anv/pipeline: Dump shader immedately after spirv_to_nir
[mesa.git] / src / intel / vulkan / anv_descriptor_set.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31
32 #include "anv_private.h"
33
34 /*
35 * Descriptor set layouts.
36 */
37
38 VkResult anv_CreateDescriptorSetLayout(
39 VkDevice _device,
40 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
41 const VkAllocationCallbacks* pAllocator,
42 VkDescriptorSetLayout* pSetLayout)
43 {
44 ANV_FROM_HANDLE(anv_device, device, _device);
45
46 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
47
48 uint32_t max_binding = 0;
49 uint32_t immutable_sampler_count = 0;
50 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
51 max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
52 if (pCreateInfo->pBindings[j].pImmutableSamplers)
53 immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
54 }
55
56 struct anv_descriptor_set_layout *set_layout;
57 struct anv_descriptor_set_binding_layout *bindings;
58 struct anv_sampler **samplers;
59
60 ANV_MULTIALLOC(ma);
61 anv_multialloc_add(&ma, &set_layout, 1);
62 anv_multialloc_add(&ma, &bindings, max_binding + 1);
63 anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
64
65 if (!anv_multialloc_alloc2(&ma, &device->alloc, pAllocator,
66 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT))
67 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
68
69 memset(set_layout, 0, sizeof(*set_layout));
70 set_layout->binding_count = max_binding + 1;
71
72 for (uint32_t b = 0; b <= max_binding; b++) {
73 /* Initialize all binding_layout entries to -1 */
74 memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
75
76 set_layout->binding[b].array_size = 0;
77 set_layout->binding[b].immutable_samplers = NULL;
78 }
79
80 /* Initialize all samplers to 0 */
81 memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
82
83 uint32_t sampler_count[MESA_SHADER_STAGES] = { 0, };
84 uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
85 uint32_t image_count[MESA_SHADER_STAGES] = { 0, };
86 uint32_t buffer_count = 0;
87 uint32_t dynamic_offset_count = 0;
88
89 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
90 const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
91 uint32_t b = binding->binding;
92 /* We temporarily store the pointer to the binding in the
93 * immutable_samplers pointer. This provides us with a quick-and-dirty
94 * way to sort the bindings by binding number.
95 */
96 set_layout->binding[b].immutable_samplers = (void *)binding;
97 }
98
99 for (uint32_t b = 0; b <= max_binding; b++) {
100 const VkDescriptorSetLayoutBinding *binding =
101 (void *)set_layout->binding[b].immutable_samplers;
102
103 if (binding == NULL)
104 continue;
105
106 assert(binding->descriptorCount > 0);
107 #ifndef NDEBUG
108 set_layout->binding[b].type = binding->descriptorType;
109 #endif
110 set_layout->binding[b].array_size = binding->descriptorCount;
111 set_layout->binding[b].descriptor_index = set_layout->size;
112 set_layout->size += binding->descriptorCount;
113
114 switch (binding->descriptorType) {
115 case VK_DESCRIPTOR_TYPE_SAMPLER:
116 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
117 anv_foreach_stage(s, binding->stageFlags) {
118 set_layout->binding[b].stage[s].sampler_index = sampler_count[s];
119 sampler_count[s] += binding->descriptorCount;
120 }
121 break;
122 default:
123 break;
124 }
125
126 switch (binding->descriptorType) {
127 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
128 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
129 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
130 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
131 set_layout->binding[b].buffer_index = buffer_count;
132 buffer_count += binding->descriptorCount;
133 /* fall through */
134
135 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
136 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
137 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
138 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
139 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
140 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
141 anv_foreach_stage(s, binding->stageFlags) {
142 set_layout->binding[b].stage[s].surface_index = surface_count[s];
143 surface_count[s] += binding->descriptorCount;
144 }
145 break;
146 default:
147 break;
148 }
149
150 switch (binding->descriptorType) {
151 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
