anv: fix vkUpdateDescriptorSets with inline uniform blocks
[mesa.git] / src / intel / vulkan / anv_descriptor_set.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "vk_util.h"
32
33 #include "anv_private.h"
34
35 /*
36 * Descriptor set layouts.
37 */
38
39 static enum anv_descriptor_data
40 anv_descriptor_data_for_type(const struct anv_physical_device *device,
41 VkDescriptorType type)
42 {
43 enum anv_descriptor_data data = 0;
44
45 switch (type) {
46 case VK_DESCRIPTOR_TYPE_SAMPLER:
47 data = ANV_DESCRIPTOR_SAMPLER_STATE;
48 if (device->has_bindless_samplers)
49 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
50 break;
51
52 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
53 data = ANV_DESCRIPTOR_SURFACE_STATE |
54 ANV_DESCRIPTOR_SAMPLER_STATE;
55 if (device->has_bindless_images || device->has_bindless_samplers)
56 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
57 break;
58
59 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
60 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
61 data = ANV_DESCRIPTOR_SURFACE_STATE;
62 if (device->has_bindless_images)
63 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
64 break;
65
66 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
67 data = ANV_DESCRIPTOR_SURFACE_STATE;
68 break;
69
70 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
71 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
72 data = ANV_DESCRIPTOR_SURFACE_STATE;
73 if (device->info.gen < 9)
74 data |= ANV_DESCRIPTOR_IMAGE_PARAM;
75 if (device->has_bindless_images)
76 data |= ANV_DESCRIPTOR_STORAGE_IMAGE;
77 break;
78
79 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
80 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
81 data = ANV_DESCRIPTOR_SURFACE_STATE |
82 ANV_DESCRIPTOR_BUFFER_VIEW;
83 break;
84
85 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
86 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
87 data = ANV_DESCRIPTOR_SURFACE_STATE;
88 break;
89
90 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
91 data = ANV_DESCRIPTOR_INLINE_UNIFORM;
92 break;
93
94 default:
95 unreachable("Unsupported descriptor type");
96 }
97
98 /* On gen8 and above when we have softpin enabled, we also need to push
99 * SSBO address ranges so that we can use A64 messages in the shader.
100 */
101 if (device->has_a64_buffer_access &&
102 (type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
103 type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC))
104 data |= ANV_DESCRIPTOR_ADDRESS_RANGE;
105
106 /* On Ivy Bridge and Bay Trail, we need swizzles textures in the shader
107 * Do not handle VK_DESCRIPTOR_TYPE_STORAGE_IMAGE and
108 * VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT because they already must
109 * have identity swizzle.
110 */
111 if (device->info.gen == 7 && !device->info.is_haswell &&
112 (type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
113 type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER))
114 data |= ANV_DESCRIPTOR_TEXTURE_SWIZZLE;
115
116 return data;
117 }
118
119 static unsigned
120 anv_descriptor_data_size(enum anv_descriptor_data data)
121 {
122 unsigned size = 0;
123
124 if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE)
125 size += sizeof(struct anv_sampled_image_descriptor);
126
127 if (data & ANV_DESCRIPTOR_STORAGE_IMAGE)
128 size += sizeof(struct anv_storage_image_descriptor);
129
130 if (data & ANV_DESCRIPTOR_IMAGE_PARAM)
131 size += BRW_IMAGE_PARAM_SIZE * 4;
132
133 if (data & ANV_DESCRIPTOR_ADDRESS_RANGE)
134 size += sizeof(struct anv_address_range_descriptor);
135
136 if (data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE)
137 size += sizeof(struct anv_texture_swizzle_descriptor);
138
139 return size;
140 }
141
142 static bool
143 anv_needs_descriptor_buffer(VkDescriptorType desc_type,
144 enum anv_descriptor_data desc_data)
145 {
146 if (desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT ||
147 anv_descriptor_data_size(desc_data) > 0)
148 return true;
149 return false;
150 }
151
152 /** Returns the size in bytes of each descriptor with the given layout */
153 unsigned
154 anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout)
155 {
156 if (layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
157 assert(layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
158 return layout->array_size;
159 }
160
161 unsigned size = anv_descriptor_data_size(layout->data);
162
163 /* For multi-planar bindings, we make every descriptor consume the maximum
164 * number of planes so we don't have to bother with walking arrays and
165 * adding things up every time. Fortunately, YCbCr samplers aren't all
166 * that common and likely won't be in the middle of big arrays.
167 */
168 if (layout->max_plane_count > 1)
169 size *= layout->max_plane_count;
170
171 return size;
172 }
173
174 /** Returns the size in bytes of each descriptor of the given type
175 *
176 * This version of the function does not have access to the entire layout so
177 * it may only work on certain descriptor types where the descriptor size is
178 * entirely determined by the descriptor type. Whenever possible, code should
179 * use anv_descriptor_size() instead.
180 */
181 unsigned
182 anv_descriptor_type_size(const struct anv_physical_device *pdevice,
183 VkDescriptorType type)
184 {
185 assert(type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT &&
186 type != VK_DESCRIPTOR_TYPE_SAMPLER &&
187 type != VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE &&
188 type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
189
190 return anv_descriptor_data_size(anv_descriptor_data_for_type(pdevice, type));
191 }
192
193 static bool
194 anv_descriptor_data_supports_bindless(const struct anv_physical_device *pdevice,
195 enum anv_descriptor_data data,
196 bool sampler)
197 {
198 if (data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
199 assert(pdevice->has_a64_buffer_access);
200 return true;
201 }
202
203 if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
204 assert(pdevice->has_bindless_images || pdevice->has_bindless_samplers);
205 return sampler ? pdevice->has_bindless_samplers :
206 pdevice->has_bindless_images;
207 }
208
209 if (data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
210 assert(pdevice->has_bindless_images);
211 return true;
212 }
213
214 return false;
215 }
216
217 bool
218 anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
219 const struct anv_descriptor_set_binding_layout *binding,
220 bool sampler)
221 {
222 return anv_descriptor_data_supports_bindless(pdevice, binding->data,
223 sampler);
224 }
225
226 bool
227 anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
228 const struct anv_descriptor_set_binding_layout *binding,
229 bool sampler)
230 {
231 if (pdevice->always_use_bindless)
232 return anv_descriptor_supports_bindless(pdevice, binding, sampler);
233
234 static const VkDescriptorBindingFlagBitsEXT flags_requiring_bindless =
235 VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT |
236 VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT |
237 VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT;
238
239 return (binding->flags & flags_requiring_bindless) != 0;
240 }
241
242 void anv_GetDescriptorSetLayoutSupport(
243 VkDevice _device,
244 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
245 VkDescriptorSetLayoutSupport* pSupport)
246 {
247 ANV_FROM_HANDLE(anv_device, device, _device);
248 const struct anv_physical_device *pdevice =
249 &device->instance->physicalDevice;
250
251 uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
252 bool needs_descriptor_buffer = false;
253
254 for (uint32_t b = 0; b < pCreateInfo->bindingCount; b++) {
255 const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[b];
256
257 enum anv_descriptor_data desc_data =
258 anv_descriptor_data_for_type(pdevice, binding->descriptorType);
259
260 if (anv_needs_descriptor_buffer(binding->descriptorType, desc_data))
261 needs_descriptor_buffer = true;
262
263 switch (binding->descriptorType) {
264 case VK_DESCRIPTOR_TYPE_SAMPLER:
265 /* There is no real limit on samplers */
266 break;
267
268 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
269 /* Inline uniforms don't use a binding */
270 break;
271
272 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
273 if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
274 break;
275
276 if (binding->pImmutableSamplers) {
277 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
278 ANV_FROM_HANDLE(anv_sampler, sampler,
279 binding->pImmutableSamplers[i]);
280 anv_foreach_stage(s, binding->stageFlags)
281 surface_count[s] += sampler->n_planes;
282 }
283 } else {
284 anv_foreach_stage(s, binding->stageFlags)
285 surface_count[s] += binding->descriptorCount;
286 }
287 break;
288
289 default:
290 if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
291 break;
292
293 anv_foreach_stage(s, binding->stageFlags)
294 surface_count[s] += binding->descriptorCount;
295 break;
296 }
297 }
298
299 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
300 if (needs_descriptor_buffer)
301 surface_count[s] += 1;
302 }
303
304 bool supported = true;
305 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
306 /* Our maximum binding table size is 240 and we need to reserve 8 for
307 * render targets.
