anv: Implement VK_EXT_descriptor_indexing
[mesa.git] / src / intel / vulkan / anv_descriptor_set.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "vk_util.h"
32
33 #include "anv_private.h"
34
35 /*
36 * Descriptor set layouts.
37 */
38
39 static enum anv_descriptor_data
40 anv_descriptor_data_for_type(const struct anv_physical_device *device,
41 VkDescriptorType type)
42 {
43 enum anv_descriptor_data data = 0;
44
45 switch (type) {
46 case VK_DESCRIPTOR_TYPE_SAMPLER:
47 data = ANV_DESCRIPTOR_SAMPLER_STATE;
48 if (device->has_bindless_samplers)
49 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
50 break;
51
52 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
53 data = ANV_DESCRIPTOR_SURFACE_STATE |
54 ANV_DESCRIPTOR_SAMPLER_STATE;
55 if (device->has_bindless_images || device->has_bindless_samplers)
56 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
57 break;
58
59 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
60 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
61 data = ANV_DESCRIPTOR_SURFACE_STATE;
62 if (device->has_bindless_images)
63 data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
64 break;
65
66 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
67 data = ANV_DESCRIPTOR_SURFACE_STATE;
68 break;
69
70 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
71 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
72 data = ANV_DESCRIPTOR_SURFACE_STATE;
73 if (device->info.gen < 9)
74 data |= ANV_DESCRIPTOR_IMAGE_PARAM;
75 if (device->has_bindless_images)
76 data |= ANV_DESCRIPTOR_STORAGE_IMAGE;
77 break;
78
79 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
80 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
81 data = ANV_DESCRIPTOR_SURFACE_STATE |
82 ANV_DESCRIPTOR_BUFFER_VIEW;
83 break;
84
85 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
86 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
87 data = ANV_DESCRIPTOR_SURFACE_STATE;
88 break;
89
90 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
91 data = ANV_DESCRIPTOR_INLINE_UNIFORM;
92 break;
93
94 default:
95 unreachable("Unsupported descriptor type");
96 }
97
98 /* On gen8 and above when we have softpin enabled, we also need to push
99 * SSBO address ranges so that we can use A64 messages in the shader.
100 */
101 if (device->has_a64_buffer_access &&
102 (type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
103 type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC))
104 data |= ANV_DESCRIPTOR_ADDRESS_RANGE;
105
106 return data;
107 }
108
109 static unsigned
110 anv_descriptor_data_size(enum anv_descriptor_data data)
111 {
112 unsigned size = 0;
113
114 if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE)
115 size += sizeof(struct anv_sampled_image_descriptor);
116
117 if (data & ANV_DESCRIPTOR_STORAGE_IMAGE)
118 size += sizeof(struct anv_storage_image_descriptor);
119
120 if (data & ANV_DESCRIPTOR_IMAGE_PARAM)
121 size += BRW_IMAGE_PARAM_SIZE * 4;
122
123 if (data & ANV_DESCRIPTOR_ADDRESS_RANGE)
124 size += sizeof(struct anv_address_range_descriptor);
125
126 return size;
127 }
128
129 /** Returns the size in bytes of each descriptor with the given layout */
130 unsigned
131 anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout)
132 {
133 if (layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
134 assert(layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
135 return layout->array_size;
136 }
137
138 unsigned size = anv_descriptor_data_size(layout->data);
139
140 /* For multi-planar bindings, we make every descriptor consume the maximum
141 * number of planes so we don't have to bother with walking arrays and
142 * adding things up every time. Fortunately, YCbCr samplers aren't all
143 * that common and likely won't be in the middle of big arrays.
144 */
145 if (layout->max_plane_count > 1)
146 size *= layout->max_plane_count;
147
148 return size;
149 }
150
151 /** Returns the size in bytes of each descriptor of the given type
152 *
153 * This version of the function does not have access to the entire layout so
154 * it may only work on certain descriptor types where the descriptor size is
155 * entirely determined by the descriptor type. Whenever possible, code should
156 * use anv_descriptor_size() instead.
157 */
158 unsigned
159 anv_descriptor_type_size(const struct anv_physical_device *pdevice,
160 VkDescriptorType type)
161 {
162 assert(type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT &&
163 type != VK_DESCRIPTOR_TYPE_SAMPLER &&
164 type != VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE &&
165 type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
166
167 return anv_descriptor_data_size(anv_descriptor_data_for_type(pdevice, type));
168 }
169
170 static bool
171 anv_descriptor_data_supports_bindless(const struct anv_physical_device *pdevice,
172 enum anv_descriptor_data data,
173 bool sampler)
174 {
175 if (data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
176 assert(pdevice->has_a64_buffer_access);
177 return true;
178 }
179
180 if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
181 assert(pdevice->has_bindless_images || pdevice->has_bindless_samplers);
182 return sampler ? pdevice->has_bindless_samplers :
183 pdevice->has_bindless_images;
184 }
185
186 if (data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
187 assert(pdevice->has_bindless_images);
188 return true;
189 }
190
191 return false;
192 }
193
194 bool
195 anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
196 const struct anv_descriptor_set_binding_layout *binding,
197 bool sampler)
198 {
199 return anv_descriptor_data_supports_bindless(pdevice, binding->data,
200 sampler);
201 }
202
203 bool
204 anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
205 const struct anv_descriptor_set_binding_layout *binding,
206 bool sampler)
207 {
208 if (pdevice->always_use_bindless)
209 return anv_descriptor_supports_bindless(pdevice, binding, sampler);
210
211 static const VkDescriptorBindingFlagBitsEXT flags_requiring_bindless =
212 VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT |
213 VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT |
214 VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT;
215
216 return (binding->flags & flags_requiring_bindless) != 0;
217 }
218
219 void anv_GetDescriptorSetLayoutSupport(
220 VkDevice _device,
221 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
222 VkDescriptorSetLayoutSupport* pSupport)
223 {
224 ANV_FROM_HANDLE(anv_device, device, _device);
225 const struct anv_physical_device *pdevice =
226 &device->instance->physicalDevice;
227
228 uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
229
230 for (uint32_t b = 0; b < pCreateInfo->bindingCount; b++) {
231 const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[b];
232
233 enum anv_descriptor_data desc_data =
234 anv_descriptor_data_for_type(pdevice, binding->descriptorType);
235
236 switch (binding->descriptorType) {
237 case VK_DESCRIPTOR_TYPE_SAMPLER:
238 /* There is no real limit on samplers */
239 break;
240
241 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
242 if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
243 break;
244
245 if (binding->pImmutableSamplers) {
246 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
247 ANV_FROM_HANDLE(anv_sampler, sampler,
248 binding->pImmutableSamplers[i]);
249 anv_foreach_stage(s, binding->stageFlags)
250 surface_count[s] += sampler->n_planes;
251 }
252 } else {
253 anv_foreach_stage(s, binding->stageFlags)
254 surface_count[s] += binding->descriptorCount;
255 }
256 break;
257
258 default:
259 if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
260 break;
261
262 anv_foreach_stage(s, binding->stageFlags)
263 surface_count[s] += binding->descriptorCount;
264 break;
265 }
266 }
267
268 bool supported = true;
269 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
270 /* Our maximum binding table size is 240 and we need to reserve 8 for
271 * render targets.
