bba24e82337e853fda0d71494bb64a7111cc1660
[mesa.git] / src / intel / vulkan / anv_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "vk_format_info.h"
33
34 /** \file anv_cmd_buffer.c
35 *
36 * This file contains all of the stuff for emitting commands into a command
37 * buffer. This includes implementations of most of the vkCmd*
38 * entrypoints. This file is concerned entirely with state emission and
39 * not with the command buffer data structure itself. As far as this file
40 * is concerned, most of anv_cmd_buffer is magic.
41 */
42
43 /* TODO: These are taken from GLES. We should check the Vulkan spec */
44 const struct anv_dynamic_state default_dynamic_state = {
45 .viewport = {
46 .count = 0,
47 },
48 .scissor = {
49 .count = 0,
50 },
51 .line_width = 1.0f,
52 .depth_bias = {
53 .bias = 0.0f,
54 .clamp = 0.0f,
55 .slope = 0.0f,
56 },
57 .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
58 .depth_bounds = {
59 .min = 0.0f,
60 .max = 1.0f,
61 },
62 .stencil_compare_mask = {
63 .front = ~0u,
64 .back = ~0u,
65 },
66 .stencil_write_mask = {
67 .front = ~0u,
68 .back = ~0u,
69 },
70 .stencil_reference = {
71 .front = 0u,
72 .back = 0u,
73 },
74 };
75
76 void
77 anv_dynamic_state_copy(struct anv_dynamic_state *dest,
78 const struct anv_dynamic_state *src,
79 uint32_t copy_mask)
80 {
81 if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
82 dest->viewport.count = src->viewport.count;
83 typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
84 src->viewport.count);
85 }
86
87 if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
88 dest->scissor.count = src->scissor.count;
89 typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
90 src->scissor.count);
91 }
92
93 if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
94 dest->line_width = src->line_width;
95
96 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
97 dest->depth_bias = src->depth_bias;
98
99 if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
100 typed_memcpy(dest->blend_constants, src->blend_constants, 4);
101
102 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
103 dest->depth_bounds = src->depth_bounds;
104
105 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
106 dest->stencil_compare_mask = src->stencil_compare_mask;
107
108 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
109 dest->stencil_write_mask = src->stencil_write_mask;
110
111 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
112 dest->stencil_reference = src->stencil_reference;
113 }
114
115 static void
116 anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer)
117 {
118 struct anv_cmd_state *state = &cmd_buffer->state;
119
120 memset(&state->descriptors, 0, sizeof(state->descriptors));
121 memset(&state->push_constants, 0, sizeof(state->push_constants));
122 memset(state->binding_tables, 0, sizeof(state->binding_tables));
123 memset(state->samplers, 0, sizeof(state->samplers));
124
125 /* 0 isn't a valid config. This ensures that we always configure L3$. */
126 cmd_buffer->state.current_l3_config = 0;
127
128 state->dirty = 0;
129 state->vb_dirty = 0;
130 state->descriptors_dirty = 0;
131 state->push_constants_dirty = 0;
132 state->pipeline = NULL;
133 state->restart_index = UINT32_MAX;
134 state->dynamic = default_dynamic_state;
135 state->need_query_wa = true;
136
137 if (state->attachments != NULL) {
138 anv_free(&cmd_buffer->pool->alloc, state->attachments);
139 state->attachments = NULL;
140 }
141
142 state->gen7.index_buffer = NULL;
143 }
144
145 /**
146 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
147 */
148 void
149 anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
150 const VkRenderPassBeginInfo *info)
151 {
152 struct anv_cmd_state *state = &cmd_buffer->state;
153 ANV_FROM_HANDLE(anv_render_pass, pass, info->renderPass);
154
155 anv_free(&cmd_buffer->pool->alloc, state->attachments);
156
157 if (pass->attachment_count == 0) {
158 state->attachments = NULL;
159 return;
160 }
161
162 state->attachments = anv_alloc(&cmd_buffer->pool->alloc,
163 pass->attachment_count *
164 sizeof(state->attachments[0]),
165 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
166 if (state->attachments == NULL) {
167 /* FIXME: Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
168 abort();
169 }
170
171 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
172 struct anv_render_pass_attachment *att = &pass->attachments[i];
173 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
174 VkImageAspectFlags clear_aspects = 0;
175
176 if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
177 /* color attachment */
178 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
179 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
180 }
181 } else {
182 /* depthstencil attachment */
183 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
184 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
185 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
186 }
187 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
188 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
189 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
190 }
191 }
192
193 state->attachments[i].pending_clear_aspects = clear_aspects;
194 if (clear_aspects) {
195 assert(info->clearValueCount > i);
196 state->attachments[i].clear_value = info->pClearValues[i];
197 }
198 }
199 }
200
201 static VkResult
202 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
