anv: fix uninitialized pthread cond clock domain
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44 #include "compiler/glsl_types.h"
45
46 #include "genxml/gen7_pack.h"
47
48 /* This is probably far to big but it reflects the max size used for messages
49 * in OpenGLs KHR_debug.
50 */
51 #define MAX_DEBUG_MESSAGE_LENGTH 4096
52
53 static void
54 compiler_debug_log(void *data, const char *fmt, ...)
55 {
56 char str[MAX_DEBUG_MESSAGE_LENGTH];
57 struct anv_device *device = (struct anv_device *)data;
58
59 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
60 return;
61
62 va_list args;
63 va_start(args, fmt);
64 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
65 va_end(args);
66
67 vk_debug_report(&device->instance->debug_report_callbacks,
68 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
69 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
70 0, 0, 0, "anv", str);
71 }
72
73 static void
74 compiler_perf_log(void *data, const char *fmt, ...)
75 {
76 va_list args;
77 va_start(args, fmt);
78
79 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
80 intel_logd_v(fmt, args);
81
82 va_end(args);
83 }
84
85 static uint64_t
86 anv_compute_heap_size(int fd, uint64_t gtt_size)
87 {
88 /* Query the total ram from the system */
89 struct sysinfo info;
90 sysinfo(&info);
91
92 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
93
94 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
95 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
96 */
97 uint64_t available_ram;
98 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
99 available_ram = total_ram / 2;
100 else
101 available_ram = total_ram * 3 / 4;
102
103 /* We also want to leave some padding for things we allocate in the driver,
104 * so don't go over 3/4 of the GTT either.
105 */
106 uint64_t available_gtt = gtt_size * 3 / 4;
107
108 return MIN2(available_ram, available_gtt);
109 }
110
111 static VkResult
112 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
113 {
114 uint64_t gtt_size;
115 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
116 &gtt_size) == -1) {
117 /* If, for whatever reason, we can't actually get the GTT size from the
118 * kernel (too old?) fall back to the aperture size.
119 */
120 anv_perf_warn(NULL, NULL,
121 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
122
123 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
124 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
125 "failed to get aperture size: %m");
126 }
127 }
128
129 device->supports_48bit_addresses = (device->info.gen >= 8) &&
130 gtt_size > (4ULL << 30 /* GiB */);
131
132 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
133
134 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
135 /* When running with an overridden PCI ID, we may get a GTT size from
136 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
137 * address support can still fail. Just clamp the address space size to
138 * 2 GiB if we don't have 48-bit support.
139 */
140 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
141 "not support for 48-bit addresses",
142 __FILE__, __LINE__);
143 heap_size = 2ull << 30;
144 }
145
146 if (heap_size <= 3ull * (1ull << 30)) {
147 /* In this case, everything fits nicely into the 32-bit address space,
148 * so there's no need for supporting 48bit addresses on client-allocated
149 * memory objects.
150 */
151 device->memory.heap_count = 1;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .vma_start = LOW_HEAP_MIN_ADDRESS,
154 .vma_size = LOW_HEAP_SIZE,
155 .size = heap_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 } else {
160 /* Not everything will fit nicely into a 32-bit address space. In this
161 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
162 * larger 48-bit heap. If we're in this case, then we have a total heap
163 * size larger than 3GiB which most likely means they have 8 GiB of
164 * video memory and so carving off 1 GiB for the 32-bit heap should be
165 * reasonable.
166 */
167 const uint64_t heap_size_32bit = 1ull << 30;
168 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
169
170 assert(device->supports_48bit_addresses);
171
172 device->memory.heap_count = 2;
173 device->memory.heaps[0] = (struct anv_memory_heap) {
174 .vma_start = HIGH_HEAP_MIN_ADDRESS,
175 /* Leave the last 4GiB out of the high vma range, so that no state
176 * base address + size can overflow 48 bits. For more information see
177 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
178 */
179 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
180 .size = heap_size_48bit,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 .supports_48bit_addresses = true,
183 };
184 device->memory.heaps[1] = (struct anv_memory_heap) {
185 .vma_start = LOW_HEAP_MIN_ADDRESS,
186 .vma_size = LOW_HEAP_SIZE,
187 .size = heap_size_32bit,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 .supports_48bit_addresses = false,
190 };
191 }
192
193 uint32_t type_count = 0;
194 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
195 uint32_t valid_buffer_usage = ~0;
196
197 /* There appears to be a hardware issue in the VF cache where it only
198 * considers the bottom 32 bits of memory addresses. If you happen to
199 * have two vertex buffers which get placed exactly 4 GiB apart and use
200 * them in back-to-back draw calls, you can get collisions. In order to
201 * solve this problem, we require vertex and index buffers be bound to
202 * memory allocated out of the 32-bit heap.
