7382f0576293bec217cb6569e1f8800446918d2e
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 anv_physical_device_get_supported_extensions(device,
608 &device->supported_extensions);
609
610
611 device->local_fd = fd;
612
613 return VK_SUCCESS;
614
615 fail:
616 close(fd);
617 if (master_fd != -1)
618 close(master_fd);
619 return result;
620 }
621
622 static void
623 anv_physical_device_finish(struct anv_physical_device *device)
624 {
625 anv_finish_wsi(device);
626 anv_physical_device_free_disk_cache(device);
627 ralloc_free(device->compiler);
628 close(device->local_fd);
629 if (device->master_fd >= 0)
630 close(device->master_fd);
631 }
632
633 static void *
634 default_alloc_func(void *pUserData, size_t size, size_t align,
635 VkSystemAllocationScope allocationScope)
636 {
637 return malloc(size);
638 }
639
640 static void *
641 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
642 size_t align, VkSystemAllocationScope allocationScope)
643 {
644 return realloc(pOriginal, size);
645 }
646
647 static void
648 default_free_func(void *pUserData, void *pMemory)
649 {
650 free(pMemory);
651 }
652
653 static const VkAllocationCallbacks default_alloc = {
654 .pUserData = NULL,
655 .pfnAllocation = default_alloc_func,
656 .pfnReallocation = default_realloc_func,
657 .pfnFree = default_free_func,
658 };
659
660 VkResult anv_EnumerateInstanceExtensionProperties(
661 const char* pLayerName,
662 uint32_t* pPropertyCount,
663 VkExtensionProperties* pProperties)
664 {
665 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
666
667 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
668 if (anv_instance_extensions_supported.extensions[i]) {
669 vk_outarray_append(&out, prop) {
670 *prop = anv_instance_extensions[i];
671 }
672 }
673 }
674
675 return vk_outarray_status(&out);
676 }
677
678 VkResult anv_CreateInstance(
679 const VkInstanceCreateInfo* pCreateInfo,
680 const VkAllocationCallbacks* pAllocator,
681 VkInstance* pInstance)
682 {
683 struct anv_instance *instance;
684 VkResult result;
685
686 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
687
688 struct anv_instance_extension_table enabled_extensions = {};
689 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
690 int idx;
691 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
692 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
693 anv_instance_extensions[idx].extensionName) == 0)
694 break;
695 }
696
697 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 if (!anv_instance_extensions_supported.extensions[idx])
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 enabled_extensions.extensions[idx] = true;
704 }
705
706 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 if (!instance)
709 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
710
711 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
712
713 if (pAllocator)
714 instance->alloc = *pAllocator;
715 else
716 instance->alloc = default_alloc;
717
718 instance->app_info = (struct anv_app_info) { .api_version = 0 };
719 if (pCreateInfo->pApplicationInfo) {
720 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
721
722 instance->app_info.app_name =
723 vk_strdup(&instance->alloc, app->pApplicationName,
724 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
725 instance->app_info.app_version = app->applicationVersion;
726
727 instance->app_info.engine_name =
728 vk_strdup(&instance->alloc, app->pEngineName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.engine_version = app->engineVersion;
731
732 instance->app_info.api_version = app->apiVersion;
733 }
734
735 if (instance->app_info.api_version == 0)
736 instance->app_info.api_version = VK_API_VERSION_1_0;
737
738 instance->enabled_extensions = enabled_extensions;
739
740 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
741 /* Vulkan requires that entrypoints for extensions which have not been
742 * enabled must not be advertised.
743 */
744 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
745 &instance->enabled_extensions)) {
746 instance->dispatch.entrypoints[i] = NULL;
747 } else {
748 instance->dispatch.entrypoints[i] =
749 anv_instance_dispatch_table.entrypoints[i];
750 }
751 }
752
753 struct anv_physical_device *pdevice = &instance->physicalDevice;
754 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
755 /* Vulkan requires that entrypoints for extensions which have not been
756 * enabled must not be advertised.
757 */
758 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
759 &instance->enabled_extensions)) {
760 pdevice->dispatch.entrypoints[i] = NULL;
761 } else {
762 pdevice->dispatch.entrypoints[i] =
763 anv_physical_device_dispatch_table.entrypoints[i];
764 }
765 }
766
767 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
768 /* Vulkan requires that entrypoints for extensions which have not been
769 * enabled must not be advertised.
770 */
771 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
772 &instance->enabled_extensions, NULL)) {
773 instance->device_dispatch.entrypoints[i] = NULL;
774 } else {
775 instance->device_dispatch.entrypoints[i] =
776 anv_device_dispatch_table.entrypoints[i];
777 }
778 }
779
780 instance->physicalDeviceCount = -1;
781
782 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
783 if (result != VK_SUCCESS) {
784 vk_free2(&default_alloc, pAllocator, instance);
785 return vk_error(result);
786 }
787
788 instance->pipeline_cache_enabled =
789 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
790
791 _mesa_locale_init();
792 glsl_type_singleton_init_or_ref();
793
794 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
795
796 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
797 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
798 0, "anv", NULL,
799 instance->app_info.engine_name,
800 instance->app_info.engine_version);
801
802 *pInstance = anv_instance_to_handle(instance);
803
804 return VK_SUCCESS;
805 }
806
807 void anv_DestroyInstance(
808 VkInstance _instance,
809 const VkAllocationCallbacks* pAllocator)
810 {
811 ANV_FROM_HANDLE(anv_instance, instance, _instance);
812
813 if (!instance)
814 return;
815
816 if (instance->physicalDeviceCount > 0) {
817 /* We support at most one physical device. */
818 assert(instance->physicalDeviceCount == 1);
819 anv_physical_device_finish(&instance->physicalDevice);
820 }
821
822 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
823 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
824
825 VG(VALGRIND_DESTROY_MEMPOOL(instance));
826
827 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
828
829 glsl_type_singleton_decref();
830 _mesa_locale_fini();
831
832 driDestroyOptionCache(&instance->dri_options);
833 driDestroyOptionInfo(&instance->available_dri_options);
834
835 vk_free(&instance->alloc, instance);
836 }
837
838 static VkResult
839 anv_enumerate_devices(struct anv_instance *instance)
840 {
841 /* TODO: Check for more devices ? */
842 drmDevicePtr devices[8];
843 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
844 int max_devices;
845
846 instance->physicalDeviceCount = 0;
847
848 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
849 if (max_devices < 1)
850 return VK_ERROR_INCOMPATIBLE_DRIVER;
851
852 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
853 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
854 devices[i]->bustype == DRM_BUS_PCI &&
855 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
856
857 result = anv_physical_device_init(&instance->physicalDevice,
858 instance, devices[i]);
859 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
860 break;
861 }
862 }
863 drmFreeDevices(devices, max_devices);
864
865 if (result == VK_SUCCESS)
866 instance->physicalDeviceCount = 1;
867
868 return result;
869 }
870
871 static VkResult
872 anv_instance_ensure_physical_device(struct anv_instance *instance)
873 {
874 if (instance->physicalDeviceCount < 0) {
875 VkResult result = anv_enumerate_devices(instance);
876 if (result != VK_SUCCESS &&
877 result != VK_ERROR_INCOMPATIBLE_DRIVER)
878 return result;
879 }
880
881 return VK_SUCCESS;
882 }
883
884 VkResult anv_EnumeratePhysicalDevices(
885 VkInstance _instance,
886 uint32_t* pPhysicalDeviceCount,
887 VkPhysicalDevice* pPhysicalDevices)
888 {
889 ANV_FROM_HANDLE(anv_instance, instance, _instance);
890 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
891
892 VkResult result = anv_instance_ensure_physical_device(instance);
893 if (result != VK_SUCCESS)
894 return result;
895
896 if (instance->physicalDeviceCount == 0)
897 return VK_SUCCESS;
898
899 assert(instance->physicalDeviceCount == 1);
900 vk_outarray_append(&out, i) {
901 *i = anv_physical_device_to_handle(&instance->physicalDevice);
902 }
903
904 return vk_outarray_status(&out);
905 }
906
907 VkResult anv_EnumeratePhysicalDeviceGroups(
908 VkInstance _instance,
909 uint32_t* pPhysicalDeviceGroupCount,
910 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
911 {
912 ANV_FROM_HANDLE(anv_instance, instance, _instance);
913 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
914 pPhysicalDeviceGroupCount);
915
916 VkResult result = anv_instance_ensure_physical_device(instance);
917 if (result != VK_SUCCESS)
918 return result;
919
920 if (instance->physicalDeviceCount == 0)
921 return VK_SUCCESS;
922
923 assert(instance->physicalDeviceCount == 1);
924
925 vk_outarray_append(&out, p) {
926 p->physicalDeviceCount = 1;
927 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
928 p->physicalDevices[0] =
929 anv_physical_device_to_handle(&instance->physicalDevice);
930 p->subsetAllocation = false;
931
932 vk_foreach_struct(ext, p->pNext)
933 anv_debug_ignored_stype(ext->sType);
934 }
935
936 return vk_outarray_status(&out);
937 }
938
939 void anv_GetPhysicalDeviceFeatures(
940 VkPhysicalDevice physicalDevice,
941 VkPhysicalDeviceFeatures* pFeatures)
942 {
943 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
944
945 *pFeatures = (VkPhysicalDeviceFeatures) {
946 .robustBufferAccess = true,
947 .fullDrawIndexUint32 = true,
948 .imageCubeArray = true,
949 .independentBlend = true,
950 .geometryShader = true,
951 .tessellationShader = true,
952 .sampleRateShading = true,
953 .dualSrcBlend = true,
954 .logicOp = true,
955 .multiDrawIndirect = true,
956 .drawIndirectFirstInstance = true,
957 .depthClamp = true,
958 .depthBiasClamp = true,
959 .fillModeNonSolid = true,
960 .depthBounds = false,
961 .wideLines = true,
962 .largePoints = true,
963 .alphaToOne = true,
964 .multiViewport = true,
965 .samplerAnisotropy = true,
966 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
967 pdevice->info.is_baytrail,
968 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
969 .textureCompressionBC = true,
970 .occlusionQueryPrecise = true,
971 .pipelineStatisticsQuery = true,
972 .fragmentStoresAndAtomics = true,
973 .shaderTessellationAndGeometryPointSize = true,
974 .shaderImageGatherExtended = true,
975 .shaderStorageImageExtendedFormats = true,
976 .shaderStorageImageMultisample = false,
977 .shaderStorageImageReadWithoutFormat = false,
978 .shaderStorageImageWriteWithoutFormat = true,
979 .shaderUniformBufferArrayDynamicIndexing = true,
980 .shaderSampledImageArrayDynamicIndexing = true,
981 .shaderStorageBufferArrayDynamicIndexing = true,
982 .shaderStorageImageArrayDynamicIndexing = true,
983 .shaderClipDistance = true,
984 .shaderCullDistance = true,
985 .shaderFloat64 = pdevice->info.gen >= 8 &&
986 pdevice->info.has_64bit_types,
987 .shaderInt64 = pdevice->info.gen >= 8 &&
988 pdevice->info.has_64bit_types,
989 .shaderInt16 = pdevice->info.gen >= 8,
990 .shaderResourceMinLod = pdevice->info.gen >= 9,
991 .variableMultisampleRate = true,
992 .inheritedQueries = true,
993 };
994
995 /* We can't do image stores in vec4 shaders */
996 pFeatures->vertexPipelineStoresAndAtomics =
997 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
998 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
999
1000 struct anv_app_info *app_info = &pdevice->instance->app_info;
1001
1002 /* The new DOOM and Wolfenstein games require depthBounds without
1003 * checking for it. They seem to run fine without it so just claim it's
1004 * there and accept the consequences.