272 */
273 if (surface_count[s] >= MAX_BINDING_TABLE_SIZE - MAX_RTS)
274 supported = false;
275 }
276
277 pSupport->supported = supported;
278 }
279
280 VkResult anv_CreateDescriptorSetLayout(
281 VkDevice _device,
282 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
283 const VkAllocationCallbacks* pAllocator,
284 VkDescriptorSetLayout* pSetLayout)
285 {
286 ANV_FROM_HANDLE(anv_device, device, _device);
287
288 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
289
290 uint32_t max_binding = 0;
291 uint32_t immutable_sampler_count = 0;
292 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
293 max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
294
295 /* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding:
296 *
297 * "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or
298 * VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
299 * pImmutableSamplers can be used to initialize a set of immutable
300 * samplers. [...] If descriptorType is not one of these descriptor
301 * types, then pImmutableSamplers is ignored.
302 *
303 * We need to be careful here and only parse pImmutableSamplers if we
304 * have one of the right descriptor types.
305 */
306 VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType;
307 if ((desc_type == VK_DESCRIPTOR_TYPE_SAMPLER ||
308 desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) &&
309 pCreateInfo->pBindings[j].pImmutableSamplers)
310 immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
311 }
312
313 struct anv_descriptor_set_layout *set_layout;
314 struct anv_descriptor_set_binding_layout *bindings;
315 struct anv_sampler **samplers;
316
317 /* We need to allocate decriptor set layouts off the device allocator
318 * with DEVICE scope because they are reference counted and may not be
319 * destroyed when vkDestroyDescriptorSetLayout is called.
320 */
321 ANV_MULTIALLOC(ma);
322 anv_multialloc_add(&ma, &set_layout, 1);
323 anv_multialloc_add(&ma, &bindings, max_binding + 1);
324 anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
325
326 if (!anv_multialloc_alloc(&ma, &device->alloc,
327 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
328 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
329
330 memset(set_layout, 0, sizeof(*set_layout));
331 set_layout->ref_cnt = 1;
332 set_layout->binding_count = max_binding + 1;
333
334 for (uint32_t b = 0; b <= max_binding; b++) {
335 /* Initialize all binding_layout entries to -1 */
336 memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
337
338 set_layout->binding[b].flags = 0;
339 set_layout->binding[b].data = 0;
340 set_layout->binding[b].max_plane_count = 0;
341 set_layout->binding[b].array_size = 0;
342 set_layout->binding[b].immutable_samplers = NULL;
343 }
344
345 /* Initialize all samplers to 0 */
346 memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
347
348 uint32_t buffer_view_count = 0;
349 uint32_t dynamic_offset_count = 0;
350 uint32_t descriptor_buffer_size = 0;
351
352 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
353 const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
354 uint32_t b = binding->binding;
355 /* We temporarily store the pointer to the binding in the
356 * immutable_samplers pointer. This provides us with a quick-and-dirty
357 * way to sort the bindings by binding number.
358 */
359 set_layout->binding[b].immutable_samplers = (void *)binding;
360 }
361
362 const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *binding_flags_info =
363 vk_find_struct_const(pCreateInfo->pNext,
364 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
365 if (binding_flags_info)
366 assert(binding_flags_info->bindingCount == pCreateInfo->bindingCount);
367
368 for (uint32_t b = 0; b <= max_binding; b++) {
369 const VkDescriptorSetLayoutBinding *binding =
370 (void *)set_layout->binding[b].immutable_samplers;
371
372 if (binding == NULL)
373 continue;
374
375 /* We temporarily stashed the pointer to the binding in the
376 * immutable_samplers pointer. Now that we've pulled it back out
377 * again, we reset immutable_samplers to NULL.
378 */
379 set_layout->binding[b].immutable_samplers = NULL;
380
381 if (binding->descriptorCount == 0)
382 continue;
383
384 #ifndef NDEBUG
385 set_layout->binding[b].type = binding->descriptorType;
386 #endif
387
388 if (binding_flags_info) {
389 uint32_t binding_strct_idx = binding - pCreateInfo->pBindings;
390 assert(binding_strct_idx < binding_flags_info->bindingCount);
391 set_layout->binding[b].flags =
392 binding_flags_info->pBindingFlags[binding_strct_idx];
393 }
394
395 set_layout->binding[b].data =
396 anv_descriptor_data_for_type(&device->instance->physicalDevice,
397 binding->descriptorType);
398 set_layout->binding[b].array_size = binding->descriptorCount;
399 set_layout->binding[b].descriptor_index = set_layout->size;
400 set_layout->size += binding->descriptorCount;
401
402 if (set_layout->binding[b].data & ANV_DESCRIPTOR_BUFFER_VIEW) {
403 set_layout->binding[b].buffer_view_index = buffer_view_count;
404 buffer_view_count += binding->descriptorCount;
405 }
406
407 switch (binding->descriptorType) {
408 case VK_DESCRIPTOR_TYPE_SAMPLER:
409 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
410 set_layout->binding[b].max_plane_count = 1;
411 if (binding->pImmutableSamplers) {
412 set_layout->binding[b].immutable_samplers = samplers;
413 samplers += binding->descriptorCount;
414
415 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
416 ANV_FROM_HANDLE(anv_sampler, sampler,
417 binding->pImmutableSamplers[i]);
418
419 set_layout->binding[b].immutable_samplers[i] = sampler;
420 if (set_layout->binding[b].max_plane_count < sampler->n_planes)
421 set_layout->binding[b].max_plane_count = sampler->n_planes;
422 }
423 }
424 break;
425
426 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
427 set_layout->binding[b].max_plane_count = 1;
428 break;
429
430 default:
431 break;
432 }
433
434 switch (binding->descriptorType) {
435 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
436 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
437 set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
438 dynamic_offset_count += binding->descriptorCount;
439 break;
440
441 default:
442 break;
443 }
444
445 if (binding->descriptorType ==
446 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
447 /* Inline uniform blocks are specified to use the descriptor array
448 * size as the size in bytes of the block.