308 */
309 if (surface_count[s] > MAX_BINDING_TABLE_SIZE - MAX_RTS)
310 supported = false;
311 }
312
313 pSupport->supported = supported;
314 }
315
316 VkResult anv_CreateDescriptorSetLayout(
317 VkDevice _device,
318 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
319 const VkAllocationCallbacks* pAllocator,
320 VkDescriptorSetLayout* pSetLayout)
321 {
322 ANV_FROM_HANDLE(anv_device, device, _device);
323
324 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
325
326 uint32_t max_binding = 0;
327 uint32_t immutable_sampler_count = 0;
328 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
329 max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
330
331 /* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding:
332 *
333 * "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or
334 * VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
335 * pImmutableSamplers can be used to initialize a set of immutable
336 * samplers. [...] If descriptorType is not one of these descriptor
337 * types, then pImmutableSamplers is ignored.
338 *
339 * We need to be careful here and only parse pImmutableSamplers if we
340 * have one of the right descriptor types.
341 */
342 VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType;
343 if ((desc_type == VK_DESCRIPTOR_TYPE_SAMPLER ||
344 desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) &&
345 pCreateInfo->pBindings[j].pImmutableSamplers)
346 immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
347 }
348
349 struct anv_descriptor_set_layout *set_layout;
350 struct anv_descriptor_set_binding_layout *bindings;
351 struct anv_sampler **samplers;
352
353 /* We need to allocate decriptor set layouts off the device allocator
354 * with DEVICE scope because they are reference counted and may not be
355 * destroyed when vkDestroyDescriptorSetLayout is called.
356 */
357 ANV_MULTIALLOC(ma);
358 anv_multialloc_add(&ma, &set_layout, 1);
359 anv_multialloc_add(&ma, &bindings, max_binding + 1);
360 anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
361
362 if (!anv_multialloc_alloc(&ma, &device->alloc,
363 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
364 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
365
366 memset(set_layout, 0, sizeof(*set_layout));
367 set_layout->ref_cnt = 1;
368 set_layout->binding_count = max_binding + 1;
369
370 for (uint32_t b = 0; b <= max_binding; b++) {
371 /* Initialize all binding_layout entries to -1 */
372 memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
373
374 set_layout->binding[b].flags = 0;
375 set_layout->binding[b].data = 0;
376 set_layout->binding[b].max_plane_count = 0;
377 set_layout->binding[b].array_size = 0;
378 set_layout->binding[b].immutable_samplers = NULL;
379 }
380
381 /* Initialize all samplers to 0 */
382 memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
383
384 uint32_t buffer_view_count = 0;
385 uint32_t dynamic_offset_count = 0;
386 uint32_t descriptor_buffer_size = 0;
387
388 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
389 const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
390 uint32_t b = binding->binding;
391 /* We temporarily store pCreateInfo->pBindings[] index (plus one) in the
392 * immutable_samplers pointer. This provides us with a quick-and-dirty
393 * way to sort the bindings by binding number.
394 */
395 set_layout->binding[b].immutable_samplers = (void *)(uintptr_t)(j + 1);
396 }
397
398 const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *binding_flags_info =
399 vk_find_struct_const(pCreateInfo->pNext,
400 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
401
402 for (uint32_t b = 0; b <= max_binding; b++) {
403 /* We stashed the pCreateInfo->pBindings[] index (plus one) in the
404 * immutable_samplers pointer. Check for NULL (empty binding) and then
405 * reset it and compute the index.
406 */
407 if (set_layout->binding[b].immutable_samplers == NULL)
408 continue;
409 const uint32_t info_idx =
410 (uintptr_t)(void *)set_layout->binding[b].immutable_samplers - 1;
411 set_layout->binding[b].immutable_samplers = NULL;
412
413 const VkDescriptorSetLayoutBinding *binding =
414 &pCreateInfo->pBindings[info_idx];
415
416 if (binding->descriptorCount == 0)
417 continue;
418
419 #ifndef NDEBUG
420 set_layout->binding[b].type = binding->descriptorType;
421 #endif
422
423 if (binding_flags_info && binding_flags_info->bindingCount > 0) {
424 assert(binding_flags_info->bindingCount == pCreateInfo->bindingCount);
425 set_layout->binding[b].flags =
426 binding_flags_info->pBindingFlags[info_idx];
427 }
428
429 set_layout->binding[b].data =
430 anv_descriptor_data_for_type(&device->instance->physicalDevice,
431 binding->descriptorType);
432 set_layout->binding[b].array_size = binding->descriptorCount;
433 set_layout->binding[b].descriptor_index = set_layout->size;
434 set_layout->size += binding->descriptorCount;
435
436 if (set_layout->binding[b].data & ANV_DESCRIPTOR_BUFFER_VIEW) {
437 set_layout->binding[b].buffer_view_index = buffer_view_count;
438 buffer_view_count += binding->descriptorCount;
439 }
440
441 switch (binding->descriptorType) {
442 case VK_DESCRIPTOR_TYPE_SAMPLER:
443 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
444 set_layout->binding[b].max_plane_count = 1;
445 if (binding->pImmutableSamplers) {
446 set_layout->binding[b].immutable_samplers = samplers;
447 samplers += binding->descriptorCount;
448
449 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
450 ANV_FROM_HANDLE(anv_sampler, sampler,
451 binding->pImmutableSamplers[i]);
452
453 set_layout->binding[b].immutable_samplers[i] = sampler;
454 if (set_layout->binding[b].max_plane_count < sampler->n_planes)
455 set_layout->binding[b].max_plane_count = sampler->n_planes;
456 }
457 }
458 break;
459
460 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
461 set_layout->binding[b].max_plane_count = 1;
462 break;
463
464 default:
465 break;
466 }
467
468 switch (binding->descriptorType) {
469 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
470 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
471 set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
472 dynamic_offset_count += binding->descriptorCount;
473 break;
474
475 default:
476 break;
477 }
478
479 if (binding->descriptorType ==
480 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
481 /* Inline uniform blocks are specified to use the descriptor array
482 * size as the size in bytes of the block.