203 gl_shader_stage stage, uint32_t size)
204 {
205 struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
206
207 if (*ptr == NULL) {
208 *ptr = anv_alloc(&cmd_buffer->pool->alloc, size, 8,
209 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
210 if (*ptr == NULL)
211 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
212 } else if ((*ptr)->size < size) {
213 *ptr = anv_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8,
214 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
215 if (*ptr == NULL)
216 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
217 }
218 (*ptr)->size = size;
219
220 return VK_SUCCESS;
221 }
222
223 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
224 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
225 (offsetof(struct anv_push_constants, field) + \
226 sizeof(cmd_buffer->state.push_constants[0]->field)))
227
228 static VkResult anv_create_cmd_buffer(
229 struct anv_device * device,
230 struct anv_cmd_pool * pool,
231 VkCommandBufferLevel level,
232 VkCommandBuffer* pCommandBuffer)
233 {
234 struct anv_cmd_buffer *cmd_buffer;
235 VkResult result;
236
237 cmd_buffer = anv_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
238 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
239 if (cmd_buffer == NULL)
240 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
241
242 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
243 cmd_buffer->device = device;
244 cmd_buffer->pool = pool;
245 cmd_buffer->level = level;
246 cmd_buffer->state.attachments = NULL;
247
248 result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
249 if (result != VK_SUCCESS)
250 goto fail;
251
252 anv_state_stream_init(&cmd_buffer->surface_state_stream,
253 &device->surface_state_block_pool);
254 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
255 &device->dynamic_state_block_pool);
256
257 if (pool) {
258 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
259 } else {
260 /* Init the pool_link so we can safefly call list_del when we destroy
261 * the command buffer
262 */
263 list_inithead(&cmd_buffer->pool_link);
264 }
265
266 *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
267
268 return VK_SUCCESS;
269
270 fail:
271 anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
272
273 return result;
274 }
275
276 VkResult anv_AllocateCommandBuffers(
277 VkDevice _device,
278 const VkCommandBufferAllocateInfo* pAllocateInfo,
279 VkCommandBuffer* pCommandBuffers)
280 {
281 ANV_FROM_HANDLE(anv_device, device, _device);
282 ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool);
283
284 VkResult result = VK_SUCCESS;
285 uint32_t i;
286
287 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
288 result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level,
289 &pCommandBuffers[i]);
290 if (result != VK_SUCCESS)
291 break;
292 }
293
294 if (result != VK_SUCCESS)
295 anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
296 i, pCommandBuffers);
297
298 return result;
299 }
300
301 static void
302 anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer)
303 {
304 list_del(&cmd_buffer->pool_link);
305
306 anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
307
308 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
309 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
310
311 anv_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
312 anv_free(&cmd_buffer->pool->alloc, cmd_buffer);
313 }
314
315 void anv_FreeCommandBuffers(
316 VkDevice device,
317 VkCommandPool commandPool,
318 uint32_t commandBufferCount,
319 const VkCommandBuffer* pCommandBuffers)
320 {
321 for (uint32_t i = 0; i < commandBufferCount; i++) {
322 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
323
324 anv_cmd_buffer_destroy(cmd_buffer);
325 }
326 }
327
328 VkResult anv_ResetCommandBuffer(
329 VkCommandBuffer commandBuffer,
330 VkCommandBufferResetFlags flags)
331 {
332 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
333
334 cmd_buffer->usage_flags = 0;
335 cmd_buffer->state.current_pipeline = UINT32_MAX;
336 anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
337 anv_cmd_state_reset(cmd_buffer);
338
339 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
340 anv_state_stream_init(&cmd_buffer->surface_state_stream,
341 &cmd_buffer->device->surface_state_block_pool);
342
343 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
344 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
345 &cmd_buffer->device->dynamic_state_block_pool);
346
347 return VK_SUCCESS;
348 }
349
350 void
351 anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
352 {
353 switch (cmd_buffer->device->info.gen) {
354 case 7:
355 if (cmd_buffer->device->info.is_haswell)
356 return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
357 else
358 return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
359 case 8:
360 return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
361 case 9:
362 return gen9_cmd_buffer_emit_state_base_address(cmd_buffer);
363 default:
364 unreachable("unsupported gen\n");
365 }
366 }
367
368 VkResult anv_BeginCommandBuffer(
369 VkCommandBuffer commandBuffer,
370 const VkCommandBufferBeginInfo* pBeginInfo)
371 {
372 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
373
374 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
375 * command buffer's state. Otherwise, we must *reset* its state. In both
376 * cases we reset it.