449 */
450 descriptor_buffer_size = align_u32(descriptor_buffer_size, 32);
451 set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
452 descriptor_buffer_size += binding->descriptorCount;
453 } else {
454 set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
455 descriptor_buffer_size += anv_descriptor_size(&set_layout->binding[b]) *
456 binding->descriptorCount;
457 }
458
459 set_layout->shader_stages |= binding->stageFlags;
460 }
461
462 set_layout->buffer_view_count = buffer_view_count;
463 set_layout->dynamic_offset_count = dynamic_offset_count;
464 set_layout->descriptor_buffer_size = descriptor_buffer_size;
465
466 *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
467
468 return VK_SUCCESS;
469 }
470
471 void anv_DestroyDescriptorSetLayout(
472 VkDevice _device,
473 VkDescriptorSetLayout _set_layout,
474 const VkAllocationCallbacks* pAllocator)
475 {
476 ANV_FROM_HANDLE(anv_device, device, _device);
477 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
478
479 if (!set_layout)
480 return;
481
482 anv_descriptor_set_layout_unref(device, set_layout);
483 }
484
485 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
486
487 static void
488 sha1_update_immutable_sampler(struct mesa_sha1 *ctx,
489 const struct anv_sampler *sampler)
490 {
491 if (!sampler->conversion)
492 return;
493
494 /* The only thing that affects the shader is ycbcr conversion */
495 _mesa_sha1_update(ctx, sampler->conversion,
496 sizeof(*sampler->conversion));
497 }
498
499 static void
500 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
501 const struct anv_descriptor_set_binding_layout *layout)
502 {
503 SHA1_UPDATE_VALUE(ctx, layout->flags);
504 SHA1_UPDATE_VALUE(ctx, layout->data);
505 SHA1_UPDATE_VALUE(ctx, layout->max_plane_count);
506 SHA1_UPDATE_VALUE(ctx, layout->array_size);
507 SHA1_UPDATE_VALUE(ctx, layout->descriptor_index);
508 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index);
509 SHA1_UPDATE_VALUE(ctx, layout->buffer_view_index);
510 SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset);
511
512 if (layout->immutable_samplers) {
513 for (uint16_t i = 0; i < layout->array_size; i++)
514 sha1_update_immutable_sampler(ctx, layout->immutable_samplers[i]);
515 }
516 }
517
518 static void
519 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
520 const struct anv_descriptor_set_layout *layout)
521 {
522 SHA1_UPDATE_VALUE(ctx, layout->binding_count);
523 SHA1_UPDATE_VALUE(ctx, layout->size);
524 SHA1_UPDATE_VALUE(ctx, layout->shader_stages);
525 SHA1_UPDATE_VALUE(ctx, layout->buffer_view_count);
526 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
527 SHA1_UPDATE_VALUE(ctx, layout->descriptor_buffer_size);
528
529 for (uint16_t i = 0; i < layout->binding_count; i++)
530 sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i]);
531 }
532
533 /*
534 * Pipeline layouts. These have nothing to do with the pipeline. They are
535 * just multiple descriptor set layouts pasted together
536 */
537
538 VkResult anv_CreatePipelineLayout(
539 VkDevice _device,
540 const VkPipelineLayoutCreateInfo* pCreateInfo,
541 const VkAllocationCallbacks* pAllocator,
542 VkPipelineLayout* pPipelineLayout)
543 {
544 ANV_FROM_HANDLE(anv_device, device, _device);
545 struct anv_pipeline_layout *layout;
546
547 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
548
549 layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
550 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
551 if (layout == NULL)
552 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
553
554 layout->num_sets = pCreateInfo->setLayoutCount;
555
556 unsigned dynamic_offset_count = 0;
557
558 for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
559 ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
560 pCreateInfo->pSetLayouts[set]);
561 layout->set[set].layout = set_layout;
562 anv_descriptor_set_layout_ref(set_layout);
563
564 layout->set[set].dynamic_offset_start = dynamic_offset_count;
565 for (uint32_t b = 0; b < set_layout->binding_count; b++) {
566 if (set_layout->binding[b].dynamic_offset_index < 0)
567 continue;
568
569 dynamic_offset_count += set_layout->binding[b].array_size;
570 }
571 }
572
573 struct mesa_sha1 ctx;
574 _mesa_sha1_init(&ctx);
575 for (unsigned s = 0; s < layout->num_sets; s++) {
576 sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
577 _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
578 sizeof(layout->set[s].dynamic_offset_start));
579 }
580 _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
581 _mesa_sha1_final(&ctx, layout->sha1);
582
583 *pPipelineLayout = anv_pipeline_layout_to_handle(layout);
584
585 return VK_SUCCESS;
586 }
587
588 void anv_DestroyPipelineLayout(
589 VkDevice _device,
590 VkPipelineLayout _pipelineLayout,
591 const VkAllocationCallbacks* pAllocator)
592 {
593 ANV_FROM_HANDLE(anv_device, device, _device);
594 ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
595
596 if (!pipeline_layout)
597 return;
598
599 for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
600 anv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
601
602 vk_free2(&device->alloc, pAllocator, pipeline_layout);
603 }
604
605 /*
606 * Descriptor pools.
607 *
608 * These are implemented using a big pool of memory and a free-list for the
609 * host memory allocations and a state_stream and a free list for the buffer
610 * view surface state. The spec allows us to fail to allocate due to
611 * fragmentation in all cases but two: 1) after pool reset, allocating up
612 * until the pool size with no freeing must succeed and 2) allocating and
613 * freeing only descriptor sets with the same layout. Case 1) is easy enogh,
614 * and the free lists lets us recycle blocks for case 2).
615 */
616
617 /* The vma heap reserves 0 to mean NULL; we have to offset by some ammount to
618 * ensure we can allocate the entire BO without hitting zero. The actual
619 * amount doesn't matter.