152 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
153 set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
154 dynamic_offset_count += binding->descriptorCount;
155 break;
156 default:
157 break;
158 }
159
160 switch (binding->descriptorType) {
161 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
162 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
163 anv_foreach_stage(s, binding->stageFlags) {
164 set_layout->binding[b].stage[s].image_index = image_count[s];
165 image_count[s] += binding->descriptorCount;
166 }
167 break;
168 default:
169 break;
170 }
171
172 if (binding->pImmutableSamplers) {
173 set_layout->binding[b].immutable_samplers = samplers;
174 samplers += binding->descriptorCount;
175
176 for (uint32_t i = 0; i < binding->descriptorCount; i++)
177 set_layout->binding[b].immutable_samplers[i] =
178 anv_sampler_from_handle(binding->pImmutableSamplers[i]);
179 } else {
180 set_layout->binding[b].immutable_samplers = NULL;
181 }
182
183 set_layout->shader_stages |= binding->stageFlags;
184 }
185
186 set_layout->buffer_count = buffer_count;
187 set_layout->dynamic_offset_count = dynamic_offset_count;
188
189 *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
190
191 return VK_SUCCESS;
192 }
193
194 void anv_DestroyDescriptorSetLayout(
195 VkDevice _device,
196 VkDescriptorSetLayout _set_layout,
197 const VkAllocationCallbacks* pAllocator)
198 {
199 ANV_FROM_HANDLE(anv_device, device, _device);
200 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
201
202 if (!set_layout)
203 return;
204
205 vk_free2(&device->alloc, pAllocator, set_layout);
206 }
207
208 static void
209 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
210 const struct anv_descriptor_set_layout *layout)
211 {
212 size_t size = sizeof(*layout) +
213 sizeof(layout->binding[0]) * layout->binding_count;
214 _mesa_sha1_update(ctx, layout, size);
215 }
216
217 /*
218 * Pipeline layouts. These have nothing to do with the pipeline. They are
219 * just multiple descriptor set layouts pasted together
220 */
221
222 VkResult anv_CreatePipelineLayout(
223 VkDevice _device,
224 const VkPipelineLayoutCreateInfo* pCreateInfo,
225 const VkAllocationCallbacks* pAllocator,
226 VkPipelineLayout* pPipelineLayout)
227 {
228 ANV_FROM_HANDLE(anv_device, device, _device);
229 struct anv_pipeline_layout *layout;
230
231 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
232
233 layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
234 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
235 if (layout == NULL)
236 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
237
238 layout->num_sets = pCreateInfo->setLayoutCount;
239
240 unsigned dynamic_offset_count = 0;
241
242 memset(layout->stage, 0, sizeof(layout->stage));
243 for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
244 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
245 pCreateInfo->pSetLayouts[set]);
246 layout->set[set].layout = set_layout;
247
248 layout->set[set].dynamic_offset_start = dynamic_offset_count;
249 for (uint32_t b = 0; b < set_layout->binding_count; b++) {
250 if (set_layout->binding[b].dynamic_offset_index < 0)
251 continue;
252
253 dynamic_offset_count += set_layout->binding[b].array_size;
254 for (gl_shader_stage s = 0; s < MESA_SHADER_STAGES; s++) {
255 if (set_layout->binding[b].stage[s].surface_index >= 0)
256 layout->stage[s].has_dynamic_offsets = true;
257 }
258 }
259 }
260
261 struct mesa_sha1 ctx;
262 _mesa_sha1_init(&ctx);
263 for (unsigned s = 0; s < layout->num_sets; s++) {
264 sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
265 _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
266 sizeof(layout->set[s].dynamic_offset_start));
267 }
268 _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
269 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
270 _mesa_sha1_update(&ctx, &layout->stage[s].has_dynamic_offsets,
271 sizeof(layout->stage[s].has_dynamic_offsets));
272 }
273 _mesa_sha1_final(&ctx, layout->sha1);
274
275 *pPipelineLayout = anv_pipeline_layout_to_handle(layout);
276
277 return VK_SUCCESS;
278 }
279
280 void anv_DestroyPipelineLayout(
281 VkDevice _device,
282 VkPipelineLayout _pipelineLayout,
283 const VkAllocationCallbacks* pAllocator)
284 {
285 ANV_FROM_HANDLE(anv_device, device, _device);
286 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
287
288 if (!pipeline_layout)
289 return;
290
291 vk_free2(&device->alloc, pAllocator, pipeline_layout);
292 }
293
294 /*
295 * Descriptor pools.