483 */
484 descriptor_buffer_size = align_u32(descriptor_buffer_size, 32);
485 set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
486 descriptor_buffer_size += binding->descriptorCount;
487 } else {
488 set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
489 descriptor_buffer_size += anv_descriptor_size(&set_layout->binding[b]) *
490 binding->descriptorCount;
491 }
492
493 set_layout->shader_stages |= binding->stageFlags;
494 }
495
496 set_layout->buffer_view_count = buffer_view_count;
497 set_layout->dynamic_offset_count = dynamic_offset_count;
498 set_layout->descriptor_buffer_size = descriptor_buffer_size;
499
500 *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
501
502 return VK_SUCCESS;
503 }
504
505 void anv_DestroyDescriptorSetLayout(
506 VkDevice _device,
507 VkDescriptorSetLayout _set_layout,
508 const VkAllocationCallbacks* pAllocator)
509 {
510 ANV_FROM_HANDLE(anv_device, device, _device);
511 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
512
513 if (!set_layout)
514 return;
515
516 anv_descriptor_set_layout_unref(device, set_layout);
517 }
518
519 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
520
521 static void
522 sha1_update_immutable_sampler(struct mesa_sha1 *ctx,
523 const struct anv_sampler *sampler)
524 {
525 if (!sampler->conversion)
526 return;
527
528 /* The only thing that affects the shader is ycbcr conversion */
529 _mesa_sha1_update(ctx, sampler->conversion,
530 sizeof(*sampler->conversion));
531 }
532
533 static void
534 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
535 const struct anv_descriptor_set_binding_layout *layout)
536 {
537 SHA1_UPDATE_VALUE(ctx, layout->flags);
538 SHA1_UPDATE_VALUE(ctx, layout->data);
539 SHA1_UPDATE_VALUE(ctx, layout->max_plane_count);
540 SHA1_UPDATE_VALUE(ctx, layout->array_size);
541 SHA1_UPDATE_VALUE(ctx, layout->descriptor_index);
542 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index);
543 SHA1_UPDATE_VALUE(ctx, layout->buffer_view_index);
544 SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset);
545
546 if (layout->immutable_samplers) {
547 for (uint16_t i = 0; i < layout->array_size; i++)
548 sha1_update_immutable_sampler(ctx, layout->immutable_samplers[i]);
549 }
550 }
551
552 static void
553 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
554 const struct anv_descriptor_set_layout *layout)
555 {
556 SHA1_UPDATE_VALUE(ctx, layout->binding_count);
557 SHA1_UPDATE_VALUE(ctx, layout->size);
558 SHA1_UPDATE_VALUE(ctx, layout->shader_stages);
559 SHA1_UPDATE_VALUE(ctx, layout->buffer_view_count);
560 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
561 SHA1_UPDATE_VALUE(ctx, layout->descriptor_buffer_size);
562
563 for (uint16_t i = 0; i < layout->binding_count; i++)
564 sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i]);
565 }
566
567 /*
568 * Pipeline layouts. These have nothing to do with the pipeline. They are
569 * just multiple descriptor set layouts pasted together
570 */
571
572 VkResult anv_CreatePipelineLayout(
573 VkDevice _device,
574 const VkPipelineLayoutCreateInfo* pCreateInfo,
575 const VkAllocationCallbacks* pAllocator,
576 VkPipelineLayout* pPipelineLayout)
577 {
578 ANV_FROM_HANDLE(anv_device, device, _device);
579 struct anv_pipeline_layout *layout;
580
581 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
582
583 layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
584 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
585 if (layout == NULL)
586 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
587
588 layout->num_sets = pCreateInfo->setLayoutCount;
589
590 unsigned dynamic_offset_count = 0;
591
592 for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
593 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
594 pCreateInfo->pSetLayouts[set]);
595 layout->set[set].layout = set_layout;
596 anv_descriptor_set_layout_ref(set_layout);
597
598 layout->set[set].dynamic_offset_start = dynamic_offset_count;
599 for (uint32_t b = 0; b < set_layout->binding_count; b++) {
600 if (set_layout->binding[b].dynamic_offset_index < 0)
601 continue;
602
603 dynamic_offset_count += set_layout->binding[b].array_size;
604 }
605 }
606
607 struct mesa_sha1 ctx;
608 _mesa_sha1_init(&ctx);
609 for (unsigned s = 0; s < layout->num_sets; s++) {
610 sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
611 _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
612 sizeof(layout->set[s].dynamic_offset_start));
613 }
614 _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
615 _mesa_sha1_final(&ctx, layout->sha1);
616
617 *pPipelineLayout = anv_pipeline_layout_to_handle(layout);
618
619 return VK_SUCCESS;
620 }
621
622 void anv_DestroyPipelineLayout(
623 VkDevice _device,
624 VkPipelineLayout _pipelineLayout,
625 const VkAllocationCallbacks* pAllocator)
626 {
627 ANV_FROM_HANDLE(anv_device, device, _device);
628 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
629
630 if (!pipeline_layout)
631 return;
632
633 for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
634 anv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
635
636 vk_free2(&device->alloc, pAllocator, pipeline_layout);
637 }
638
639 /*
640 * Descriptor pools.
641 *
642 * These are implemented using a big pool of memory and a free-list for the
643 * host memory allocations and a state_stream and a free list for the buffer
644 * view surface state. The spec allows us to fail to allocate due to
645 * fragmentation in all cases but two: 1) after pool reset, allocating up
646 * until the pool size with no freeing must succeed and 2) allocating and
647 * freeing only descriptor sets with the same layout. Case 1) is easy enogh,
648 * and the free lists lets us recycle blocks for case 2).
649 */
650
651 /* The vma heap reserves 0 to mean NULL; we have to offset by some ammount to
652 * ensure we can allocate the entire BO without hitting zero. The actual
653 * amount doesn't matter.