620 */
621 #define POOL_HEAP_OFFSET 64
622
623 #define EMPTY 1
624
625 VkResult anv_CreateDescriptorPool(
626 VkDevice _device,
627 const VkDescriptorPoolCreateInfo* pCreateInfo,
628 const VkAllocationCallbacks* pAllocator,
629 VkDescriptorPool* pDescriptorPool)
630 {
631 ANV_FROM_HANDLE(anv_device, device, _device);
632 struct anv_descriptor_pool *pool;
633
634 const VkDescriptorPoolInlineUniformBlockCreateInfoEXT *inline_info =
635 vk_find_struct_const(pCreateInfo->pNext,
636 DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT);
637
638 uint32_t descriptor_count = 0;
639 uint32_t buffer_view_count = 0;
640 uint32_t descriptor_bo_size = 0;
641 for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
642 enum anv_descriptor_data desc_data =
643 anv_descriptor_data_for_type(&device->instance->physicalDevice,
644 pCreateInfo->pPoolSizes[i].type);
645
646 if (desc_data & ANV_DESCRIPTOR_BUFFER_VIEW)
647 buffer_view_count += pCreateInfo->pPoolSizes[i].descriptorCount;
648
649 unsigned desc_data_size = anv_descriptor_data_size(desc_data) *
650 pCreateInfo->pPoolSizes[i].descriptorCount;
651
652 /* Combined image sampler descriptors can take up to 3 slots if they
653 * hold a YCbCr image.
654 */
655 if (pCreateInfo->pPoolSizes[i].type ==
656 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
657 desc_data_size *= 3;
658
659 if (pCreateInfo->pPoolSizes[i].type ==
660 VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
661 /* Inline uniform blocks are specified to use the descriptor array
662 * size as the size in bytes of the block.
663 */
664 assert(inline_info);
665 desc_data_size += pCreateInfo->pPoolSizes[i].descriptorCount;
666 }
667
668 descriptor_bo_size += desc_data_size;
669
670 descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
671 }
672 /* We have to align descriptor buffer allocations to 32B so that we can
673 * push descriptor buffers. This means that each descriptor buffer
674 * allocated may burn up to 32B of extra space to get the right alignment.
675 * (Technically, it's at most 28B because we're always going to start at
676 * least 4B aligned but we're being conservative here.) Allocate enough
677 * extra space that we can chop it into maxSets pieces and align each one
678 * of them to 32B.
679 */
680 descriptor_bo_size += 32 * pCreateInfo->maxSets;
681 descriptor_bo_size = ALIGN(descriptor_bo_size, 4096);
682 /* We align inline uniform blocks to 32B */
683 if (inline_info)
684 descriptor_bo_size += 32 * inline_info->maxInlineUniformBlockBindings;
685
686 const size_t pool_size =
687 pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
688 descriptor_count * sizeof(struct anv_descriptor) +
689 buffer_view_count * sizeof(struct anv_buffer_view);
690 const size_t total_size = sizeof(*pool) + pool_size;
691
692 pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
693 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
694 if (!pool)
695 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
696
697 pool->size = pool_size;
698 pool->next = 0;
699 pool->free_list = EMPTY;
700
701 if (descriptor_bo_size > 0) {
702 VkResult result = anv_bo_init_new(&pool->bo, device, descriptor_bo_size);
703 if (result != VK_SUCCESS) {
704 vk_free2(&device->alloc, pAllocator, pool);
705 return result;
706 }
707
708 anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
709
710 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0,
711 descriptor_bo_size, 0);
712 if (pool->bo.map == NULL) {
713 anv_gem_close(device, pool->bo.gem_handle);
714 vk_free2(&device->alloc, pAllocator, pool);
715 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
716 }
717
718 if (device->instance->physicalDevice.use_softpin) {
719 pool->bo.flags |= EXEC_OBJECT_PINNED;
720 anv_vma_alloc(device, &pool->bo);
721 }
722
723 util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, descriptor_bo_size);
724 } else {
725 pool->bo.size = 0;
726 }
727
728 anv_state_stream_init(&pool->surface_state_stream,
729 &device->surface_state_pool, 4096);
730 pool->surface_state_free_list = NULL;
731
732 list_inithead(&pool->desc_sets);
733
734 *pDescriptorPool = anv_descriptor_pool_to_handle(pool);
735
736 return VK_SUCCESS;
737 }
738
739 void anv_DestroyDescriptorPool(
740 VkDevice _device,
741 VkDescriptorPool _pool,
742 const VkAllocationCallbacks* pAllocator)
743 {
744 ANV_FROM_HANDLE(anv_device, device, _device);
745 ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
746
747 if (!pool)
748 return;
749
750 if (pool->bo.size) {
751 anv_gem_munmap(pool->bo.map, pool->bo.size);
752 anv_vma_free(device, &pool->bo);
753 anv_gem_close(device, pool->bo.gem_handle);
754 }
755 anv_state_stream_finish(&pool->surface_state_stream);
756
757 list_for_each_entry_safe(struct anv_descriptor_set, set,
758 &pool->desc_sets, pool_link) {
759 anv_descriptor_set_destroy(device, pool, set);
760 }
761
762 util_vma_heap_finish(&pool->bo_heap);
763
764 vk_free2(&device->alloc, pAllocator, pool);
765 }
766
767 VkResult anv_ResetDescriptorPool(
768 VkDevice _device,
769 VkDescriptorPool descriptorPool,
770 VkDescriptorPoolResetFlags flags)
771 {
772 ANV_FROM_HANDLE(anv_device, device, _device);
773 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
774
775 list_for_each_entry_safe(struct anv_descriptor_set, set,
776 &pool->desc_sets, pool_link) {
777 anv_descriptor_set_destroy(device, pool, set);
778 }
779
780 pool->next = 0;
781 pool->free_list = EMPTY;
782
783 if (pool->bo.size) {
784 util_vma_heap_finish(&pool->bo_heap);
785 util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, pool->bo.size);
786 }
787
788 anv_state_stream_finish(&pool->surface_state_stream);