296 *
297 * These are implemented using a big pool of memory and a free-list for the
298 * host memory allocations and a state_stream and a free list for the buffer
299 * view surface state. The spec allows us to fail to allocate due to
300 * fragmentation in all cases but two: 1) after pool reset, allocating up
301 * until the pool size with no freeing must succeed and 2) allocating and
302 * freeing only descriptor sets with the same layout. Case 1) is easy enogh,
303 * and the free lists lets us recycle blocks for case 2).
304 */
305
306 #define EMPTY 1
307
308 VkResult anv_CreateDescriptorPool(
309 VkDevice _device,
310 const VkDescriptorPoolCreateInfo* pCreateInfo,
311 const VkAllocationCallbacks* pAllocator,
312 VkDescriptorPool* pDescriptorPool)
313 {
314 ANV_FROM_HANDLE(anv_device, device, _device);
315 struct anv_descriptor_pool *pool;
316
317 uint32_t descriptor_count = 0;
318 uint32_t buffer_count = 0;
319 for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
320 switch (pCreateInfo->pPoolSizes[i].type) {
321 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
322 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
323 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
324 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
325 buffer_count += pCreateInfo->pPoolSizes[i].descriptorCount;
326 default:
327 descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
328 break;
329 }
330 }
331
332 const size_t pool_size =
333 pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
334 descriptor_count * sizeof(struct anv_descriptor) +
335 buffer_count * sizeof(struct anv_buffer_view);
336 const size_t total_size = sizeof(*pool) + pool_size;
337
338 pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
339 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
340 if (!pool)
341 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
342
343 pool->size = pool_size;
344 pool->next = 0;
345 pool->free_list = EMPTY;
346
347 anv_state_stream_init(&pool->surface_state_stream,
348 &device->surface_state_pool, 4096);
349 pool->surface_state_free_list = NULL;
350
351 *pDescriptorPool = anv_descriptor_pool_to_handle(pool);
352
353 return VK_SUCCESS;
354 }
355
356 void anv_DestroyDescriptorPool(
357 VkDevice _device,
358 VkDescriptorPool _pool,
359 const VkAllocationCallbacks* pAllocator)
360 {
361 ANV_FROM_HANDLE(anv_device, device, _device);
362 ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
363
364 if (!pool)
365 return;
366
367 anv_state_stream_finish(&pool->surface_state_stream);
368 vk_free2(&device->alloc, pAllocator, pool);
369 }
370
371 VkResult anv_ResetDescriptorPool(
372 VkDevice _device,
373 VkDescriptorPool descriptorPool,
374 VkDescriptorPoolResetFlags flags)
375 {
376 ANV_FROM_HANDLE(anv_device, device, _device);
377 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
378
379 pool->next = 0;
380 pool->free_list = EMPTY;
381 anv_state_stream_finish(&pool->surface_state_stream);
382 anv_state_stream_init(&pool->surface_state_stream,
383 &device->surface_state_pool, 4096);
384 pool->surface_state_free_list = NULL;
385
386 return VK_SUCCESS;
387 }
388
389 struct pool_free_list_entry {
390 uint32_t next;
391 uint32_t size;
392 };
393
394 size_t
395 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
396 {
397 return
398 sizeof(struct anv_descriptor_set) +
399 layout->size * sizeof(struct anv_descriptor) +
400 layout->buffer_count * sizeof(struct anv_buffer_view);
401 }
402
403 size_t
404 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding)
405 {
406 if (!binding->immutable_samplers)
407 return binding->array_size;
408
409 uint32_t total_plane_count = 0;
410 for (uint32_t i = 0; i < binding->array_size; i++)
411 total_plane_count += binding->immutable_samplers[i]->n_planes;
412
413 return total_plane_count;
414 }
415
416 struct surface_state_free_list_entry {
417 void *next;
418 struct anv_state state;
419 };
420
421 VkResult