1005 */
1006 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1007 pFeatures->depthBounds = true;
1008 }
1009
1010 void anv_GetPhysicalDeviceFeatures2(
1011 VkPhysicalDevice physicalDevice,
1012 VkPhysicalDeviceFeatures2* pFeatures)
1013 {
1014 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1015 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1016
1017 vk_foreach_struct(ext, pFeatures->pNext) {
1018 switch (ext->sType) {
1019 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1020 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1021 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1022 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1023 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->storagePushConstant8 = pdevice->info.gen >= 8;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1029 VkPhysicalDevice16BitStorageFeatures *features =
1030 (VkPhysicalDevice16BitStorageFeatures *)ext;
1031 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1032 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->storagePushConstant16 = pdevice->info.gen >= 8;
1034 features->storageInputOutput16 = false;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1039 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1040 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1041 features->bufferDeviceAddressCaptureReplay = false;
1042 features->bufferDeviceAddressMultiDevice = false;
1043 break;
1044 }
1045
1046 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1047 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1048 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1049 features->computeDerivativeGroupQuads = true;
1050 features->computeDerivativeGroupLinear = true;
1051 break;
1052 }
1053
1054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1055 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1056 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1057 features->conditionalRendering = pdevice->info.gen >= 8 ||
1058 pdevice->info.is_haswell;
1059 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1060 pdevice->info.is_haswell;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1065 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1066 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1067 features->depthClipEnable = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1072 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1073 features->shaderFloat16 = pdevice->info.gen >= 8;
1074 features->shaderInt8 = pdevice->info.gen >= 8;
1075 break;
1076 }
1077
1078 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1079 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1080 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1081 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1082 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderShadingRateInterlock = false;
1084 break;
1085 }
1086
1087 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1088 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1089 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1090 features->hostQueryReset = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1095 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1096 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1097 features->shaderInputAttachmentArrayDynamicIndexing = false;
1098 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1099 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1100 features->shaderUniformBufferArrayNonUniformIndexing = false;
1101 features->shaderSampledImageArrayNonUniformIndexing = true;
1102 features->shaderStorageBufferArrayNonUniformIndexing = true;
1103 features->shaderStorageImageArrayNonUniformIndexing = true;
1104 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1105 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1107 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1108 features->descriptorBindingSampledImageUpdateAfterBind = true;
1109 features->descriptorBindingStorageImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1111 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1112 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingUpdateUnusedWhilePending = true;
1114 features->descriptorBindingPartiallyBound = true;
1115 features->descriptorBindingVariableDescriptorCount = false;
1116 features->runtimeDescriptorArray = true;
1117 break;
1118 }
1119
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1121 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1122 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1123 features->indexTypeUint8 = true;
1124 break;
1125 }
1126
1127 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1128 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1129 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1130 features->inlineUniformBlock = true;
1131 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1132 break;
1133 }
1134
1135 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1136 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1137 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1138 features->rectangularLines = true;
1139 features->bresenhamLines = true;
1140 features->smoothLines = true;
1141 features->stippledRectangularLines = false;
1142 features->stippledBresenhamLines = true;
1143 features->stippledSmoothLines = false;
1144 break;
1145 }
1146
1147 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1148 VkPhysicalDeviceMultiviewFeatures *features =
1149 (VkPhysicalDeviceMultiviewFeatures *)ext;
1150 features->multiview = true;
1151 features->multiviewGeometryShader = true;
1152 features->multiviewTessellationShader = true;
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1157 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1158 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1159 features->imagelessFramebuffer = true;
1160 break;
1161 }
1162
1163 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1164 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1165 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1166 features->pipelineExecutableInfo = true;
1167 break;
1168 }
1169
1170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1171 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1172 features->protectedMemory = false;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1177 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1178 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1179 features->samplerYcbcrConversion = true;
1180 break;
1181 }
1182
1183 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1184 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1185 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1186 features->scalarBlockLayout = true;
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1191 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1192 features->shaderBufferInt64Atomics =
1193 pdevice->info.gen >= 9 && pdevice->use_softpin;
1194 features->shaderSharedInt64Atomics = VK_FALSE;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1199 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1200 features->shaderDemoteToHelperInvocation = true;
1201 break;
1202 }
1203
1204 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1205 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1206 features->shaderDrawParameters = true;
1207 break;
1208 }
1209
1210 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1211 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1212 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1213 features->subgroupSizeControl = true;
1214 features->computeFullSubgroups = true;
1215 break;
1216 }
1217
1218 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1219 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1220 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1221 features->texelBufferAlignment = true;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1226 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1227 features->variablePointersStorageBuffer = true;
1228 features->variablePointers = true;
1229 break;
1230 }
1231
1232 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1233 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1234 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1235 features->transformFeedback = true;
1236 features->geometryStreams = true;
1237 break;
1238 }
1239
1240 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1241 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1242 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1243 features->uniformBufferStandardLayout = true;
1244 break;
1245 }
1246
1247 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1248 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1249 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1250 features->vertexAttributeInstanceRateDivisor = true;
1251 features->vertexAttributeInstanceRateZeroDivisor = true;
1252 break;
1253 }
1254
1255 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1256 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1257 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1258 features->ycbcrImageArrays = true;
1259 break;
1260 }
1261
1262 default:
1263 anv_debug_ignored_stype(ext->sType);
1264 break;
1265 }
1266 }
1267 }
1268
1269 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1270
1271 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1272 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1273
1274 void anv_GetPhysicalDeviceProperties(
1275 VkPhysicalDevice physicalDevice,
1276 VkPhysicalDeviceProperties* pProperties)
1277 {
1278 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1279 const struct gen_device_info *devinfo = &pdevice->info;
1280
1281 /* See assertions made when programming the buffer surface state. */
1282 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1283 (1ul << 30) : (1ul << 27);
1284
1285 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1286 const uint32_t max_textures =
1287 pdevice->has_bindless_images ? UINT16_MAX : 128;
1288 const uint32_t max_samplers =
1289 pdevice->has_bindless_samplers ? UINT16_MAX :
1290 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1291 const uint32_t max_images =
1292 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1293
1294 /* If we can use bindless for everything, claim a high per-stage limit,
1295 * otherwise use the binding table size, minus the slots reserved for
1296 * render targets and one slot for the descriptor buffer. */
1297 const uint32_t max_per_stage =
1298 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1299 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1300
1301 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1302
1303 VkSampleCountFlags sample_counts =
1304 isl_device_get_sample_counts(&pdevice->isl_dev);
1305
1306
1307 VkPhysicalDeviceLimits limits = {
1308 .maxImageDimension1D = (1 << 14),
1309 .maxImageDimension2D = (1 << 14),
1310 .maxImageDimension3D = (1 << 11),
1311 .maxImageDimensionCube = (1 << 14),
1312 .maxImageArrayLayers = (1 << 11),
1313 .maxTexelBufferElements = 128 * 1024 * 1024,
1314 .maxUniformBufferRange = (1ul << 27),
1315 .maxStorageBufferRange = max_raw_buffer_sz,
1316 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1317 .maxMemoryAllocationCount = UINT32_MAX,
1318 .maxSamplerAllocationCount = 64 * 1024,
1319 .bufferImageGranularity = 64, /* A cache line */
1320 .sparseAddressSpaceSize = 0,
1321 .maxBoundDescriptorSets = MAX_SETS,
1322 .maxPerStageDescriptorSamplers = max_samplers,
1323 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1324 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1325 .maxPerStageDescriptorSampledImages = max_textures,
1326 .maxPerStageDescriptorStorageImages = max_images,
1327 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1328 .maxPerStageResources = max_per_stage,
1329 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1330 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1331 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1332 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1333 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1334 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1335 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1336 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1337 .maxVertexInputAttributes = MAX_VBS,
1338 .maxVertexInputBindings = MAX_VBS,
1339 .maxVertexInputAttributeOffset = 2047,
1340 .maxVertexInputBindingStride = 2048,
1341 .maxVertexOutputComponents = 128,
1342 .maxTessellationGenerationLevel = 64,
1343 .maxTessellationPatchSize = 32,
1344 .maxTessellationControlPerVertexInputComponents = 128,
1345 .maxTessellationControlPerVertexOutputComponents = 128,
1346 .maxTessellationControlPerPatchOutputComponents = 128,
1347 .maxTessellationControlTotalOutputComponents = 2048,
1348 .maxTessellationEvaluationInputComponents = 128,
1349 .maxTessellationEvaluationOutputComponents = 128,
1350 .maxGeometryShaderInvocations = 32,
1351 .maxGeometryInputComponents = 64,
1352 .maxGeometryOutputComponents = 128,
1353 .maxGeometryOutputVertices = 256,
1354 .maxGeometryTotalOutputComponents = 1024,
1355 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1356 .maxFragmentOutputAttachments = 8,
1357 .maxFragmentDualSrcAttachments = 1,
1358 .maxFragmentCombinedOutputResources = 8,
1359 .maxComputeSharedMemorySize = 64 * 1024,
1360 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1361 .maxComputeWorkGroupInvocations = max_workgroup_size,
1362 .maxComputeWorkGroupSize = {
1363 max_workgroup_size,
1364 max_workgroup_size,
1365 max_workgroup_size,
1366 },
1367 .subPixelPrecisionBits = 8,
1368 .subTexelPrecisionBits = 8,
1369 .mipmapPrecisionBits = 8,
1370 .maxDrawIndexedIndexValue = UINT32_MAX,
1371 .maxDrawIndirectCount = UINT32_MAX,
1372 .maxSamplerLodBias = 16,
1373 .maxSamplerAnisotropy = 16,
1374 .maxViewports = MAX_VIEWPORTS,
1375 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1376 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1377 .viewportSubPixelBits = 13, /* We take a float? */
1378 .minMemoryMapAlignment = 4096, /* A page */
1379 /* The dataport requires texel alignment so we need to assume a worst
1380 * case of R32G32B32A32 which is 16 bytes.
1381 */
1382 .minTexelBufferOffsetAlignment = 16,
1383 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1384 .minUniformBufferOffsetAlignment = 32,
1385 .minStorageBufferOffsetAlignment = 4,
1386 .minTexelOffset = -8,
1387 .maxTexelOffset = 7,
1388 .minTexelGatherOffset = -32,
1389 .maxTexelGatherOffset = 31,
1390 .minInterpolationOffset = -0.5,
1391 .maxInterpolationOffset = 0.4375,
1392 .subPixelInterpolationOffsetBits = 4,
1393 .maxFramebufferWidth = (1 << 14),
1394 .maxFramebufferHeight = (1 << 14),
1395 .maxFramebufferLayers = (1 << 11),
1396 .framebufferColorSampleCounts = sample_counts,
1397 .framebufferDepthSampleCounts = sample_counts,
1398 .framebufferStencilSampleCounts = sample_counts,
1399 .framebufferNoAttachmentsSampleCounts = sample_counts,
1400 .maxColorAttachments = MAX_RTS,
1401 .sampledImageColorSampleCounts = sample_counts,
1402 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1403 .sampledImageDepthSampleCounts = sample_counts,
1404 .sampledImageStencilSampleCounts = sample_counts,
1405 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1406 .maxSampleMaskWords = 1,
1407 .timestampComputeAndGraphics = true,
1408 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1409 .maxClipDistances = 8,
1410 .maxCullDistances = 8,
1411 .maxCombinedClipAndCullDistances = 8,
1412 .discreteQueuePriorities = 2,
1413 .pointSizeRange = { 0.125, 255.875 },
1414 .lineWidthRange = {
1415 0.0,
1416 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1417 2047.9921875 : 7.9921875,
1418 },
1419 .pointSizeGranularity = (1.0 / 8.0),
1420 .lineWidthGranularity = (1.0 / 128.0),
1421 .strictLines = false,
1422 .standardSampleLocations = true,
1423 .optimalBufferCopyOffsetAlignment = 128,
1424 .optimalBufferCopyRowPitchAlignment = 128,
1425 .nonCoherentAtomSize = 64,
1426 };
1427
1428 *pProperties = (VkPhysicalDeviceProperties) {
1429 .apiVersion = anv_physical_device_api_version(pdevice),
1430 .driverVersion = vk_get_driver_version(),
1431 .vendorID = 0x8086,
1432 .deviceID = pdevice->chipset_id,
1433 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1434 .limits = limits,
1435 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1436 };
1437
1438 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1439 "%s", pdevice->name);
1440 memcpy(pProperties->pipelineCacheUUID,
1441 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1442 }
1443
1444 void anv_GetPhysicalDeviceProperties2(
1445 VkPhysicalDevice physicalDevice,
1446 VkPhysicalDeviceProperties2* pProperties)
1447 {
1448 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1449
1450 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1451
1452 vk_foreach_struct(ext, pProperties->pNext) {
1453 switch (ext->sType) {
1454 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1455 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1456 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1457
1458 /* We support all of the depth resolve modes */
1459 props->supportedDepthResolveModes =
1460 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1461 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1462 VK_RESOLVE_MODE_MIN_BIT_KHR |
1463 VK_RESOLVE_MODE_MAX_BIT_KHR;
1464
1465 /* Average doesn't make sense for stencil so we don't support that */
1466 props->supportedStencilResolveModes =
1467 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1468 if (pdevice->info.gen >= 8) {
1469 /* The advanced stencil resolve modes currently require stencil
1470 * sampling be supported by the hardware.