789 anv_state_stream_init(&pool->surface_state_stream,
790 &device->surface_state_pool, 4096);
791 pool->surface_state_free_list = NULL;
792
793 return VK_SUCCESS;
794 }
795
796 struct pool_free_list_entry {
797 uint32_t next;
798 uint32_t size;
799 };
800
801 static VkResult
802 anv_descriptor_pool_alloc_set(struct anv_descriptor_pool *pool,
803 uint32_t size,
804 struct anv_descriptor_set **set)
805 {
806 if (size <= pool->size - pool->next) {
807 *set = (struct anv_descriptor_set *) (pool->data + pool->next);
808 pool->next += size;
809 return VK_SUCCESS;
810 } else {
811 struct pool_free_list_entry *entry;
812 uint32_t *link = &pool->free_list;
813 for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
814 entry = (struct pool_free_list_entry *) (pool->data + f);
815 if (size <= entry->size) {
816 *link = entry->next;
817 *set = (struct anv_descriptor_set *) entry;
818 return VK_SUCCESS;
819 }
820 link = &entry->next;
821 }
822
823 if (pool->free_list != EMPTY) {
824 return vk_error(VK_ERROR_FRAGMENTED_POOL);
825 } else {
826 return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY);
827 }
828 }
829 }
830
831 static void
832 anv_descriptor_pool_free_set(struct anv_descriptor_pool *pool,
833 struct anv_descriptor_set *set)
834 {
835 /* Put the descriptor set allocation back on the free list. */
836 const uint32_t index = (char *) set - pool->data;
837 if (index + set->size == pool->next) {
838 pool->next = index;
839 } else {
840 struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
841 entry->next = pool->free_list;
842 entry->size = set->size;
843 pool->free_list = (char *) entry - pool->data;
844 }
845
846 list_del(&set->pool_link);
847 }
848
849 struct surface_state_free_list_entry {
850 void *next;
851 struct anv_state state;
852 };
853
854 static struct anv_state
855 anv_descriptor_pool_alloc_state(struct anv_descriptor_pool *pool)
856 {
857 struct surface_state_free_list_entry *entry =
858 pool->surface_state_free_list;
859
860 if (entry) {
861 struct anv_state state = entry->state;
862 pool->surface_state_free_list = entry->next;
863 assert(state.alloc_size == 64);
864 return state;
865 } else {
866 return anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
867 }
868 }
869
870 static void
871 anv_descriptor_pool_free_state(struct anv_descriptor_pool *pool,
872 struct anv_state state)
873 {
874 /* Put the buffer view surface state back on the free list. */
875 struct surface_state_free_list_entry *entry = state.map;
876 entry->next = pool->surface_state_free_list;
877 entry->state = state;
878 pool->surface_state_free_list = entry;
879 }
880
881 size_t
882 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
883 {
884 return
885 sizeof(struct anv_descriptor_set) +
886 layout->size * sizeof(struct anv_descriptor) +
887 layout->buffer_view_count * sizeof(struct anv_buffer_view);
888 }
889
890 VkResult
891 anv_descriptor_set_create(struct anv_device *device,
892 struct anv_descriptor_pool *pool,
893 struct anv_descriptor_set_layout *layout,
894 struct anv_descriptor_set **out_set)
895 {
896 struct anv_descriptor_set *set;
897 const size_t size = anv_descriptor_set_layout_size(layout);
898
899 VkResult result = anv_descriptor_pool_alloc_set(pool, size, &set);
900 if (result != VK_SUCCESS)
901 return result;
902
903 if (layout->descriptor_buffer_size) {
904 /* Align the size to 32 so that alignment gaps don't cause extra holes
905 * in the heap which can lead to bad performance.
906 */
907 uint64_t pool_vma_offset =
908 util_vma_heap_alloc(&pool->bo_heap,
909 ALIGN(layout->descriptor_buffer_size, 32), 32);
910 if (pool_vma_offset == 0) {
911 anv_descriptor_pool_free_set(pool, set);
912 return vk_error(VK_ERROR_FRAGMENTED_POOL);
913 }
914 assert(pool_vma_offset >= POOL_HEAP_OFFSET &&
915 pool_vma_offset - POOL_HEAP_OFFSET <= INT32_MAX);
916 set->desc_mem.offset = pool_vma_offset - POOL_HEAP_OFFSET;
917 set->desc_mem.alloc_size = layout->descriptor_buffer_size;
918 set->desc_mem.map = pool->bo.map + set->desc_mem.offset;
919
920 set->desc_surface_state = anv_descriptor_pool_alloc_state(pool);
921 anv_fill_buffer_surface_state(device, set->desc_surface_state,
922 ISL_FORMAT_R32G32B32A32_FLOAT,
923 (struct anv_address) {
924 .bo = &pool->bo,
925 .offset = set->desc_mem.offset,
926 },
927 layout->descriptor_buffer_size, 1);
928 } else {
929 set->desc_mem = ANV_STATE_NULL;
930 set->desc_surface_state = ANV_STATE_NULL;
931 }
932
933 set->pool = pool;
934 set->layout = layout;
935 anv_descriptor_set_layout_ref(layout);
936
937 set->size = size;
938 set->buffer_views =
939 (struct anv_buffer_view *) &set->descriptors[layout->size];
940 set->buffer_view_count = layout->buffer_view_count;
941
942 /* By defining the descriptors to be zero now, we can later verify that
943 * a descriptor has not been populated with user data.
944 */
945 memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
946
947 /* Go through and fill out immutable samplers if we have any */
948 struct anv_descriptor *desc = set->descriptors;
949 for (uint32_t b = 0; b < layout->binding_count; b++) {
950 if (layout->binding[b].immutable_samplers) {
951 for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
952 /* The type will get changed to COMBINED_IMAGE_SAMPLER in
953 * UpdateDescriptorSets if needed. However, if the descriptor
954 * set has an immutable sampler, UpdateDescriptorSets may never
955 * touch it, so we need to make sure it's 100% valid now.
956 *
957 * We don't need to actually provide a sampler because the helper
958 * will always write in the immutable sampler regardless of what
959 * is in the sampler parameter.