203 */
204 if (device->memory.heaps[heap].supports_48bit_addresses) {
205 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
206 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
207 }
208
209 if (device->info.has_llc) {
210 /* Big core GPUs share LLC with the CPU and thus one memory type can be
211 * both cached and coherent at the same time.
212 */
213 device->memory.types[type_count++] = (struct anv_memory_type) {
214 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
215 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
216 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
217 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
218 .heapIndex = heap,
219 .valid_buffer_usage = valid_buffer_usage,
220 };
221 } else {
222 /* The spec requires that we expose a host-visible, coherent memory
223 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
224 * to give the application a choice between cached, but not coherent and
225 * coherent but uncached (WC though).
226 */
227 device->memory.types[type_count++] = (struct anv_memory_type) {
228 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
229 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
230 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
231 .heapIndex = heap,
232 .valid_buffer_usage = valid_buffer_usage,
233 };
234 device->memory.types[type_count++] = (struct anv_memory_type) {
235 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
236 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
237 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
238 .heapIndex = heap,
239 .valid_buffer_usage = valid_buffer_usage,
240 };
241 }
242 }
243 device->memory.type_count = type_count;
244
245 return VK_SUCCESS;
246 }
247
248 static VkResult
249 anv_physical_device_init_uuids(struct anv_physical_device *device)
250 {
251 const struct build_id_note *note =
252 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
253 if (!note) {
254 return vk_errorf(device->instance, device,
255 VK_ERROR_INITIALIZATION_FAILED,
256 "Failed to find build-id");
257 }
258
259 unsigned build_id_len = build_id_length(note);
260 if (build_id_len < 20) {
261 return vk_errorf(device->instance, device,
262 VK_ERROR_INITIALIZATION_FAILED,
263 "build-id too short. It needs to be a SHA");
264 }
265
266 memcpy(device->driver_build_sha1, build_id_data(note), 20);
267
268 struct mesa_sha1 sha1_ctx;
269 uint8_t sha1[20];
270 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
271
272 /* The pipeline cache UUID is used for determining when a pipeline cache is
273 * invalid. It needs both a driver build and the PCI ID of the device.
274 */
275 _mesa_sha1_init(&sha1_ctx);
276 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
277 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
278 sizeof(device->chipset_id));
279 _mesa_sha1_final(&sha1_ctx, sha1);
280 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
281
282 /* The driver UUID is used for determining sharability of images and memory
283 * between two Vulkan instances in separate processes. People who want to
284 * share memory need to also check the device UUID (below) so all this
285 * needs to be is the build-id.
286 */
287 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
288
289 /* The device UUID uniquely identifies the given device within the machine.
290 * Since we never have more than one device, this doesn't need to be a real
291 * UUID. However, on the off-chance that someone tries to use this to
292 * cache pre-tiled images or something of the like, we use the PCI ID and
293 * some bits of ISL info to ensure that this is safe.
294 */
295 _mesa_sha1_init(&sha1_ctx);
296 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
297 sizeof(device->chipset_id));
298 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
299 sizeof(device->isl_dev.has_bit6_swizzling));
300 _mesa_sha1_final(&sha1_ctx, sha1);
301 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
302
303 return VK_SUCCESS;
304 }
305
306 static void
307 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
308 {
309 #ifdef ENABLE_SHADER_CACHE
310 char renderer[10];
311 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
312 device->chipset_id);
313 assert(len == sizeof(renderer) - 2);
314
315 char timestamp[41];
316 _mesa_sha1_format(timestamp, device->driver_build_sha1);
317
318 const uint64_t driver_flags =
319 brw_get_compiler_config_value(device->compiler);
320 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
321 #else
322 device->disk_cache = NULL;
323 #endif
324 }
325
326 static void
327 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
328 {
329 #ifdef ENABLE_SHADER_CACHE
330 if (device->disk_cache)
331 disk_cache_destroy(device->disk_cache);
332 #else
333 assert(device->disk_cache == NULL);
334 #endif
335 }
336
337 static VkResult
338 anv_physical_device_init(struct anv_physical_device *device,
339 struct anv_instance *instance,
340 drmDevicePtr drm_device)
341 {
342 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
343 const char *path = drm_device->nodes[DRM_NODE_RENDER];
344 VkResult result;
345 int fd;
346 int master_fd = -1;
347
348 brw_process_intel_debug_variable();
349
350 fd = open(path, O_RDWR | O_CLOEXEC);
351 if (fd < 0)
352 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
353
354 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
355 device->instance = instance;
356
357 assert(strlen(path) < ARRAY_SIZE(device->path));
358 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
359
360 device->no_hw = getenv("INTEL_NO_HW") != NULL;
361
362 const int pci_id_override = gen_get_pci_device_id_override();
