0b440fb6cfce9562b5b93945e9008ad02cf062e5
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <dlfcn.h>
25 #include <assert.h>
26 #include <stdbool.h>
27 #include <string.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32
33 #include "anv_private.h"
34 #include "util/strtod.h"
35 #include "util/debug.h"
36
37 #include "genxml/gen7_pack.h"
38
39 struct anv_dispatch_table dtable;
40
41 static void
42 compiler_debug_log(void *data, const char *fmt, ...)
43 { }
44
45 static void
46 compiler_perf_log(void *data, const char *fmt, ...)
47 {
48 va_list args;
49 va_start(args, fmt);
50
51 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
52 vfprintf(stderr, fmt, args);
53
54 va_end(args);
55 }
56
57 static bool
58 anv_get_function_timestamp(void *ptr, uint32_t* timestamp)
59 {
60 Dl_info info;
61 struct stat st;
62 if (!dladdr(ptr, &info) || !info.dli_fname)
63 return false;
64
65 if (stat(info.dli_fname, &st))
66 return false;
67
68 *timestamp = st.st_mtim.tv_sec;
69 return true;
70 }
71
72 static bool
73 anv_device_get_cache_uuid(void *uuid)
74 {
75 uint32_t timestamp;
76
77 memset(uuid, 0, VK_UUID_SIZE);
78 if (anv_get_function_timestamp(anv_device_get_cache_uuid, &timestamp))
79 return false;
80
81 snprintf(uuid, VK_UUID_SIZE, "anv-%d", timestamp);
82 return true;
83 }
84
85 static VkResult
86 anv_physical_device_init(struct anv_physical_device *device,
87 struct anv_instance *instance,
88 const char *path)
89 {
90 VkResult result;
91 int fd;
92
93 fd = open(path, O_RDWR | O_CLOEXEC);
94 if (fd < 0)
95 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
96
97 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
98 device->instance = instance;
99
100 assert(strlen(path) < ARRAY_SIZE(device->path));
101 strncpy(device->path, path, ARRAY_SIZE(device->path));
102
103 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
104 if (!device->chipset_id) {
105 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
106 goto fail;
107 }
108
109 device->name = gen_get_device_name(device->chipset_id);
110 if (!gen_get_device_info(device->chipset_id, &device->info)) {
111 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
112 goto fail;
113 }
114
115 if (device->info.is_haswell) {
116 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
117 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
118 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
119 } else if (device->info.gen == 7 && device->info.is_baytrail) {
120 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
121 } else if (device->info.gen >= 8) {
122 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
123 * supported as anything */
124 } else {
125 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
126 "Vulkan not yet supported on %s", device->name);
127 goto fail;
128 }
129
130 device->cmd_parser_version = -1;
131 if (device->info.gen == 7) {
132 device->cmd_parser_version =
133 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
134 if (device->cmd_parser_version == -1) {
135 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get command parser version");
137 goto fail;
138 }
139 }
140
141 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
142 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
143 "failed to get aperture size: %m");
144 goto fail;
145 }
146
147 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
148 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
149 "kernel missing gem wait");
150 goto fail;
151 }
152
153 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
154 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
155 "kernel missing execbuf2");
156 goto fail;
157 }
158
159 if (!device->info.has_llc &&
160 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
161 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
162 "kernel missing wc mmap");
163 goto fail;
164 }
165
166 if (!anv_device_get_cache_uuid(device->uuid)) {
167 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
168 "cannot generate UUID");
169 goto fail;
170 }
171 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
172
173 /* GENs prior to 8 do not support EU/Subslice info */
174 if (device->info.gen >= 8) {
175 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
176 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
177
178 /* Without this information, we cannot get the right Braswell
179 * brandstrings, and we have to use conservative numbers for GPGPU on
180 * many platforms, but otherwise, things will just work.
181 */
182 if (device->subslice_total < 1 || device->eu_total < 1) {
183 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
184 " query GPU properties.\n");
185 }
186 } else if (device->info.gen == 7) {
187 device->subslice_total = 1 << (device->info.gt - 1);
188 }
189
190 if (device->info.is_cherryview &&
191 device->subslice_total > 0 && device->eu_total > 0) {
192 /* Logical CS threads = EUs per subslice * 7 threads per EU */
193 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
194
195 /* Fuse configurations may give more threads than expected, never less. */
196 if (max_cs_threads > device->info.max_cs_threads)
197 device->info.max_cs_threads = max_cs_threads;
198 }
199
200 brw_process_intel_debug_variable();
201
202 device->compiler = brw_compiler_create(NULL, &device->info);
203 if (device->compiler == NULL) {
204 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
205 goto fail;
206 }
207 device->compiler->shader_debug_log = compiler_debug_log;
208 device->compiler->shader_perf_log = compiler_perf_log;
209
210 result = anv_init_wsi(device);
211 if (result != VK_SUCCESS) {
212 ralloc_free(device->compiler);
213 goto fail;
214 }
215
216 isl_device_init(&device->isl_dev, &device->info, swizzled);
217
218 close(fd);
219 return VK_SUCCESS;
220
221 fail:
222 close(fd);
223 return result;
224 }
225
226 static void
227 anv_physical_device_finish(struct anv_physical_device *device)
228 {
229 anv_finish_wsi(device);
230 ralloc_free(device->compiler);
231 }
232
233 static const VkExtensionProperties global_extensions[] = {
234 {
235 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
236 .specVersion = 25,
237 },
238 #ifdef VK_USE_PLATFORM_XCB_KHR
239 {
240 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
241 .specVersion = 6,
242 },
243 #endif
244 #ifdef VK_USE_PLATFORM_XLIB_KHR
245 {
246 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
247 .specVersion = 6,
248 },
249 #endif
250 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
251 {
252 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
253 .specVersion = 5,
254 },
255 #endif
256 };
257
258 static const VkExtensionProperties device_extensions[] = {
259 {
260 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
261 .specVersion = 68,
262 },
263 };
264
265 static void *
266 default_alloc_func(void *pUserData, size_t size, size_t align,
267 VkSystemAllocationScope allocationScope)
268 {
269 return malloc(size);
270 }
271
272 static void *
273 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
274 size_t align, VkSystemAllocationScope allocationScope)
275 {
276 return realloc(pOriginal, size);
277 }
278
279 static void
280 default_free_func(void *pUserData, void *pMemory)
281 {
282 free(pMemory);
283 }
284
285 static const VkAllocationCallbacks default_alloc = {
286 .pUserData = NULL,
287 .pfnAllocation = default_alloc_func,
288 .pfnReallocation = default_realloc_func,
289 .pfnFree = default_free_func,
290 };
291
292 VkResult anv_CreateInstance(
293 const VkInstanceCreateInfo* pCreateInfo,
294 const VkAllocationCallbacks* pAllocator,
295 VkInstance* pInstance)
296 {
297 struct anv_instance *instance;
298
299 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
300
301 uint32_t client_version;
302 if (pCreateInfo->pApplicationInfo &&
303 pCreateInfo->pApplicationInfo->apiVersion != 0) {
304 client_version = pCreateInfo->pApplicationInfo->apiVersion;
305 } else {
306 client_version = VK_MAKE_VERSION(1, 0, 0);
307 }
308
309 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
310 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
311 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
312 "Client requested version %d.%d.%d",
313 VK_VERSION_MAJOR(client_version),
314 VK_VERSION_MINOR(client_version),
315 VK_VERSION_PATCH(client_version));
316 }
317
318 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
319 bool found = false;
320 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
321 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
322 global_extensions[j].extensionName) == 0) {
323 found = true;
324 break;
325 }
326 }
327 if (!found)
328 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
329 }
330
331 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
332 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
333 if (!instance)
334 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
335
336 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
337
338 if (pAllocator)
339 instance->alloc = *pAllocator;
340 else
341 instance->alloc = default_alloc;
342
343 instance->apiVersion = client_version;
344 instance->physicalDeviceCount = -1;
345
346 _mesa_locale_init();
347
348 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
349
350 *pInstance = anv_instance_to_handle(instance);
351
352 return VK_SUCCESS;
353 }
354
355 void anv_DestroyInstance(
356 VkInstance _instance,
357 const VkAllocationCallbacks* pAllocator)
358 {
359 ANV_FROM_HANDLE(anv_instance, instance, _instance);
360
361 if (instance->physicalDeviceCount > 0) {
362 /* We support at most one physical device. */
363 assert(instance->physicalDeviceCount == 1);
364 anv_physical_device_finish(&instance->physicalDevice);
365 }
366
367 VG(VALGRIND_DESTROY_MEMPOOL(instance));
368
369 _mesa_locale_fini();
370
371 vk_free(&instance->alloc, instance);
372 }
373
374 VkResult anv_EnumeratePhysicalDevices(
375 VkInstance _instance,
376 uint32_t* pPhysicalDeviceCount,
377 VkPhysicalDevice* pPhysicalDevices)
378 {
379 ANV_FROM_HANDLE(anv_instance, instance, _instance);
380 VkResult result;
381
382 if (instance->physicalDeviceCount < 0) {
383 char path[20];
384 for (unsigned i = 0; i < 8; i++) {
385 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
386 result = anv_physical_device_init(&instance->physicalDevice,
387 instance, path);
388 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
389 break;
390 }
391
392 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
393 instance->physicalDeviceCount = 0;
394 } else if (result == VK_SUCCESS) {
395 instance->physicalDeviceCount = 1;
396 } else {
397 return result;
398 }
399 }
400
401 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
402 * otherwise it's an inout parameter.