422 anv_descriptor_set_create(struct anv_device *device,
423 struct anv_descriptor_pool *pool,
424 const struct anv_descriptor_set_layout *layout,
425 struct anv_descriptor_set **out_set)
426 {
427 struct anv_descriptor_set *set;
428 const size_t size = anv_descriptor_set_layout_size(layout);
429
430 set = NULL;
431 if (size <= pool->size - pool->next) {
432 set = (struct anv_descriptor_set *) (pool->data + pool->next);
433 pool->next += size;
434 } else {
435 struct pool_free_list_entry *entry;
436 uint32_t *link = &pool->free_list;
437 for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
438 entry = (struct pool_free_list_entry *) (pool->data + f);
439 if (size <= entry->size) {
440 *link = entry->next;
441 set = (struct anv_descriptor_set *) entry;
442 break;
443 }
444 link = &entry->next;
445 }
446 }
447
448 if (set == NULL) {
449 if (pool->free_list != EMPTY) {
450 return vk_error(VK_ERROR_FRAGMENTED_POOL);
451 } else {
452 return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
453 }
454 }
455
456 set->size = size;
457 set->layout = layout;
458 set->buffer_views =
459 (struct anv_buffer_view *) &set->descriptors[layout->size];
460 set->buffer_count = layout->buffer_count;
461
462 /* By defining the descriptors to be zero now, we can later verify that
463 * a descriptor has not been populated with user data.
464 */
465 memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
466
467 /* Go through and fill out immutable samplers if we have any */
468 struct anv_descriptor *desc = set->descriptors;
469 for (uint32_t b = 0; b < layout->binding_count; b++) {
470 if (layout->binding[b].immutable_samplers) {
471 for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
472 /* The type will get changed to COMBINED_IMAGE_SAMPLER in
473 * UpdateDescriptorSets if needed. However, if the descriptor
474 * set has an immutable sampler, UpdateDescriptorSets may never
475 * touch it, so we need to make sure it's 100% valid now.
476 */
477 desc[i] = (struct anv_descriptor) {
478 .type = VK_DESCRIPTOR_TYPE_SAMPLER,
479 .sampler = layout->binding[b].immutable_samplers[i],
480 };
481 }
482 }
483 desc += layout->binding[b].array_size;
484 }
485
486 /* Allocate surface state for the buffer views. */
487 for (uint32_t b = 0; b < layout->buffer_count; b++) {
488 struct surface_state_free_list_entry *entry =
489 pool->surface_state_free_list;
490 struct anv_state state;
491
492 if (entry) {
493 state = entry->state;
494 pool->surface_state_free_list = entry->next;
495 assert(state.alloc_size == 64);
496 } else {
497 state = anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
498 }
499
500 set->buffer_views[b].surface_state = state;
501 }
502
503 *out_set = set;
504
505 return VK_SUCCESS;
506 }
507
508 void
509 anv_descriptor_set_destroy(struct anv_device *device,
510 struct anv_descriptor_pool *pool,
511 struct anv_descriptor_set *set)
512 {
513 /* Put the buffer view surface state back on the free list. */
514 for (uint32_t b = 0; b < set->buffer_count; b++) {
515 struct surface_state_free_list_entry *entry =
516 set->buffer_views[b].surface_state.map;
517 entry->next = pool->surface_state_free_list;
518 entry->state = set->buffer_views[b].surface_state;
519 pool->surface_state_free_list = entry;
520 }
521
522 /* Put the descriptor set allocation back on the free list. */
523 const uint32_t index = (char *) set - pool->data;
524 if (index + set->size == pool->next) {
525 pool->next = index;
526 } else {
527 struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
528 entry->next = pool->free_list;
529 entry->size = set->size;
530 pool->free_list = (char *) entry - pool->data;
531 }
532 }
533
534 VkResult anv_AllocateDescriptorSets(
535 VkDevice _device,
536 const VkDescriptorSetAllocateInfo* pAllocateInfo,
537 VkDescriptorSet* pDescriptorSets)
538 {
539 ANV_FROM_HANDLE(anv_device, device, _device);
540 ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
541