377 *
378 * From the Vulkan 1.0 spec:
379 *
380 * If a command buffer is in the executable state and the command buffer
381 * was allocated from a command pool with the
382 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
383 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
384 * as if vkResetCommandBuffer had been called with
385 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
386 * the command buffer in the recording state.
387 */
388 anv_ResetCommandBuffer(commandBuffer, /*flags*/ 0);
389
390 cmd_buffer->usage_flags = pBeginInfo->flags;
391
392 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
393 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
394
395 anv_cmd_buffer_emit_state_base_address(cmd_buffer);
396
397 if (cmd_buffer->usage_flags &
398 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
399 cmd_buffer->state.framebuffer =
400 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
401 cmd_buffer->state.pass =
402 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
403
404 struct anv_subpass *subpass =
405 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
406
407 anv_cmd_buffer_set_subpass(cmd_buffer, subpass);
408 }
409
410 return VK_SUCCESS;
411 }
412
413 VkResult anv_EndCommandBuffer(
414 VkCommandBuffer commandBuffer)
415 {
416 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
417 struct anv_device *device = cmd_buffer->device;
418
419 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
420
421 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
422 /* The algorithm used to compute the validate list is not threadsafe as
423 * it uses the bo->index field. We have to lock the device around it.
424 * Fortunately, the chances for contention here are probably very low.
425 */
426 pthread_mutex_lock(&device->mutex);
427 anv_cmd_buffer_prepare_execbuf(cmd_buffer);
428 pthread_mutex_unlock(&device->mutex);
429 }
430
431 return VK_SUCCESS;
432 }
433
434 void anv_CmdBindPipeline(
435 VkCommandBuffer commandBuffer,
436 VkPipelineBindPoint pipelineBindPoint,
437 VkPipeline _pipeline)
438 {
439 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
440 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
441
442 switch (pipelineBindPoint) {
443 case VK_PIPELINE_BIND_POINT_COMPUTE:
444 cmd_buffer->state.compute_pipeline = pipeline;
445 cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
446 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
447 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
448 break;
449
450 case VK_PIPELINE_BIND_POINT_GRAPHICS:
451 cmd_buffer->state.pipeline = pipeline;
452 cmd_buffer->state.vb_dirty |= pipeline->vb_used;
453 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
454 cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
455 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
456
457 /* Apply the dynamic state from the pipeline */
458 cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
459 anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
460 &pipeline->dynamic_state,
461 pipeline->dynamic_state_mask);
462 break;
463
464 default:
465 assert(!"invalid bind point");
466 break;
467 }
468 }
469
470 void anv_CmdSetViewport(
471 VkCommandBuffer commandBuffer,
472 uint32_t firstViewport,
473 uint32_t viewportCount,
474 const VkViewport* pViewports)
475 {
476 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
477
478 const uint32_t total_count = firstViewport + viewportCount;
479 if (cmd_buffer->state.dynamic.viewport.count < total_count)
480 cmd_buffer->state.dynamic.viewport.count = total_count;
481
482 memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport,
483 pViewports, viewportCount * sizeof(*pViewports));
484
485 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
486 }
487
488 void anv_CmdSetScissor(
489 VkCommandBuffer commandBuffer,
490 uint32_t firstScissor,
491 uint32_t scissorCount,
492 const VkRect2D* pScissors)
493 {
494 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
495
496 const uint32_t total_count = firstScissor + scissorCount;
497 if (cmd_buffer->state.dynamic.scissor.count < total_count)
498 cmd_buffer->state.dynamic.scissor.count = total_count;
499
500 memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor,
501 pScissors, scissorCount * sizeof(*pScissors));
502
503 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
504 }
505
506 void anv_CmdSetLineWidth(
507 VkCommandBuffer commandBuffer,
508 float lineWidth)
509 {
510 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
511
512 cmd_buffer->state.dynamic.line_width = lineWidth;
513 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
514 }
515
516 void anv_CmdSetDepthBias(
517 VkCommandBuffer commandBuffer,
518 float depthBiasConstantFactor,
519 float depthBiasClamp,
520 float depthBiasSlopeFactor)
521 {
522 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
523