403 *
404 * The Vulkan spec (git aaed022) says:
405 *
406 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
407 * that is initialized with the number of devices the application is
408 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
409 * an array of at least this many VkPhysicalDevice handles [...].
410 *
411 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
412 * overwrites the contents of the variable pointed to by
413 * pPhysicalDeviceCount with the number of physical devices in in the
414 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
415 * pPhysicalDeviceCount with the number of physical handles written to
416 * pPhysicalDevices.
417 */
418 if (!pPhysicalDevices) {
419 *pPhysicalDeviceCount = instance->physicalDeviceCount;
420 } else if (*pPhysicalDeviceCount >= 1) {
421 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
422 *pPhysicalDeviceCount = 1;
423 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
424 return VK_INCOMPLETE;
425 } else {
426 *pPhysicalDeviceCount = 0;
427 }
428
429 return VK_SUCCESS;
430 }
431
432 void anv_GetPhysicalDeviceFeatures(
433 VkPhysicalDevice physicalDevice,
434 VkPhysicalDeviceFeatures* pFeatures)
435 {
436 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
437
438 *pFeatures = (VkPhysicalDeviceFeatures) {
439 .robustBufferAccess = true,
440 .fullDrawIndexUint32 = true,
441 .imageCubeArray = false,
442 .independentBlend = true,
443 .geometryShader = true,
444 .tessellationShader = false,
445 .sampleRateShading = true,
446 .dualSrcBlend = true,
447 .logicOp = true,
448 .multiDrawIndirect = false,
449 .drawIndirectFirstInstance = false,
450 .depthClamp = true,
451 .depthBiasClamp = false,
452 .fillModeNonSolid = true,
453 .depthBounds = false,
454 .wideLines = true,
455 .largePoints = true,
456 .alphaToOne = true,
457 .multiViewport = true,
458 .samplerAnisotropy = true,
459 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
460 pdevice->info.is_baytrail,
461 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
462 .textureCompressionBC = true,
463 .occlusionQueryPrecise = true,
464 .pipelineStatisticsQuery = false,
465 .fragmentStoresAndAtomics = true,
466 .shaderTessellationAndGeometryPointSize = true,
467 .shaderImageGatherExtended = false,
468 .shaderStorageImageExtendedFormats = false,
469 .shaderStorageImageMultisample = false,
470 .shaderUniformBufferArrayDynamicIndexing = true,
471 .shaderSampledImageArrayDynamicIndexing = true,
472 .shaderStorageBufferArrayDynamicIndexing = true,
473 .shaderStorageImageArrayDynamicIndexing = true,
474 .shaderStorageImageReadWithoutFormat = false,
475 .shaderStorageImageWriteWithoutFormat = true,
476 .shaderClipDistance = true,
477 .shaderCullDistance = true,
478 .shaderFloat64 = false,
479 .shaderInt64 = false,
480 .shaderInt16 = false,
481 .alphaToOne = true,
482 .variableMultisampleRate = false,
483 .inheritedQueries = false,
484 };
485
486 /* We can't do image stores in vec4 shaders */
487 pFeatures->vertexPipelineStoresAndAtomics =
488 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
489 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
490 }
491
492 void anv_GetPhysicalDeviceProperties(
493 VkPhysicalDevice physicalDevice,
494 VkPhysicalDeviceProperties* pProperties)
495 {
496 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
497 const struct gen_device_info *devinfo = &pdevice->info;
498
499 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
500
501 /* See assertions made when programming the buffer surface state. */
502 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
503 (1ul << 30) : (1ul << 27);
504
505 VkSampleCountFlags sample_counts =
506 isl_device_get_sample_counts(&pdevice->isl_dev);
507
508 VkPhysicalDeviceLimits limits = {
509 .maxImageDimension1D = (1 << 14),
510 .maxImageDimension2D = (1 << 14),
511 .maxImageDimension3D = (1 << 11),
512 .maxImageDimensionCube = (1 << 14),
513 .maxImageArrayLayers = (1 << 11),
514 .maxTexelBufferElements = 128 * 1024 * 1024,
515 .maxUniformBufferRange = (1ul << 27),
516 .maxStorageBufferRange = max_raw_buffer_sz,
517 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
518 .maxMemoryAllocationCount = UINT32_MAX,
519 .maxSamplerAllocationCount = 64 * 1024,
520 .bufferImageGranularity = 64, /* A cache line */
521 .sparseAddressSpaceSize = 0,
522 .maxBoundDescriptorSets = MAX_SETS,
523 .maxPerStageDescriptorSamplers = 64,
524 .maxPerStageDescriptorUniformBuffers = 64,
525 .maxPerStageDescriptorStorageBuffers = 64,
526 .maxPerStageDescriptorSampledImages = 64,
527 .maxPerStageDescriptorStorageImages = 64,
528 .maxPerStageDescriptorInputAttachments = 64,
529 .maxPerStageResources = 128,
530 .maxDescriptorSetSamplers = 256,
531 .maxDescriptorSetUniformBuffers = 256,
532 .maxDescriptorSetUniformBuffersDynamic = 256,
533 .maxDescriptorSetStorageBuffers = 256,
534 .maxDescriptorSetStorageBuffersDynamic = 256,
535 .maxDescriptorSetSampledImages = 256,
536 .maxDescriptorSetStorageImages = 256,
537 .maxDescriptorSetInputAttachments = 256,
538 .maxVertexInputAttributes = 32,
539 .maxVertexInputBindings = 32,
540 .maxVertexInputAttributeOffset = 2047,
541 .maxVertexInputBindingStride = 2048,
542 .maxVertexOutputComponents = 128,
543 .maxTessellationGenerationLevel = 0,
544 .maxTessellationPatchSize = 0,
545 .maxTessellationControlPerVertexInputComponents = 0,