363 if (pci_id_override < 0) {
364 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
365 if (!device->chipset_id) {
366 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
367 goto fail;
368 }
369 } else {
370 device->chipset_id = pci_id_override;
371 device->no_hw = true;
372 }
373
374 device->pci_info.domain = drm_device->businfo.pci->domain;
375 device->pci_info.bus = drm_device->businfo.pci->bus;
376 device->pci_info.device = drm_device->businfo.pci->dev;
377 device->pci_info.function = drm_device->businfo.pci->func;
378
379 device->name = gen_get_device_name(device->chipset_id);
380 if (!gen_get_device_info(device->chipset_id, &device->info)) {
381 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
382 goto fail;
383 }
384
385 if (device->info.is_haswell) {
386 intel_logw("Haswell Vulkan support is incomplete");
387 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
388 intel_logw("Ivy Bridge Vulkan support is incomplete");
389 } else if (device->info.gen == 7 && device->info.is_baytrail) {
390 intel_logw("Bay Trail Vulkan support is incomplete");
391 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
392 /* Gen8-10 fully supported */
393 } else if (device->info.gen == 11) {
394 intel_logw("Vulkan is not yet fully supported on gen11.");
395 } else {
396 result = vk_errorf(device->instance, device,
397 VK_ERROR_INCOMPATIBLE_DRIVER,
398 "Vulkan not yet supported on %s", device->name);
399 goto fail;
400 }
401
402 device->cmd_parser_version = -1;
403 if (device->info.gen == 7) {
404 device->cmd_parser_version =
405 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
406 if (device->cmd_parser_version == -1) {
407 result = vk_errorf(device->instance, device,
408 VK_ERROR_INITIALIZATION_FAILED,
409 "failed to get command parser version");
410 goto fail;
411 }
412 }
413
414 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
415 result = vk_errorf(device->instance, device,
416 VK_ERROR_INITIALIZATION_FAILED,
417 "kernel missing gem wait");
418 goto fail;
419 }
420
421 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
422 result = vk_errorf(device->instance, device,
423 VK_ERROR_INITIALIZATION_FAILED,
424 "kernel missing execbuf2");
425 goto fail;
426 }
427
428 if (!device->info.has_llc &&
429 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "kernel missing wc mmap");
433 goto fail;
434 }
435
436 result = anv_physical_device_init_heaps(device, fd);
437 if (result != VK_SUCCESS)
438 goto fail;
439
440 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
441 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
442 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
443 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
444 device->has_syncobj_wait = device->has_syncobj &&
445 anv_gem_supports_syncobj_wait(fd);
446 device->has_context_priority = anv_gem_has_context_priority(fd);
447
448 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
449 && device->supports_48bit_addresses;
450
451 device->has_context_isolation =
452 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
453
454 /* Starting with Gen10, the timestamp frequency of the command streamer may
455 * vary from one part to another. We can query the value from the kernel.
456 */
457 if (device->info.gen >= 10) {
458 int timestamp_frequency =
459 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
460
461 if (timestamp_frequency < 0)
462 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
463 else
464 device->info.timestamp_frequency = timestamp_frequency;
465 }
466
467 /* GENs prior to 8 do not support EU/Subslice info */
468 if (device->info.gen >= 8) {
469 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
470 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
471
472 /* Without this information, we cannot get the right Braswell
473 * brandstrings, and we have to use conservative numbers for GPGPU on
474 * many platforms, but otherwise, things will just work.
475 */
476 if (device->subslice_total < 1 || device->eu_total < 1) {
477 intel_logw("Kernel 4.1 required to properly query GPU properties");
478 }
479 } else if (device->info.gen == 7) {
480 device->subslice_total = 1 << (device->info.gt - 1);
481 }
482
483 if (device->info.is_cherryview &&
484 device->subslice_total > 0 && device->eu_total > 0) {
485 /* Logical CS threads = EUs per subslice * num threads per EU */
486 uint32_t max_cs_threads =
487 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
488
489 /* Fuse configurations may give more threads than expected, never less. */
490 if (max_cs_threads > device->info.max_cs_threads)
491 device->info.max_cs_threads = max_cs_threads;
492 }
493
494 device->compiler = brw_compiler_create(NULL, &device->info);
495 if (device->compiler == NULL) {
496 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
497 goto fail;
498 }
499 device->compiler->shader_debug_log = compiler_debug_log;
500 device->compiler->shader_perf_log = compiler_perf_log;
501 device->compiler->supports_pull_constants = false;
502 device->compiler->constant_buffer_0_is_relative =
503 device->info.gen < 8 || !device->has_context_isolation;
504 device->compiler->supports_shader_constants = true;
505
506 /* Broadwell PRM says:
507 *
508 * "Before Gen8, there was a historical configuration control field to
509 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
510 * different places: TILECTL[1:0], ARB_MODE[5:4], and
511 * DISP_ARB_CTL[14:13].
512 *
513 * For Gen8 and subsequent generations, the swizzle fields are all
514 * reserved, and the CPU's memory controller performs all address
515 * swizzling modifications."