542 VkResult result = VK_SUCCESS;
543 struct anv_descriptor_set *set;
544 uint32_t i;
545
546 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
547 ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
548 pAllocateInfo->pSetLayouts[i]);
549
550 result = anv_descriptor_set_create(device, pool, layout, &set);
551 if (result != VK_SUCCESS)
552 break;
553
554 pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
555 }
556
557 if (result != VK_SUCCESS)
558 anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
559 i, pDescriptorSets);
560
561 return result;
562 }
563
564 VkResult anv_FreeDescriptorSets(
565 VkDevice _device,
566 VkDescriptorPool descriptorPool,
567 uint32_t count,
568 const VkDescriptorSet* pDescriptorSets)
569 {
570 ANV_FROM_HANDLE(anv_device, device, _device);
571 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
572
573 for (uint32_t i = 0; i < count; i++) {
574 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
575
576 if (!set)
577 continue;
578
579 anv_descriptor_set_destroy(device, pool, set);
580 }
581
582 return VK_SUCCESS;
583 }
584
585 void
586 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
587 const struct gen_device_info * const devinfo,
588 const VkDescriptorImageInfo * const info,
589 VkDescriptorType type,
590 uint32_t binding,
591 uint32_t element)
592 {
593 const struct anv_descriptor_set_binding_layout *bind_layout =
594 &set->layout->binding[binding];
595 struct anv_descriptor *desc =
596 &set->descriptors[bind_layout->descriptor_index + element];
597 struct anv_image_view *image_view = NULL;
598 struct anv_sampler *sampler = NULL;
599
600 assert(type == bind_layout->type);
601
602 switch (type) {
603 case VK_DESCRIPTOR_TYPE_SAMPLER:
604 sampler = anv_sampler_from_handle(info->sampler);
605 break;
606
607 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
608 image_view = anv_image_view_from_handle(info->imageView);
609 sampler = anv_sampler_from_handle(info->sampler);
610 break;
611
612 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
613 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
614 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
615 image_view = anv_image_view_from_handle(info->imageView);
616 break;
617
618 default:
619 unreachable("invalid descriptor type");
620 }
621
622 /* If this descriptor has an immutable sampler, we don't want to stomp on
623 * it.
624 */
625 sampler = bind_layout->immutable_samplers ?
626 bind_layout->immutable_samplers[element] :
627 sampler;
628
629 *desc = (struct anv_descriptor) {
630 .type = type,
631 .layout = info->imageLayout,
632 .image_view = image_view,
633 .sampler = sampler,
634 };
635 }
636
637 void
638 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
639 VkDescriptorType type,
640 struct anv_buffer_view *buffer_view,
641 uint32_t binding,
642 uint32_t element)
643 {
644 const struct anv_descriptor_set_binding_layout *bind_layout =
645 &set->layout->binding[binding];
646 struct anv_descriptor *desc =
647 &set->descriptors[bind_layout->descriptor_index + element];
648
649 assert(type == bind_layout->type);
650
651 *desc = (struct anv_descriptor) {
652 .type = type,
653 .buffer_view = buffer_view,
654 };
655 }
656
657 void
658 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
659 struct anv_device *device,
660 struct anv_state_stream *alloc_stream,
661 VkDescriptorType type,
662 struct anv_buffer *buffer,
663 uint32_t binding,
664 uint32_t element,
665 VkDeviceSize offset,
666 VkDeviceSize range)
667 {
668 const struct anv_descriptor_set_binding_layout *bind_layout =
669 &set->layout->binding[binding];
670 struct anv_descriptor *desc =
671 &set->descriptors[bind_layout->descriptor_index + element];
672
673 assert(type == bind_layout->type);
674
675 if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
676 type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
677 *desc = (struct anv_descriptor) {
678 .type = type,
679 .buffer = buffer,