960 */
961 struct VkDescriptorImageInfo info = { };
962 anv_descriptor_set_write_image_view(device, set, &info,
963 VK_DESCRIPTOR_TYPE_SAMPLER,
964 b, i);
965 }
966 }
967 desc += layout->binding[b].array_size;
968 }
969
970 /* Allocate surface state for the buffer views. */
971 for (uint32_t b = 0; b < layout->buffer_view_count; b++) {
972 set->buffer_views[b].surface_state =
973 anv_descriptor_pool_alloc_state(pool);
974 }
975
976 *out_set = set;
977
978 return VK_SUCCESS;
979 }
980
981 void
982 anv_descriptor_set_destroy(struct anv_device *device,
983 struct anv_descriptor_pool *pool,
984 struct anv_descriptor_set *set)
985 {
986 anv_descriptor_set_layout_unref(device, set->layout);
987
988 if (set->desc_mem.alloc_size) {
989 util_vma_heap_free(&pool->bo_heap,
990 (uint64_t)set->desc_mem.offset + POOL_HEAP_OFFSET,
991 set->desc_mem.alloc_size);
992 anv_descriptor_pool_free_state(pool, set->desc_surface_state);
993 }
994
995 for (uint32_t b = 0; b < set->buffer_view_count; b++)
996 anv_descriptor_pool_free_state(pool, set->buffer_views[b].surface_state);
997
998 anv_descriptor_pool_free_set(pool, set);
999 }
1000
1001 VkResult anv_AllocateDescriptorSets(
1002 VkDevice _device,
1003 const VkDescriptorSetAllocateInfo* pAllocateInfo,
1004 VkDescriptorSet* pDescriptorSets)
1005 {
1006 ANV_FROM_HANDLE(anv_device, device, _device);
1007 ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
1008
1009 VkResult result = VK_SUCCESS;
1010 struct anv_descriptor_set *set;
1011 uint32_t i;
1012
1013 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
1014 ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
1015 pAllocateInfo->pSetLayouts[i]);
1016
1017 result = anv_descriptor_set_create(device, pool, layout, &set);
1018 if (result != VK_SUCCESS)
1019 break;
1020
1021 list_addtail(&set->pool_link, &pool->desc_sets);
1022
1023 pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
1024 }
1025
1026 if (result != VK_SUCCESS)
1027 anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
1028 i, pDescriptorSets);
1029
1030 return result;
1031 }
1032
1033 VkResult anv_FreeDescriptorSets(
1034 VkDevice _device,
1035 VkDescriptorPool descriptorPool,
1036 uint32_t count,
1037 const VkDescriptorSet* pDescriptorSets)
1038 {
1039 ANV_FROM_HANDLE(anv_device, device, _device);
1040 ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
1041
1042 for (uint32_t i = 0; i < count; i++) {
1043 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
1044
1045 if (!set)
1046 continue;
1047
1048 anv_descriptor_set_destroy(device, pool, set);
1049 }
1050
1051 return VK_SUCCESS;
1052 }
1053
1054 static void
1055 anv_descriptor_set_write_image_param(uint32_t *param_desc_map,
1056 const struct brw_image_param *param)
1057 {
1058 #define WRITE_PARAM_FIELD(field, FIELD) \
1059 for (unsigned i = 0; i < ARRAY_SIZE(param->field); i++) \
1060 param_desc_map[BRW_IMAGE_PARAM_##FIELD##_OFFSET + i] = param->field[i]
1061
1062 WRITE_PARAM_FIELD(offset, OFFSET);
1063 WRITE_PARAM_FIELD(size, SIZE);
1064 WRITE_PARAM_FIELD(stride, STRIDE);
1065 WRITE_PARAM_FIELD(tiling, TILING);
1066 WRITE_PARAM_FIELD(swizzling, SWIZZLING);
1067 WRITE_PARAM_FIELD(size, SIZE);
1068
1069 #undef WRITE_PARAM_FIELD
1070 }
1071
1072 static uint32_t
1073 anv_surface_state_to_handle(struct anv_state state)
1074 {
1075 /* Bits 31:12 of the bindless surface offset in the extended message
1076 * descriptor is bits 25:6 of the byte-based address.
1077 */
1078 assert(state.offset >= 0);
1079 uint32_t offset = state.offset;
1080 assert((offset & 0x3f) == 0 && offset < (1 << 26));
1081 return offset << 6;
1082 }
1083
1084 void
1085 anv_descriptor_set_write_image_view(struct anv_device *device,
1086 struct anv_descriptor_set *set,
1087 const VkDescriptorImageInfo * const info,
1088 VkDescriptorType type,
1089 uint32_t binding,
1090 uint32_t element)
1091 {
1092 const struct anv_descriptor_set_binding_layout *bind_layout =
1093 &set->layout->binding[binding];
1094 struct anv_descriptor *desc =
1095 &set->descriptors[bind_layout->descriptor_index + element];
1096 struct anv_image_view *image_view = NULL;
1097 struct anv_sampler *sampler = NULL;
1098
1099 /* We get called with just VK_DESCRIPTOR_TYPE_SAMPLER as part of descriptor
1100 * set initialization to set the bindless samplers.
1101 */
1102 assert(type == bind_layout->type ||
1103 type == VK_DESCRIPTOR_TYPE_SAMPLER);
1104
1105 switch (type) {
1106 case VK_DESCRIPTOR_TYPE_SAMPLER:
1107 sampler = anv_sampler_from_handle(info->sampler);
1108 break;
1109
1110 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1111 image_view = anv_image_view_from_handle(info->imageView);
1112 sampler = anv_sampler_from_handle(info->sampler);
1113 break;
1114
1115 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1116 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1117 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1118 image_view = anv_image_view_from_handle(info->imageView);
1119 break;
1120
1121 default:
1122 unreachable("invalid descriptor type");
1123 }
1124
1125 /* If this descriptor has an immutable sampler, we don't want to stomp on
1126 * it.
1127 */
1128 sampler = bind_layout->immutable_samplers ?
1129 bind_layout->immutable_samplers[element] :
1130 sampler;
1131
1132 *desc = (struct anv_descriptor) {
1133 .type = type,
1134 .layout = info->imageLayout,
1135 .image_view = image_view,
1136 .sampler = sampler,
1137 };
1138
1139 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1140 element * anv_descriptor_size(bind_layout);
1141
1142 if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1143 struct anv_sampled_image_descriptor desc_data[3];
1144 memset(desc_data, 0, sizeof(desc_data));
1145
1146 if (image_view) {
1147 for (unsigned p = 0; p < image_view->n_planes; p++) {
1148 struct anv_surface_state sstate =
1149 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1150 image_view->planes[p].general_sampler_surface_state :
1151 image_view->planes[p].optimal_sampler_surface_state;
1152 desc_data[p].image = anv_surface_state_to_handle(sstate.state);
1153 }
1154 }
1155
1156 if (sampler) {
1157 for (unsigned p = 0; p < sampler->n_planes; p++)
1158 desc_data[p].sampler = sampler->bindless_state.offset + p * 32;
1159 }
1160
1161 /* We may have max_plane_count < 0 if this isn't a sampled image but it
1162 * can be no more than the size of our array of handles.
