
810 /* Color attachment binding */
811 assert(stage == MESA_SHADER_FRAGMENT);
812 assert(binding->binding == 0);
813 if (binding->index < subpass->color_count) {
814 const struct anv_image_view *iview =
815 fb->attachments[subpass->color_attachments[binding->index]];
816
817 assert(iview->color_rt_surface_state.alloc_size);
818 surface_state = iview->color_rt_surface_state;
819 add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
820 iview->bo, iview->offset);
821 } else {
822 /* Null render target */
823 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
824 surface_state =
825 anv_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
826 }
827
828 bt_map[bias + s] = surface_state.offset + state_offset;
829 continue;
830 }
831
832 struct anv_descriptor_set *set =
833 cmd_buffer->state.descriptors[binding->set];
834 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
835 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
836
837 switch (desc->type) {
838 case VK_DESCRIPTOR_TYPE_SAMPLER:
839 /* Nothing for us to do here */
840 continue;
841
842 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
843 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
844 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
845 surface_state = desc->image_view->sampler_surface_state;
846 assert(surface_state.alloc_size);
847 bo = desc->image_view->bo;
848 bo_offset = desc->image_view->offset;
849 break;
850
851 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
852 surface_state = desc->image_view->storage_surface_state;
853 assert(surface_state.alloc_size);
854 bo = desc->image_view->bo;
855 bo_offset = desc->image_view->offset;
856
857 struct brw_image_param *image_param =
858 &cmd_buffer->state.push_constants[stage]->images[image++];
859
860 *image_param = desc->image_view->storage_image_param;
861 image_param->surface_idx = bias + s;
862 break;
863 }
864
865 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
866 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
867 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
868 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
869 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
870 surface_state = desc->buffer_view->surface_state;
871 assert(surface_state.alloc_size);
872 bo = desc->buffer_view->bo;
873 bo_offset = desc->buffer_view->offset;
874 break;
875
876 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
877 surface_state = desc->buffer_view->storage_surface_state;
878 assert(surface_state.alloc_size);
879 bo = desc->buffer_view->bo;
880 bo_offset = desc->buffer_view->offset;
881
882 struct brw_image_param *image_param =
883 &cmd_buffer->state.push_constants[stage]->images[image++];
884
885 *image_param = desc->buffer_view->storage_image_param;
886 image_param->surface_idx = bias + s;
887 break;
888
889 default:
890 assert(!"Invalid descriptor type");
891 continue;
892 }
893
894 bt_map[bias + s] = surface_state.offset + state_offset;
895 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
896 }
897 assert(image == map->image_count);
898
899 out:
900 if (!cmd_buffer->device->info.has_llc)
901 anv_state_clflush(*bt_state);
902
903 return VK_SUCCESS;
904 }
905
906 VkResult
907 anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
908 gl_shader_stage stage, struct anv_state *state)
909 {
910 struct anv_pipeline_bind_map *map;
911
912 if (stage == MESA_SHADER_COMPUTE)
913 map = &cmd_buffer->state.compute_pipeline->bindings[stage];
914 else
915 map = &cmd_buffer->state.pipeline->bindings[stage];
916
917 if (map->sampler_count == 0) {
918 *state = (struct anv_state) { 0, };
919 return VK_SUCCESS;
920 }
921
922 uint32_t size = map->sampler_count * 16;
923 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
924
925 if (state->map == NULL)
926 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
927
928 for (uint32_t s = 0; s < map->sampler_count; s++) {
929 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
930 struct anv_descriptor_set *set =
931 cmd_buffer->state.descriptors[binding->set];
932 uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
933 struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
934
935 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
936 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
937 continue;
938
939 struct anv_sampler *sampler = desc->sampler;
940
941 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
942 * happens to be zero.