680 .offset = offset,
681 .range = range,
682 };
683 } else {
684 struct anv_buffer_view *bview =
685 &set->buffer_views[bind_layout->buffer_index + element];
686
687 bview->format = anv_isl_format_for_descriptor_type(type);
688 bview->bo = buffer->bo;
689 bview->offset = buffer->offset + offset;
690 bview->range = anv_buffer_get_range(buffer, offset, range);
691
692 /* If we're writing descriptors through a push command, we need to
693 * allocate the surface state from the command buffer. Otherwise it will
694 * be allocated by the descriptor pool when calling
695 * vkAllocateDescriptorSets. */
696 if (alloc_stream)
697 bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
698
699 anv_fill_buffer_surface_state(device, bview->surface_state,
700 bview->format,
701 bview->offset, bview->range, 1);
702
703 *desc = (struct anv_descriptor) {
704 .type = type,
705 .buffer_view = bview,
706 };
707 }
708 }
709
710 void anv_UpdateDescriptorSets(
711 VkDevice _device,
712 uint32_t descriptorWriteCount,
713 const VkWriteDescriptorSet* pDescriptorWrites,
714 uint32_t descriptorCopyCount,
715 const VkCopyDescriptorSet* pDescriptorCopies)
716 {
717 ANV_FROM_HANDLE(anv_device, device, _device);
718
719 for (uint32_t i = 0; i < descriptorWriteCount; i++) {
720 const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
721 ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
722
723 switch (write->descriptorType) {
724 case VK_DESCRIPTOR_TYPE_SAMPLER:
725 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
726 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
727 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
728 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
729 for (uint32_t j = 0; j < write->descriptorCount; j++) {
730 anv_descriptor_set_write_image_view(set, &device->info,
731 write->pImageInfo + j,
732 write->descriptorType,
733 write->dstBinding,
734 write->dstArrayElement + j);
735 }
736 break;
737
738 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
739 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
740 for (uint32_t j = 0; j < write->descriptorCount; j++) {
741 ANV_FROM_HANDLE(anv_buffer_view, bview,
742 write->pTexelBufferView[j]);
743
744 anv_descriptor_set_write_buffer_view(set,
745 write->descriptorType,
746 bview,
747 write->dstBinding,
748 write->dstArrayElement + j);
749 }
750 break;
751
752 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
753 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
754 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
755 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
756 for (uint32_t j = 0; j < write->descriptorCount; j++) {
757 assert(write->pBufferInfo[j].buffer);
758 ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
759 assert(buffer);
760
761 anv_descriptor_set_write_buffer(set,
762 device,
763 NULL,
764 write->descriptorType,
765 buffer,
766 write->dstBinding,
767 write->dstArrayElement + j,
768 write->pBufferInfo[j].offset,
769 write->pBufferInfo[j].range);
770 }
771 break;
772
773 default:
774 break;
775 }
776 }
777
778 for (uint32_t i = 0; i < descriptorCopyCount; i++) {
779 const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
780 ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
781 ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
782
783 const struct anv_descriptor_set_binding_layout *src_layout =
784 &src->layout->binding[copy->srcBinding];
785 struct anv_descriptor *src_desc =
786 &src->descriptors[src_layout->descriptor_index];
787 src_desc += copy->srcArrayElement;
788
789 const struct anv_descriptor_set_binding_layout *dst_layout =
790 &dst->layout->binding[copy->dstBinding];
791 struct anv_descriptor *dst_desc =
792 &dst->descriptors[dst_layout->descriptor_index];
793 dst_desc += copy->dstArrayElement;
794
795 for (uint32_t j = 0; j < copy->descriptorCount; j++)
796 dst_desc[j] = src_desc[j];
797 }
798 }
799
800 /*
801 * Descriptor update templates.