524 cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
525 cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
526 cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
527
528 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
529 }
530
531 void anv_CmdSetBlendConstants(
532 VkCommandBuffer commandBuffer,
533 const float blendConstants[4])
534 {
535 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
536
537 memcpy(cmd_buffer->state.dynamic.blend_constants,
538 blendConstants, sizeof(float) * 4);
539
540 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
541 }
542
543 void anv_CmdSetDepthBounds(
544 VkCommandBuffer commandBuffer,
545 float minDepthBounds,
546 float maxDepthBounds)
547 {
548 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
549
550 cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
551 cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
552
553 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
554 }
555
556 void anv_CmdSetStencilCompareMask(
557 VkCommandBuffer commandBuffer,
558 VkStencilFaceFlags faceMask,
559 uint32_t compareMask)
560 {
561 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
562
563 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
564 cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
565 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
566 cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
567
568 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
569 }
570
571 void anv_CmdSetStencilWriteMask(
572 VkCommandBuffer commandBuffer,
573 VkStencilFaceFlags faceMask,
574 uint32_t writeMask)
575 {
576 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
577
578 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
579 cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
580 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
581 cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
582
583 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
584 }
585
586 void anv_CmdSetStencilReference(
587 VkCommandBuffer commandBuffer,
588 VkStencilFaceFlags faceMask,
589 uint32_t reference)
590 {
591 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
592
593 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
594 cmd_buffer->state.dynamic.stencil_reference.front = reference;
595 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
596 cmd_buffer->state.dynamic.stencil_reference.back = reference;
597
598 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
599 }
600
601 void anv_CmdBindDescriptorSets(
602 VkCommandBuffer commandBuffer,
603 VkPipelineBindPoint pipelineBindPoint,
604 VkPipelineLayout _layout,
605 uint32_t firstSet,
606 uint32_t descriptorSetCount,
607 const VkDescriptorSet* pDescriptorSets,
608 uint32_t dynamicOffsetCount,
609 const uint32_t* pDynamicOffsets)
610 {
611 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
612 ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
613 struct anv_descriptor_set_layout *set_layout;
614
615 assert(firstSet + descriptorSetCount < MAX_SETS);
616
617 uint32_t dynamic_slot = 0;
618 for (uint32_t i = 0; i < descriptorSetCount; i++) {
619 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
620 set_layout = layout->set[firstSet + i].layout;
621
622 if (cmd_buffer->state.descriptors[firstSet + i] != set) {
623 cmd_buffer->state.descriptors[firstSet + i] = set;
624 cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
625 }
626
627 if (set_layout->dynamic_offset_count > 0) {
628 anv_foreach_stage(s, set_layout->shader_stages) {
629 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);
630
631 struct anv_push_constants *push =
632 cmd_buffer->state.push_constants[s];
633
634 unsigned d = layout->set[firstSet + i].dynamic_offset_start;
635 const uint32_t *offsets = pDynamicOffsets + dynamic_slot;
636 struct anv_descriptor *desc = set->descriptors;
637
638 for (unsigned b = 0; b < set_layout->binding_count; b++) {
639 if (set_layout->binding[b].dynamic_offset_index < 0)
640 continue;
641
642 unsigned array_size = set_layout->binding[b].array_size;
643 for (unsigned j = 0; j < array_size; j++) {
644 uint32_t range = 0;
645 if (desc->buffer_view)
646 range = desc->buffer_view->range;
647 push->dynamic[d].offset = *(offsets++);
648 push->dynamic[d].range = range;
649 desc++;
650 d++;
651 }
652 }
653 }
654 cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
655 }
656 }
657 }
658
659 void anv_CmdBindVertexBuffers(
660 VkCommandBuffer commandBuffer,
661 uint32_t firstBinding,
662 uint32_t bindingCount,
663 const VkBuffer* pBuffers,
664 const VkDeviceSize* pOffsets)
665 {
666 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
667 struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
668
669 /* We have to defer setting up vertex buffer since we need the buffer
670 * stride from the pipeline. */
671
672 assert(firstBinding + bindingCount < MAX_VBS);