654 */
655 #define POOL_HEAP_OFFSET 64
656
657 #define EMPTY 1
658
659 VkResult anv_CreateDescriptorPool(
660 VkDevice _device,
661 const VkDescriptorPoolCreateInfo* pCreateInfo,
662 const VkAllocationCallbacks* pAllocator,
663 VkDescriptorPool* pDescriptorPool)
664 {
665 ANV_FROM_HANDLE(anv_device, device, _device);
666 struct anv_descriptor_pool *pool;
667
668 const VkDescriptorPoolInlineUniformBlockCreateInfoEXT *inline_info =
669 vk_find_struct_const(pCreateInfo->pNext,
670 DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT);
671
672 uint32_t descriptor_count = 0;
673 uint32_t buffer_view_count = 0;
674 uint32_t descriptor_bo_size = 0;
675 for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
676 enum anv_descriptor_data desc_data =
677 anv_descriptor_data_for_type(&device->instance->physicalDevice,
678 pCreateInfo->pPoolSizes[i].type);
679
680 if (desc_data & ANV_DESCRIPTOR_BUFFER_VIEW)
681 buffer_view_count += pCreateInfo->pPoolSizes[i].descriptorCount;
682
683 unsigned desc_data_size = anv_descriptor_data_size(desc_data) *
684 pCreateInfo->pPoolSizes[i].descriptorCount;
685
686 /* Combined image sampler descriptors can take up to 3 slots if they
687 * hold a YCbCr image.
688 */
689 if (pCreateInfo->pPoolSizes[i].type ==
690 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
691 desc_data_size *= 3;
692
693 if (pCreateInfo->pPoolSizes[i].type ==
694 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
695 /* Inline uniform blocks are specified to use the descriptor array
696 * size as the size in bytes of the block.
697 */
698 assert(inline_info);
699 desc_data_size += pCreateInfo->pPoolSizes[i].descriptorCount;
700 }
701
702 descriptor_bo_size += desc_data_size;
703
704 descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
705 }
706 /* We have to align descriptor buffer allocations to 32B so that we can
707 * push descriptor buffers. This means that each descriptor buffer
708 * allocated may burn up to 32B of extra space to get the right alignment.
709 * (Technically, it's at most 28B because we're always going to start at
710 * least 4B aligned but we're being conservative here.) Allocate enough
711 * extra space that we can chop it into maxSets pieces and align each one
712 * of them to 32B.
713 */
714 descriptor_bo_size += 32 * pCreateInfo->maxSets;
715 /* We align inline uniform blocks to 32B */
716 if (inline_info)
717 descriptor_bo_size += 32 * inline_info->maxInlineUniformBlockBindings;
718 descriptor_bo_size = ALIGN(descriptor_bo_size, 4096);
719
720 const size_t pool_size =
721 pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
722 descriptor_count * sizeof(struct anv_descriptor) +
723 buffer_view_count * sizeof(struct anv_buffer_view);
724 const size_t total_size = sizeof(*pool) + pool_size;
725
726 pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
727 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
728 if (!pool)
729 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
730
731 pool->size = pool_size;
732 pool->next = 0;
733 pool->free_list = EMPTY;
734
735 if (descriptor_bo_size > 0) {
736 VkResult result = anv_bo_init_new(&pool->bo, device, descriptor_bo_size);
737 if (result != VK_SUCCESS) {
738 vk_free2(&device->alloc, pAllocator, pool);
739 return result;
740 }
741
742 anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
743
744 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0,
745 descriptor_bo_size, 0);
746 if (pool->bo.map == NULL) {
747 anv_gem_close(device, pool->bo.gem_handle);
748 vk_free2(&device->alloc, pAllocator, pool);
749 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
750 }
751
752 if (device->instance->physicalDevice.use_softpin) {
753 pool->bo.flags |= EXEC_OBJECT_PINNED;
754 anv_vma_alloc(device, &pool->bo);
755 }
756
757 util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, descriptor_bo_size);
758 } else {
759 pool->bo.size = 0;
760 }
761
762 anv_state_stream_init(&pool->surface_state_stream,
763 &device->surface_state_pool, 4096);
764 pool->surface_state_free_list = NULL;
765
766 list_inithead(&pool->desc_sets);
767
768 *pDescriptorPool = anv_descriptor_pool_to_handle(pool);
769
770 return VK_SUCCESS;
771 }
772
773 void anv_DestroyDescriptorPool(
774 VkDevice _device,
775 VkDescriptorPool _pool,
776 const VkAllocationCallbacks* pAllocator)
777 {
778 ANV_FROM_HANDLE(anv_device, device, _device);
779 ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
780
781 if (!pool)
782 return;
783
784 list_for_each_entry_safe(struct anv_descriptor_set, set,
785 &pool->desc_sets, pool_link) {
786 anv_descriptor_set_layout_unref(device, set->layout);
787 }
788
789 if (pool->bo.size) {
790 anv_gem_munmap(pool->bo.map, pool->bo.size);
791 anv_vma_free(device, &pool->bo);
792 anv_gem_close(device, pool->bo.gem_handle);
793 util_vma_heap_finish(&pool->bo_heap);
794 }
795 anv_state_stream_finish(&pool->surface_state_stream);
796
797 vk_free2(&device->alloc, pAllocator, pool);
798 }
799
800 VkResult anv_ResetDescriptorPool(
801 VkDevice _device,
802 VkDescriptorPool descriptorPool,
803 VkDescriptorPoolResetFlags flags)
804 {
805 ANV_FROM_HANDLE(anv_device, device, _device);
806 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
807
808 list_for_each_entry_safe(struct anv_descriptor_set, set,
809 &pool->desc_sets, pool_link) {
810 anv_descriptor_set_layout_unref(device, set->layout);
811 }
812 list_inithead(&pool->desc_sets);
813
814 pool->next = 0;
815 pool->free_list = EMPTY;
816
817 if (pool->bo.size) {
818 util_vma_heap_finish(&pool->bo_heap);
819 util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, pool->bo.size);
820 }
821