546 .maxTessellationControlPerVertexOutputComponents = 0,
547 .maxTessellationControlPerPatchOutputComponents = 0,
548 .maxTessellationControlTotalOutputComponents = 0,
549 .maxTessellationEvaluationInputComponents = 0,
550 .maxTessellationEvaluationOutputComponents = 0,
551 .maxGeometryShaderInvocations = 32,
552 .maxGeometryInputComponents = 64,
553 .maxGeometryOutputComponents = 128,
554 .maxGeometryOutputVertices = 256,
555 .maxGeometryTotalOutputComponents = 1024,
556 .maxFragmentInputComponents = 128,
557 .maxFragmentOutputAttachments = 8,
558 .maxFragmentDualSrcAttachments = 2,
559 .maxFragmentCombinedOutputResources = 8,
560 .maxComputeSharedMemorySize = 32768,
561 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
562 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
563 .maxComputeWorkGroupSize = {
564 16 * devinfo->max_cs_threads,
565 16 * devinfo->max_cs_threads,
566 16 * devinfo->max_cs_threads,
567 },
568 .subPixelPrecisionBits = 4 /* FIXME */,
569 .subTexelPrecisionBits = 4 /* FIXME */,
570 .mipmapPrecisionBits = 4 /* FIXME */,
571 .maxDrawIndexedIndexValue = UINT32_MAX,
572 .maxDrawIndirectCount = UINT32_MAX,
573 .maxSamplerLodBias = 16,
574 .maxSamplerAnisotropy = 16,
575 .maxViewports = MAX_VIEWPORTS,
576 .maxViewportDimensions = { (1 << 14), (1 << 14) },
577 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
578 .viewportSubPixelBits = 13, /* We take a float? */
579 .minMemoryMapAlignment = 4096, /* A page */
580 .minTexelBufferOffsetAlignment = 1,
581 .minUniformBufferOffsetAlignment = 1,
582 .minStorageBufferOffsetAlignment = 1,
583 .minTexelOffset = -8,
584 .maxTexelOffset = 7,
585 .minTexelGatherOffset = -8,
586 .maxTexelGatherOffset = 7,
587 .minInterpolationOffset = -0.5,
588 .maxInterpolationOffset = 0.4375,
589 .subPixelInterpolationOffsetBits = 4,
590 .maxFramebufferWidth = (1 << 14),
591 .maxFramebufferHeight = (1 << 14),
592 .maxFramebufferLayers = (1 << 10),
593 .framebufferColorSampleCounts = sample_counts,
594 .framebufferDepthSampleCounts = sample_counts,
595 .framebufferStencilSampleCounts = sample_counts,
596 .framebufferNoAttachmentsSampleCounts = sample_counts,
597 .maxColorAttachments = MAX_RTS,
598 .sampledImageColorSampleCounts = sample_counts,
599 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
600 .sampledImageDepthSampleCounts = sample_counts,
601 .sampledImageStencilSampleCounts = sample_counts,
602 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
603 .maxSampleMaskWords = 1,
604 .timestampComputeAndGraphics = false,
605 .timestampPeriod = time_stamp_base,
606 .maxClipDistances = 8,
607 .maxCullDistances = 8,
608 .maxCombinedClipAndCullDistances = 8,
609 .discreteQueuePriorities = 1,
610 .pointSizeRange = { 0.125, 255.875 },
611 .lineWidthRange = { 0.0, 7.9921875 },
612 .pointSizeGranularity = (1.0 / 8.0),
613 .lineWidthGranularity = (1.0 / 128.0),
614 .strictLines = false, /* FINISHME */
615 .standardSampleLocations = true,
616 .optimalBufferCopyOffsetAlignment = 128,
617 .optimalBufferCopyRowPitchAlignment = 128,
618 .nonCoherentAtomSize = 64,
619 };
620
621 *pProperties = (VkPhysicalDeviceProperties) {
622 .apiVersion = VK_MAKE_VERSION(1, 0, 5),
623 .driverVersion = 1,
624 .vendorID = 0x8086,
625 .deviceID = pdevice->chipset_id,
626 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
627 .limits = limits,
628 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
629 };
630
631 strcpy(pProperties->deviceName, pdevice->name);
632 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
633 }
634
635 void anv_GetPhysicalDeviceQueueFamilyProperties(
636 VkPhysicalDevice physicalDevice,
637 uint32_t* pCount,
638 VkQueueFamilyProperties* pQueueFamilyProperties)
639 {
640 if (pQueueFamilyProperties == NULL) {
641 *pCount = 1;
642 return;
643 }
644
645 assert(*pCount >= 1);
646
647 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
648 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
649 VK_QUEUE_COMPUTE_BIT |
650 VK_QUEUE_TRANSFER_BIT,
651 .queueCount = 1,
652 .timestampValidBits = 36, /* XXX: Real value here */
653 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
654 };
655 }
656
657 void anv_GetPhysicalDeviceMemoryProperties(
658 VkPhysicalDevice physicalDevice,
659 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
660 {
661 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
662 VkDeviceSize heap_size;
663
664 /* Reserve some wiggle room for the driver by exposing only 75% of the
665 * aperture to the heap.
666 */
667 heap_size = 3 * physical_device->aperture_size / 4;
668
669 if (physical_device->info.has_llc) {
670 /* Big core GPUs share LLC with the CPU and thus one memory type can be
671 * both cached and coherent at the same time.
672 */
673 pMemoryProperties->memoryTypeCount = 1;
674 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
675 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
676 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
677 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
678 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
679 .heapIndex = 0,
680 };
681 } else {
682 /* The spec requires that we expose a host-visible, coherent memory
683 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
684 * to give the application a choice between cached, but not coherent and
685 * coherent but uncached (WC though).