673 for (uint32_t i = 0; i < bindingCount; i++) {
674 vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
675 vb[firstBinding + i].offset = pOffsets[i];
676 cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i);
677 }
678 }
679
680 static void
681 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
682 struct anv_state state, struct anv_bo *bo, uint32_t offset)
683 {
684 /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
685 * 9 for gen8+. We only write the first dword for gen8+ here and rely on
686 * the initial state to set the high bits to 0. */
687
688 const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8;
689
690 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
691 state.offset + dword * 4, bo, offset);
692 }
693
694 enum isl_format
695 anv_isl_format_for_descriptor_type(VkDescriptorType type)
696 {
697 switch (type) {
698 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
699 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
700 return ISL_FORMAT_R32G32B32A32_FLOAT;
701
702 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
703 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
704 return ISL_FORMAT_RAW;
705
706 default:
707 unreachable("Invalid descriptor type");
708 }
709 }
710
711 static struct anv_state
712 anv_cmd_buffer_alloc_null_surface_state(struct anv_cmd_buffer *cmd_buffer,
713 struct anv_framebuffer *fb)
714 {
715 switch (cmd_buffer->device->info.gen) {
716 case 7:
717 if (cmd_buffer->device->info.is_haswell) {
718 return gen75_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
719 } else {
720 return gen7_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
721 }
722 case 8:
723 return gen8_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
724 case 9:
725 return gen9_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
726 default:
727 unreachable("Invalid hardware generation");
728 }
729 }
730
731 VkResult
732 anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
733 gl_shader_stage stage,
734 struct anv_state *bt_state)
735 {
736 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
737 struct anv_subpass *subpass = cmd_buffer->state.subpass;
738 struct anv_pipeline_bind_map *map;
739 uint32_t bias, state_offset;
740
741 switch (stage) {
742 case MESA_SHADER_COMPUTE:
743 map = &cmd_buffer->state.compute_pipeline->bindings[stage];
744 bias = 1;
745 break;
746 default:
747 map = &cmd_buffer->state.pipeline->bindings[stage];
748 bias = 0;
749 break;
750 }
751
752 if (bias + map->surface_count == 0) {
753 *bt_state = (struct anv_state) { 0, };
754 return VK_SUCCESS;
755 }
756
757 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
758 bias + map->surface_count,
759 &state_offset);
760 uint32_t *bt_map = bt_state->map;
761
762 if (bt_state->map == NULL)
763 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
764
765 if (stage == MESA_SHADER_COMPUTE &&
766 get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
767 struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
768 uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
769
770 struct anv_state surface_state;
771 surface_state =
772 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
773
774 const enum isl_format format =
775 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
776 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
777 format, bo_offset, 12, 1);
778
779 bt_map[0] = surface_state.offset + state_offset;
780 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
781 }
782
783 if (map->surface_count == 0)
784 goto out;
785
786 if (map->image_count > 0) {
787 VkResult result =
788 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
789 if (result != VK_SUCCESS)
790 return result;
791
792 cmd_buffer->state.push_constants_dirty |= 1 << stage;
793 }
794
795 uint32_t image = 0;
796 for (uint32_t s = 0; s < map->surface_count; s++) {
797 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
798
799 struct anv_state surface_state;
800 struct anv_bo *bo;
801 uint32_t bo_offset;
802
803 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
804 /* Color attachment binding */
805 assert(stage == MESA_SHADER_FRAGMENT);
806 if (binding->offset < subpass->color_count) {
807 const struct anv_image_view *iview =
808 fb->attachments[subpass->color_attachments[binding->offset]];
809
810 assert(iview->color_rt_surface_state.alloc_size);
811 surface_state = iview->color_rt_surface_state;
812 add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
813 iview->bo, iview->offset);
814 } else {
815 /* Null render target */
816 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
817 surface_state =
818 anv_cmd_buffer_alloc_null_surface_state(cmd_buffer, fb);
819 }
820
821 bt_map[bias + s] = surface_state.offset + state_offset;
822 continue;
823 }
824
825 struct anv_descriptor_set *set =
826 cmd_buffer->state.descriptors[binding->set];