822 anv_state_stream_finish(&pool->surface_state_stream);
823 anv_state_stream_init(&pool->surface_state_stream,
824 &device->surface_state_pool, 4096);
825 pool->surface_state_free_list = NULL;
826
827 return VK_SUCCESS;
828 }
829
830 struct pool_free_list_entry {
831 uint32_t next;
832 uint32_t size;
833 };
834
835 static VkResult
836 anv_descriptor_pool_alloc_set(struct anv_descriptor_pool *pool,
837 uint32_t size,
838 struct anv_descriptor_set **set)
839 {
840 if (size <= pool->size - pool->next) {
841 *set = (struct anv_descriptor_set *) (pool->data + pool->next);
842 pool->next += size;
843 return VK_SUCCESS;
844 } else {
845 struct pool_free_list_entry *entry;
846 uint32_t *link = &pool->free_list;
847 for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
848 entry = (struct pool_free_list_entry *) (pool->data + f);
849 if (size <= entry->size) {
850 *link = entry->next;
851 *set = (struct anv_descriptor_set *) entry;
852 return VK_SUCCESS;
853 }
854 link = &entry->next;
855 }
856
857 if (pool->free_list != EMPTY) {
858 return vk_error(VK_ERROR_FRAGMENTED_POOL);
859 } else {
860 return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY);
861 }
862 }
863 }
864
865 static void
866 anv_descriptor_pool_free_set(struct anv_descriptor_pool *pool,
867 struct anv_descriptor_set *set)
868 {
869 /* Put the descriptor set allocation back on the free list. */
870 const uint32_t index = (char *) set - pool->data;
871 if (index + set->size == pool->next) {
872 pool->next = index;
873 } else {
874 struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
875 entry->next = pool->free_list;
876 entry->size = set->size;
877 pool->free_list = (char *) entry - pool->data;
878 }
879 }
880
881 struct surface_state_free_list_entry {
882 void *next;
883 struct anv_state state;
884 };
885
886 static struct anv_state
887 anv_descriptor_pool_alloc_state(struct anv_descriptor_pool *pool)
888 {
889 struct surface_state_free_list_entry *entry =
890 pool->surface_state_free_list;
891
892 if (entry) {
893 struct anv_state state = entry->state;
894 pool->surface_state_free_list = entry->next;
895 assert(state.alloc_size == 64);
896 return state;
897 } else {
898 return anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
899 }
900 }
901
902 static void
903 anv_descriptor_pool_free_state(struct anv_descriptor_pool *pool,
904 struct anv_state state)
905 {
906 /* Put the buffer view surface state back on the free list. */
907 struct surface_state_free_list_entry *entry = state.map;
908 entry->next = pool->surface_state_free_list;
909 entry->state = state;
910 pool->surface_state_free_list = entry;
911 }
912
913 size_t
914 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
915 {
916 return
917 sizeof(struct anv_descriptor_set) +
918 layout->size * sizeof(struct anv_descriptor) +
919 layout->buffer_view_count * sizeof(struct anv_buffer_view);
920 }
921
922 VkResult
923 anv_descriptor_set_create(struct anv_device *device,
924 struct anv_descriptor_pool *pool,
925 struct anv_descriptor_set_layout *layout,
926 struct anv_descriptor_set **out_set)
927 {
928 struct anv_descriptor_set *set;
929 const size_t size = anv_descriptor_set_layout_size(layout);
930
931 VkResult result = anv_descriptor_pool_alloc_set(pool, size, &set);
932 if (result != VK_SUCCESS)
933 return result;
934
935 if (layout->descriptor_buffer_size) {
936 /* Align the size to 32 so that alignment gaps don't cause extra holes
937 * in the heap which can lead to bad performance.
938 */
939 uint32_t set_buffer_size = ALIGN(layout->descriptor_buffer_size, 32);
940 uint64_t pool_vma_offset =
941 util_vma_heap_alloc(&pool->bo_heap, set_buffer_size, 32);
942 if (pool_vma_offset == 0) {
943 anv_descriptor_pool_free_set(pool, set);
944 return vk_error(VK_ERROR_FRAGMENTED_POOL);
945 }
946 assert(pool_vma_offset >= POOL_HEAP_OFFSET &&
947 pool_vma_offset - POOL_HEAP_OFFSET <= INT32_MAX);
948 set->desc_mem.offset = pool_vma_offset - POOL_HEAP_OFFSET;
949 set->desc_mem.alloc_size = set_buffer_size;
950 set->desc_mem.map = pool->bo.map + set->desc_mem.offset;
951
952 set->desc_surface_state = anv_descriptor_pool_alloc_state(pool);
953 anv_fill_buffer_surface_state(device, set->desc_surface_state,
954 ISL_FORMAT_R32G32B32A32_FLOAT,
955 (struct anv_address) {
956 .bo = &pool->bo,
957 .offset = set->desc_mem.offset,
958 },
959 layout->descriptor_buffer_size, 1);
960 } else {
961 set->desc_mem = ANV_STATE_NULL;
962 set->desc_surface_state = ANV_STATE_NULL;
963 }
964
965 set->pool = pool;
966 set->layout = layout;
967 anv_descriptor_set_layout_ref(layout);
968
969 set->size = size;
970 set->buffer_views =
971 (struct anv_buffer_view *) &set->descriptors[layout->size];
972 set->buffer_view_count = layout->buffer_view_count;
973
974 /* By defining the descriptors to be zero now, we can later verify that
975 * a descriptor has not been populated with user data.
976 */
977 memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
978
979 /* Go through and fill out immutable samplers if we have any */
980 struct anv_descriptor *desc = set->descriptors;
981 for (uint32_t b = 0; b < layout->binding_count; b++) {
982 if (layout->binding[b].immutable_samplers) {
983 for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
984 /* The type will get changed to COMBINED_IMAGE_SAMPLER in
985 * UpdateDescriptorSets if needed. However, if the descriptor
986 * set has an immutable sampler, UpdateDescriptorSets may never
987 * touch it, so we need to make sure it's 100% valid now.
988 *
989 * We don't need to actually provide a sampler because the helper
990 * will always write in the immutable sampler regardless of what
991 * is in the sampler parameter.