1163 */
1164 assert(bind_layout->max_plane_count <= ARRAY_SIZE(desc_data));
1165 memcpy(desc_map, desc_data,
1166 MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
1167 }
1168
1169 if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1170 assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1171 assert(image_view->n_planes == 1);
1172 struct anv_storage_image_descriptor desc_data = {
1173 .read_write = anv_surface_state_to_handle(
1174 image_view->planes[0].storage_surface_state.state),
1175 .write_only = anv_surface_state_to_handle(
1176 image_view->planes[0].writeonly_storage_surface_state.state),
1177 };
1178 memcpy(desc_map, &desc_data, sizeof(desc_data));
1179 }
1180
1181 if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1182 /* Storage images can only ever have one plane */
1183 assert(image_view->n_planes == 1);
1184 const struct brw_image_param *image_param =
1185 &image_view->planes[0].storage_image_param;
1186
1187 anv_descriptor_set_write_image_param(desc_map, image_param);
1188 }
1189 }
1190
1191 void
1192 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1193 struct anv_descriptor_set *set,
1194 VkDescriptorType type,
1195 struct anv_buffer_view *buffer_view,
1196 uint32_t binding,
1197 uint32_t element)
1198 {
1199 const struct anv_descriptor_set_binding_layout *bind_layout =
1200 &set->layout->binding[binding];
1201 struct anv_descriptor *desc =
1202 &set->descriptors[bind_layout->descriptor_index + element];
1203
1204 assert(type == bind_layout->type);
1205
1206 *desc = (struct anv_descriptor) {
1207 .type = type,
1208 .buffer_view = buffer_view,
1209 };
1210
1211 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1212 element * anv_descriptor_size(bind_layout);
1213
1214 if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1215 struct anv_sampled_image_descriptor desc_data = {
1216 .image = anv_surface_state_to_handle(buffer_view->surface_state),
1217 };
1218 memcpy(desc_map, &desc_data, sizeof(desc_data));
1219 }
1220
1221 if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1222 assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1223 struct anv_storage_image_descriptor desc_data = {
1224 .read_write = anv_surface_state_to_handle(
1225 buffer_view->storage_surface_state),
1226 .write_only = anv_surface_state_to_handle(
1227 buffer_view->writeonly_storage_surface_state),
1228 };
1229 memcpy(desc_map, &desc_data, sizeof(desc_data));
1230 }
1231
1232 if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1233 anv_descriptor_set_write_image_param(desc_map,
1234 &buffer_view->storage_image_param);
1235 }
1236 }
1237
1238 void
1239 anv_descriptor_set_write_buffer(struct anv_device *device,
1240 struct anv_descriptor_set *set,
1241 struct anv_state_stream *alloc_stream,
1242 VkDescriptorType type,
1243 struct anv_buffer *buffer,
1244 uint32_t binding,
1245 uint32_t element,
1246 VkDeviceSize offset,
1247 VkDeviceSize range)
1248 {
1249 const struct anv_descriptor_set_binding_layout *bind_layout =
1250 &set->layout->binding[binding];
1251 struct anv_descriptor *desc =
1252 &set->descriptors[bind_layout->descriptor_index + element];
1253
1254 assert(type == bind_layout->type);
1255
1256 struct anv_address bind_addr = anv_address_add(buffer->address, offset);
1257 uint64_t bind_range = anv_buffer_get_range(buffer, offset, range);
1258
1259 if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1260 type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1261 *desc = (struct anv_descriptor) {
1262 .type = type,
1263 .buffer = buffer,
1264 .offset = offset,
1265 .range = range,
1266 };
1267 } else {
1268 assert(bind_layout->data & ANV_DESCRIPTOR_BUFFER_VIEW);
1269 struct anv_buffer_view *bview =
1270 &set->buffer_views[bind_layout->buffer_view_index + element];
1271
1272 bview->format = anv_isl_format_for_descriptor_type(type);
1273 bview->range = bind_range;
1274 bview->address = bind_addr;
1275
1276 /* If we're writing descriptors through a push command, we need to
1277 * allocate the surface state from the command buffer. Otherwise it will
1278 * be allocated by the descriptor pool when calling
1279 * vkAllocateDescriptorSets. */
1280 if (alloc_stream)
1281 bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
1282
1283 anv_fill_buffer_surface_state(device, bview->surface_state,
1284 bview->format, bind_addr, bind_range, 1);
1285
1286 *desc = (struct anv_descriptor) {
1287 .type = type,
1288 .buffer_view = bview,
1289 };
1290 }
1291
1292 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1293 element * anv_descriptor_size(bind_layout);
1294
1295 if (bind_layout->data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
1296 struct anv_address_range_descriptor desc = {
1297 .address = anv_address_physical(bind_addr),
1298 .range = bind_range,
1299 };
1300 memcpy(desc_map, &desc, sizeof(desc));
1301 }
1302 }
1303
1304 void
1305 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1306 struct anv_descriptor_set *set,
1307 uint32_t binding,
1308 const void *data,
1309 size_t offset,
1310 size_t size)
1311 {
1312 const struct anv_descriptor_set_binding_layout *bind_layout =
1313 &set->layout->binding[binding];
1314
1315 assert(bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM);
1316
1317 void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset;
1318
1319 memcpy(desc_map + offset, data, size);
1320 }
1321
1322 void anv_UpdateDescriptorSets(
1323 VkDevice _device,
1324 uint32_t descriptorWriteCount,
1325 const VkWriteDescriptorSet* pDescriptorWrites,
1326 uint32_t descriptorCopyCount,
1327 const VkCopyDescriptorSet* pDescriptorCopies)
1328 {
1329 ANV_FROM_HANDLE(anv_device, device, _device);
1330
1331 for (uint32_t i = 0; i < descriptorWriteCount; i++) {
1332 const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
1333 ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
1334
1335 switch (write->descriptorType) {
1336 case VK_DESCRIPTOR_TYPE_SAMPLER:
1337 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1338 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1339 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1340 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1341 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1342 anv_descriptor_set_write_image_view(device, set,
1343 write->pImageInfo + j,
1344 write->descriptorType,
1345 write->dstBinding,
1346 write->dstArrayElement + j);
1347 }
1348 break;
1349
1350 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1351 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1352 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1353 ANV_FROM_HANDLE(anv_buffer_view, bview,
1354 write->pTexelBufferView[j]);
1355
1356 anv_descriptor_set_write_buffer_view(device, set,
1357 write->descriptorType,
1358 bview,
1359 write->dstBinding,
1360 write->dstArrayElement + j);
1361 }
1362 break;
1363
1364 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1365 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1366 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1367 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1368 for (uint32_t j = 0; j < write->descriptorCount; j++) {
1369 assert(write->pBufferInfo[j].buffer);
1370 ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
1371 assert(buffer);
1372