516 */
517 bool swizzled =
518 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
519
520 isl_device_init(&device->isl_dev, &device->info, swizzled);
521
522 result = anv_physical_device_init_uuids(device);
523 if (result != VK_SUCCESS)
524 goto fail;
525
526 anv_physical_device_init_disk_cache(device);
527
528 if (instance->enabled_extensions.KHR_display) {
529 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
530 if (master_fd >= 0) {
531 /* prod the device with a GETPARAM call which will fail if
532 * we don't have permission to even render on this device
533 */
534 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
535 close(master_fd);
536 master_fd = -1;
537 }
538 }
539 }
540 device->master_fd = master_fd;
541
542 result = anv_init_wsi(device);
543 if (result != VK_SUCCESS) {
544 ralloc_free(device->compiler);
545 anv_physical_device_free_disk_cache(device);
546 goto fail;
547 }
548
549 anv_physical_device_get_supported_extensions(device,
550 &device->supported_extensions);
551
552
553 device->local_fd = fd;
554
555 return VK_SUCCESS;
556
557 fail:
558 close(fd);
559 if (master_fd != -1)
560 close(master_fd);
561 return result;
562 }
563
564 static void
565 anv_physical_device_finish(struct anv_physical_device *device)
566 {
567 anv_finish_wsi(device);
568 anv_physical_device_free_disk_cache(device);
569 ralloc_free(device->compiler);
570 close(device->local_fd);
571 if (device->master_fd >= 0)
572 close(device->master_fd);
573 }
574
575 static void *
576 default_alloc_func(void *pUserData, size_t size, size_t align,
577 VkSystemAllocationScope allocationScope)
578 {
579 return malloc(size);
580 }
581
582 static void *
583 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
584 size_t align, VkSystemAllocationScope allocationScope)
585 {
586 return realloc(pOriginal, size);
587 }
588
589 static void
590 default_free_func(void *pUserData, void *pMemory)
591 {
592 free(pMemory);
593 }
594
595 static const VkAllocationCallbacks default_alloc = {
596 .pUserData = NULL,
597 .pfnAllocation = default_alloc_func,
598 .pfnReallocation = default_realloc_func,
599 .pfnFree = default_free_func,
600 };
601
602 VkResult anv_EnumerateInstanceExtensionProperties(
603 const char* pLayerName,
604 uint32_t* pPropertyCount,
605 VkExtensionProperties* pProperties)
606 {
607 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
608
609 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
610 if (anv_instance_extensions_supported.extensions[i]) {
611 vk_outarray_append(&out, prop) {
612 *prop = anv_instance_extensions[i];
613 }
614 }
615 }
616
617 return vk_outarray_status(&out);
618 }
619
620 VkResult anv_CreateInstance(
621 const VkInstanceCreateInfo* pCreateInfo,
622 const VkAllocationCallbacks* pAllocator,
623 VkInstance* pInstance)
624 {
625 struct anv_instance *instance;
626 VkResult result;
627
628 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
629
630 struct anv_instance_extension_table enabled_extensions = {};
631 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
632 int idx;
633 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
634 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
635 anv_instance_extensions[idx].extensionName) == 0)
636 break;
637 }
638
639 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
640 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
641
642 if (!anv_instance_extensions_supported.extensions[idx])
643 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
644
645 enabled_extensions.extensions[idx] = true;
646 }
647
648 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
649 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
650 if (!instance)
651 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
652
653 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
654
655 if (pAllocator)
656 instance->alloc = *pAllocator;
657 else
658 instance->alloc = default_alloc;
659
660 instance->app_info = (struct anv_app_info) { .api_version = 0 };
661 if (pCreateInfo->pApplicationInfo) {
662 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
663
664 instance->app_info.app_name =
665 vk_strdup(&instance->alloc, app->pApplicationName,
666 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
667 instance->app_info.app_version = app->applicationVersion;
668
669 instance->app_info.engine_name =
670 vk_strdup(&instance->alloc, app->pEngineName,
671 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
672 instance->app_info.engine_version = app->engineVersion;
673
674 instance->app_info.api_version = app->apiVersion;
675 }
676
677 if (instance->app_info.api_version == 0)
678 instance->app_info.api_version = VK_API_VERSION_1_0;
679
680 instance->enabled_extensions = enabled_extensions;
681
682 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
683 /* Vulkan requires that entrypoints for extensions which have not been
684 * enabled must not be advertised.
685 */
686 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
687 &instance->enabled_extensions)) {
688 instance->dispatch.entrypoints[i] = NULL;
689 } else {
690 instance->dispatch.entrypoints[i] =
691 anv_instance_dispatch_table.entrypoints[i];
692 }
693 }
694
695 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
696 /* Vulkan requires that entrypoints for extensions which have not been
697 * enabled must not be advertised.