992 */
993 struct VkDescriptorImageInfo info = { };
994 anv_descriptor_set_write_image_view(device, set, &info,
995 VK_DESCRIPTOR_TYPE_SAMPLER,
996 b, i);
997 }
998 }
999 desc += layout->binding[b].array_size;
1000 }
1001
1002 /* Allocate surface state for the buffer views. */
1003 for (uint32_t b = 0; b < layout->buffer_view_count; b++) {
1004 set->buffer_views[b].surface_state =
1005 anv_descriptor_pool_alloc_state(pool);
1006 }
1007
1008 list_addtail(&set->pool_link, &pool->desc_sets);
1009
1010 *out_set = set;
1011
1012 return VK_SUCCESS;
1013 }
1014
1015 void
1016 anv_descriptor_set_destroy(struct anv_device *device,
1017 struct anv_descriptor_pool *pool,
1018 struct anv_descriptor_set *set)
1019 {
1020 anv_descriptor_set_layout_unref(device, set->layout);
1021
1022 if (set->desc_mem.alloc_size) {
1023 util_vma_heap_free(&pool->bo_heap,
1024 (uint64_t)set->desc_mem.offset + POOL_HEAP_OFFSET,
1025 set->desc_mem.alloc_size);
1026 anv_descriptor_pool_free_state(pool, set->desc_surface_state);
1027 }
1028
1029 for (uint32_t b = 0; b < set->buffer_view_count; b++)
1030 anv_descriptor_pool_free_state(pool, set->buffer_views[b].surface_state);
1031
1032 list_del(&set->pool_link);
1033
1034 anv_descriptor_pool_free_set(pool, set);
1035 }
1036
1037 VkResult anv_AllocateDescriptorSets(
1038 VkDevice _device,
1039 const VkDescriptorSetAllocateInfo* pAllocateInfo,
1040 VkDescriptorSet* pDescriptorSets)
1041 {
1042 ANV_FROM_HANDLE(anv_device, device, _device);
1043 ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
1044
1045 VkResult result = VK_SUCCESS;
1046 struct anv_descriptor_set *set;
1047 uint32_t i;
1048
1049 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
1050 ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
1051 pAllocateInfo->pSetLayouts[i]);
1052
1053 result = anv_descriptor_set_create(device, pool, layout, &set);
1054 if (result != VK_SUCCESS)
1055 break;
1056
1057 pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
1058 }
1059
1060 if (result != VK_SUCCESS)
1061 anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
1062 i, pDescriptorSets);
1063
1064 return result;
1065 }
1066
1067 VkResult anv_FreeDescriptorSets(
1068 VkDevice _device,
1069 VkDescriptorPool descriptorPool,
1070 uint32_t count,
1071 const VkDescriptorSet* pDescriptorSets)
1072 {
1073 ANV_FROM_HANDLE(anv_device, device, _device);
1074 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
1075
1076 for (uint32_t i = 0; i < count; i++) {
1077 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
1078
1079 if (!set)
1080 continue;
1081
1082 anv_descriptor_set_destroy(device, pool, set);
1083 }
1084
1085 return VK_SUCCESS;
1086 }
1087
1088 static void
1089 anv_descriptor_set_write_image_param(uint32_t *param_desc_map,
1090 const struct brw_image_param *param)
1091 {
1092 #define WRITE_PARAM_FIELD(field, FIELD) \
1093 for (unsigned i = 0; i < ARRAY_SIZE(param->field); i++) \
1094 param_desc_map[BRW_IMAGE_PARAM_##FIELD##_OFFSET + i] = param->field[i]
1095
1096 WRITE_PARAM_FIELD(offset, OFFSET);
1097 WRITE_PARAM_FIELD(size, SIZE);
1098 WRITE_PARAM_FIELD(stride, STRIDE);
1099 WRITE_PARAM_FIELD(tiling, TILING);
1100 WRITE_PARAM_FIELD(swizzling, SWIZZLING);
1101 WRITE_PARAM_FIELD(size, SIZE);
1102
1103 #undef WRITE_PARAM_FIELD
1104 }
1105
1106 static uint32_t
1107 anv_surface_state_to_handle(struct anv_state state)
1108 {
1109 /* Bits 31:12 of the bindless surface offset in the extended message
1110 * descriptor is bits 25:6 of the byte-based address.
1111 */
1112 assert(state.offset >= 0);
1113 uint32_t offset = state.offset;
1114 assert((offset & 0x3f) == 0 && offset < (1 << 26));
1115 return offset << 6;
1116 }
1117
1118 void
1119 anv_descriptor_set_write_image_view(struct anv_device *device,
1120 struct anv_descriptor_set *set,
1121 const VkDescriptorImageInfo * const info,
1122 VkDescriptorType type,
1123 uint32_t binding,
1124 uint32_t element)
1125 {
1126 const struct anv_descriptor_set_binding_layout *bind_layout =
1127 &set->layout->binding[binding];
1128 struct anv_descriptor *desc =
1129 &set->descriptors[bind_layout->descriptor_index + element];
1130 struct anv_image_view *image_view = NULL;
1131 struct anv_sampler *sampler = NULL;
1132
1133 /* We get called with just VK_DESCRIPTOR_TYPE_SAMPLER as part of descriptor
1134 * set initialization to set the bindless samplers.
1135 */
1136 assert(type == bind_layout->type ||
1137 type == VK_DESCRIPTOR_TYPE_SAMPLER);
1138
1139 switch (type) {
1140 case VK_DESCRIPTOR_TYPE_SAMPLER:
1141 sampler = anv_sampler_from_handle(info->sampler);
1142 break;
1143
1144 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1145 image_view = anv_image_view_from_handle(info->imageView);
1146 sampler = anv_sampler_from_handle(info->sampler);
1147 break;
1148
1149 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1150 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1151 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1152 image_view = anv_image_view_from_handle(info->imageView);
1153 break;
1154
1155 default:
1156 unreachable("invalid descriptor type");
1157 }
1158
1159 /* If this descriptor has an immutable sampler, we don't want to stomp on
1160 * it.
1161 */
1162 sampler = bind_layout->immutable_samplers ?
1163 bind_layout->immutable_samplers[element] :
1164 sampler;
1165
1166 *desc = (struct anv_descriptor) {
1167 .type = type,
1168 .layout = info->imageLayout,
1169 .image_view = image_view,
1170 .sampler = sampler,
1171 };
1172
1173 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1174 element * anv_descriptor_size(bind_layout);
1175
1176 if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1177 struct anv_sampled_image_descriptor desc_data[3];
1178 memset(desc_data, 0, sizeof(desc_data));
1179
1180 if (image_view) {
1181 for (unsigned p = 0; p < image_view->n_planes; p++) {
1182 struct anv_surface_state sstate =
1183 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1184 image_view->planes[p].general_sampler_surface_state :
1185 image_view->planes[p].optimal_sampler_surface_state;
1186 desc_data[p].image = anv_surface_state_to_handle(sstate.state);
1187 }
1188 }
1189
1190 if (sampler) {
1191 for (unsigned p = 0; p < sampler->n_planes; p++)
1192 desc_data[p].sampler = sampler->bindless_state.offset + p * 32;
1193 }
1194
1195 /* We may have max_plane_count < 0 if this isn't a sampled image but it
1196 * can be no more than the size of our array of handles.