943 */
944 if (sampler == NULL)
945 continue;
946
947 memcpy(state->map + (s * 16),
948 sampler->state, sizeof(sampler->state));
949 }
950
951 if (!cmd_buffer->device->info.has_llc)
952 anv_state_clflush(*state);
953
954 return VK_SUCCESS;
955 }
956
957 struct anv_state
958 anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
959 const void *data, uint32_t size, uint32_t alignment)
960 {
961 struct anv_state state;
962
963 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment);
964 memcpy(state.map, data, size);
965
966 if (!cmd_buffer->device->info.has_llc)
967 anv_state_clflush(state);
968
969 VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size));
970
971 return state;
972 }
973
974 struct anv_state
975 anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
976 uint32_t *a, uint32_t *b,
977 uint32_t dwords, uint32_t alignment)
978 {
979 struct anv_state state;
980 uint32_t *p;
981
982 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
983 dwords * 4, alignment);
984 p = state.map;
985 for (uint32_t i = 0; i < dwords; i++)
986 p[i] = a[i] | b[i];
987
988 if (!cmd_buffer->device->info.has_llc)
989 anv_state_clflush(state);
990
991 VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
992
993 return state;
994 }
995
996 /**
997 * @brief Setup the command buffer for recording commands inside the given
998 * subpass.
999 *
1000 * This does not record all commands needed for starting the subpass.
1001 * Starting the subpass may require additional commands.
1002 *
1003 * Note that vkCmdBeginRenderPass, vkCmdNextSubpass, and vkBeginCommandBuffer
1004 * with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, all setup the
1005 * command buffer for recording commands for some subpass. But only the first
1006 * two, vkCmdBeginRenderPass and vkCmdNextSubpass, can start a subpass.
1007 */
1008 void
1009 anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1010 struct anv_subpass *subpass)
1011 {
1012 switch (cmd_buffer->device->info.gen) {
1013 case 7:
1014 if (cmd_buffer->device->info.is_haswell) {
1015 gen75_cmd_buffer_set_subpass(cmd_buffer, subpass);
1016 } else {
1017 gen7_cmd_buffer_set_subpass(cmd_buffer, subpass);
1018 }
1019 break;
1020 case 8:
1021 gen8_cmd_buffer_set_subpass(cmd_buffer, subpass);
1022 break;
1023 case 9:
1024 gen9_cmd_buffer_set_subpass(cmd_buffer, subpass);
1025 break;
1026 default:
1027 unreachable("unsupported gen\n");
1028 }
1029 }
1030
1031 struct anv_state
1032 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1033 gl_shader_stage stage)
1034 {
1035 struct anv_push_constants *data =
1036 cmd_buffer->state.push_constants[stage];
1037 const struct brw_stage_prog_data *prog_data =
1038 cmd_buffer->state.pipeline->prog_data[stage];
1039
1040 /* If we don't actually have any push constants, bail. */
1041 if (data == NULL || prog_data->nr_params == 0)
1042 return (struct anv_state) { .offset = 0 };
1043
1044 struct anv_state state =
1045 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
1046 prog_data->nr_params * sizeof(float),
1047 32 /* bottom 5 bits MBZ */);
1048
1049 /* Walk through the param array and fill the buffer with data */
1050 uint32_t *u32_map = state.map;
1051 for (unsigned i = 0; i < prog_data->nr_params; i++) {
1052 uint32_t offset = (uintptr_t)prog_data->param[i];
1053 u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
1054 }
1055
1056 if (!cmd_buffer->device->info.has_llc)
1057 anv_state_clflush(state);
1058
1059 return state;
1060 }
1061
1062 struct anv_state
1063 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer)
1064 {
1065 struct anv_push_constants *data =
1066 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
1067 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1068 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1069 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
1070
1071 /* If we don't actually have any push constants, bail. */
1072 if (cs_prog_data->push.total.size == 0)
1073 return (struct anv_state) { .offset = 0 };
1074
1075 const unsigned push_constant_alignment =
1076 cmd_buffer->device->info.gen < 8 ? 32 : 64;
1077 const unsigned aligned_total_push_constants_size =
1078 ALIGN(cs_prog_data->push.total.size, push_constant_alignment);
1079 struct anv_state state =
1080 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
1081 aligned_total_push_constants_size,
1082 push_constant_alignment);
1083
1084 /* Walk through the param array and fill the buffer with data */
1085 uint32_t *u32_map = state.map;