698 */
699 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
700 &instance->enabled_extensions, NULL)) {
701 instance->device_dispatch.entrypoints[i] = NULL;
702 } else {
703 instance->device_dispatch.entrypoints[i] =
704 anv_device_dispatch_table.entrypoints[i];
705 }
706 }
707
708 instance->physicalDeviceCount = -1;
709
710 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
711 if (result != VK_SUCCESS) {
712 vk_free2(&default_alloc, pAllocator, instance);
713 return vk_error(result);
714 }
715
716 instance->pipeline_cache_enabled =
717 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
718
719 _mesa_locale_init();
720 glsl_type_singleton_init_or_ref();
721
722 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
723
724 *pInstance = anv_instance_to_handle(instance);
725
726 return VK_SUCCESS;
727 }
728
729 void anv_DestroyInstance(
730 VkInstance _instance,
731 const VkAllocationCallbacks* pAllocator)
732 {
733 ANV_FROM_HANDLE(anv_instance, instance, _instance);
734
735 if (!instance)
736 return;
737
738 if (instance->physicalDeviceCount > 0) {
739 /* We support at most one physical device. */
740 assert(instance->physicalDeviceCount == 1);
741 anv_physical_device_finish(&instance->physicalDevice);
742 }
743
744 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
745 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
746
747 VG(VALGRIND_DESTROY_MEMPOOL(instance));
748
749 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
750
751 glsl_type_singleton_decref();
752 _mesa_locale_fini();
753
754 vk_free(&instance->alloc, instance);
755 }
756
757 static VkResult
758 anv_enumerate_devices(struct anv_instance *instance)
759 {
760 /* TODO: Check for more devices ? */
761 drmDevicePtr devices[8];
762 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
763 int max_devices;
764
765 instance->physicalDeviceCount = 0;
766
767 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
768 if (max_devices < 1)
769 return VK_ERROR_INCOMPATIBLE_DRIVER;
770
771 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
772 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
773 devices[i]->bustype == DRM_BUS_PCI &&
774 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
775
776 result = anv_physical_device_init(&instance->physicalDevice,
777 instance, devices[i]);
778 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
779 break;
780 }
781 }
782 drmFreeDevices(devices, max_devices);
783
784 if (result == VK_SUCCESS)
785 instance->physicalDeviceCount = 1;
786
787 return result;
788 }
789
790 static VkResult
791 anv_instance_ensure_physical_device(struct anv_instance *instance)
792 {
793 if (instance->physicalDeviceCount < 0) {
794 VkResult result = anv_enumerate_devices(instance);
795 if (result != VK_SUCCESS &&
796 result != VK_ERROR_INCOMPATIBLE_DRIVER)
797 return result;
798 }
799
800 return VK_SUCCESS;
801 }
802
803 VkResult anv_EnumeratePhysicalDevices(
804 VkInstance _instance,
805 uint32_t* pPhysicalDeviceCount,
806 VkPhysicalDevice* pPhysicalDevices)
807 {
808 ANV_FROM_HANDLE(anv_instance, instance, _instance);
809 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
810
811 VkResult result = anv_instance_ensure_physical_device(instance);
812 if (result != VK_SUCCESS)
813 return result;
814
815 if (instance->physicalDeviceCount == 0)
816 return VK_SUCCESS;
817
818 assert(instance->physicalDeviceCount == 1);
819 vk_outarray_append(&out, i) {
820 *i = anv_physical_device_to_handle(&instance->physicalDevice);
821 }
822
823 return vk_outarray_status(&out);
824 }
825
826 VkResult anv_EnumeratePhysicalDeviceGroups(
827 VkInstance _instance,
828 uint32_t* pPhysicalDeviceGroupCount,
829 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
830 {
831 ANV_FROM_HANDLE(anv_instance, instance, _instance);
832 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
833 pPhysicalDeviceGroupCount);
834
835 VkResult result = anv_instance_ensure_physical_device(instance);
836 if (result != VK_SUCCESS)
837 return result;
838
839 if (instance->physicalDeviceCount == 0)
840 return VK_SUCCESS;
841
842 assert(instance->physicalDeviceCount == 1);
843
844 vk_outarray_append(&out, p) {
845 p->physicalDeviceCount = 1;
846 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
847 p->physicalDevices[0] =
848 anv_physical_device_to_handle(&instance->physicalDevice);
849 p->subsetAllocation = false;
850
851 vk_foreach_struct(ext, p->pNext)
852 anv_debug_ignored_stype(ext->sType);
853 }
854
855 return vk_outarray_status(&out);
856 }
857
858 void anv_GetPhysicalDeviceFeatures(
859 VkPhysicalDevice physicalDevice,
860 VkPhysicalDeviceFeatures* pFeatures)
861 {
862 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
863
864 *pFeatures = (VkPhysicalDeviceFeatures) {
865 .robustBufferAccess = true,
866 .fullDrawIndexUint32 = true,
867 .imageCubeArray = true,
868 .independentBlend = true,
869 .geometryShader = true,
870 .tessellationShader = true,
871 .sampleRateShading = true,
872 .dualSrcBlend = true,
873 .logicOp = true,
874 .multiDrawIndirect = true,
875 .drawIndirectFirstInstance = true,
876 .depthClamp = true,
877 .depthBiasClamp = true,
878 .fillModeNonSolid = true,
879 .depthBounds = false,
880 .wideLines = true,
881 .largePoints = true,
882 .alphaToOne = true,
883 .multiViewport = true,
884 .samplerAnisotropy = true,
885 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
886 pdevice->info.is_baytrail,