686 */
687 pMemoryProperties->memoryTypeCount = 2;
688 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
689 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
690 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
691 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
692 .heapIndex = 0,
693 };
694 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
695 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
696 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
697 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
698 .heapIndex = 0,
699 };
700 }
701
702 pMemoryProperties->memoryHeapCount = 1;
703 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
704 .size = heap_size,
705 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
706 };
707 }
708
709 PFN_vkVoidFunction anv_GetInstanceProcAddr(
710 VkInstance instance,
711 const char* pName)
712 {
713 return anv_lookup_entrypoint(NULL, pName);
714 }
715
716 /* With version 1+ of the loader interface the ICD should expose
717 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
718 */
719 PUBLIC
720 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
721 VkInstance instance,
722 const char* pName);
723
724 PUBLIC
725 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
726 VkInstance instance,
727 const char* pName)
728 {
729 return anv_GetInstanceProcAddr(instance, pName);
730 }
731
732 PFN_vkVoidFunction anv_GetDeviceProcAddr(
733 VkDevice _device,
734 const char* pName)
735 {
736 ANV_FROM_HANDLE(anv_device, device, _device);
737 return anv_lookup_entrypoint(&device->info, pName);
738 }
739
740 static void
741 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
742 {
743 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
744 queue->device = device;
745 queue->pool = &device->surface_state_pool;
746 }
747
748 static void
749 anv_queue_finish(struct anv_queue *queue)
750 {
751 }
752
753 static struct anv_state
754 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
755 {
756 struct anv_state state;
757
758 state = anv_state_pool_alloc(pool, size, align);
759 memcpy(state.map, p, size);
760
761 if (!pool->block_pool->device->info.has_llc)
762 anv_state_clflush(state);
763
764 return state;
765 }
766
767 struct gen8_border_color {
768 union {
769 float float32[4];
770 uint32_t uint32[4];
771 };
772 /* Pad out to 64 bytes */
773 uint32_t _pad[12];
774 };
775
776 static void
777 anv_device_init_border_colors(struct anv_device *device)
778 {
779 static const struct gen8_border_color border_colors[] = {
780 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
781 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
782 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
783 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
784 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
785 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
786 };
787
788 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
789 sizeof(border_colors), 64,
790 border_colors);
791 }
792
793 VkResult
794 anv_device_submit_simple_batch(struct anv_device *device,
795 struct anv_batch *batch)
796 {
797 struct drm_i915_gem_execbuffer2 execbuf;
798 struct drm_i915_gem_exec_object2 exec2_objects[1];
799 struct anv_bo bo, *exec_bos[1];
800 VkResult result = VK_SUCCESS;
801 uint32_t size;
802 int64_t timeout;
803 int ret;
804
805 /* Kernel driver requires 8 byte aligned batch length */
806 size = align_u32(batch->next - batch->start, 8);
807 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
808 if (result != VK_SUCCESS)
809 return result;
810
811 memcpy(bo.map, batch->start, size);
812 if (!device->info.has_llc)
813 anv_clflush_range(bo.map, size);
814
815 exec_bos[0] = &bo;
816 exec2_objects[0].handle = bo.gem_handle;
817 exec2_objects[0].relocation_count = 0;
818 exec2_objects[0].relocs_ptr = 0;
819 exec2_objects[0].alignment = 0;
820 exec2_objects[0].offset = bo.offset;
821 exec2_objects[0].flags = 0;
822 exec2_objects[0].rsvd1 = 0;
823 exec2_objects[0].rsvd2 = 0;
824
825 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
826 execbuf.buffer_count = 1;
827 execbuf.batch_start_offset = 0;
828 execbuf.batch_len = size;
829 execbuf.cliprects_ptr = 0;
830 execbuf.num_cliprects = 0;
831 execbuf.DR1 = 0;
832 execbuf.DR4 = 0;
833
834 execbuf.flags =
835 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
836 execbuf.rsvd1 = device->context_id;
837 execbuf.rsvd2 = 0;
838
839 result = anv_device_execbuf(device, &execbuf, exec_bos);
840 if (result != VK_SUCCESS)
841 goto fail;
842
843 timeout = INT64_MAX;
844 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
845 if (ret != 0) {
846 /* We don't know the real error. */
847 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
848 goto fail;
849 }
850
851 fail:
852 anv_bo_pool_free(&device->batch_bo_pool, &bo);
853
854 return result;
855 }
856
857 VkResult anv_CreateDevice(
858 VkPhysicalDevice physicalDevice,
859 const VkDeviceCreateInfo* pCreateInfo,
860 const VkAllocationCallbacks* pAllocator,
861 VkDevice* pDevice)
862 {
863 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
864 VkResult result;
865 struct anv_device *device;
866
867 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
868
869 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
870 bool found = false;
871 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
872 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
873 device_extensions[j].extensionName) == 0) {
874 found = true;
875 break;
876 }
877 }
878 if (!found)
879 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
880 }
881
882 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
883 sizeof(*device), 8,
884 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
885 if (!device)
886 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
887
888 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
889 device->instance = physical_device->instance;
890 device->chipset_id = physical_device->chipset_id;
891
892 if (pAllocator)
893 device->alloc = *pAllocator;
894 else
895 device->alloc = physical_device->instance->alloc;
896
897 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
898 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
899 if (device->fd == -1) {
900 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
901 goto fail_device;
902 }
903
904 device->context_id = anv_gem_create_context(device);
905 if (device->context_id == -1) {
906 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
907 goto fail_fd;
908 }
909
910 device->info = physical_device->info;
911 device->isl_dev = physical_device->isl_dev;
912
913 /* On Broadwell and later, we can use batch chaining to more efficiently
914 * implement growing command buffers. Prior to Haswell, the kernel
915 * command parser gets in the way and we have to fall back to growing
916 * the batch.
917 */
918 device->can_chain_batches = device->info.gen >= 8;
919
920 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
921 pCreateInfo->pEnabledFeatures->robustBufferAccess;
922
923 pthread_mutex_init(&device->mutex, NULL);
924
925 pthread_condattr_t condattr;
926 pthread_condattr_init(&condattr);
927 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
928 pthread_cond_init(&device->queue_submit, NULL);
929 pthread_condattr_destroy(&condattr);
930
931 anv_bo_pool_init(&device->batch_bo_pool, device);
932
933 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
934
935 anv_state_pool_init(&device->dynamic_state_pool,
936 &device->dynamic_state_block_pool);
937
938 anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
939 anv_state_pool_init(&device->instruction_state_pool,
940 &device->instruction_block_pool);
941
942 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
943
944 anv_state_pool_init(&device->surface_state_pool,
945 &device->surface_state_block_pool);
946
947 anv_bo_init_new(&device->workaround_bo, device, 1024);
948
949 anv_scratch_pool_init(device, &device->scratch_pool);
950
951 anv_queue_init(device, &device->queue);
952
953 switch (device->info.gen) {
954 case 7:
955 if (!device->info.is_haswell)
956 result = gen7_init_device_state(device);
957 else
958 result = gen75_init_device_state(device);
959 break;
960 case 8:
961 result = gen8_init_device_state(device);
962 break;
963 case 9:
964 result = gen9_init_device_state(device);
965 break;
966 default:
967 /* Shouldn't get here as we don't create physical devices for any other
968 * gens. */
969 unreachable("unhandled gen");
970 }
971 if (result != VK_SUCCESS)
972 goto fail_fd;
973
974 anv_device_init_blorp(device);
975
976 anv_device_init_border_colors(device);
977
978 *pDevice = anv_device_to_handle(device);
979
980 return VK_SUCCESS;
981
982 fail_fd:
983 close(device->fd);
984 fail_device:
985 vk_free(&device->alloc, device);
986
987 return result;
988 }
989
990 void anv_DestroyDevice(
991 VkDevice _device,
992 const VkAllocationCallbacks* pAllocator)
993 {
994 ANV_FROM_HANDLE(anv_device, device, _device);
995
996 anv_queue_finish(&device->queue);
997
998 anv_device_finish_blorp(device);
999
1000 #ifdef HAVE_VALGRIND
1001 /* We only need to free these to prevent valgrind errors. The backing
1002 * BO will go away in a couple of lines so we don't actually leak.