827 struct anv_descriptor *desc = &set->descriptors[binding->offset];
828
829 switch (desc->type) {
830 case VK_DESCRIPTOR_TYPE_SAMPLER:
831 /* Nothing for us to do here */
832 continue;
833
834 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
835 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
836 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
837 surface_state = desc->image_view->sampler_surface_state;
838 assert(surface_state.alloc_size);
839 bo = desc->image_view->bo;
840 bo_offset = desc->image_view->offset;
841 break;
842
843 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
844 surface_state = desc->image_view->storage_surface_state;
845 assert(surface_state.alloc_size);
846 bo = desc->image_view->bo;
847 bo_offset = desc->image_view->offset;
848
849 struct brw_image_param *image_param =
850 &cmd_buffer->state.push_constants[stage]->images[image++];
851
852 *image_param = desc->image_view->storage_image_param;
853 image_param->surface_idx = bias + s;
854 break;
855 }
856
857 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
858 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
859 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
860 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
861 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
862 surface_state = desc->buffer_view->surface_state;
863 assert(surface_state.alloc_size);
864 bo = desc->buffer_view->bo;
865 bo_offset = desc->buffer_view->offset;
866 break;
867
868 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
869 surface_state = desc->buffer_view->storage_surface_state;
870 assert(surface_state.alloc_size);
871 bo = desc->buffer_view->bo;
872 bo_offset = desc->buffer_view->offset;
873
874 struct brw_image_param *image_param =
875 &cmd_buffer->state.push_constants[stage]->images[image++];
876
877 *image_param = desc->buffer_view->storage_image_param;
878 image_param->surface_idx = bias + s;
879 break;
880
881 default:
882 assert(!"Invalid descriptor type");
883 continue;
884 }
885
886 bt_map[bias + s] = surface_state.offset + state_offset;
887 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
888 }
889 assert(image == map->image_count);
890
891 out:
892 if (!cmd_buffer->device->info.has_llc)
893 anv_state_clflush(*bt_state);
894
895 return VK_SUCCESS;
896 }
897
898 VkResult
899 anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
900 gl_shader_stage stage, struct anv_state *state)
901 {
902 struct anv_pipeline_bind_map *map;
903
904 if (stage == MESA_SHADER_COMPUTE)
905 map = &cmd_buffer->state.compute_pipeline->bindings[stage];
906 else
907 map = &cmd_buffer->state.pipeline->bindings[stage];
908
909 if (map->sampler_count == 0) {
910 *state = (struct anv_state) { 0, };
911 return VK_SUCCESS;
912 }
913
914 uint32_t size = map->sampler_count * 16;
915 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
916
917 if (state->map == NULL)
918 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
919
920 for (uint32_t s = 0; s < map->sampler_count; s++) {
921 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
922 struct anv_descriptor_set *set =
923 cmd_buffer->state.descriptors[binding->set];
924 struct anv_descriptor *desc = &set->descriptors[binding->offset];
925
926 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
927 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
928 continue;
929
930 struct anv_sampler *sampler = desc->sampler;
931
932 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
933 * happens to be zero.
934 */
935 if (sampler == NULL)
936 continue;
937
938 memcpy(state->map + (s * 16),
939 sampler->state, sizeof(sampler->state));
940 }
941
942 if (!cmd_buffer->device->info.has_llc)
943 anv_state_clflush(*state);
944
945 return VK_SUCCESS;
946 }
947
948 struct anv_state
949 anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
950 const void *data, uint32_t size, uint32_t alignment)
951 {
952 struct anv_state state;
953
954 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment);
955 memcpy(state.map, data, size);
956
957 if (!cmd_buffer->device->info.has_llc)
958 anv_state_clflush(state);
959
960 VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size));
961
962 return state;
963 }
964
965 struct anv_state
966 anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
967 uint32_t *a, uint32_t *b,
968 uint32_t dwords, uint32_t alignment)
969 {
970 struct anv_state state;
971 uint32_t *p;
972
973 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
974 dwords * 4, alignment);
975 p = state.map;
976 for (uint32_t i = 0; i < dwords; i++)
977 p[i] = a[i] | b[i];
978
979 if (!cmd_buffer->device->info.has_llc)
980 anv_state_clflush(state);
981
982 VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
983
984 return state;
985 }
986
987 /**
988 * @brief Setup the command buffer for recording commands inside the given
989 * subpass.