1086
1087 if (cs_prog_data->push.cross_thread.size > 0) {
1088 assert(cs_prog_data->thread_local_id_index < 0 ||
1089 cs_prog_data->thread_local_id_index >=
1090 cs_prog_data->push.cross_thread.dwords);
1091 for (unsigned i = 0;
1092 i < cs_prog_data->push.cross_thread.dwords;
1093 i++) {
1094 uint32_t offset = (uintptr_t)prog_data->param[i];
1095 u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
1096 }
1097 }
1098
1099 if (cs_prog_data->push.per_thread.size > 0) {
1100 for (unsigned t = 0; t < cs_prog_data->threads; t++) {
1101 unsigned dst =
1102 8 * (cs_prog_data->push.per_thread.regs * t +
1103 cs_prog_data->push.cross_thread.regs);
1104 unsigned src = cs_prog_data->push.cross_thread.dwords;
1105 for ( ; src < prog_data->nr_params; src++, dst++) {
1106 if (src != cs_prog_data->thread_local_id_index) {
1107 uint32_t offset = (uintptr_t)prog_data->param[src];
1108 u32_map[dst] = *(uint32_t *)((uint8_t *)data + offset);
1109 } else {
1110 u32_map[dst] = t * cs_prog_data->simd_size;
1111 }
1112 }
1113 }
1114 }
1115
1116 if (!cmd_buffer->device->info.has_llc)
1117 anv_state_clflush(state);
1118
1119 return state;
1120 }
1121
1122 void anv_CmdPushConstants(
1123 VkCommandBuffer commandBuffer,
1124 VkPipelineLayout layout,
1125 VkShaderStageFlags stageFlags,
1126 uint32_t offset,
1127 uint32_t size,
1128 const void* pValues)
1129 {
1130 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1131
1132 anv_foreach_stage(stage, stageFlags) {
1133 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);
1134
1135 memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
1136 pValues, size);
1137 }
1138
1139 cmd_buffer->state.push_constants_dirty |= stageFlags;
1140 }
1141
1142 void anv_CmdExecuteCommands(
1143 VkCommandBuffer commandBuffer,
1144 uint32_t commandBufferCount,
1145 const VkCommandBuffer* pCmdBuffers)
1146 {
1147 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1148
1149 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1150
1151 for (uint32_t i = 0; i < commandBufferCount; i++) {
1152 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1153
1154 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1155
1156 anv_cmd_buffer_add_secondary(primary, secondary);
1157 }
1158 }
1159
1160 VkResult anv_CreateCommandPool(
1161 VkDevice _device,
1162 const VkCommandPoolCreateInfo* pCreateInfo,
1163 const VkAllocationCallbacks* pAllocator,
1164 VkCommandPool* pCmdPool)
1165 {
1166 ANV_FROM_HANDLE(anv_device, device, _device);
1167 struct anv_cmd_pool *pool;
1168
1169 pool = anv_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
1170 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1171 if (pool == NULL)
1172 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1173
1174 if (pAllocator)
1175 pool->alloc = *pAllocator;
1176 else
1177 pool->alloc = device->alloc;
1178
1179 list_inithead(&pool->cmd_buffers);
1180
1181 *pCmdPool = anv_cmd_pool_to_handle(pool);
1182
1183 return VK_SUCCESS;
1184 }
1185
1186 void anv_DestroyCommandPool(
1187 VkDevice _device,
1188 VkCommandPool commandPool,
1189 const VkAllocationCallbacks* pAllocator)
1190 {
1191 ANV_FROM_HANDLE(anv_device, device, _device);
1192 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1193
1194 list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
1195 &pool->cmd_buffers, pool_link) {
1196 anv_cmd_buffer_destroy(cmd_buffer);
1197 }
1198
1199 anv_free2(&device->alloc, pAllocator, pool);
1200 }
1201
1202 VkResult anv_ResetCommandPool(
1203 VkDevice device,
1204 VkCommandPool commandPool,
1205 VkCommandPoolResetFlags flags)
1206 {
1207 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1208
1209 list_for_each_entry(struct anv_cmd_buffer, cmd_buffer,
1210 &pool->cmd_buffers, pool_link) {
1211 anv_cmd_buffer_reset(cmd_buffer);
1212 }
1213
1214 return VK_SUCCESS;
1215 }
1216
1217 /**
1218 * Return NULL if the current subpass has no depthstencil attachment.
1219 */
1220 const struct anv_image_view *
1221 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
1222 {
1223 const struct anv_subpass *subpass = cmd_buffer->state.subpass;
1224 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
1225
1226 if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED)
1227 return NULL;
1228
1229 const struct anv_image_view *iview =
1230 fb->attachments[subpass->depth_stencil_attachment];
1231
1232 assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT |
1233 VK_IMAGE_ASPECT_STENCIL_BIT));
1234
1235 return iview;
1236 }