1003 */
1004 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1005 #endif
1006
1007 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1008 anv_gem_close(device, device->workaround_bo.gem_handle);
1009
1010 anv_bo_pool_finish(&device->batch_bo_pool);
1011 anv_state_pool_finish(&device->dynamic_state_pool);
1012 anv_block_pool_finish(&device->dynamic_state_block_pool);
1013 anv_state_pool_finish(&device->instruction_state_pool);
1014 anv_block_pool_finish(&device->instruction_block_pool);
1015 anv_state_pool_finish(&device->surface_state_pool);
1016 anv_block_pool_finish(&device->surface_state_block_pool);
1017 anv_scratch_pool_finish(device, &device->scratch_pool);
1018
1019 close(device->fd);
1020
1021 pthread_mutex_destroy(&device->mutex);
1022
1023 vk_free(&device->alloc, device);
1024 }
1025
1026 VkResult anv_EnumerateInstanceExtensionProperties(
1027 const char* pLayerName,
1028 uint32_t* pPropertyCount,
1029 VkExtensionProperties* pProperties)
1030 {
1031 if (pProperties == NULL) {
1032 *pPropertyCount = ARRAY_SIZE(global_extensions);
1033 return VK_SUCCESS;
1034 }
1035
1036 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1037 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1038
1039 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1040 return VK_INCOMPLETE;
1041
1042 return VK_SUCCESS;
1043 }
1044
1045 VkResult anv_EnumerateDeviceExtensionProperties(
1046 VkPhysicalDevice physicalDevice,
1047 const char* pLayerName,
1048 uint32_t* pPropertyCount,
1049 VkExtensionProperties* pProperties)
1050 {
1051 if (pProperties == NULL) {
1052 *pPropertyCount = ARRAY_SIZE(device_extensions);
1053 return VK_SUCCESS;
1054 }
1055
1056 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1057 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1058
1059 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1060 return VK_INCOMPLETE;
1061
1062 return VK_SUCCESS;
1063 }
1064
1065 VkResult anv_EnumerateInstanceLayerProperties(
1066 uint32_t* pPropertyCount,
1067 VkLayerProperties* pProperties)
1068 {
1069 if (pProperties == NULL) {
1070 *pPropertyCount = 0;
1071 return VK_SUCCESS;
1072 }
1073
1074 /* None supported at this time */
1075 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1076 }
1077
1078 VkResult anv_EnumerateDeviceLayerProperties(
1079 VkPhysicalDevice physicalDevice,
1080 uint32_t* pPropertyCount,
1081 VkLayerProperties* pProperties)
1082 {
1083 if (pProperties == NULL) {
1084 *pPropertyCount = 0;
1085 return VK_SUCCESS;
1086 }
1087
1088 /* None supported at this time */
1089 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1090 }
1091
1092 void anv_GetDeviceQueue(
1093 VkDevice _device,
1094 uint32_t queueNodeIndex,
1095 uint32_t queueIndex,
1096 VkQueue* pQueue)
1097 {
1098 ANV_FROM_HANDLE(anv_device, device, _device);
1099
1100 assert(queueIndex == 0);
1101
1102 *pQueue = anv_queue_to_handle(&device->queue);
1103 }
1104
1105 VkResult
1106 anv_device_execbuf(struct anv_device *device,
1107 struct drm_i915_gem_execbuffer2 *execbuf,
1108 struct anv_bo **execbuf_bos)
1109 {
1110 int ret = anv_gem_execbuffer(device, execbuf);
1111 if (ret != 0) {
1112 /* We don't know the real error. */
1113 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1114 }
1115
1116 struct drm_i915_gem_exec_object2 *objects =
1117 (void *)(uintptr_t)execbuf->buffers_ptr;
1118 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1119 execbuf_bos[k]->offset = objects[k].offset;
1120
1121 return VK_SUCCESS;
1122 }
1123
1124 VkResult anv_QueueSubmit(
1125 VkQueue _queue,
1126 uint32_t submitCount,
1127 const VkSubmitInfo* pSubmits,
1128 VkFence _fence)
1129 {
1130 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1131 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1132 struct anv_device *device = queue->device;
1133 VkResult result = VK_SUCCESS;
1134
1135 /* We lock around QueueSubmit for three main reasons:
1136 *
1137 * 1) When a block pool is resized, we create a new gem handle with a
1138 * different size and, in the case of surface states, possibly a
1139 * different center offset but we re-use the same anv_bo struct when
1140 * we do so. If this happens in the middle of setting up an execbuf,
1141 * we could end up with our list of BOs out of sync with our list of
1142 * gem handles.
1143 *
1144 * 2) The algorithm we use for building the list of unique buffers isn't
1145 * thread-safe. While the client is supposed to syncronize around
1146 * QueueSubmit, this would be extremely difficult to debug if it ever
1147 * came up in the wild due to a broken app. It's better to play it
1148 * safe and just lock around QueueSubmit.
1149 *
1150 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1151 * userspace. Due to the fact that the surface state buffer is shared
1152 * between batches, we can't afford to have that happen from multiple
1153 * threads at the same time. Even though the user is supposed to
1154 * ensure this doesn't happen, we play it safe as in (2) above.
1155 *
1156 * Since the only other things that ever take the device lock such as block
1157 * pool resize only rarely happen, this will almost never be contended so
1158 * taking a lock isn't really an expensive operation in this case.
1159 */
1160 pthread_mutex_lock(&device->mutex);
1161
1162 for (uint32_t i = 0; i < submitCount; i++) {
1163 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1164 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1165 pSubmits[i].pCommandBuffers[j]);
1166 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1167
1168 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1169 if (result != VK_SUCCESS)
1170 goto out;
1171 }
1172 }
1173
1174 if (fence) {
1175 struct anv_bo *fence_bo = &fence->bo;
1176 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1177 if (result != VK_SUCCESS)
1178 goto out;
1179
1180 /* Update the fence and wake up any waiters */
1181 assert(fence->state == ANV_FENCE_STATE_RESET);
1182 fence->state = ANV_FENCE_STATE_SUBMITTED;
1183 pthread_cond_broadcast(&device->queue_submit);
1184 }
1185
1186 out:
1187 pthread_mutex_unlock(&device->mutex);
1188
1189 return result;
1190 }
1191
1192 VkResult anv_QueueWaitIdle(
1193 VkQueue _queue)
1194 {
1195 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1196
1197 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1198 }
1199
1200 VkResult anv_DeviceWaitIdle(
1201 VkDevice _device)
1202 {
1203 ANV_FROM_HANDLE(anv_device, device, _device);
1204 struct anv_batch batch;
1205
1206 uint32_t cmds[8];
1207 batch.start = batch.next = cmds;
1208 batch.end = (void *) cmds + sizeof(cmds);
1209
1210 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1211 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1212
1213 return anv_device_submit_simple_batch(device, &batch);
1214 }
1215
1216 VkResult
1217 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1218 {
1219 uint32_t gem_handle = anv_gem_create(device, size);
1220 if (!gem_handle)
1221 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1222
1223 anv_bo_init(bo, gem_handle, size);