990 *
991 * This does not record all commands needed for starting the subpass.
992 * Starting the subpass may require additional commands.
993 *
994 * Note that vkCmdBeginRenderPass, vkCmdNextSubpass, and vkBeginCommandBuffer
995 * with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, all setup the
996 * command buffer for recording commands for some subpass. But only the first
997 * two, vkCmdBeginRenderPass and vkCmdNextSubpass, can start a subpass.
998 */
999 void
1000 anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1001 struct anv_subpass *subpass)
1002 {
1003 switch (cmd_buffer->device->info.gen) {
1004 case 7:
1005 if (cmd_buffer->device->info.is_haswell) {
1006 gen75_cmd_buffer_set_subpass(cmd_buffer, subpass);
1007 } else {
1008 gen7_cmd_buffer_set_subpass(cmd_buffer, subpass);
1009 }
1010 break;
1011 case 8:
1012 gen8_cmd_buffer_set_subpass(cmd_buffer, subpass);
1013 break;
1014 case 9:
1015 gen9_cmd_buffer_set_subpass(cmd_buffer, subpass);
1016 break;
1017 default:
1018 unreachable("unsupported gen\n");
1019 }
1020 }
1021
1022 struct anv_state
1023 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1024 gl_shader_stage stage)
1025 {
1026 struct anv_push_constants *data =
1027 cmd_buffer->state.push_constants[stage];
1028 const struct brw_stage_prog_data *prog_data =
1029 cmd_buffer->state.pipeline->prog_data[stage];
1030
1031 /* If we don't actually have any push constants, bail. */
1032 if (data == NULL || prog_data->nr_params == 0)
1033 return (struct anv_state) { .offset = 0 };
1034
1035 struct anv_state state =
1036 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
1037 prog_data->nr_params * sizeof(float),
1038 32 /* bottom 5 bits MBZ */);
1039
1040 /* Walk through the param array and fill the buffer with data */
1041 uint32_t *u32_map = state.map;
1042 for (unsigned i = 0; i < prog_data->nr_params; i++) {
1043 uint32_t offset = (uintptr_t)prog_data->param[i];
1044 u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
1045 }
1046
1047 if (!cmd_buffer->device->info.has_llc)
1048 anv_state_clflush(state);
1049
1050 return state;
1051 }
1052
1053 struct anv_state
1054 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer)
1055 {
1056 struct anv_push_constants *data =
1057 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
1058 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
1059 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1060 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
1061
1062 const unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
1063 const unsigned push_constant_data_size =
1064 (local_id_dwords + prog_data->nr_params) * 4;
1065 const unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
1066 const unsigned param_aligned_count =
1067 reg_aligned_constant_size / sizeof(uint32_t);
1068
1069 /* If we don't actually have any push constants, bail. */
1070 if (reg_aligned_constant_size == 0)
1071 return (struct anv_state) { .offset = 0 };
1072
1073 const unsigned threads = pipeline->cs_thread_width_max;
1074 const unsigned total_push_constants_size =
1075 reg_aligned_constant_size * threads;
1076 const unsigned push_constant_alignment =
1077 cmd_buffer->device->info.gen < 8 ? 32 : 64;
1078 const unsigned aligned_total_push_constants_size =
1079 ALIGN(total_push_constants_size, push_constant_alignment);
1080 struct anv_state state =
1081 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
1082 aligned_total_push_constants_size,
1083 push_constant_alignment);
1084
1085 /* Walk through the param array and fill the buffer with data */
1086 uint32_t *u32_map = state.map;
1087
1088 brw_cs_fill_local_id_payload(cs_prog_data, u32_map, threads,
1089 reg_aligned_constant_size);
1090
1091 /* Setup uniform data for the first thread */
1092 for (unsigned i = 0; i < prog_data->nr_params; i++) {
1093 uint32_t offset = (uintptr_t)prog_data->param[i];
1094 u32_map[local_id_dwords + i] = *(uint32_t *)((uint8_t *)data + offset);
1095 }
1096
1097 /* Copy uniform data from the first thread to every other thread */