1471 */
1472 props->supportedStencilResolveModes |=
1473 VK_RESOLVE_MODE_MIN_BIT_KHR |
1474 VK_RESOLVE_MODE_MAX_BIT_KHR;
1475 }
1476
1477 props->independentResolveNone = true;
1478 props->independentResolve = true;
1479 break;
1480 }
1481
1482 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1483 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1484 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1485
1486 /* It's a bit hard to exactly map our implementation to the limits
1487 * described here. The bindless surface handle in the extended
1488 * message descriptors is 20 bits and it's an index into the table of
1489 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1490 * address. Given that most things consume two surface states per
1491 * view (general/sampled for textures and write-only/read-write for
1492 * images), we claim 2^19 things.
1493 *
1494 * For SSBOs, we just use A64 messages so there is no real limit
1495 * there beyond the limit on the total size of a descriptor set.
1496 */
1497 const unsigned max_bindless_views = 1 << 19;
1498
1499 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1500 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1501 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1502 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1503 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1504 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1505 props->robustBufferAccessUpdateAfterBind = true;
1506 props->quadDivergentImplicitLod = false;
1507 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1508 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1509 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1510 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1511 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1512 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1513 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1514 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1515 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1516 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1517 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1518 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1519 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1520 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1521 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1522 break;
1523 }
1524
1525 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1526 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1527 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1528
1529 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1530 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1531 "Intel open-source Mesa driver");
1532
1533 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1534 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1535
1536 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1537 .major = 1,
1538 .minor = 1,
1539 .subminor = 2,
1540 .patch = 0,
1541 };
1542 break;
1543 }
1544
1545 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1546 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1547 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1548 /* Userptr needs page aligned memory. */
1549 props->minImportedHostPointerAlignment = 4096;
1550 break;
1551 }
1552
1553 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1554 VkPhysicalDeviceIDProperties *id_props =
1555 (VkPhysicalDeviceIDProperties *)ext;
1556 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1557 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1558 /* The LUID is for Windows. */
1559 id_props->deviceLUIDValid = false;
1560 break;
1561 }
1562
1563 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1564 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1565 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1566 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1567 props->maxPerStageDescriptorInlineUniformBlocks =
1568 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1569 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1570 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1571 props->maxDescriptorSetInlineUniformBlocks =
1572 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1573 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1574 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1575 break;
1576 }
1577
1578 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1579 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1580 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1581 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1582 * Sampling Rules - Legacy Mode", it says the following:
1583 *
1584 * "Note that the device divides a pixel into a 16x16 array of
1585 * subpixels, referenced by their upper left corners."
1586 *
1587 * This is the only known reference in the PRMs to the subpixel
1588 * precision of line rasterization and a "16x16 array of subpixels"
1589 * implies 4 subpixel precision bits. Empirical testing has shown
1590 * that 4 subpixel precision bits applies to all line rasterization
1591 * types.
1592 */
1593 props->lineSubPixelPrecisionBits = 4;
1594 break;
1595 }
1596
1597 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1598 VkPhysicalDeviceMaintenance3Properties *props =
1599 (VkPhysicalDeviceMaintenance3Properties *)ext;
1600 /* This value doesn't matter for us today as our per-stage
1601 * descriptors are the real limit.
1602 */
1603 props->maxPerSetDescriptors = 1024;
1604 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1605 break;
1606 }
1607
1608 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1609 VkPhysicalDeviceMultiviewProperties *properties =
1610 (VkPhysicalDeviceMultiviewProperties *)ext;
1611 properties->maxMultiviewViewCount = 16;
1612 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1613 break;
1614 }
1615
1616 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1617 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1618 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1619 properties->pciDomain = pdevice->pci_info.domain;
1620 properties->pciBus = pdevice->pci_info.bus;
1621 properties->pciDevice = pdevice->pci_info.device;
1622 properties->pciFunction = pdevice->pci_info.function;
1623 break;
1624 }
1625
1626 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1627 VkPhysicalDevicePointClippingProperties *properties =
1628 (VkPhysicalDevicePointClippingProperties *) ext;
1629 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1630 break;
1631 }
1632
1633 #pragma GCC diagnostic push
1634 #pragma GCC diagnostic ignored "-Wswitch"
1635 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1636 VkPhysicalDevicePresentationPropertiesANDROID *props =
1637 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1638 props->sharedImage = VK_FALSE;
1639 break;
1640 }
1641 #pragma GCC diagnostic pop
1642
1643 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1644 VkPhysicalDeviceProtectedMemoryProperties *props =
1645 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1646 props->protectedNoFault = false;
1647 break;
1648 }
1649
1650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1651 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1652 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1653
1654 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1655 break;
1656 }
1657
1658 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1659 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1660 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1661 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1662 properties->filterMinmaxSingleComponentFormats = true;
1663 break;
1664 }
1665
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1667 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1668
1669 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1670
1671 VkShaderStageFlags scalar_stages = 0;
1672 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1673 if (pdevice->compiler->scalar_stage[stage])
1674 scalar_stages |= mesa_to_vk_shader_stage(stage);
1675 }
1676 properties->supportedStages = scalar_stages;
1677
1678 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1679 VK_SUBGROUP_FEATURE_VOTE_BIT |
1680 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1681 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1682 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1683 VK_SUBGROUP_FEATURE_QUAD_BIT;
1684 if (pdevice->info.gen >= 8) {
1685 /* TODO: There's no technical reason why these can't be made to
1686 * work on gen7 but they don't at the moment so it's best to leave
1687 * the feature disabled than enabled and broken.
1688 */
1689 properties->supportedOperations |=
1690 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1691 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1692 }
1693 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1694 break;
1695 }
1696
1697 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1698 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1699 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1700 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1701 props->minSubgroupSize = 8;
1702 props->maxSubgroupSize = 32;
1703 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1704 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1705 break;
1706 }
1707 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1708 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1709 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1710 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1711
1712 /* Broadwell does not support HF denorms and there are restrictions
1713 * other gens. According to Kabylake's PRM:
1714 *
1715 * "math - Extended Math Function
1716 * [...]
1717 * Restriction : Half-float denorms are always retained."
1718 */
1719 properties->shaderDenormFlushToZeroFloat16 = false;
1720 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1721 properties->shaderRoundingModeRTEFloat16 = true;
1722 properties->shaderRoundingModeRTZFloat16 = true;
1723 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1724
1725 properties->shaderDenormFlushToZeroFloat32 = true;
1726 properties->shaderDenormPreserveFloat32 = true;
1727 properties->shaderRoundingModeRTEFloat32 = true;
1728 properties->shaderRoundingModeRTZFloat32 = true;
1729 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1730
1731 properties->shaderDenormFlushToZeroFloat64 = true;
1732 properties->shaderDenormPreserveFloat64 = true;
1733 properties->shaderRoundingModeRTEFloat64 = true;
1734 properties->shaderRoundingModeRTZFloat64 = true;
1735 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1736 break;
1737 }
1738
1739 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1740 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1741 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1742
1743 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1744 * Base Address:
1745 *
1746 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1747 * specifies the base address of the first element of the surface,
1748 * computed in software by adding the surface base address to the
1749 * byte offset of the element in the buffer. The base address must
1750 * be aligned to element size."
1751 *
1752 * The typed dataport messages require that things be texel aligned.
1753 * Otherwise, we may just load/store the wrong data or, in the worst
1754 * case, there may be hangs.
1755 */
1756 props->storageTexelBufferOffsetAlignmentBytes = 16;
1757 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1758
1759 /* The sampler, however, is much more forgiving and it can handle
1760 * arbitrary byte alignment for linear and buffer surfaces. It's
1761 * hard to find a good PRM citation for this but years of empirical
1762 * experience demonstrate that this is true.
1763 */
1764 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1765 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1766 break;
1767 }
1768
1769 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1770 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1771 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1772
1773 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1774 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1775 props->maxTransformFeedbackBufferSize = (1ull << 32);
1776 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1777 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1778 props->maxTransformFeedbackBufferDataStride = 2048;
1779 props->transformFeedbackQueries = true;
1780 props->transformFeedbackStreamsLinesTriangles = false;
1781 props->transformFeedbackRasterizationStreamSelect = false;
1782 props->transformFeedbackDraw = true;
1783 break;
1784 }
1785
1786 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1787 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1788 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1789 /* We have to restrict this a bit for multiview */
1790 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1791 break;
1792 }
1793
1794 default:
1795 anv_debug_ignored_stype(ext->sType);
1796 break;
1797 }
1798 }
1799 }
1800
1801 /* We support exactly one queue family. */
1802 static const VkQueueFamilyProperties
1803 anv_queue_family_properties = {
1804 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1805 VK_QUEUE_COMPUTE_BIT |
1806 VK_QUEUE_TRANSFER_BIT,
1807 .queueCount = 1,
1808 .timestampValidBits = 36, /* XXX: Real value here */
1809 .minImageTransferGranularity = { 1, 1, 1 },
1810 };
1811
1812 void anv_GetPhysicalDeviceQueueFamilyProperties(
1813 VkPhysicalDevice physicalDevice,
1814 uint32_t* pCount,
1815 VkQueueFamilyProperties* pQueueFamilyProperties)
1816 {
1817 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1818
1819 vk_outarray_append(&out, p) {
1820 *p = anv_queue_family_properties;
1821 }
1822 }
1823
1824 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1825 VkPhysicalDevice physicalDevice,
1826 uint32_t* pQueueFamilyPropertyCount,
1827 VkQueueFamilyProperties2* pQueueFamilyProperties)
1828 {
1829
1830 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1831
1832 vk_outarray_append(&out, p) {
1833 p->queueFamilyProperties = anv_queue_family_properties;
1834
1835 vk_foreach_struct(s, p->pNext) {
1836 anv_debug_ignored_stype(s->sType);
1837 }
1838 }
1839 }
1840
1841 void anv_GetPhysicalDeviceMemoryProperties(
1842 VkPhysicalDevice physicalDevice,
1843 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1844 {
1845 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1846
1847 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1848 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1849 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1850 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1851 .heapIndex = physical_device->memory.types[i].heapIndex,
1852 };
1853 }
1854
1855 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1856 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1857 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1858 .size = physical_device->memory.heaps[i].size,
1859 .flags = physical_device->memory.heaps[i].flags,
1860 };
1861 }
1862 }
1863
1864 static void
1865 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1866 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1867 {
1868 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1869 uint64_t sys_available = get_available_system_memory();
1870 assert(sys_available > 0);
1871
1872 VkDeviceSize total_heaps_size = 0;
1873 for (size_t i = 0; i < device->memory.heap_count; i++)
1874 total_heaps_size += device->memory.heaps[i].size;
1875
1876 for (size_t i = 0; i < device->memory.heap_count; i++) {
1877 VkDeviceSize heap_size = device->memory.heaps[i].size;
1878 VkDeviceSize heap_used = device->memory.heaps[i].used;
1879 VkDeviceSize heap_budget;
1880
1881 double heap_proportion = (double) heap_size / total_heaps_size;
1882 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1883
1884 /*
1885 * Let's not incite the app to starve the system: report at most 90% of
1886 * available system memory.
1887 */
1888 uint64_t heap_available = sys_available_prop * 9 / 10;
1889 heap_budget = MIN2(heap_size, heap_used + heap_available);
1890
1891 /*
1892 * Round down to the nearest MB
1893 */
1894 heap_budget &= ~((1ull << 20) - 1);
1895
1896 /*
1897 * The heapBudget value must be non-zero for array elements less than
1898 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1899 * value must be less than or equal to VkMemoryHeap::size for each heap.