1224
1225 return VK_SUCCESS;
1226 }
1227
1228 VkResult anv_AllocateMemory(
1229 VkDevice _device,
1230 const VkMemoryAllocateInfo* pAllocateInfo,
1231 const VkAllocationCallbacks* pAllocator,
1232 VkDeviceMemory* pMem)
1233 {
1234 ANV_FROM_HANDLE(anv_device, device, _device);
1235 struct anv_device_memory *mem;
1236 VkResult result;
1237
1238 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1239
1240 if (pAllocateInfo->allocationSize == 0) {
1241 /* Apparently, this is allowed */
1242 *pMem = VK_NULL_HANDLE;
1243 return VK_SUCCESS;
1244 }
1245
1246 /* We support exactly one memory heap. */
1247 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1248 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1249
1250 /* FINISHME: Fail if allocation request exceeds heap size. */
1251
1252 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1253 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1254 if (mem == NULL)
1255 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1256
1257 /* The kernel is going to give us whole pages anyway */
1258 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1259
1260 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1261 if (result != VK_SUCCESS)
1262 goto fail;
1263
1264 mem->type_index = pAllocateInfo->memoryTypeIndex;
1265
1266 mem->map = NULL;
1267 mem->map_size = 0;
1268
1269 *pMem = anv_device_memory_to_handle(mem);
1270
1271 return VK_SUCCESS;
1272
1273 fail:
1274 vk_free2(&device->alloc, pAllocator, mem);
1275
1276 return result;
1277 }
1278
1279 void anv_FreeMemory(
1280 VkDevice _device,
1281 VkDeviceMemory _mem,
1282 const VkAllocationCallbacks* pAllocator)
1283 {
1284 ANV_FROM_HANDLE(anv_device, device, _device);
1285 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1286
1287 if (mem == NULL)
1288 return;
1289
1290 if (mem->map)
1291 anv_UnmapMemory(_device, _mem);
1292
1293 if (mem->bo.map)
1294 anv_gem_munmap(mem->bo.map, mem->bo.size);
1295
1296 if (mem->bo.gem_handle != 0)
1297 anv_gem_close(device, mem->bo.gem_handle);
1298
1299 vk_free2(&device->alloc, pAllocator, mem);
1300 }
1301
1302 VkResult anv_MapMemory(
1303 VkDevice _device,
1304 VkDeviceMemory _memory,
1305 VkDeviceSize offset,
1306 VkDeviceSize size,
1307 VkMemoryMapFlags flags,
1308 void** ppData)
1309 {
1310 ANV_FROM_HANDLE(anv_device, device, _device);
1311 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1312
1313 if (mem == NULL) {
1314 *ppData = NULL;
1315 return VK_SUCCESS;
1316 }
1317
1318 if (size == VK_WHOLE_SIZE)
1319 size = mem->bo.size - offset;
1320
1321 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1322 *
1323 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1324 * assert(size != 0);
1325 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1326 * equal to the size of the memory minus offset
1327 */
1328 assert(size > 0);
1329 assert(offset + size <= mem->bo.size);
1330
1331 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1332 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1333 * at a time is valid. We could just mmap up front and return an offset
1334 * pointer here, but that may exhaust virtual memory on 32 bit
1335 * userspace. */
1336
1337 uint32_t gem_flags = 0;
1338 if (!device->info.has_llc && mem->type_index == 0)
1339 gem_flags |= I915_MMAP_WC;
1340
1341 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1342 uint64_t map_offset = offset & ~4095ull;
1343 assert(offset >= map_offset);
1344 uint64_t map_size = (offset + size) - map_offset;
1345
1346 /* Let's map whole pages */
1347 map_size = align_u64(map_size, 4096);
1348
1349 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1350 map_offset, map_size, gem_flags);
1351 if (map == MAP_FAILED)
1352 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1353
1354 mem->map = map;
1355 mem->map_size = map_size;
1356
1357 *ppData = mem->map + (offset - map_offset);
1358
1359 return VK_SUCCESS;
1360 }
1361
1362 void anv_UnmapMemory(
1363 VkDevice _device,
1364 VkDeviceMemory _memory)
1365 {
1366 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1367
1368 if (mem == NULL)
1369 return;
1370
1371 anv_gem_munmap(mem->map, mem->map_size);
1372
1373 mem->map = NULL;
1374 mem->map_size = 0;
1375 }
1376
1377 static void
1378 clflush_mapped_ranges(struct anv_device *device,
1379 uint32_t count,
1380 const VkMappedMemoryRange *ranges)
1381 {
1382 for (uint32_t i = 0; i < count; i++) {
1383 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1384 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1385 void *end;
1386
1387 if (ranges[i].offset + ranges[i].size > mem->map_size)
1388 end = mem->map + mem->map_size;
1389 else
1390 end = mem->map + ranges[i].offset + ranges[i].size;
1391
1392 while (p < end) {
1393 __builtin_ia32_clflush(p);
1394 p += CACHELINE_SIZE;
1395 }
1396 }
1397 }
1398
1399 VkResult anv_FlushMappedMemoryRanges(
1400 VkDevice _device,
1401 uint32_t memoryRangeCount,
1402 const VkMappedMemoryRange* pMemoryRanges)
1403 {
1404 ANV_FROM_HANDLE(anv_device, device, _device);
1405
1406 if (device->info.has_llc)
1407 return VK_SUCCESS;
1408
1409 /* Make sure the writes we're flushing have landed. */
1410 __builtin_ia32_mfence();
1411
1412 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1413
1414 return VK_SUCCESS;
1415 }
1416
1417 VkResult anv_InvalidateMappedMemoryRanges(
1418 VkDevice _device,
1419 uint32_t memoryRangeCount,
1420 const VkMappedMemoryRange* pMemoryRanges)
1421 {
1422 ANV_FROM_HANDLE(anv_device, device, _device);
1423
1424 if (device->info.has_llc)
1425 return VK_SUCCESS;
1426
1427 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1428
1429 /* Make sure no reads get moved up above the invalidate. */
1430 __builtin_ia32_mfence();
1431
1432 return VK_SUCCESS;
1433 }
1434
1435 void anv_GetBufferMemoryRequirements(
1436 VkDevice device,
1437 VkBuffer _buffer,
1438 VkMemoryRequirements* pMemoryRequirements)
1439 {
1440 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1441
1442 /* The Vulkan spec (git aaed022) says:
1443 *
1444 * memoryTypeBits is a bitfield and contains one bit set for every
1445 * supported memory type for the resource. The bit `1<<i` is set if and
1446 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1447 * structure for the physical device is supported.
1448 *
1449 * We support exactly one memory type.
1450 */
1451 pMemoryRequirements->memoryTypeBits = 1;
1452
1453 pMemoryRequirements->size = buffer->size;
1454 pMemoryRequirements->alignment = 16;
1455 }
1456
1457 void anv_GetImageMemoryRequirements(
1458 VkDevice device,
1459 VkImage _image,
1460 VkMemoryRequirements* pMemoryRequirements)
1461 {
1462 ANV_FROM_HANDLE(anv_image, image, _image);
1463
1464 /* The Vulkan spec (git aaed022) says:
1465 *
1466 * memoryTypeBits is a bitfield and contains one bit set for every
1467 * supported memory type for the resource. The bit `1<<i` is set if and
1468 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1469 * structure for the physical device is supported.
1470 *
1471 * We support exactly one memory type.