887 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
888 .textureCompressionBC = true,
889 .occlusionQueryPrecise = true,
890 .pipelineStatisticsQuery = true,
891 .fragmentStoresAndAtomics = true,
892 .shaderTessellationAndGeometryPointSize = true,
893 .shaderImageGatherExtended = true,
894 .shaderStorageImageExtendedFormats = true,
895 .shaderStorageImageMultisample = false,
896 .shaderStorageImageReadWithoutFormat = false,
897 .shaderStorageImageWriteWithoutFormat = true,
898 .shaderUniformBufferArrayDynamicIndexing = true,
899 .shaderSampledImageArrayDynamicIndexing = true,
900 .shaderStorageBufferArrayDynamicIndexing = true,
901 .shaderStorageImageArrayDynamicIndexing = true,
902 .shaderClipDistance = true,
903 .shaderCullDistance = true,
904 .shaderFloat64 = pdevice->info.gen >= 8 &&
905 pdevice->info.has_64bit_types,
906 .shaderInt64 = pdevice->info.gen >= 8 &&
907 pdevice->info.has_64bit_types,
908 .shaderInt16 = pdevice->info.gen >= 8,
909 .shaderResourceMinLod = pdevice->info.gen >= 9,
910 .variableMultisampleRate = true,
911 .inheritedQueries = true,
912 };
913
914 /* We can't do image stores in vec4 shaders */
915 pFeatures->vertexPipelineStoresAndAtomics =
916 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
917 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
918
919 struct anv_app_info *app_info = &pdevice->instance->app_info;
920
921 /* The new DOOM and Wolfenstein games require depthBounds without
922 * checking for it. They seem to run fine without it so just claim it's
923 * there and accept the consequences.
924 */
925 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
926 pFeatures->depthBounds = true;
927 }
928
929 void anv_GetPhysicalDeviceFeatures2(
930 VkPhysicalDevice physicalDevice,
931 VkPhysicalDeviceFeatures2* pFeatures)
932 {
933 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
934 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
935
936 vk_foreach_struct(ext, pFeatures->pNext) {
937 switch (ext->sType) {
938 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
939 VkPhysicalDevice8BitStorageFeaturesKHR *features =
940 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
941 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
942 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
943 features->storagePushConstant8 = pdevice->info.gen >= 8;
944 break;
945 }
946
947 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
948 VkPhysicalDevice16BitStorageFeatures *features =
949 (VkPhysicalDevice16BitStorageFeatures *)ext;
950 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
951 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
952 features->storagePushConstant16 = pdevice->info.gen >= 8;
953 features->storageInputOutput16 = false;
954 break;
955 }
956
957 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
958 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
959 features->bufferDeviceAddress = pdevice->use_softpin &&
960 pdevice->info.gen >= 8;
961 features->bufferDeviceAddressCaptureReplay = false;
962 features->bufferDeviceAddressMultiDevice = false;
963 break;
964 }
965
966 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
967 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
968 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
969 features->computeDerivativeGroupQuads = true;
970 features->computeDerivativeGroupLinear = true;
971 break;
972 }
973
974 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
975 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
976 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
977 features->conditionalRendering = pdevice->info.gen >= 8 ||
978 pdevice->info.is_haswell;
979 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
980 pdevice->info.is_haswell;
981 break;
982 }
983
984 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
985 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
986 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
987 features->depthClipEnable = true;
988 break;
989 }
990
991 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
992 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
993 features->shaderFloat16 = pdevice->info.gen >= 8;
994 features->shaderInt8 = pdevice->info.gen >= 8;
995 break;
996 }
997
998 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
999 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1000 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1001 features->hostQueryReset = true;
1002 break;
1003 }
1004
1005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1006 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1007 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1008 features->inlineUniformBlock = true;
1009 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
1010 break;
1011 }
1012
1013 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1014 VkPhysicalDeviceMultiviewFeatures *features =
1015 (VkPhysicalDeviceMultiviewFeatures *)ext;
1016 features->multiview = true;
1017 features->multiviewGeometryShader = true;
1018 features->multiviewTessellationShader = true;
1019 break;
1020 }
1021
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1023 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1024 features->protectedMemory = false;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1029 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1030 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1031 features->samplerYcbcrConversion = true;