1900 */
1901 assert(0 < heap_budget && heap_budget <= heap_size);
1902
1903 memoryBudget->heapUsage[i] = heap_used;
1904 memoryBudget->heapBudget[i] = heap_budget;
1905 }
1906
1907 /* The heapBudget and heapUsage values must be zero for array elements
1908 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1909 */
1910 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1911 memoryBudget->heapBudget[i] = 0;
1912 memoryBudget->heapUsage[i] = 0;
1913 }
1914 }
1915
1916 void anv_GetPhysicalDeviceMemoryProperties2(
1917 VkPhysicalDevice physicalDevice,
1918 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1919 {
1920 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1921 &pMemoryProperties->memoryProperties);
1922
1923 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1924 switch (ext->sType) {
1925 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1926 anv_get_memory_budget(physicalDevice, (void*)ext);
1927 break;
1928 default:
1929 anv_debug_ignored_stype(ext->sType);
1930 break;
1931 }
1932 }
1933 }
1934
1935 void
1936 anv_GetDeviceGroupPeerMemoryFeatures(
1937 VkDevice device,
1938 uint32_t heapIndex,
1939 uint32_t localDeviceIndex,
1940 uint32_t remoteDeviceIndex,
1941 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1942 {
1943 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1944 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1945 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1946 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1947 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1948 }
1949
1950 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1951 VkInstance _instance,
1952 const char* pName)
1953 {
1954 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1955
1956 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1957 * when we have to return valid function pointers, NULL, or it's left
1958 * undefined. See the table for exact details.
1959 */
1960 if (pName == NULL)
1961 return NULL;
1962
1963 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1964 if (strcmp(pName, "vk" #entrypoint) == 0) \
1965 return (PFN_vkVoidFunction)anv_##entrypoint
1966
1967 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1968 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1969 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1970 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1971
1972 #undef LOOKUP_ANV_ENTRYPOINT
1973
1974 if (instance == NULL)
1975 return NULL;
1976
1977 int idx = anv_get_instance_entrypoint_index(pName);
1978 if (idx >= 0)
1979 return instance->dispatch.entrypoints[idx];
1980
1981 idx = anv_get_physical_device_entrypoint_index(pName);
1982 if (idx >= 0)
1983 return instance->physicalDevice.dispatch.entrypoints[idx];
1984
1985 idx = anv_get_device_entrypoint_index(pName);
1986 if (idx >= 0)
1987 return instance->device_dispatch.entrypoints[idx];
1988
1989 return NULL;
1990 }
1991
1992 /* With version 1+ of the loader interface the ICD should expose
1993 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1994 */
1995 PUBLIC
1996 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1997 VkInstance instance,
1998 const char* pName);
1999
2000 PUBLIC
2001 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2002 VkInstance instance,
2003 const char* pName)
2004 {
2005 return anv_GetInstanceProcAddr(instance, pName);
2006 }
2007
2008 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2009 VkDevice _device,
2010 const char* pName)
2011 {
2012 ANV_FROM_HANDLE(anv_device, device, _device);
2013
2014 if (!device || !pName)
2015 return NULL;
2016
2017 int idx = anv_get_device_entrypoint_index(pName);
2018 if (idx < 0)
2019 return NULL;
2020
2021 return device->dispatch.entrypoints[idx];
2022 }
2023
2024 /* With version 4+ of the loader interface the ICD should expose
2025 * vk_icdGetPhysicalDeviceProcAddr()
2026 */
2027 PUBLIC
2028 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2029 VkInstance _instance,
2030 const char* pName);
2031
2032 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2033 VkInstance _instance,
2034 const char* pName)
2035 {
2036 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2037
2038 if (!pName || !instance)
2039 return NULL;
2040
2041 int idx = anv_get_physical_device_entrypoint_index(pName);
2042 if (idx < 0)
2043 return NULL;
2044
2045 return instance->physicalDevice.dispatch.entrypoints[idx];
2046 }
2047
2048
2049 VkResult
2050 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2051 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2052 const VkAllocationCallbacks* pAllocator,
2053 VkDebugReportCallbackEXT* pCallback)
2054 {
2055 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2056 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2057 pCreateInfo, pAllocator, &instance->alloc,
2058 pCallback);
2059 }
2060
2061 void
2062 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2063 VkDebugReportCallbackEXT _callback,
2064 const VkAllocationCallbacks* pAllocator)
2065 {
2066 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2067 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2068 _callback, pAllocator, &instance->alloc);
2069 }
2070
2071 void
2072 anv_DebugReportMessageEXT(VkInstance _instance,
2073 VkDebugReportFlagsEXT flags,
2074 VkDebugReportObjectTypeEXT objectType,
2075 uint64_t object,
2076 size_t location,
2077 int32_t messageCode,
2078 const char* pLayerPrefix,
2079 const char* pMessage)
2080 {
2081 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2082 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2083 object, location, messageCode, pLayerPrefix, pMessage);
2084 }
2085
2086 static void
2087 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2088 {
2089 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2090 queue->device = device;
2091 queue->flags = 0;
2092 }
2093
2094 static void
2095 anv_queue_finish(struct anv_queue *queue)
2096 {
2097 }
2098
2099 static struct anv_state
2100 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2101 {
2102 struct anv_state state;
2103
2104 state = anv_state_pool_alloc(pool, size, align);
2105 memcpy(state.map, p, size);
2106
2107 return state;
2108 }
2109
2110 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2111 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2112 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2113 * color as a separate entry /after/ the float color. The layout of this entry
2114 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2115 *
2116 * Since we don't know the format/bpp, we can't make any of the border colors
2117 * containing '1' work for all formats, as it would be in the wrong place for
2118 * some of them. We opt to make 32-bit integers work as this seems like the
2119 * most common option. Fortunately, transparent black works regardless, as
2120 * all zeroes is the same in every bit-size.
2121 */
2122 struct hsw_border_color {
2123 float float32[4];
2124 uint32_t _pad0[12];
2125 uint32_t uint32[4];
2126 uint32_t _pad1[108];
2127 };
2128
2129 struct gen8_border_color {
2130 union {
2131 float float32[4];
2132 uint32_t uint32[4];
2133 };
2134 /* Pad out to 64 bytes */
2135 uint32_t _pad[12];
2136 };
2137
2138 static void
2139 anv_device_init_border_colors(struct anv_device *device)
2140 {
2141 if (device->info.is_haswell) {
2142 static const struct hsw_border_color border_colors[] = {
2143 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2144 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2145 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2146 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2147 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2148 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2149 };
2150
2151 device->border_colors =
2152 anv_state_pool_emit_data(&device->dynamic_state_pool,
2153 sizeof(border_colors), 512, border_colors);
2154 } else {
2155 static const struct gen8_border_color border_colors[] = {
2156 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2157 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2158 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2159 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2160 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2161 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2162 };
2163
2164 device->border_colors =
2165 anv_state_pool_emit_data(&device->dynamic_state_pool,
2166 sizeof(border_colors), 64, border_colors);
2167 }
2168 }
2169
2170 static void
2171 anv_device_init_trivial_batch(struct anv_device *device)
2172 {
2173 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2174
2175 if (device->instance->physicalDevice.has_exec_async)
2176 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2177
2178 if (device->instance->physicalDevice.use_softpin)
2179 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2180
2181 anv_vma_alloc(device, &device->trivial_batch_bo);
2182
2183 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2184 0, 4096, 0);
2185
2186 struct anv_batch batch = {
2187 .start = map,
2188 .next = map,
2189 .end = map + 4096,
2190 };
2191
2192 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2193 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2194
2195 if (!device->info.has_llc)
2196 gen_clflush_range(map, batch.next - map);
2197
2198 anv_gem_munmap(map, device->trivial_batch_bo.size);
2199 }
2200
2201 VkResult anv_EnumerateDeviceExtensionProperties(
2202 VkPhysicalDevice physicalDevice,
2203 const char* pLayerName,
2204 uint32_t* pPropertyCount,
2205 VkExtensionProperties* pProperties)
2206 {
2207 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2208 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2209
2210 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2211 if (device->supported_extensions.extensions[i]) {
2212 vk_outarray_append(&out, prop) {
2213 *prop = anv_device_extensions[i];
2214 }
2215 }
2216 }
2217
2218 return vk_outarray_status(&out);
2219 }
2220
2221 static void
2222 anv_device_init_dispatch(struct anv_device *device)
2223 {
2224 const struct anv_device_dispatch_table *genX_table;
2225 switch (device->info.gen) {
2226 case 12:
2227 genX_table = &gen12_device_dispatch_table;
2228 break;
2229 case 11:
2230 genX_table = &gen11_device_dispatch_table;
2231 break;
2232 case 10:
2233 genX_table = &gen10_device_dispatch_table;
2234 break;
2235 case 9:
2236 genX_table = &gen9_device_dispatch_table;
2237 break;
2238 case 8:
2239 genX_table = &gen8_device_dispatch_table;
2240 break;
2241 case 7:
2242 if (device->info.is_haswell)
2243 genX_table = &gen75_device_dispatch_table;
2244 else
2245 genX_table = &gen7_device_dispatch_table;
2246 break;
2247 default:
2248 unreachable("unsupported gen\n");
2249 }
2250
2251 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2252 /* Vulkan requires that entrypoints for extensions which have not been
2253 * enabled must not be advertised.
2254 */
2255 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2256 &device->instance->enabled_extensions,
2257 &device->enabled_extensions)) {
2258 device->dispatch.entrypoints[i] = NULL;
2259 } else if (genX_table->entrypoints[i]) {
2260 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2261 } else {
2262 device->dispatch.entrypoints[i] =
2263 anv_device_dispatch_table.entrypoints[i];
2264 }
2265 }
2266 }
2267
2268 static int
2269 vk_priority_to_gen(int priority)
2270 {
2271 switch (priority) {
2272 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2273 return GEN_CONTEXT_LOW_PRIORITY;
2274 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2275 return GEN_CONTEXT_MEDIUM_PRIORITY;
2276 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2277 return GEN_CONTEXT_HIGH_PRIORITY;
2278 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2279 return GEN_CONTEXT_REALTIME_PRIORITY;
2280 default:
2281 unreachable("Invalid priority");
2282 }
2283 }
2284
2285 static void
2286 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2287 {
2288 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2289
2290 if (device->instance->physicalDevice.has_exec_async)
2291 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2292
2293 if (device->instance->physicalDevice.use_softpin)
2294 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2295
2296 anv_vma_alloc(device, &device->hiz_clear_bo);
2297
2298 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2299 0, 4096, 0);
2300
2301 union isl_color_value hiz_clear = { .u32 = { 0, } };
2302 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2303
2304 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2305 anv_gem_munmap(map, device->hiz_clear_bo.size);
2306 }
2307
2308 static bool
2309 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2310 struct anv_block_pool *pool,
2311 uint64_t address)
2312 {
2313 for (uint32_t i = 0; i < pool->nbos; i++) {
2314 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2315 uint32_t bo_size = pool->bos[i].size;
2316 if (address >= bo_address && address < (bo_address + bo_size)) {
2317 *ret = (struct gen_batch_decode_bo) {
2318 .addr = bo_address,
2319 .size = bo_size,
2320 .map = pool->bos[i].map,
2321 };
2322 return true;
2323 }
2324 }
2325 return false;
2326 }
2327
2328 /* Finding a buffer for batch decoding */
2329 static struct gen_batch_decode_bo
2330 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2331 {
2332 struct anv_device *device = v_batch;
2333 struct gen_batch_decode_bo ret_bo = {};
2334
2335 assert(ppgtt);
2336
2337 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2338 return ret_bo;
2339 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2340 return ret_bo;
2341 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2342 return ret_bo;
2343 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2344 return ret_bo;
2345
2346 if (!device->cmd_buffer_being_decoded)
2347 return (struct gen_batch_decode_bo) { };
2348
2349 struct anv_batch_bo **bo;
2350
2351 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2352 /* The decoder zeroes out the top 16 bits, so we need to as well */
2353 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2354
2355 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2356 return (struct gen_batch_decode_bo) {
2357 .addr = bo_address,
2358 .size = (*bo)->bo.size,
2359 .map = (*bo)->bo.map,
2360 };
2361 }
2362 }
2363
2364 return (struct gen_batch_decode_bo) { };
2365 }
2366
2367 VkResult anv_CreateDevice(
2368 VkPhysicalDevice physicalDevice,
2369 const VkDeviceCreateInfo* pCreateInfo,
2370 const VkAllocationCallbacks* pAllocator,
2371 VkDevice* pDevice)
2372 {
2373 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2374 VkResult result;
2375 struct anv_device *device;
2376
2377 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2378
2379 struct anv_device_extension_table enabled_extensions = { };
2380 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2381 int idx;
2382 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2383 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2384 anv_device_extensions[idx].extensionName) == 0)
2385 break;
2386 }
2387
2388 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2389 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2390
2391 if (!physical_device->supported_extensions.extensions[idx])
2392 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2393
2394 enabled_extensions.extensions[idx] = true;
2395 }
2396
2397 /* Check enabled features */
2398 if (pCreateInfo->pEnabledFeatures) {
2399 VkPhysicalDeviceFeatures supported_features;
2400 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2401 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2402 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2403 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2404 for (uint32_t i = 0; i < num_features; i++) {
2405 if (enabled_feature[i] && !supported_feature[i])
2406 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2407 }
2408 }
2409
2410 /* Check requested queues and fail if we are requested to create any
2411 * queues with flags we don't support.