1472 */
1473 pMemoryRequirements->memoryTypeBits = 1;
1474
1475 pMemoryRequirements->size = image->size;
1476 pMemoryRequirements->alignment = image->alignment;
1477 }
1478
1479 void anv_GetImageSparseMemoryRequirements(
1480 VkDevice device,
1481 VkImage image,
1482 uint32_t* pSparseMemoryRequirementCount,
1483 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1484 {
1485 stub();
1486 }
1487
1488 void anv_GetDeviceMemoryCommitment(
1489 VkDevice device,
1490 VkDeviceMemory memory,
1491 VkDeviceSize* pCommittedMemoryInBytes)
1492 {
1493 *pCommittedMemoryInBytes = 0;
1494 }
1495
1496 VkResult anv_BindBufferMemory(
1497 VkDevice device,
1498 VkBuffer _buffer,
1499 VkDeviceMemory _memory,
1500 VkDeviceSize memoryOffset)
1501 {
1502 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1503 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1504
1505 if (mem) {
1506 buffer->bo = &mem->bo;
1507 buffer->offset = memoryOffset;
1508 } else {
1509 buffer->bo = NULL;
1510 buffer->offset = 0;
1511 }
1512
1513 return VK_SUCCESS;
1514 }
1515
1516 VkResult anv_QueueBindSparse(
1517 VkQueue queue,
1518 uint32_t bindInfoCount,
1519 const VkBindSparseInfo* pBindInfo,
1520 VkFence fence)
1521 {
1522 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1523 }
1524
1525 VkResult anv_CreateFence(
1526 VkDevice _device,
1527 const VkFenceCreateInfo* pCreateInfo,
1528 const VkAllocationCallbacks* pAllocator,
1529 VkFence* pFence)
1530 {
1531 ANV_FROM_HANDLE(anv_device, device, _device);
1532 struct anv_bo fence_bo;
1533 struct anv_fence *fence;
1534 struct anv_batch batch;
1535 VkResult result;
1536
1537 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1538
1539 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1540 if (result != VK_SUCCESS)
1541 return result;
1542
1543 /* Fences are small. Just store the CPU data structure in the BO. */
1544 fence = fence_bo.map;
1545 fence->bo = fence_bo;
1546
1547 /* Place the batch after the CPU data but on its own cache line. */
1548 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1549 batch.next = batch.start = fence->bo.map + batch_offset;
1550 batch.end = fence->bo.map + fence->bo.size;
1551 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1552 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1553
1554 if (!device->info.has_llc) {
1555 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1556 assert(batch.next - batch.start <= CACHELINE_SIZE);
1557 __builtin_ia32_mfence();
1558 __builtin_ia32_clflush(batch.start);
1559 }
1560
1561 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1562 fence->exec2_objects[0].relocation_count = 0;
1563 fence->exec2_objects[0].relocs_ptr = 0;
1564 fence->exec2_objects[0].alignment = 0;
1565 fence->exec2_objects[0].offset = fence->bo.offset;
1566 fence->exec2_objects[0].flags = 0;
1567 fence->exec2_objects[0].rsvd1 = 0;
1568 fence->exec2_objects[0].rsvd2 = 0;
1569
1570 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1571 fence->execbuf.buffer_count = 1;
1572 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1573 fence->execbuf.batch_len = batch.next - batch.start;
1574 fence->execbuf.cliprects_ptr = 0;
1575 fence->execbuf.num_cliprects = 0;
1576 fence->execbuf.DR1 = 0;
1577 fence->execbuf.DR4 = 0;
1578
1579 fence->execbuf.flags =
1580 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1581 fence->execbuf.rsvd1 = device->context_id;
1582 fence->execbuf.rsvd2 = 0;
1583
1584 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1585 fence->state = ANV_FENCE_STATE_SIGNALED;
1586 } else {
1587 fence->state = ANV_FENCE_STATE_RESET;
1588 }
1589
1590 *pFence = anv_fence_to_handle(fence);
1591
1592 return VK_SUCCESS;
1593 }
1594
1595 void anv_DestroyFence(
1596 VkDevice _device,
1597 VkFence _fence,
1598 const VkAllocationCallbacks* pAllocator)
1599 {
1600 ANV_FROM_HANDLE(anv_device, device, _device);
1601 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1602
1603 if (!fence)
1604 return;
1605
1606 assert(fence->bo.map == fence);
1607 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1608 }
1609
1610 VkResult anv_ResetFences(
1611 VkDevice _device,
1612 uint32_t fenceCount,
1613 const VkFence* pFences)
1614 {
1615 for (uint32_t i = 0; i < fenceCount; i++) {
1616 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1617 fence->state = ANV_FENCE_STATE_RESET;
1618 }
1619
1620 return VK_SUCCESS;
1621 }
1622
1623 VkResult anv_GetFenceStatus(
1624 VkDevice _device,
1625 VkFence _fence)
1626 {
1627 ANV_FROM_HANDLE(anv_device, device, _device);
1628 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1629 int64_t t = 0;
1630 int ret;
1631
1632 switch (fence->state) {
1633 case ANV_FENCE_STATE_RESET:
1634 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1635 return VK_NOT_READY;
1636
1637 case ANV_FENCE_STATE_SIGNALED:
1638 /* It's been signaled, return success */
1639 return VK_SUCCESS;
1640
1641 case ANV_FENCE_STATE_SUBMITTED:
1642 /* It's been submitted to the GPU but we don't know if it's done yet. */
1643 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1644 if (ret == 0) {
1645 fence->state = ANV_FENCE_STATE_SIGNALED;
1646 return VK_SUCCESS;
1647 } else {
1648 return VK_NOT_READY;
1649 }
1650 default:
1651 unreachable("Invalid fence status");
1652 }
1653 }
1654
1655 #define NSEC_PER_SEC 1000000000
1656 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1657
1658 VkResult anv_WaitForFences(
1659 VkDevice _device,
1660 uint32_t fenceCount,
1661 const VkFence* pFences,
1662 VkBool32 waitAll,
1663 uint64_t _timeout)
1664 {
1665 ANV_FROM_HANDLE(anv_device, device, _device);
1666 int ret;
1667
1668 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1669 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1670 * for a couple of kernel releases. Since there's no way to know
1671 * whether or not the kernel we're using is one of the broken ones, the
1672 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1673 * maximum timeout from 584 years to 292 years - likely not a big deal.
1674 */
1675 int64_t timeout = MIN2(_timeout, INT64_MAX);
1676
1677 uint32_t pending_fences = fenceCount;
1678 while (pending_fences) {
1679 pending_fences = 0;
1680 bool signaled_fences = false;
1681 for (uint32_t i = 0; i < fenceCount; i++) {
1682 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1683 switch (fence->state) {
1684 case ANV_FENCE_STATE_RESET:
1685 /* This fence hasn't been submitted yet, we'll catch it the next
1686 * time around. Yes, this may mean we dead-loop but, short of
1687 * lots of locking and a condition variable, there's not much that
1688 * we can do about that.
1689 */
1690 pending_fences++;
1691 continue;
1692
1693 case ANV_FENCE_STATE_SIGNALED:
1694 /* This fence is not pending. If waitAll isn't set, we can return
1695 * early. Otherwise, we have to keep going.
1696 */
1697 if (!waitAll)
1698 return VK_SUCCESS;
1699 continue;
1700
1701 case ANV_FENCE_STATE_SUBMITTED:
1702 /* These are the fences we really care about. Go ahead and wait
1703 * on it until we hit a timeout.
1704 */
1705 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1706 if (ret == -1 && errno == ETIME) {
1707 return VK_TIMEOUT;
1708 } else if (ret == -1) {
1709 /* We don't know the real error. */
1710 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1711 } else {
1712 fence->state = ANV_FENCE_STATE_SIGNALED;
1713 signaled_fences = true;
1714 if (!waitAll)
1715 return VK_SUCCESS;
1716 continue;
1717 }
1718 }
1719 }
1720
1721 if (pending_fences && !signaled_fences) {
1722 /* If we've hit this then someone decided to vkWaitForFences before
1723 * they've actually submitted any of them to a queue. This is a
1724 * fairly pessimal case, so it's ok to lock here and use a standard
1725 * pthreads condition variable.
1726 */
1727 pthread_mutex_lock(&device->mutex);
1728
1729 /* It's possible that some of the fences have changed state since the
1730 * last time we checked. Now that we have the lock, check for
1731 * pending fences again and don't wait if it's changed.
1732 */
1733 uint32_t now_pending_fences = 0;
1734 for (uint32_t i = 0; i < fenceCount; i++) {
1735 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1736 if (fence->state == ANV_FENCE_STATE_RESET)
1737 now_pending_fences++;
1738 }
1739 assert(now_pending_fences <= pending_fences);
1740
1741 if (now_pending_fences == pending_fences) {
1742 struct timespec before;
1743 clock_gettime(CLOCK_MONOTONIC, &before);
1744
1745 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1746 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1747 (timeout / NSEC_PER_SEC);
1748 abs_nsec %= NSEC_PER_SEC;
1749
1750 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1751 * provided timeout is UINT64_MAX
1752 */
1753 struct timespec abstime;
1754 abstime.tv_nsec = abs_nsec;
1755 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1756
1757 ret = pthread_cond_timedwait(&device->queue_submit,
1758 &device->mutex, &abstime);
1759 assert(ret != EINVAL);
1760
1761 struct timespec after;
1762 clock_gettime(CLOCK_MONOTONIC, &after);
1763 uint64_t time_elapsed =
1764 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1765 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1766
1767 if (time_elapsed >= timeout) {
1768 pthread_mutex_unlock(&device->mutex);
1769 return VK_TIMEOUT;
1770 }
1771
1772 timeout -= time_elapsed;
1773 }
1774
1775 pthread_mutex_unlock(&device->mutex);
1776 }
1777 }
1778
1779 return VK_SUCCESS;
1780 }
1781
1782 // Queue semaphore functions
1783
1784 VkResult anv_CreateSemaphore(
1785 VkDevice device,
1786 const VkSemaphoreCreateInfo* pCreateInfo,
1787 const VkAllocationCallbacks* pAllocator,
1788 VkSemaphore* pSemaphore)
1789 {
1790 /* The DRM execbuffer ioctl always execute in-oder, even between different
1791 * rings. As such, there's nothing to do for the user space semaphore.