1098 const size_t uniform_data_size = prog_data->nr_params * sizeof(uint32_t);
1099 for (unsigned t = 1; t < threads; t++) {
1100 memcpy(&u32_map[t * param_aligned_count + local_id_dwords],
1101 &u32_map[local_id_dwords],
1102 uniform_data_size);
1103 }
1104
1105 if (!cmd_buffer->device->info.has_llc)
1106 anv_state_clflush(state);
1107
1108 return state;
1109 }
1110
1111 void anv_CmdPushConstants(
1112 VkCommandBuffer commandBuffer,
1113 VkPipelineLayout layout,
1114 VkShaderStageFlags stageFlags,
1115 uint32_t offset,
1116 uint32_t size,
1117 const void* pValues)
1118 {
1119 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1120
1121 anv_foreach_stage(stage, stageFlags) {
1122 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);
1123
1124 memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
1125 pValues, size);
1126 }
1127
1128 cmd_buffer->state.push_constants_dirty |= stageFlags;
1129 }
1130
1131 void anv_CmdExecuteCommands(
1132 VkCommandBuffer commandBuffer,
1133 uint32_t commandBufferCount,
1134 const VkCommandBuffer* pCmdBuffers)
1135 {
1136 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1137
1138 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1139
1140 for (uint32_t i = 0; i < commandBufferCount; i++) {
1141 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1142
1143 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1144
1145 anv_cmd_buffer_add_secondary(primary, secondary);
1146 }
1147 }
1148
1149 VkResult anv_CreateCommandPool(
1150 VkDevice _device,
1151 const VkCommandPoolCreateInfo* pCreateInfo,
1152 const VkAllocationCallbacks* pAllocator,
1153 VkCommandPool* pCmdPool)
1154 {
1155 ANV_FROM_HANDLE(anv_device, device, _device);
1156 struct anv_cmd_pool *pool;
1157
1158 pool = anv_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
1159 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1160 if (pool == NULL)
1161 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1162
1163 if (pAllocator)
1164 pool->alloc = *pAllocator;
1165 else
1166 pool->alloc = device->alloc;
1167
1168 list_inithead(&pool->cmd_buffers);
1169
1170 *pCmdPool = anv_cmd_pool_to_handle(pool);
1171
1172 return VK_SUCCESS;
1173 }
1174
1175 void anv_DestroyCommandPool(
1176 VkDevice _device,
1177 VkCommandPool commandPool,
1178 const VkAllocationCallbacks* pAllocator)
1179 {
1180 ANV_FROM_HANDLE(anv_device, device, _device);
1181 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1182
1183 anv_ResetCommandPool(_device, commandPool, 0);
1184
1185 anv_free2(&device->alloc, pAllocator, pool);
1186 }
1187
1188 VkResult anv_ResetCommandPool(
1189 VkDevice device,
1190 VkCommandPool commandPool,
1191 VkCommandPoolResetFlags flags)
1192 {
1193 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
1194
1195 /* FIXME: vkResetCommandPool must not destroy its command buffers. The
1196 * Vulkan 1.0 spec requires that it only reset them:
1197 *
1198 * Resetting a command pool recycles all of the resources from all of
1199 * the command buffers allocated from the command pool back to the
1200 * command pool. All command buffers that have been allocated from the
1201 * command pool are put in the initial state.
1202 */
1203 list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
1204 &pool->cmd_buffers, pool_link) {
1205 anv_cmd_buffer_destroy(cmd_buffer);
1206 }
1207
1208 return VK_SUCCESS;
1209 }
1210
1211 /**
1212 * Return NULL if the current subpass has no depthstencil attachment.
1213 */
1214 const struct anv_image_view *
1215 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
1216 {
1217 const struct anv_subpass *subpass = cmd_buffer->state.subpass;
1218 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
1219
1220 if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED)
1221 return NULL;
1222
1223 const struct anv_image_view *iview =
1224 fb->attachments[subpass->depth_stencil_attachment];
1225
1226 assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT |
1227 VK_IMAGE_ASPECT_STENCIL_BIT));
1228
1229 return iview;
1230 }