2412 */
2413 assert(pCreateInfo->queueCreateInfoCount > 0);
2414 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2415 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2416 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2417 }
2418
2419 /* Check if client specified queue priority. */
2420 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2421 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2422 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2423
2424 VkQueueGlobalPriorityEXT priority =
2425 queue_priority ? queue_priority->globalPriority :
2426 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2427
2428 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2429 sizeof(*device), 8,
2430 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2431 if (!device)
2432 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2433
2434 if (INTEL_DEBUG & DEBUG_BATCH) {
2435 const unsigned decode_flags =
2436 GEN_BATCH_DECODE_FULL |
2437 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2438 GEN_BATCH_DECODE_OFFSETS |
2439 GEN_BATCH_DECODE_FLOATS;
2440
2441 gen_batch_decode_ctx_init(&device->decoder_ctx,
2442 &physical_device->info,
2443 stderr, decode_flags, NULL,
2444 decode_get_bo, NULL, device);
2445 }
2446
2447 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2448 device->instance = physical_device->instance;
2449 device->chipset_id = physical_device->chipset_id;
2450 device->no_hw = physical_device->no_hw;
2451 device->_lost = false;
2452
2453 if (pAllocator)
2454 device->alloc = *pAllocator;
2455 else
2456 device->alloc = physical_device->instance->alloc;
2457
2458 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2459 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2460 if (device->fd == -1) {
2461 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2462 goto fail_device;
2463 }
2464
2465 device->context_id = anv_gem_create_context(device);
2466 if (device->context_id == -1) {
2467 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2468 goto fail_fd;
2469 }
2470
2471 if (physical_device->use_softpin) {
2472 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2473 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2474 goto fail_fd;
2475 }
2476
2477 /* keep the page with address zero out of the allocator */
2478 struct anv_memory_heap *low_heap =
2479 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2480 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2481 device->vma_lo_available = low_heap->size;
2482
2483 struct anv_memory_heap *high_heap =
2484 &physical_device->memory.heaps[0];
2485 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2486 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2487 high_heap->size;
2488 }
2489
2490 list_inithead(&device->memory_objects);
2491
2492 /* As per spec, the driver implementation may deny requests to acquire
2493 * a priority above the default priority (MEDIUM) if the caller does not
2494 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2495 * is returned.
2496 */
2497 if (physical_device->has_context_priority) {
2498 int err = anv_gem_set_context_param(device->fd, device->context_id,
2499 I915_CONTEXT_PARAM_PRIORITY,
2500 vk_priority_to_gen(priority));
2501 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2502 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2503 goto fail_fd;
2504 }
2505 }
2506
2507 device->info = physical_device->info;
2508 device->isl_dev = physical_device->isl_dev;
2509
2510 /* On Broadwell and later, we can use batch chaining to more efficiently
2511 * implement growing command buffers. Prior to Haswell, the kernel
2512 * command parser gets in the way and we have to fall back to growing
2513 * the batch.
2514 */
2515 device->can_chain_batches = device->info.gen >= 8;
2516
2517 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2518 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2519 device->enabled_extensions = enabled_extensions;
2520
2521 anv_device_init_dispatch(device);
2522
2523 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2524 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2525 goto fail_context_id;
2526 }
2527
2528 pthread_condattr_t condattr;
2529 if (pthread_condattr_init(&condattr) != 0) {
2530 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2531 goto fail_mutex;
2532 }
2533 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2534 pthread_condattr_destroy(&condattr);
2535 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2536 goto fail_mutex;
2537 }
2538 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2539 pthread_condattr_destroy(&condattr);
2540 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2541 goto fail_mutex;
2542 }
2543 pthread_condattr_destroy(&condattr);
2544
2545 uint64_t bo_flags =
2546 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2547 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2548 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2549 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2550
2551 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2552
2553 result = anv_bo_cache_init(&device->bo_cache);
2554 if (result != VK_SUCCESS)
2555 goto fail_batch_bo_pool;
2556
2557 if (!physical_device->use_softpin)
2558 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2559
2560 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2561 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2562 16384,
2563 bo_flags);
2564 if (result != VK_SUCCESS)
2565 goto fail_bo_cache;
2566
2567 result = anv_state_pool_init(&device->instruction_state_pool, device,
2568 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2569 16384,
2570 bo_flags);
2571 if (result != VK_SUCCESS)
2572 goto fail_dynamic_state_pool;
2573
2574 result = anv_state_pool_init(&device->surface_state_pool, device,
2575 SURFACE_STATE_POOL_MIN_ADDRESS,
2576 4096,
2577 bo_flags);
2578 if (result != VK_SUCCESS)
2579 goto fail_instruction_state_pool;
2580
2581 if (physical_device->use_softpin) {
2582 result = anv_state_pool_init(&device->binding_table_pool, device,
2583 BINDING_TABLE_POOL_MIN_ADDRESS,
2584 4096,
2585 bo_flags);
2586 if (result != VK_SUCCESS)
2587 goto fail_surface_state_pool;
2588 }
2589
2590 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2591 if (result != VK_SUCCESS)
2592 goto fail_binding_table_pool;
2593
2594 if (physical_device->use_softpin)
2595 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2596
2597 if (!anv_vma_alloc(device, &device->workaround_bo))
2598 goto fail_workaround_bo;
2599
2600 anv_device_init_trivial_batch(device);
2601
2602 if (device->info.gen >= 10)
2603 anv_device_init_hiz_clear_value_bo(device);
2604
2605 anv_scratch_pool_init(device, &device->scratch_pool);
2606
2607 anv_queue_init(device, &device->queue);
2608
2609 switch (device->info.gen) {
2610 case 7:
2611 if (!device->info.is_haswell)
2612 result = gen7_init_device_state(device);
2613 else
2614 result = gen75_init_device_state(device);
2615 break;
2616 case 8:
2617 result = gen8_init_device_state(device);
2618 break;
2619 case 9:
2620 result = gen9_init_device_state(device);
2621 break;
2622 case 10:
2623 result = gen10_init_device_state(device);
2624 break;
2625 case 11:
2626 result = gen11_init_device_state(device);
2627 break;
2628 case 12:
2629 result = gen12_init_device_state(device);
2630 break;
2631 default:
2632 /* Shouldn't get here as we don't create physical devices for any other
2633 * gens. */
2634 unreachable("unhandled gen");
2635 }
2636 if (result != VK_SUCCESS)
2637 goto fail_workaround_bo;
2638
2639 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2640
2641 anv_device_init_blorp(device);
2642
2643 anv_device_init_border_colors(device);
2644
2645 *pDevice = anv_device_to_handle(device);
2646
2647 return VK_SUCCESS;
2648
2649 fail_workaround_bo:
2650 anv_queue_finish(&device->queue);
2651 anv_scratch_pool_finish(device, &device->scratch_pool);
2652 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2653 anv_gem_close(device, device->workaround_bo.gem_handle);
2654 fail_binding_table_pool:
2655 if (physical_device->use_softpin)
2656 anv_state_pool_finish(&device->binding_table_pool);
2657 fail_surface_state_pool:
2658 anv_state_pool_finish(&device->surface_state_pool);
2659 fail_instruction_state_pool:
2660 anv_state_pool_finish(&device->instruction_state_pool);
2661 fail_dynamic_state_pool:
2662 anv_state_pool_finish(&device->dynamic_state_pool);
2663 fail_bo_cache:
2664 anv_bo_cache_finish(&device->bo_cache);
2665 fail_batch_bo_pool:
2666 anv_bo_pool_finish(&device->batch_bo_pool);
2667 pthread_cond_destroy(&device->queue_submit);
2668 fail_mutex:
2669 pthread_mutex_destroy(&device->mutex);
2670 fail_context_id:
2671 anv_gem_destroy_context(device, device->context_id);
2672 fail_fd:
2673 close(device->fd);
2674 fail_device:
2675 vk_free(&device->alloc, device);
2676
2677 return result;
2678 }
2679
2680 void anv_DestroyDevice(
2681 VkDevice _device,
2682 const VkAllocationCallbacks* pAllocator)
2683 {
2684 ANV_FROM_HANDLE(anv_device, device, _device);
2685 struct anv_physical_device *physical_device;
2686
2687 if (!device)
2688 return;
2689
2690 physical_device = &device->instance->physicalDevice;
2691
2692 anv_device_finish_blorp(device);
2693
2694 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2695
2696 anv_queue_finish(&device->queue);
2697
2698 #ifdef HAVE_VALGRIND
2699 /* We only need to free these to prevent valgrind errors. The backing
2700 * BO will go away in a couple of lines so we don't actually leak.
2701 */
2702 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2703 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2704 #endif
2705
2706 anv_scratch_pool_finish(device, &device->scratch_pool);
2707
2708 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2709 anv_vma_free(device, &device->workaround_bo);
2710 anv_gem_close(device, device->workaround_bo.gem_handle);
2711
2712 anv_vma_free(device, &device->trivial_batch_bo);
2713 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2714 if (device->info.gen >= 10)
2715 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2716
2717 if (physical_device->use_softpin)
2718 anv_state_pool_finish(&device->binding_table_pool);
2719 anv_state_pool_finish(&device->surface_state_pool);
2720 anv_state_pool_finish(&device->instruction_state_pool);
2721 anv_state_pool_finish(&device->dynamic_state_pool);
2722
2723 anv_bo_cache_finish(&device->bo_cache);
2724
2725 anv_bo_pool_finish(&device->batch_bo_pool);
2726
2727 pthread_cond_destroy(&device->queue_submit);
2728 pthread_mutex_destroy(&device->mutex);
2729
2730 anv_gem_destroy_context(device, device->context_id);
2731
2732 if (INTEL_DEBUG & DEBUG_BATCH)
2733 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2734
2735 close(device->fd);
2736
2737 vk_free(&device->alloc, device);
2738 }
2739
2740 VkResult anv_EnumerateInstanceLayerProperties(
2741 uint32_t* pPropertyCount,
2742 VkLayerProperties* pProperties)
2743 {
2744 if (pProperties == NULL) {
2745 *pPropertyCount = 0;
2746 return VK_SUCCESS;
2747 }
2748
2749 /* None supported at this time */
2750 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2751 }
2752
2753 VkResult anv_EnumerateDeviceLayerProperties(
2754 VkPhysicalDevice physicalDevice,
2755 uint32_t* pPropertyCount,
2756 VkLayerProperties* pProperties)
2757 {
2758 if (pProperties == NULL) {
2759 *pPropertyCount = 0;
2760 return VK_SUCCESS;
2761 }
2762
2763 /* None supported at this time */
2764 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2765 }
2766
2767 void anv_GetDeviceQueue(
2768 VkDevice _device,
2769 uint32_t queueNodeIndex,
2770 uint32_t queueIndex,
2771 VkQueue* pQueue)
2772 {
2773 ANV_FROM_HANDLE(anv_device, device, _device);
2774
2775 assert(queueIndex == 0);
2776
2777 *pQueue = anv_queue_to_handle(&device->queue);
2778 }
2779
2780 void anv_GetDeviceQueue2(
2781 VkDevice _device,
2782 const VkDeviceQueueInfo2* pQueueInfo,
2783 VkQueue* pQueue)
2784 {
2785 ANV_FROM_HANDLE(anv_device, device, _device);
2786
2787 assert(pQueueInfo->queueIndex == 0);
2788
2789 if (pQueueInfo->flags == device->queue.flags)
2790 *pQueue = anv_queue_to_handle(&device->queue);
2791 else
2792 *pQueue = NULL;
2793 }
2794
2795 VkResult
2796 _anv_device_set_lost(struct anv_device *device,
2797 const char *file, int line,
2798 const char *msg, ...)
2799 {
2800 VkResult err;
2801 va_list ap;
2802
2803 device->_lost = true;
2804
2805 va_start(ap, msg);
2806 err = __vk_errorv(device->instance, device,
2807 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2808 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2809 va_end(ap);
2810
2811 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2812 abort();
2813
2814 return err;
2815 }
2816
2817 VkResult
2818 anv_device_query_status(struct anv_device *device)
2819 {
2820 /* This isn't likely as most of the callers of this function already check
2821 * for it. However, it doesn't hurt to check and it potentially lets us
2822 * avoid an ioctl.