1032 break;
1033 }
1034
1035 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1036 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1037 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1038 features->scalarBlockLayout = true;
1039 break;
1040 }
1041
1042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1043 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1044 features->shaderDrawParameters = true;
1045 break;
1046 }
1047
1048 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1049 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1050 features->variablePointersStorageBuffer = true;
1051 features->variablePointers = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1056 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1057 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1058 features->transformFeedback = true;
1059 features->geometryStreams = true;
1060 break;
1061 }
1062
1063 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1064 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1065 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1066 features->vertexAttributeInstanceRateDivisor = true;
1067 features->vertexAttributeInstanceRateZeroDivisor = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1072 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1073 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1074 features->ycbcrImageArrays = true;
1075 break;
1076 }
1077
1078 default:
1079 anv_debug_ignored_stype(ext->sType);
1080 break;
1081 }
1082 }
1083 }
1084
1085 void anv_GetPhysicalDeviceProperties(
1086 VkPhysicalDevice physicalDevice,
1087 VkPhysicalDeviceProperties* pProperties)
1088 {
1089 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1090 const struct gen_device_info *devinfo = &pdevice->info;
1091
1092 /* See assertions made when programming the buffer surface state. */
1093 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1094 (1ul << 30) : (1ul << 27);
1095
1096 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
1097 128 : 16;
1098
1099 const uint32_t max_images = devinfo->gen < 9 ? MAX_GEN8_IMAGES : MAX_IMAGES;
1100
1101 VkSampleCountFlags sample_counts =
1102 isl_device_get_sample_counts(&pdevice->isl_dev);
1103
1104
1105 VkPhysicalDeviceLimits limits = {
1106 .maxImageDimension1D = (1 << 14),
1107 .maxImageDimension2D = (1 << 14),
1108 .maxImageDimension3D = (1 << 11),
1109 .maxImageDimensionCube = (1 << 14),
1110 .maxImageArrayLayers = (1 << 11),
1111 .maxTexelBufferElements = 128 * 1024 * 1024,
1112 .maxUniformBufferRange = (1ul << 27),
1113 .maxStorageBufferRange = max_raw_buffer_sz,
1114 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1115 .maxMemoryAllocationCount = UINT32_MAX,
1116 .maxSamplerAllocationCount = 64 * 1024,
1117 .bufferImageGranularity = 64, /* A cache line */
1118 .sparseAddressSpaceSize = 0,
1119 .maxBoundDescriptorSets = MAX_SETS,
1120 .maxPerStageDescriptorSamplers = max_samplers,
1121 .maxPerStageDescriptorUniformBuffers = 64,
1122 .maxPerStageDescriptorStorageBuffers = 64,
1123 .maxPerStageDescriptorSampledImages = max_samplers,
1124 .maxPerStageDescriptorStorageImages = max_images,
1125 .maxPerStageDescriptorInputAttachments = 64,
1126 .maxPerStageResources = 250,
1127 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1128 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1129 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1130 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
1131 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1132 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
1133 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1134 .maxDescriptorSetInputAttachments = 256,
1135 .maxVertexInputAttributes = MAX_VBS,
1136 .maxVertexInputBindings = MAX_VBS,
1137 .maxVertexInputAttributeOffset = 2047,
1138 .maxVertexInputBindingStride = 2048,
1139 .maxVertexOutputComponents = 128,
1140 .maxTessellationGenerationLevel = 64,
1141 .maxTessellationPatchSize = 32,
1142 .maxTessellationControlPerVertexInputComponents = 128,
1143 .maxTessellationControlPerVertexOutputComponents = 128,
1144 .maxTessellationControlPerPatchOutputComponents = 128,
1145 .maxTessellationControlTotalOutputComponents = 2048,
1146 .maxTessellationEvaluationInputComponents = 128,
1147 .maxTessellationEvaluationOutputComponents = 128,
1148 .maxGeometryShaderInvocations = 32,
1149 .maxGeometryInputComponents = 64,
1150 .maxGeometryOutputComponents = 128,
1151 .maxGeometryOutputVertices = 256,
1152 .maxGeometryTotalOutputComponents = 1024,
1153 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1154 .maxFragmentOutputAttachments = 8,
1155 .maxFragmentDualSrcAttachments = 1,
1156 .maxFragmentCombinedOutputResources = 8,
1157 .maxComputeSharedMemorySize = 32768,
1158 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1159 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1160 .maxComputeWorkGroupSize = {
1161 16 * devinfo->max_cs_threads,
1162 16 * devinfo->max_cs_threads,
1163 16 * devinfo->max_cs_threads,
1164 },
1165 .subPixelPrecisionBits = 8,
1166 .subTexelPrecisionBits = 8,
1167 .mipmapPrecisionBits = 8,
1168 .maxDrawIndexedIndexValue = UINT32_MAX,
1169 .maxDrawIndirectCount = UINT32_MAX,
1170 .maxSamplerLodBias = 16,
1171 .maxSamplerAnisotropy = 16,
1172 .maxViewports = MAX_VIEWPORTS,