1197 */
1198 assert(bind_layout->max_plane_count <= ARRAY_SIZE(desc_data));
1199 memcpy(desc_map, desc_data,
1200 MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
1201 }
1202
1203 if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1204 assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1205 assert(image_view->n_planes == 1);
1206 struct anv_storage_image_descriptor desc_data = {
1207 .read_write = anv_surface_state_to_handle(
1208 image_view->planes[0].storage_surface_state.state),
1209 .write_only = anv_surface_state_to_handle(
1210 image_view->planes[0].writeonly_storage_surface_state.state),
1211 };
1212 memcpy(desc_map, &desc_data, sizeof(desc_data));
1213 }
1214
1215 if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1216 /* Storage images can only ever have one plane */
1217 assert(image_view->n_planes == 1);
1218 const struct brw_image_param *image_param =
1219 &image_view->planes[0].storage_image_param;
1220
1221 anv_descriptor_set_write_image_param(desc_map, image_param);
1222 }
1223
1224 if (image_view && (bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE)) {
1225 assert(!(bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE));
1226 assert(image_view);
1227 struct anv_texture_swizzle_descriptor desc_data[3];
1228 memset(desc_data, 0, sizeof(desc_data));
1229
1230 for (unsigned p = 0; p < image_view->n_planes; p++) {
1231 desc_data[p] = (struct anv_texture_swizzle_descriptor) {
1232 .swizzle = {
1233 (uint8_t)image_view->planes[p].isl.swizzle.r,
1234 (uint8_t)image_view->planes[p].isl.swizzle.g,
1235 (uint8_t)image_view->planes[p].isl.swizzle.b,
1236 (uint8_t)image_view->planes[p].isl.swizzle.a,
1237 },
1238 };
1239 }
1240 memcpy(desc_map, desc_data,
1241 MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
1242 }
1243 }
1244
1245 void
1246 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1247 struct anv_descriptor_set *set,
1248 VkDescriptorType type,
1249 struct anv_buffer_view *buffer_view,
1250 uint32_t binding,
1251 uint32_t element)
1252 {
1253 const struct anv_descriptor_set_binding_layout *bind_layout =
1254 &set->layout->binding[binding];
1255 struct anv_descriptor *desc =
1256 &set->descriptors[bind_layout->descriptor_index + element];
1257
1258 assert(type == bind_layout->type);
1259
1260 *desc = (struct anv_descriptor) {
1261 .type = type,
1262 .buffer_view = buffer_view,
1263 };
1264
1265 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1266 element * anv_descriptor_size(bind_layout);
1267
1268 if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1269 struct anv_sampled_image_descriptor desc_data = {
1270 .image = anv_surface_state_to_handle(buffer_view->surface_state),
1271 };
1272 memcpy(desc_map, &desc_data, sizeof(desc_data));
1273 }
1274
1275 if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1276 assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1277 struct anv_storage_image_descriptor desc_data = {
1278 .read_write = anv_surface_state_to_handle(
1279 buffer_view->storage_surface_state),
1280 .write_only = anv_surface_state_to_handle(
1281 buffer_view->writeonly_storage_surface_state),
1282 };
1283 memcpy(desc_map, &desc_data, sizeof(desc_data));
1284 }
1285
1286 if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1287 anv_descriptor_set_write_image_param(desc_map,
1288 &buffer_view->storage_image_param);
1289 }
1290 }
1291
1292 void
1293 anv_descriptor_set_write_buffer(struct anv_device *device,
1294 struct anv_descriptor_set *set,
1295 struct anv_state_stream *alloc_stream,
1296 VkDescriptorType type,
1297 struct anv_buffer *buffer,
1298 uint32_t binding,
1299 uint32_t element,
1300 VkDeviceSize offset,
1301 VkDeviceSize range)
1302 {
1303 const struct anv_descriptor_set_binding_layout *bind_layout =
1304 &set->layout->binding[binding];
1305 struct anv_descriptor *desc =
1306 &set->descriptors[bind_layout->descriptor_index + element];
1307
1308 assert(type == bind_layout->type);
1309
1310 struct anv_address bind_addr = anv_address_add(buffer->address, offset);
1311 uint64_t bind_range = anv_buffer_get_range(buffer, offset, range);
1312
1313 if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1314 type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1315 *desc = (struct anv_descriptor) {
1316 .type = type,
1317 .buffer = buffer,
1318 .offset = offset,
1319 .range = range,
1320 };
1321 } else {
1322 assert(bind_layout->data & ANV_DESCRIPTOR_BUFFER_VIEW);
1323 struct anv_buffer_view *bview =
1324 &set->buffer_views[bind_layout->buffer_view_index + element];
1325
1326 bview->format = anv_isl_format_for_descriptor_type(type);
1327 bview->range = bind_range;
1328 bview->address = bind_addr;
1329
1330 /* If we're writing descriptors through a push command, we need to
1331 * allocate the surface state from the command buffer. Otherwise it will
1332 * be allocated by the descriptor pool when calling
1333 * vkAllocateDescriptorSets. */
1334 if (alloc_stream)
1335 bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
1336
1337 anv_fill_buffer_surface_state(device, bview->surface_state,
1338 bview->format, bind_addr, bind_range, 1);
1339
1340 *desc = (struct anv_descriptor) {
1341 .type = type,
1342 .buffer_view = bview,
1343 };
1344 }
1345
1346 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1347 element * anv_descriptor_size(bind_layout);
1348
1349 if (bind_layout->data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
1350 struct anv_address_range_descriptor desc = {
1351 .address = anv_address_physical(bind_addr),
1352 .range = bind_range,
1353 };
1354 memcpy(desc_map, &desc, sizeof(desc));
1355 }
1356 }
1357
1358 void
1359 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1360 struct anv_descriptor_set *set,
1361 uint32_t binding,
1362 const void *data,
1363 size_t offset,
1364 size_t size)
1365 {
1366 const struct anv_descriptor_set_binding_layout *bind_layout =
1367 &set->layout->binding[binding];
1368
1369 assert(bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM);
1370
1371 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset;
1372
1373 memcpy(desc_map + offset, data, size);
1374 }
1375
1376 void anv_UpdateDescriptorSets(
1377 VkDevice _device,
1378 uint32_t descriptorWriteCount,
1379 const VkWriteDescriptorSet* pDescriptorWrites,
1380 uint32_t descriptorCopyCount,
1381 const VkCopyDescriptorSet* pDescriptorCopies)
1382 {
1383 ANV_FROM_HANDLE(anv_device, device, _device);
1384
1385 for (uint32_t i = 0; i < descriptorWriteCount; i++) {
1386 const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
1387 ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
1388
1389 switch (write->descriptorType) {
1390 case VK_DESCRIPTOR_TYPE_SAMPLER:
1391 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1392 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1393 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1394 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1395 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1396 anv_descriptor_set_write_image_view(device, set,
1397 write->pImageInfo + j,
1398 write->descriptorType,
1399 write->dstBinding,
1400 write->dstArrayElement + j);
1401 }
1402 break;
1403
1404 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1405 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1406 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1407 ANV_FROM_HANDLE(anv_buffer_view, bview,
1408 write->pTexelBufferView[j]);
1409
1410 anv_descriptor_set_write_buffer_view(device, set,
1411 write->descriptorType,
1412 bview,
1413 write->dstBinding,
1414 write->dstArrayElement + j);
1415 }
1416 break;
1417