2823 */
2824 if (anv_device_is_lost(device))
2825 return VK_ERROR_DEVICE_LOST;
2826
2827 uint32_t active, pending;
2828 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2829 if (ret == -1) {
2830 /* We don't know the real error. */
2831 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2832 }
2833
2834 if (active) {
2835 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2836 } else if (pending) {
2837 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2838 }
2839
2840 return VK_SUCCESS;
2841 }
2842
2843 VkResult
2844 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2845 {
2846 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2847 * Other usages of the BO (such as on different hardware) will not be
2848 * flagged as "busy" by this ioctl. Use with care.
2849 */
2850 int ret = anv_gem_busy(device, bo->gem_handle);
2851 if (ret == 1) {
2852 return VK_NOT_READY;
2853 } else if (ret == -1) {
2854 /* We don't know the real error. */
2855 return anv_device_set_lost(device, "gem wait failed: %m");
2856 }
2857
2858 /* Query for device status after the busy call. If the BO we're checking
2859 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2860 * client because it clearly doesn't have valid data. Yes, this most
2861 * likely means an ioctl, but we just did an ioctl to query the busy status
2862 * so it's no great loss.
2863 */
2864 return anv_device_query_status(device);
2865 }
2866
2867 VkResult
2868 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2869 int64_t timeout)
2870 {
2871 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2872 if (ret == -1 && errno == ETIME) {
2873 return VK_TIMEOUT;
2874 } else if (ret == -1) {
2875 /* We don't know the real error. */
2876 return anv_device_set_lost(device, "gem wait failed: %m");
2877 }
2878
2879 /* Query for device status after the wait. If the BO we're waiting on got
2880 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2881 * because it clearly doesn't have valid data. Yes, this most likely means
2882 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2883 */
2884 return anv_device_query_status(device);
2885 }
2886
2887 VkResult anv_DeviceWaitIdle(
2888 VkDevice _device)
2889 {
2890 ANV_FROM_HANDLE(anv_device, device, _device);
2891 if (anv_device_is_lost(device))
2892 return VK_ERROR_DEVICE_LOST;
2893
2894 struct anv_batch batch;
2895
2896 uint32_t cmds[8];
2897 batch.start = batch.next = cmds;
2898 batch.end = (void *) cmds + sizeof(cmds);
2899
2900 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2901 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2902
2903 return anv_device_submit_simple_batch(device, &batch);
2904 }
2905
2906 bool
2907 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2908 {
2909 if (!(bo->flags & EXEC_OBJECT_PINNED))
2910 return true;
2911
2912 pthread_mutex_lock(&device->vma_mutex);
2913
2914 bo->offset = 0;
2915
2916 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2917 device->vma_hi_available >= bo->size) {
2918 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2919 if (addr) {
2920 bo->offset = gen_canonical_address(addr);
2921 assert(addr == gen_48b_address(bo->offset));
2922 device->vma_hi_available -= bo->size;
2923 }
2924 }
2925
2926 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2927 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2928 if (addr) {
2929 bo->offset = gen_canonical_address(addr);
2930 assert(addr == gen_48b_address(bo->offset));
2931 device->vma_lo_available -= bo->size;
2932 }
2933 }
2934
2935 pthread_mutex_unlock(&device->vma_mutex);
2936
2937 return bo->offset != 0;
2938 }
2939
2940 void
2941 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2942 {
2943 if (!(bo->flags & EXEC_OBJECT_PINNED))
2944 return;
2945
2946 const uint64_t addr_48b = gen_48b_address(bo->offset);
2947
2948 pthread_mutex_lock(&device->vma_mutex);
2949
2950 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2951 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2952 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2953 device->vma_lo_available += bo->size;
2954 } else {
2955 ASSERTED const struct anv_physical_device *physical_device =
2956 &device->instance->physicalDevice;
2957 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2958 addr_48b < (physical_device->memory.heaps[0].vma_start +
2959 physical_device->memory.heaps[0].vma_size));
2960 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2961 device->vma_hi_available += bo->size;
2962 }
2963
2964 pthread_mutex_unlock(&device->vma_mutex);
2965
2966 bo->offset = 0;
2967 }
2968
2969 VkResult
2970 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2971 {
2972 uint32_t gem_handle = anv_gem_create(device, size);
2973 if (!gem_handle)
2974 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2975
2976 anv_bo_init(bo, gem_handle, size);
2977
2978 return VK_SUCCESS;
2979 }
2980
2981 VkResult anv_AllocateMemory(
2982 VkDevice _device,
2983 const VkMemoryAllocateInfo* pAllocateInfo,
2984 const VkAllocationCallbacks* pAllocator,
2985 VkDeviceMemory* pMem)
2986 {
2987 ANV_FROM_HANDLE(anv_device, device, _device);
2988 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2989 struct anv_device_memory *mem;
2990 VkResult result = VK_SUCCESS;
2991
2992 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2993
2994 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2995 assert(pAllocateInfo->allocationSize > 0);
2996
2997 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2998 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2999
3000 /* FINISHME: Fail if allocation request exceeds heap size. */
3001
3002 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3003 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3004 if (mem == NULL)
3005 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3006
3007 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3008 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3009 mem->map = NULL;
3010 mem->map_size = 0;
3011 mem->ahw = NULL;
3012 mem->host_ptr = NULL;
3013
3014 uint64_t bo_flags = 0;
3015
3016 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3017 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3018 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3019
3020 const struct wsi_memory_allocate_info *wsi_info =
3021 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3022 if (wsi_info && wsi_info->implicit_sync) {
3023 /* We need to set the WRITE flag on window system buffers so that GEM
3024 * will know we're writing to them and synchronize uses on other rings
3025 * (eg if the display server uses the blitter ring).
3026 */
3027 bo_flags |= EXEC_OBJECT_WRITE;
3028 } else if (pdevice->has_exec_async) {
3029 bo_flags |= EXEC_OBJECT_ASYNC;
3030 }
3031
3032 if (pdevice->use_softpin)
3033 bo_flags |= EXEC_OBJECT_PINNED;
3034
3035 const VkExportMemoryAllocateInfo *export_info =
3036 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3037
3038 /* Check if we need to support Android HW buffer export. If so,
3039 * create AHardwareBuffer and import memory from it.
3040 */
3041 bool android_export = false;
3042 if (export_info && export_info->handleTypes &
3043 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3044 android_export = true;
3045
3046 /* Android memory import. */
3047 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3048 vk_find_struct_const(pAllocateInfo->pNext,
3049 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3050
3051 if (ahw_import_info) {
3052 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3053 if (result != VK_SUCCESS)
3054 goto fail;
3055
3056 goto success;
3057 } else if (android_export) {
3058 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3059 if (result != VK_SUCCESS)
3060 goto fail;
3061
3062 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3063 .buffer = mem->ahw,
3064 };
3065 result = anv_import_ahw_memory(_device, mem, &import_info);
3066 if (result != VK_SUCCESS)
3067 goto fail;
3068
3069 goto success;
3070 }
3071
3072 const VkImportMemoryFdInfoKHR *fd_info =
3073 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3074
3075 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3076 * ignored.
3077 */
3078 if (fd_info && fd_info->handleType) {
3079 /* At the moment, we support only the below handle types. */
3080 assert(fd_info->handleType ==
3081 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3082 fd_info->handleType ==
3083 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3084
3085 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3086 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3087 if (result != VK_SUCCESS)
3088 goto fail;
3089
3090 VkDeviceSize aligned_alloc_size =
3091 align_u64(pAllocateInfo->allocationSize, 4096);
3092
3093 /* For security purposes, we reject importing the bo if it's smaller
3094 * than the requested allocation size. This prevents a malicious client
3095 * from passing a buffer to a trusted client, lying about the size, and
3096 * telling the trusted client to try and texture from an image that goes
3097 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3098 * in the trusted client. The trusted client can protect itself against
3099 * this sort of attack but only if it can trust the buffer size.
3100 */
3101 if (mem->bo->size < aligned_alloc_size) {
3102 result = vk_errorf(device->instance, device,
3103 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3104 "aligned allocationSize too large for "
3105 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3106 "%"PRIu64"B > %"PRIu64"B",
3107 aligned_alloc_size, mem->bo->size);
3108 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3109 goto fail;
3110 }
3111
3112 /* From the Vulkan spec:
3113 *
3114 * "Importing memory from a file descriptor transfers ownership of
3115 * the file descriptor from the application to the Vulkan
3116 * implementation. The application must not perform any operations on
3117 * the file descriptor after a successful import."
3118 *
3119 * If the import fails, we leave the file descriptor open.
3120 */
3121 close(fd_info->fd);
3122 goto success;
3123 }
3124
3125 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3126 vk_find_struct_const(pAllocateInfo->pNext,
3127 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3128 if (host_ptr_info && host_ptr_info->handleType) {
3129 if (host_ptr_info->handleType ==
3130 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3131 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3132 goto fail;
3133 }
3134
3135 assert(host_ptr_info->handleType ==
3136 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3137
3138 result = anv_bo_cache_import_host_ptr(
3139 device, &device->bo_cache, host_ptr_info->pHostPointer,
3140 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3141
3142 if (result != VK_SUCCESS)
3143 goto fail;
3144
3145 mem->host_ptr = host_ptr_info->pHostPointer;
3146 goto success;
3147 }
3148
3149 /* Regular allocate (not importing memory). */
3150
3151 if (export_info && export_info->handleTypes)
3152 bo_flags |= ANV_BO_EXTERNAL;
3153
3154 result = anv_bo_cache_alloc(device, &device->bo_cache,
3155 pAllocateInfo->allocationSize, bo_flags,
3156 &mem->bo);
3157 if (result != VK_SUCCESS)
3158 goto fail;
3159
3160 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3161 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3162 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3163 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3164
3165 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3166 * the BO. In this case, we have a dedicated allocation.
3167 */
3168 if (image->needs_set_tiling) {
3169 const uint32_t i915_tiling =
3170 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3171 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3172 image->planes[0].surface.isl.row_pitch_B,
3173 i915_tiling);
3174 if (ret) {
3175 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3176 return vk_errorf(device->instance, NULL,
3177 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3178 "failed to set BO tiling: %m");
3179 }
3180 }
3181 }
3182
3183 success:
3184 pthread_mutex_lock(&device->mutex);
3185 list_addtail(&mem->link, &device->memory_objects);
3186 pthread_mutex_unlock(&device->mutex);
3187
3188 *pMem = anv_device_memory_to_handle(mem);
3189
3190 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3191 mem->bo->size);
3192
3193 return VK_SUCCESS;
3194
3195 fail:
3196 vk_free2(&device->alloc, pAllocator, mem);
3197
3198 return result;
3199 }
3200
3201 VkResult anv_GetMemoryFdKHR(
3202 VkDevice device_h,
3203 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3204 int* pFd)
3205 {
3206 ANV_FROM_HANDLE(anv_device, dev, device_h);
3207 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3208
3209 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3210
3211 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3212 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3213
3214 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3215 }
3216
3217 VkResult anv_GetMemoryFdPropertiesKHR(
3218 VkDevice _device,
3219 VkExternalMemoryHandleTypeFlagBits handleType,
3220 int fd,
3221 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3222 {
3223 ANV_FROM_HANDLE(anv_device, device, _device);
3224 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3225
3226 switch (handleType) {
3227 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3228 /* dma-buf can be imported as any memory type */
3229 pMemoryFdProperties->memoryTypeBits =
3230 (1 << pdevice->memory.type_count) - 1;
3231 return VK_SUCCESS;
3232
3233 default:
3234 /* The valid usage section for this function says:
3235 *
3236 * "handleType must not be one of the handle types defined as
3237 * opaque."
3238 *
3239 * So opaque handle types fall into the default "unsupported" case.