1792 */
1793
1794 *pSemaphore = (VkSemaphore)1;
1795
1796 return VK_SUCCESS;
1797 }
1798
1799 void anv_DestroySemaphore(
1800 VkDevice device,
1801 VkSemaphore semaphore,
1802 const VkAllocationCallbacks* pAllocator)
1803 {
1804 }
1805
1806 // Event functions
1807
1808 VkResult anv_CreateEvent(
1809 VkDevice _device,
1810 const VkEventCreateInfo* pCreateInfo,
1811 const VkAllocationCallbacks* pAllocator,
1812 VkEvent* pEvent)
1813 {
1814 ANV_FROM_HANDLE(anv_device, device, _device);
1815 struct anv_state state;
1816 struct anv_event *event;
1817
1818 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1819
1820 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1821 sizeof(*event), 8);
1822 event = state.map;
1823 event->state = state;
1824 event->semaphore = VK_EVENT_RESET;
1825
1826 if (!device->info.has_llc) {
1827 /* Make sure the writes we're flushing have landed. */
1828 __builtin_ia32_mfence();
1829 __builtin_ia32_clflush(event);
1830 }
1831
1832 *pEvent = anv_event_to_handle(event);
1833
1834 return VK_SUCCESS;
1835 }
1836
1837 void anv_DestroyEvent(
1838 VkDevice _device,
1839 VkEvent _event,
1840 const VkAllocationCallbacks* pAllocator)
1841 {
1842 ANV_FROM_HANDLE(anv_device, device, _device);
1843 ANV_FROM_HANDLE(anv_event, event, _event);
1844
1845 if (!event)
1846 return;
1847
1848 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1849 }
1850
1851 VkResult anv_GetEventStatus(
1852 VkDevice _device,
1853 VkEvent _event)
1854 {
1855 ANV_FROM_HANDLE(anv_device, device, _device);
1856 ANV_FROM_HANDLE(anv_event, event, _event);
1857
1858 if (!device->info.has_llc) {
1859 /* Invalidate read cache before reading event written by GPU. */
1860 __builtin_ia32_clflush(event);
1861 __builtin_ia32_mfence();
1862
1863 }
1864
1865 return event->semaphore;
1866 }
1867
1868 VkResult anv_SetEvent(
1869 VkDevice _device,
1870 VkEvent _event)
1871 {
1872 ANV_FROM_HANDLE(anv_device, device, _device);
1873 ANV_FROM_HANDLE(anv_event, event, _event);
1874
1875 event->semaphore = VK_EVENT_SET;
1876
1877 if (!device->info.has_llc) {
1878 /* Make sure the writes we're flushing have landed. */
1879 __builtin_ia32_mfence();
1880 __builtin_ia32_clflush(event);
1881 }
1882
1883 return VK_SUCCESS;
1884 }
1885
1886 VkResult anv_ResetEvent(
1887 VkDevice _device,
1888 VkEvent _event)
1889 {
1890 ANV_FROM_HANDLE(anv_device, device, _device);
1891 ANV_FROM_HANDLE(anv_event, event, _event);
1892
1893 event->semaphore = VK_EVENT_RESET;
1894
1895 if (!device->info.has_llc) {
1896 /* Make sure the writes we're flushing have landed. */
1897 __builtin_ia32_mfence();
1898 __builtin_ia32_clflush(event);
1899 }
1900
1901 return VK_SUCCESS;
1902 }
1903
1904 // Buffer functions
1905
1906 VkResult anv_CreateBuffer(
1907 VkDevice _device,
1908 const VkBufferCreateInfo* pCreateInfo,
1909 const VkAllocationCallbacks* pAllocator,
1910 VkBuffer* pBuffer)
1911 {
1912 ANV_FROM_HANDLE(anv_device, device, _device);
1913 struct anv_buffer *buffer;
1914
1915 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1916
1917 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1918 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1919 if (buffer == NULL)
1920 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1921
1922 buffer->size = pCreateInfo->size;
1923 buffer->usage = pCreateInfo->usage;
1924 buffer->bo = NULL;
1925 buffer->offset = 0;
1926
1927 *pBuffer = anv_buffer_to_handle(buffer);
1928
1929 return VK_SUCCESS;
1930 }
1931
1932 void anv_DestroyBuffer(
1933 VkDevice _device,
1934 VkBuffer _buffer,
1935 const VkAllocationCallbacks* pAllocator)
1936 {
1937 ANV_FROM_HANDLE(anv_device, device, _device);
1938 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1939
1940 if (!buffer)
1941 return;
1942
1943 vk_free2(&device->alloc, pAllocator, buffer);
1944 }
1945
1946 void
1947 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1948 enum isl_format format,
1949 uint32_t offset, uint32_t range, uint32_t stride)
1950 {
1951 isl_buffer_fill_state(&device->isl_dev, state.map,
1952 .address = offset,
1953 .mocs = device->default_mocs,
1954 .size = range,
1955 .format = format,
1956 .stride = stride);
1957
1958 if (!device->info.has_llc)
1959 anv_state_clflush(state);
1960 }
1961
1962 void anv_DestroySampler(
1963 VkDevice _device,
1964 VkSampler _sampler,
1965 const VkAllocationCallbacks* pAllocator)
1966 {
1967 ANV_FROM_HANDLE(anv_device, device, _device);
1968 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1969
1970 if (!sampler)
1971 return;
1972
1973 vk_free2(&device->alloc, pAllocator, sampler);
1974 }
1975
1976 VkResult anv_CreateFramebuffer(
1977 VkDevice _device,
1978 const VkFramebufferCreateInfo* pCreateInfo,
1979 const VkAllocationCallbacks* pAllocator,
1980 VkFramebuffer* pFramebuffer)
1981 {
1982 ANV_FROM_HANDLE(anv_device, device, _device);
1983 struct anv_framebuffer *framebuffer;
1984
1985 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1986
1987 size_t size = sizeof(*framebuffer) +
1988 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1989 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1990 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1991 if (framebuffer == NULL)
1992 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1993
1994 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1995 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1996 VkImageView _iview = pCreateInfo->pAttachments[i];
1997 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1998 }
1999
2000 framebuffer->width = pCreateInfo->width;
2001 framebuffer->height = pCreateInfo->height;
2002 framebuffer->layers = pCreateInfo->layers;
2003
2004 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2005
2006 return VK_SUCCESS;
2007 }
2008
2009 void anv_DestroyFramebuffer(
2010 VkDevice _device,
2011 VkFramebuffer _fb,
2012 const VkAllocationCallbacks* pAllocator)
2013 {
2014 ANV_FROM_HANDLE(anv_device, device, _device);
2015 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2016
2017 if (!fb)
2018 return;
2019
2020 vk_free2(&device->alloc, pAllocator, fb);
2021 }