1418 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1419 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1420 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1421 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1422 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1423 assert(write->pBufferInfo[j].buffer);
1424 ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
1425 assert(buffer);
1426
1427 anv_descriptor_set_write_buffer(device, set,
1428 NULL,
1429 write->descriptorType,
1430 buffer,
1431 write->dstBinding,
1432 write->dstArrayElement + j,
1433 write->pBufferInfo[j].offset,
1434 write->pBufferInfo[j].range);
1435 }
1436 break;
1437
1438 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: {
1439 const VkWriteDescriptorSetInlineUniformBlockEXT *inline_write =
1440 vk_find_struct_const(write->pNext,
1441 WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT);
1442 assert(inline_write->dataSize == write->descriptorCount);
1443 anv_descriptor_set_write_inline_uniform_data(device, set,
1444 write->dstBinding,
1445 inline_write->pData,
1446 write->dstArrayElement,
1447 inline_write->dataSize);
1448 break;
1449 }
1450
1451 default:
1452 break;
1453 }
1454 }
1455
1456 for (uint32_t i = 0; i < descriptorCopyCount; i++) {
1457 const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
1458 ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
1459 ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
1460
1461 const struct anv_descriptor_set_binding_layout *src_layout =
1462 &src->layout->binding[copy->srcBinding];
1463 struct anv_descriptor *src_desc =
1464 &src->descriptors[src_layout->descriptor_index];
1465 src_desc += copy->srcArrayElement;
1466
1467 const struct anv_descriptor_set_binding_layout *dst_layout =
1468 &dst->layout->binding[copy->dstBinding];
1469 struct anv_descriptor *dst_desc =
1470 &dst->descriptors[dst_layout->descriptor_index];
1471 dst_desc += copy->dstArrayElement;
1472
1473 if (src_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
1474 assert(src_layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
1475 memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1476 copy->dstArrayElement,
1477 src->desc_mem.map + src_layout->descriptor_offset +
1478 copy->srcArrayElement,
1479 copy->descriptorCount);
1480 } else {
1481 for (uint32_t j = 0; j < copy->descriptorCount; j++)
1482 dst_desc[j] = src_desc[j];
1483
1484 unsigned desc_size = anv_descriptor_size(src_layout);
1485 if (desc_size > 0) {
1486 assert(desc_size == anv_descriptor_size(dst_layout));
1487 memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1488 copy->dstArrayElement * desc_size,
1489 src->desc_mem.map + src_layout->descriptor_offset +
1490 copy->srcArrayElement * desc_size,
1491 copy->descriptorCount * desc_size);
1492 }
1493 }
1494 }
1495 }
1496
1497 /*
1498 * Descriptor update templates.
1499 */
1500
1501 void
1502 anv_descriptor_set_write_template(struct anv_device *device,
1503 struct anv_descriptor_set *set,
1504 struct anv_state_stream *alloc_stream,
1505 const struct anv_descriptor_update_template *template,
1506 const void *data)
1507 {
1508 for (uint32_t i = 0; i < template->entry_count; i++) {
1509 const struct anv_descriptor_template_entry *entry =
1510 &template->entries[i];
1511
1512 switch (entry->type) {
1513 case VK_DESCRIPTOR_TYPE_SAMPLER:
1514 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1515 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1516 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1517 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1518 for (uint32_t j = 0; j < entry->array_count; j++) {
1519 const VkDescriptorImageInfo *info =
1520 data + entry->offset + j * entry->stride;
1521 anv_descriptor_set_write_image_view(device, set,
1522 info, entry->type,
1523 entry->binding,
1524 entry->array_element + j);
1525 }
1526 break;
1527
1528 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1529 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1530 for (uint32_t j = 0; j < entry->array_count; j++) {
1531 const VkBufferView *_bview =
1532 data + entry->offset + j * entry->stride;
1533 ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
1534
1535 anv_descriptor_set_write_buffer_view(device, set,
1536 entry->type,
1537 bview,
1538 entry->binding,
1539 entry->array_element + j);
1540 }
1541 break;
1542
1543 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1544 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1545 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1546 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1547 for (uint32_t j = 0; j < entry->array_count; j++) {
1548 const VkDescriptorBufferInfo *info =
1549 data + entry->offset + j * entry->stride;
1550 ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
1551
1552 anv_descriptor_set_write_buffer(device, set,
1553 alloc_stream,
1554 entry->type,
1555 buffer,
1556 entry->binding,
1557 entry->array_element + j,
1558 info->offset, info->range);
1559 }
1560 break;
1561
1562 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
1563 anv_descriptor_set_write_inline_uniform_data(device, set,
1564 entry->binding,
1565 data + entry->offset,
1566 entry->array_element,
1567 entry->array_count);
1568 break;
1569
1570 default:
1571 break;
1572 }
1573 }
1574 }
1575
1576 VkResult anv_CreateDescriptorUpdateTemplate(
1577 VkDevice _device,
1578 const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
1579 const VkAllocationCallbacks* pAllocator,
1580 VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate)
1581 {
1582 ANV_FROM_HANDLE(anv_device, device, _device);
1583 struct anv_descriptor_update_template *template;
1584
1585 size_t size = sizeof(*template) +
1586 pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
1587 template = vk_alloc2(&device->alloc, pAllocator, size, 8,
1588 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1589 if (template == NULL)
1590 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1591
1592 template->bind_point = pCreateInfo->pipelineBindPoint;
1593
1594 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET)
1595 template->set = pCreateInfo->set;
1596
1597 template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
1598 for (uint32_t i = 0; i < template->entry_count; i++) {
1599 const VkDescriptorUpdateTemplateEntry *pEntry =
1600 &pCreateInfo->pDescriptorUpdateEntries[i];
1601
1602 template->entries[i] = (struct anv_descriptor_template_entry) {
1603 .type = pEntry->descriptorType,
1604 .binding = pEntry->dstBinding,
1605 .array_element = pEntry->dstArrayElement,
1606 .array_count = pEntry->descriptorCount,
1607 .offset = pEntry->offset,
1608 .stride = pEntry->stride,
1609 };
1610 }
1611
1612 *pDescriptorUpdateTemplate =
1613 anv_descriptor_update_template_to_handle(template);
1614
1615 return VK_SUCCESS;
1616 }
1617
1618 void anv_DestroyDescriptorUpdateTemplate(
1619 VkDevice _device,
1620 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1621 const VkAllocationCallbacks* pAllocator)
1622 {
1623 ANV_FROM_HANDLE(anv_device, device, _device);
1624 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1625 descriptorUpdateTemplate);
1626
1627 vk_free2(&device->alloc, pAllocator, template);
1628 }
1629
1630 void anv_UpdateDescriptorSetWithTemplate(
1631 VkDevice _device,
1632 VkDescriptorSet descriptorSet,
1633 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1634 const void* pData)
1635 {
1636 ANV_FROM_HANDLE(anv_device, device, _device);
1637 ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
1638 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1639 descriptorUpdateTemplate);
1640
1641 anv_descriptor_set_write_template(device, set, NULL, template, pData);
1642 }