802 */
803
804 void
805 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
806 struct anv_device *device,
807 struct anv_state_stream *alloc_stream,
808 const struct anv_descriptor_update_template *template,
809 const void *data)
810 {
811 const struct anv_descriptor_set_layout *layout = set->layout;
812
813 for (uint32_t i = 0; i < template->entry_count; i++) {
814 const struct anv_descriptor_template_entry *entry =
815 &template->entries[i];
816 const struct anv_descriptor_set_binding_layout *bind_layout =
817 &layout->binding[entry->binding];
818 struct anv_descriptor *desc = &set->descriptors[bind_layout->descriptor_index];
819 desc += entry->array_element;
820
821 switch (entry->type) {
822 case VK_DESCRIPTOR_TYPE_SAMPLER:
823 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
824 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
825 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
826 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
827 for (uint32_t j = 0; j < entry->array_count; j++) {
828 const VkDescriptorImageInfo *info =
829 data + entry->offset + j * entry->stride;
830 anv_descriptor_set_write_image_view(set, &device->info,
831 info, entry->type,
832 entry->binding,
833 entry->array_element + j);
834 }
835 break;
836
837 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
838 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
839 for (uint32_t j = 0; j < entry->array_count; j++) {
840 const VkBufferView *_bview =
841 data + entry->offset + j * entry->stride;
842 ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
843
844 anv_descriptor_set_write_buffer_view(set,
845 entry->type,
846 bview,
847 entry->binding,
848 entry->array_element + j);
849 }
850 break;
851
852 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
853 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
854 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
855 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
856 for (uint32_t j = 0; j < entry->array_count; j++) {
857 const VkDescriptorBufferInfo *info =
858 data + entry->offset + j * entry->stride;
859 ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
860
861 anv_descriptor_set_write_buffer(set,
862 device,
863 alloc_stream,
864 entry->type,
865 buffer,
866 entry->binding,
867 entry->array_element + j,
868 info->offset, info->range);
869 }
870 break;
871
872 default:
873 break;
874 }
875 }
876 }
877
878 VkResult anv_CreateDescriptorUpdateTemplateKHR(
879 VkDevice _device,
880 const VkDescriptorUpdateTemplateCreateInfoKHR* pCreateInfo,
881 const VkAllocationCallbacks* pAllocator,
882 VkDescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate)
883 {
884 ANV_FROM_HANDLE(anv_device, device, _device);
885 struct anv_descriptor_update_template *template;
886
887 size_t size = sizeof(*template) +
888 pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
889 template = vk_alloc2(&device->alloc, pAllocator, size, 8,
890 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
891 if (template == NULL)
892 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
893
894 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR)
895 template->set = pCreateInfo->set;
896
897 template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
898 for (uint32_t i = 0; i < template->entry_count; i++) {
899 const VkDescriptorUpdateTemplateEntryKHR *pEntry =
900 &pCreateInfo->pDescriptorUpdateEntries[i];
901
902 template->entries[i] = (struct anv_descriptor_template_entry) {
903 .type = pEntry->descriptorType,
904 .binding = pEntry->dstBinding,
905 .array_element = pEntry->dstArrayElement,
906 .array_count = pEntry->descriptorCount,
907 .offset = pEntry->offset,
908 .stride = pEntry->stride,
909 };
910 }
911
912 *pDescriptorUpdateTemplate =
913 anv_descriptor_update_template_to_handle(template);
914
915 return VK_SUCCESS;
916 }
917
918 void anv_DestroyDescriptorUpdateTemplateKHR(
919 VkDevice _device,
920 VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
921 const VkAllocationCallbacks* pAllocator)
922 {
923 ANV_FROM_HANDLE(anv_device, device, _device);
924 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
925 descriptorUpdateTemplate);
926
927 vk_free2(&device->alloc, pAllocator, template);
928 }
929
930 void anv_UpdateDescriptorSetWithTemplateKHR(
931 VkDevice _device,
932 VkDescriptorSet descriptorSet,
933 VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
934 const void* pData)
935 {
936 ANV_FROM_HANDLE(anv_device, device, _device);
937 ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
938 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
939 descriptorUpdateTemplate);
940
941 anv_descriptor_set_write_template(set, device, NULL, template, pData);
942 }