1373 anv_descriptor_set_write_buffer(device, set,
1374 NULL,
1375 write->descriptorType,
1376 buffer,
1377 write->dstBinding,
1378 write->dstArrayElement + j,
1379 write->pBufferInfo[j].offset,
1380 write->pBufferInfo[j].range);
1381 }
1382 break;
1383
1384 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: {
1385 const VkWriteDescriptorSetInlineUniformBlockEXT *inline_write =
1386 vk_find_struct_const(write->pNext,
1387 WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT);
1388 assert(inline_write->dataSize == write->descriptorCount);
1389 anv_descriptor_set_write_inline_uniform_data(device, set,
1390 write->dstBinding,
1391 inline_write->pData,
1392 write->dstArrayElement,
1393 inline_write->dataSize);
1394 break;
1395 }
1396
1397 default:
1398 break;
1399 }
1400 }
1401
1402 for (uint32_t i = 0; i < descriptorCopyCount; i++) {
1403 const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
1404 ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
1405 ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
1406
1407 const struct anv_descriptor_set_binding_layout *src_layout =
1408 &src->layout->binding[copy->srcBinding];
1409 struct anv_descriptor *src_desc =
1410 &src->descriptors[src_layout->descriptor_index];
1411 src_desc += copy->srcArrayElement;
1412
1413 const struct anv_descriptor_set_binding_layout *dst_layout =
1414 &dst->layout->binding[copy->dstBinding];
1415 struct anv_descriptor *dst_desc =
1416 &dst->descriptors[dst_layout->descriptor_index];
1417 dst_desc += copy->dstArrayElement;
1418
1419 for (uint32_t j = 0; j < copy->descriptorCount; j++)
1420 dst_desc[j] = src_desc[j];
1421
1422 if (src_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
1423 assert(src_layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
1424 memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1425 copy->dstArrayElement,
1426 src->desc_mem.map + src_layout->descriptor_offset +
1427 copy->srcArrayElement,
1428 copy->descriptorCount);
1429 } else {
1430 unsigned desc_size = anv_descriptor_size(src_layout);
1431 if (desc_size > 0) {
1432 assert(desc_size == anv_descriptor_size(dst_layout));
1433 memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1434 copy->dstArrayElement * desc_size,
1435 src->desc_mem.map + src_layout->descriptor_offset +
1436 copy->srcArrayElement * desc_size,
1437 copy->descriptorCount * desc_size);
1438 }
1439 }
1440 }
1441 }
1442
1443 /*
1444 * Descriptor update templates.
1445 */
1446
1447 void
1448 anv_descriptor_set_write_template(struct anv_device *device,
1449 struct anv_descriptor_set *set,
1450 struct anv_state_stream *alloc_stream,
1451 const struct anv_descriptor_update_template *template,
1452 const void *data)
1453 {
1454 for (uint32_t i = 0; i < template->entry_count; i++) {
1455 const struct anv_descriptor_template_entry *entry =
1456 &template->entries[i];
1457
1458 switch (entry->type) {
1459 case VK_DESCRIPTOR_TYPE_SAMPLER:
1460 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1461 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1462 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1463 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1464 for (uint32_t j = 0; j < entry->array_count; j++) {
1465 const VkDescriptorImageInfo *info =
1466 data + entry->offset + j * entry->stride;
1467 anv_descriptor_set_write_image_view(device, set,
1468 info, entry->type,
1469 entry->binding,
1470 entry->array_element + j);
1471 }
1472 break;
1473
1474 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1475 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1476 for (uint32_t j = 0; j < entry->array_count; j++) {
1477 const VkBufferView *_bview =
1478 data + entry->offset + j * entry->stride;
1479 ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
1480
1481 anv_descriptor_set_write_buffer_view(device, set,
1482 entry->type,
1483 bview,
1484 entry->binding,
1485 entry->array_element + j);
1486 }
1487 break;
1488
1489 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1490 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1491 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1492 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1493 for (uint32_t j = 0; j < entry->array_count; j++) {
1494 const VkDescriptorBufferInfo *info =
1495 data + entry->offset + j * entry->stride;
1496 ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
1497
1498 anv_descriptor_set_write_buffer(device, set,
1499 alloc_stream,
1500 entry->type,
1501 buffer,
1502 entry->binding,
1503 entry->array_element + j,
1504 info->offset, info->range);
1505 }
1506 break;
1507
1508 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
1509 anv_descriptor_set_write_inline_uniform_data(device, set,
1510 entry->binding,
1511 data + entry->offset,
1512 entry->array_element,
1513 entry->array_count);
1514 break;
1515
1516 default:
1517 break;
1518 }
1519 }
1520 }
1521
1522 VkResult anv_CreateDescriptorUpdateTemplate(
1523 VkDevice _device,
1524 const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
1525 const VkAllocationCallbacks* pAllocator,
1526 VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate)
1527 {
1528 ANV_FROM_HANDLE(anv_device, device, _device);
1529 struct anv_descriptor_update_template *template;
1530
1531 size_t size = sizeof(*template) +
1532 pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
1533 template = vk_alloc2(&device->alloc, pAllocator, size, 8,
1534 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1535 if (template == NULL)
1536 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1537
1538 template->bind_point = pCreateInfo->pipelineBindPoint;
1539
1540 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET)
1541 template->set = pCreateInfo->set;
1542
1543 template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
1544 for (uint32_t i = 0; i < template->entry_count; i++) {
1545 const VkDescriptorUpdateTemplateEntry *pEntry =
1546 &pCreateInfo->pDescriptorUpdateEntries[i];
1547
1548 template->entries[i] = (struct anv_descriptor_template_entry) {
1549 .type = pEntry->descriptorType,
1550 .binding = pEntry->dstBinding,
1551 .array_element = pEntry->dstArrayElement,
1552 .array_count = pEntry->descriptorCount,
1553 .offset = pEntry->offset,
1554 .stride = pEntry->stride,
1555 };
1556 }
1557
1558 *pDescriptorUpdateTemplate =
1559 anv_descriptor_update_template_to_handle(template);
1560
1561 return VK_SUCCESS;
1562 }
1563
1564 void anv_DestroyDescriptorUpdateTemplate(
1565 VkDevice _device,
1566 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1567 const VkAllocationCallbacks* pAllocator)
1568 {
1569 ANV_FROM_HANDLE(anv_device, device, _device);
1570 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1571 descriptorUpdateTemplate);
1572
1573 vk_free2(&device->alloc, pAllocator, template);
1574 }
1575
1576 void anv_UpdateDescriptorSetWithTemplate(
1577 VkDevice _device,
1578 VkDescriptorSet descriptorSet,
1579 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1580 const void* pData)
1581 {
1582 ANV_FROM_HANDLE(anv_device, device, _device);
1583 ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
1584 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1585 descriptorUpdateTemplate);
1586
1587 anv_descriptor_set_write_template(device, set, NULL, template, pData);
1588 }