3240 */
3241 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3242 }
3243 }
3244
3245 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3246 VkDevice _device,
3247 VkExternalMemoryHandleTypeFlagBits handleType,
3248 const void* pHostPointer,
3249 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3250 {
3251 ANV_FROM_HANDLE(anv_device, device, _device);
3252
3253 assert(pMemoryHostPointerProperties->sType ==
3254 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3255
3256 switch (handleType) {
3257 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3258 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3259
3260 /* Host memory can be imported as any memory type. */
3261 pMemoryHostPointerProperties->memoryTypeBits =
3262 (1ull << pdevice->memory.type_count) - 1;
3263
3264 return VK_SUCCESS;
3265 }
3266 default:
3267 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3268 }
3269 }
3270
3271 void anv_FreeMemory(
3272 VkDevice _device,
3273 VkDeviceMemory _mem,
3274 const VkAllocationCallbacks* pAllocator)
3275 {
3276 ANV_FROM_HANDLE(anv_device, device, _device);
3277 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3278 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3279
3280 if (mem == NULL)
3281 return;
3282
3283 pthread_mutex_lock(&device->mutex);
3284 list_del(&mem->link);
3285 pthread_mutex_unlock(&device->mutex);
3286
3287 if (mem->map)
3288 anv_UnmapMemory(_device, _mem);
3289
3290 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3291 -mem->bo->size);
3292
3293 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3294
3295 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3296 if (mem->ahw)
3297 AHardwareBuffer_release(mem->ahw);
3298 #endif
3299
3300 vk_free2(&device->alloc, pAllocator, mem);
3301 }
3302
3303 VkResult anv_MapMemory(
3304 VkDevice _device,
3305 VkDeviceMemory _memory,
3306 VkDeviceSize offset,
3307 VkDeviceSize size,
3308 VkMemoryMapFlags flags,
3309 void** ppData)
3310 {
3311 ANV_FROM_HANDLE(anv_device, device, _device);
3312 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3313
3314 if (mem == NULL) {
3315 *ppData = NULL;
3316 return VK_SUCCESS;
3317 }
3318
3319 if (mem->host_ptr) {
3320 *ppData = mem->host_ptr + offset;
3321 return VK_SUCCESS;
3322 }
3323
3324 if (size == VK_WHOLE_SIZE)
3325 size = mem->bo->size - offset;
3326
3327 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3328 *
3329 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3330 * assert(size != 0);
3331 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3332 * equal to the size of the memory minus offset
3333 */
3334 assert(size > 0);
3335 assert(offset + size <= mem->bo->size);
3336
3337 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3338 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3339 * at a time is valid. We could just mmap up front and return an offset
3340 * pointer here, but that may exhaust virtual memory on 32 bit
3341 * userspace. */
3342
3343 uint32_t gem_flags = 0;
3344
3345 if (!device->info.has_llc &&
3346 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3347 gem_flags |= I915_MMAP_WC;
3348
3349 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3350 uint64_t map_offset = offset & ~4095ull;
3351 assert(offset >= map_offset);
3352 uint64_t map_size = (offset + size) - map_offset;
3353
3354 /* Let's map whole pages */
3355 map_size = align_u64(map_size, 4096);
3356
3357 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3358 map_offset, map_size, gem_flags);
3359 if (map == MAP_FAILED)
3360 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3361
3362 mem->map = map;
3363 mem->map_size = map_size;
3364
3365 *ppData = mem->map + (offset - map_offset);
3366
3367 return VK_SUCCESS;
3368 }
3369
3370 void anv_UnmapMemory(
3371 VkDevice _device,
3372 VkDeviceMemory _memory)
3373 {
3374 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3375
3376 if (mem == NULL || mem->host_ptr)
3377 return;
3378
3379 anv_gem_munmap(mem->map, mem->map_size);
3380
3381 mem->map = NULL;
3382 mem->map_size = 0;
3383 }
3384
3385 static void
3386 clflush_mapped_ranges(struct anv_device *device,
3387 uint32_t count,
3388 const VkMappedMemoryRange *ranges)
3389 {
3390 for (uint32_t i = 0; i < count; i++) {
3391 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3392 if (ranges[i].offset >= mem->map_size)
3393 continue;
3394
3395 gen_clflush_range(mem->map + ranges[i].offset,
3396 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3397 }
3398 }
3399
3400 VkResult anv_FlushMappedMemoryRanges(
3401 VkDevice _device,
3402 uint32_t memoryRangeCount,
3403 const VkMappedMemoryRange* pMemoryRanges)
3404 {
3405 ANV_FROM_HANDLE(anv_device, device, _device);
3406
3407 if (device->info.has_llc)
3408 return VK_SUCCESS;
3409
3410 /* Make sure the writes we're flushing have landed. */
3411 __builtin_ia32_mfence();
3412
3413 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3414
3415 return VK_SUCCESS;
3416 }
3417
3418 VkResult anv_InvalidateMappedMemoryRanges(
3419 VkDevice _device,
3420 uint32_t memoryRangeCount,
3421 const VkMappedMemoryRange* pMemoryRanges)
3422 {
3423 ANV_FROM_HANDLE(anv_device, device, _device);
3424
3425 if (device->info.has_llc)
3426 return VK_SUCCESS;
3427
3428 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3429
3430 /* Make sure no reads get moved up above the invalidate. */
3431 __builtin_ia32_mfence();
3432
3433 return VK_SUCCESS;
3434 }
3435
3436 void anv_GetBufferMemoryRequirements(
3437 VkDevice _device,
3438 VkBuffer _buffer,
3439 VkMemoryRequirements* pMemoryRequirements)
3440 {
3441 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3442 ANV_FROM_HANDLE(anv_device, device, _device);
3443 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3444
3445 /* The Vulkan spec (git aaed022) says:
3446 *
3447 * memoryTypeBits is a bitfield and contains one bit set for every
3448 * supported memory type for the resource. The bit `1<<i` is set if and
3449 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3450 * structure for the physical device is supported.
3451 */
3452 uint32_t memory_types = 0;
3453 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3454 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3455 if ((valid_usage & buffer->usage) == buffer->usage)
3456 memory_types |= (1u << i);
3457 }
3458
3459 /* Base alignment requirement of a cache line */
3460 uint32_t alignment = 16;
3461
3462 /* We need an alignment of 32 for pushing UBOs */
3463 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3464 alignment = MAX2(alignment, 32);
3465
3466 pMemoryRequirements->size = buffer->size;
3467 pMemoryRequirements->alignment = alignment;
3468
3469 /* Storage and Uniform buffers should have their size aligned to
3470 * 32-bits to avoid boundary checks when last DWord is not complete.
3471 * This would ensure that not internal padding would be needed for
3472 * 16-bit types.
3473 */
3474 if (device->robust_buffer_access &&
3475 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3476 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3477 pMemoryRequirements->size = align_u64(buffer->size, 4);
3478
3479 pMemoryRequirements->memoryTypeBits = memory_types;
3480 }
3481
3482 void anv_GetBufferMemoryRequirements2(
3483 VkDevice _device,
3484 const VkBufferMemoryRequirementsInfo2* pInfo,
3485 VkMemoryRequirements2* pMemoryRequirements)
3486 {
3487 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3488 &pMemoryRequirements->memoryRequirements);
3489
3490 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3491 switch (ext->sType) {
3492 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3493 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3494 requirements->prefersDedicatedAllocation = false;
3495 requirements->requiresDedicatedAllocation = false;
3496 break;
3497 }
3498
3499 default:
3500 anv_debug_ignored_stype(ext->sType);
3501 break;
3502 }
3503 }
3504 }
3505
3506 void anv_GetImageMemoryRequirements(
3507 VkDevice _device,
3508 VkImage _image,
3509 VkMemoryRequirements* pMemoryRequirements)
3510 {
3511 ANV_FROM_HANDLE(anv_image, image, _image);
3512 ANV_FROM_HANDLE(anv_device, device, _device);
3513 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3514
3515 /* The Vulkan spec (git aaed022) says:
3516 *
3517 * memoryTypeBits is a bitfield and contains one bit set for every
3518 * supported memory type for the resource. The bit `1<<i` is set if and
3519 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3520 * structure for the physical device is supported.
3521 *
3522 * All types are currently supported for images.
3523 */
3524 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3525
3526 /* We must have image allocated or imported at this point. According to the
3527 * specification, external images must have been bound to memory before
3528 * calling GetImageMemoryRequirements.
3529 */
3530 assert(image->size > 0);
3531
3532 pMemoryRequirements->size = image->size;
3533 pMemoryRequirements->alignment = image->alignment;
3534 pMemoryRequirements->memoryTypeBits = memory_types;
3535 }
3536
3537 void anv_GetImageMemoryRequirements2(
3538 VkDevice _device,
3539 const VkImageMemoryRequirementsInfo2* pInfo,
3540 VkMemoryRequirements2* pMemoryRequirements)
3541 {
3542 ANV_FROM_HANDLE(anv_device, device, _device);
3543 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3544
3545 anv_GetImageMemoryRequirements(_device, pInfo->image,
3546 &pMemoryRequirements->memoryRequirements);
3547
3548 vk_foreach_struct_const(ext, pInfo->pNext) {
3549 switch (ext->sType) {
3550 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3551 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3552 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3553 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3554 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3555 plane_reqs->planeAspect);
3556
3557 assert(image->planes[plane].offset == 0);
3558
3559 /* The Vulkan spec (git aaed022) says:
3560 *
3561 * memoryTypeBits is a bitfield and contains one bit set for every
3562 * supported memory type for the resource. The bit `1<<i` is set
3563 * if and only if the memory type `i` in the
3564 * VkPhysicalDeviceMemoryProperties structure for the physical
3565 * device is supported.
3566 *
3567 * All types are currently supported for images.
3568 */
3569 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3570 (1ull << pdevice->memory.type_count) - 1;
3571
3572 /* We must have image allocated or imported at this point. According to the
3573 * specification, external images must have been bound to memory before
3574 * calling GetImageMemoryRequirements.
3575 */
3576 assert(image->planes[plane].size > 0);
3577
3578 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3579 pMemoryRequirements->memoryRequirements.alignment =
3580 image->planes[plane].alignment;
3581 break;
3582 }
3583
3584 default:
3585 anv_debug_ignored_stype(ext->sType);
3586 break;
3587 }
3588 }
3589
3590 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3591 switch (ext->sType) {
3592 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3593 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3594 if (image->needs_set_tiling || image->external_format) {
3595 /* If we need to set the tiling for external consumers, we need a
3596 * dedicated allocation.
3597 *
3598 * See also anv_AllocateMemory.
3599 */
3600 requirements->prefersDedicatedAllocation = true;
3601 requirements->requiresDedicatedAllocation = true;
3602 } else {
3603 requirements->prefersDedicatedAllocation = false;
3604 requirements->requiresDedicatedAllocation = false;
3605 }
3606 break;
3607 }
3608
3609 default:
3610 anv_debug_ignored_stype(ext->sType);
3611 break;
3612 }
3613 }
3614 }
3615
3616 void anv_GetImageSparseMemoryRequirements(
3617 VkDevice device,
3618 VkImage image,
3619 uint32_t* pSparseMemoryRequirementCount,
3620 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3621 {
3622 *pSparseMemoryRequirementCount = 0;
3623 }
3624
3625 void anv_GetImageSparseMemoryRequirements2(
3626 VkDevice device,
3627 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3628 uint32_t* pSparseMemoryRequirementCount,
3629 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3630 {
3631 *pSparseMemoryRequirementCount = 0;
3632 }
3633
3634 void anv_GetDeviceMemoryCommitment(
3635 VkDevice device,
3636 VkDeviceMemory memory,
3637 VkDeviceSize* pCommittedMemoryInBytes)
3638 {
3639 *pCommittedMemoryInBytes = 0;
3640 }
3641
3642 static void
3643 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3644 {
3645 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3646 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3647
3648 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3649
3650 if (mem) {
3651 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3652 buffer->address = (struct anv_address) {
3653 .bo = mem->bo,
3654 .offset = pBindInfo->memoryOffset,
3655 };
3656 } else {
3657 buffer->address = ANV_NULL_ADDRESS;
3658 }
3659 }
3660
3661 VkResult anv_BindBufferMemory(
3662 VkDevice device,
3663 VkBuffer buffer,
3664 VkDeviceMemory memory,
3665 VkDeviceSize memoryOffset)
3666 {
3667 anv_bind_buffer_memory(
3668 &(VkBindBufferMemoryInfo) {
3669 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3670 .buffer = buffer,
3671 .memory = memory,
3672 .memoryOffset = memoryOffset,
3673 });
3674
3675 return VK_SUCCESS;
3676 }
3677
3678 VkResult anv_BindBufferMemory2(
3679 VkDevice device,
3680 uint32_t bindInfoCount,
3681 const VkBindBufferMemoryInfo* pBindInfos)
3682 {
3683 for (uint32_t i = 0; i < bindInfoCount; i++)
3684 anv_bind_buffer_memory(&pBindInfos[i]);
3685
3686 return VK_SUCCESS;
3687 }
3688
3689 VkResult anv_QueueBindSparse(
3690 VkQueue _queue,
3691 uint32_t bindInfoCount,
3692 const VkBindSparseInfo* pBindInfo,
3693 VkFence fence)
3694 {
3695 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3696 if (anv_device_is_lost(queue->device))
3697 return VK_ERROR_DEVICE_LOST;
3698
3699 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3700 }
3701
3702 // Event functions
3703
3704 VkResult anv_CreateEvent(
3705 VkDevice _device,
3706 const VkEventCreateInfo* pCreateInfo,
3707 const VkAllocationCallbacks* pAllocator,
3708 VkEvent* pEvent)
3709 {
3710 ANV_FROM_HANDLE(anv_device, device, _device);
3711 struct anv_state state;
3712 struct anv_event *event;
3713
3714 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3715
3716 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3717 sizeof(*event), 8);
3718 event = state.map;
3719 event->state = state;
3720 event->semaphore = VK_EVENT_RESET;
3721
3722 if (!device->info.has_llc) {
3723 /* Make sure the writes we're flushing have landed. */
3724 __builtin_ia32_mfence();
3725 __builtin_ia32_clflush(event);
3726 }
3727
3728 *pEvent = anv_event_to_handle(event);
3729
3730 return VK_SUCCESS;
3731 }
3732
3733 void anv_DestroyEvent(
3734 VkDevice _device,
3735 VkEvent _event,
3736 const VkAllocationCallbacks* pAllocator)
3737 {
3738 ANV_FROM_HANDLE(anv_device, device, _device);
3739 ANV_FROM_HANDLE(anv_event, event, _event);
3740
3741 if (!event)
3742 return;
3743
3744 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3745 }
3746
3747 VkResult anv_GetEventStatus(
3748 VkDevice _device,
3749 VkEvent _event)
3750 {
3751 ANV_FROM_HANDLE(anv_device, device, _device);
3752 ANV_FROM_HANDLE(anv_event, event, _event);
3753
3754 if (anv_device_is_lost(device))
3755 return VK_ERROR_DEVICE_LOST;
3756
3757 if (!device->info.has_llc) {
3758 /* Invalidate read cache before reading event written by GPU. */
3759 __builtin_ia32_clflush(event);
3760 __builtin_ia32_mfence();
3761
3762 }
3763
3764 return event->semaphore;
3765 }
3766
3767 VkResult anv_SetEvent(
3768 VkDevice _device,
3769 VkEvent _event)
3770 {
3771 ANV_FROM_HANDLE(anv_device, device, _device);
3772 ANV_FROM_HANDLE(anv_event, event, _event);
3773
3774 event->semaphore = VK_EVENT_SET;
3775
3776 if (!device->info.has_llc) {
3777 /* Make sure the writes we're flushing have landed. */
3778 __builtin_ia32_mfence();
3779 __builtin_ia32_clflush(event);
3780 }
3781
3782 return VK_SUCCESS;
3783 }
3784
3785 VkResult anv_ResetEvent(
3786 VkDevice _device,
3787 VkEvent _event)
3788 {
3789 ANV_FROM_HANDLE(anv_device, device, _device);
3790 ANV_FROM_HANDLE(anv_event, event, _event);
3791
3792 event->semaphore = VK_EVENT_RESET;
3793
3794 if (!device->info.has_llc) {
3795 /* Make sure the writes we're flushing have landed. */
3796 __builtin_ia32_mfence();
3797 __builtin_ia32_clflush(event);
3798 }
3799
3800 return VK_SUCCESS;
3801 }
3802
3803 // Buffer functions
3804
3805 VkResult anv_CreateBuffer(
3806 VkDevice _device,
3807 const VkBufferCreateInfo* pCreateInfo,
3808 const VkAllocationCallbacks* pAllocator,
3809 VkBuffer* pBuffer)
3810 {
3811 ANV_FROM_HANDLE(anv_device, device, _device);
3812 struct anv_buffer *buffer;
3813
3814 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3815
3816 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3817 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3818 if (buffer == NULL)
3819 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3820
3821 buffer->size = pCreateInfo->size;
3822 buffer->usage = pCreateInfo->usage;
3823 buffer->address = ANV_NULL_ADDRESS;
3824
3825 *pBuffer = anv_buffer_to_handle(buffer);
3826
3827 return VK_SUCCESS;
3828 }
3829
3830 void anv_DestroyBuffer(
3831 VkDevice _device,
3832 VkBuffer _buffer,
3833 const VkAllocationCallbacks* pAllocator)
3834 {
3835 ANV_FROM_HANDLE(anv_device, device, _device);
3836 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3837
3838 if (!buffer)
3839 return;
3840
3841 vk_free2(&device->alloc, pAllocator, buffer);
3842 }
3843
3844 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3845 VkDevice device,
3846 const VkBufferDeviceAddressInfoEXT* pInfo)
3847 {
3848 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3849
3850 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3851
3852 return anv_address_physical(buffer->address);
3853 }
3854
3855 void
3856 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3857 enum isl_format format,
3858 struct anv_address address,
3859 uint32_t range, uint32_t stride)
3860 {
3861 isl_buffer_fill_state(&device->isl_dev, state.map,
3862 .address = anv_address_physical(address),
3863 .mocs = device->default_mocs,
3864 .size_B = range,
3865 .format = format,
3866 .swizzle = ISL_SWIZZLE_IDENTITY,
3867 .stride_B = stride);
3868 }
3869
3870 void anv_DestroySampler(
3871 VkDevice _device,
3872 VkSampler _sampler,
3873 const VkAllocationCallbacks* pAllocator)
3874 {
3875 ANV_FROM_HANDLE(anv_device, device, _device);
3876 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3877
3878 if (!sampler)
3879 return;
3880
3881 if (sampler->bindless_state.map) {
3882 anv_state_pool_free(&device->dynamic_state_pool,
3883 sampler->bindless_state);
3884 }
3885
3886 vk_free2(&device->alloc, pAllocator, sampler);
3887 }
3888
3889 VkResult anv_CreateFramebuffer(
3890 VkDevice _device,
3891 const VkFramebufferCreateInfo* pCreateInfo,
3892 const VkAllocationCallbacks* pAllocator,
3893 VkFramebuffer* pFramebuffer)
3894 {
3895 ANV_FROM_HANDLE(anv_device, device, _device);
3896 struct anv_framebuffer *framebuffer;
3897
3898 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3899
3900 size_t size = sizeof(*framebuffer);
3901
3902 /* VK_KHR_imageless_framebuffer extension says:
3903 *
3904 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3905 * parameter pAttachments is ignored.
3906 */
3907 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3908 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3909 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3910 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3911 if (framebuffer == NULL)
3912 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3913
3914 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3915 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3916 framebuffer->attachments[i] = iview;
3917 }
3918 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3919 } else {
3920 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3921 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3922 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3923 if (framebuffer == NULL)
3924 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3925
3926 framebuffer->attachment_count = 0;
3927 }
3928
3929 framebuffer->width = pCreateInfo->width;
3930 framebuffer->height = pCreateInfo->height;
3931 framebuffer->layers = pCreateInfo->layers;
3932
3933 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3934
3935 return VK_SUCCESS;
3936 }
3937
3938 void anv_DestroyFramebuffer(
3939 VkDevice _device,
3940 VkFramebuffer _fb,
3941 const VkAllocationCallbacks* pAllocator)
3942 {
3943 ANV_FROM_HANDLE(anv_device, device, _device);
3944 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3945
3946 if (!fb)
3947 return;
3948
3949 vk_free2(&device->alloc, pAllocator, fb);
3950 }
3951
3952 static const VkTimeDomainEXT anv_time_domains[] = {
3953 VK_TIME_DOMAIN_DEVICE_EXT,
3954 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3955 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3956 };
3957
3958 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3959 VkPhysicalDevice physicalDevice,
3960 uint32_t *pTimeDomainCount,
3961 VkTimeDomainEXT *pTimeDomains)
3962 {
3963 int d;
3964 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3965
3966 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3967 vk_outarray_append(&out, i) {
3968 *i = anv_time_domains[d];
3969 }
3970 }
3971
3972 return vk_outarray_status(&out);
3973 }
3974
3975 static uint64_t
3976 anv_clock_gettime(clockid_t clock_id)
3977 {
3978 struct timespec current;
3979 int ret;
3980
3981 ret = clock_gettime(clock_id, &current);
3982 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3983 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3984 if (ret < 0)
3985 return 0;
3986
3987 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3988 }
3989
3990 #define TIMESTAMP 0x2358
3991
3992 VkResult anv_GetCalibratedTimestampsEXT(
3993 VkDevice _device,
3994 uint32_t timestampCount,
3995 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3996 uint64_t *pTimestamps,
3997 uint64_t *pMaxDeviation)
3998 {
3999 ANV_FROM_HANDLE(anv_device, device, _device);
4000 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4001 int ret;
4002 int d;
4003 uint64_t begin, end;
4004 uint64_t max_clock_period = 0;
4005
4006 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4007
4008 for (d = 0; d < timestampCount; d++) {
4009 switch (pTimestampInfos[d].timeDomain) {
4010 case VK_TIME_DOMAIN_DEVICE_EXT:
4011 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4012 &pTimestamps[d]);
4013
4014 if (ret != 0) {
4015 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4016 "register: %m");
4017 }
4018 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4019 max_clock_period = MAX2(max_clock_period, device_period);
4020 break;
4021 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4022 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4023 max_clock_period = MAX2(max_clock_period, 1);
4024 break;
4025
4026 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4027 pTimestamps[d] = begin;
4028 break;
4029 default:
4030 pTimestamps[d] = 0;
4031 break;
4032 }
4033 }
4034
4035 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4036
4037 /*
4038 * The maximum deviation is the sum of the interval over which we
4039 * perform the sampling and the maximum period of any sampled
4040 * clock. That's because the maximum skew between any two sampled
4041 * clock edges is when the sampled clock with the largest period is
4042 * sampled at the end of that period but right at the beginning of the
4043 * sampling interval and some other clock is sampled right at the
4044 * begining of its sampling period and right at the end of the
4045 * sampling interval. Let's assume the GPU has the longest clock
4046 * period and that the application is sampling GPU and monotonic:
4047 *
4048 * s e
4049 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4050 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4051 *
4052 * g
4053 * 0 1 2 3
4054 * GPU -----_____-----_____-----_____-----_____
4055 *
4056 * m
4057 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4058 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4059 *
4060 * Interval <----------------->
4061 * Deviation <-------------------------->
4062 *
4063 * s = read(raw) 2
4064 * g = read(GPU) 1
4065 * m = read(monotonic) 2
4066 * e = read(raw) b
4067 *
4068 * We round the sample interval up by one tick to cover sampling error
4069 * in the interval clock
4070 */
4071
4072 uint64_t sample_interval = end - begin + 1;
4073
4074 *pMaxDeviation = sample_interval + max_clock_period;
4075
4076 return VK_SUCCESS;
4077 }
4078
4079 /* vk_icd.h does not declare this function, so we declare it here to
4080 * suppress Wmissing-prototypes.
4081 */
4082 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4083 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4084
4085 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4086 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4087 {
4088 /* For the full details on loader interface versioning, see
4089 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4090 * What follows is a condensed summary, to help you navigate the large and
4091 * confusing official doc.
4092 *
4093 * - Loader interface v0 is incompatible with later versions. We don't
4094 * support it.
4095 *
4096 * - In loader interface v1:
4097 * - The first ICD entrypoint called by the loader is
4098 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4099 * entrypoint.
4100 * - The ICD must statically expose no other Vulkan symbol unless it is
4101 * linked with -Bsymbolic.
4102 * - Each dispatchable Vulkan handle created by the ICD must be
4103 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4104 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4105 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4106 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4107 * such loader-managed surfaces.
4108 *
4109 * - Loader interface v2 differs from v1 in:
4110 * - The first ICD entrypoint called by the loader is
4111 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4112 * statically expose this entrypoint.
4113 *
4114 * - Loader interface v3 differs from v2 in:
4115 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4116 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4117 * because the loader no longer does so.
4118 *
4119 * - Loader interface v4 differs from v3 in:
4120 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4121 */
4122 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4123 return VK_SUCCESS;
4124 }