1173 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1174 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1175 .viewportSubPixelBits = 13, /* We take a float? */
1176 .minMemoryMapAlignment = 4096, /* A page */
1177 .minTexelBufferOffsetAlignment = 1,
1178 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1179 .minUniformBufferOffsetAlignment = 32,
1180 .minStorageBufferOffsetAlignment = 4,
1181 .minTexelOffset = -8,
1182 .maxTexelOffset = 7,
1183 .minTexelGatherOffset = -32,
1184 .maxTexelGatherOffset = 31,
1185 .minInterpolationOffset = -0.5,
1186 .maxInterpolationOffset = 0.4375,
1187 .subPixelInterpolationOffsetBits = 4,
1188 .maxFramebufferWidth = (1 << 14),
1189 .maxFramebufferHeight = (1 << 14),
1190 .maxFramebufferLayers = (1 << 11),
1191 .framebufferColorSampleCounts = sample_counts,
1192 .framebufferDepthSampleCounts = sample_counts,
1193 .framebufferStencilSampleCounts = sample_counts,
1194 .framebufferNoAttachmentsSampleCounts = sample_counts,
1195 .maxColorAttachments = MAX_RTS,
1196 .sampledImageColorSampleCounts = sample_counts,
1197 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1198 .sampledImageDepthSampleCounts = sample_counts,
1199 .sampledImageStencilSampleCounts = sample_counts,
1200 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1201 .maxSampleMaskWords = 1,
1202 .timestampComputeAndGraphics = false,
1203 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1204 .maxClipDistances = 8,
1205 .maxCullDistances = 8,
1206 .maxCombinedClipAndCullDistances = 8,
1207 .discreteQueuePriorities = 2,
1208 .pointSizeRange = { 0.125, 255.875 },
1209 .lineWidthRange = { 0.0, 7.9921875 },
1210 .pointSizeGranularity = (1.0 / 8.0),
1211 .lineWidthGranularity = (1.0 / 128.0),
1212 .strictLines = false, /* FINISHME */
1213 .standardSampleLocations = true,
1214 .optimalBufferCopyOffsetAlignment = 128,
1215 .optimalBufferCopyRowPitchAlignment = 128,
1216 .nonCoherentAtomSize = 64,
1217 };
1218
1219 *pProperties = (VkPhysicalDeviceProperties) {
1220 .apiVersion = anv_physical_device_api_version(pdevice),
1221 .driverVersion = vk_get_driver_version(),
1222 .vendorID = 0x8086,
1223 .deviceID = pdevice->chipset_id,
1224 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1225 .limits = limits,
1226 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1227 };
1228
1229 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1230 "%s", pdevice->name);
1231 memcpy(pProperties->pipelineCacheUUID,
1232 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1233 }
1234
1235 void anv_GetPhysicalDeviceProperties2(
1236 VkPhysicalDevice physicalDevice,
1237 VkPhysicalDeviceProperties2* pProperties)
1238 {
1239 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1240
1241 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1242
1243 vk_foreach_struct(ext, pProperties->pNext) {
1244 switch (ext->sType) {
1245 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1246 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1247 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1248
1249 /* We support all of the depth resolve modes */
1250 props->supportedDepthResolveModes =
1251 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1252 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1253 VK_RESOLVE_MODE_MIN_BIT_KHR |
1254 VK_RESOLVE_MODE_MAX_BIT_KHR;
1255
1256 /* Average doesn't make sense for stencil so we don't support that */
1257 props->supportedStencilResolveModes =
1258 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1259 if (pdevice->info.gen >= 8) {
1260 /* The advanced stencil resolve modes currently require stencil
1261 * sampling be supported by the hardware.
1262 */
1263 props->supportedStencilResolveModes |=
1264 VK_RESOLVE_MODE_MIN_BIT_KHR |
1265 VK_RESOLVE_MODE_MAX_BIT_KHR;
1266 }
1267
1268 props->independentResolveNone = true;
1269 props->independentResolve = true;
1270 break;
1271 }
1272
1273 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1274 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1275 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1276
1277 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1278 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1279 "Intel open-source Mesa driver");
1280
1281 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1282 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1283
1284 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1285 .major = 1,
1286 .minor = 1,
1287 .subminor = 2,
1288 .patch = 0,
1289 };
1290 break;
1291 }
1292
1293 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1294 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1295 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1296 /* Userptr needs page aligned memory. */
1297 props->minImportedHostPointerAlignment = 4096;
1298 break;
1299 }
1300
1301 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1302 VkPhysicalDeviceIDProperties *id_props =
1303 (VkPhysicalDeviceIDProperties *)ext;
1304 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1305 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1306 /* The LUID is for Windows. */
1307 id_props->deviceLUIDValid = false;
1308 break;
1309 }
1310
1311 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1312 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1313 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1314 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1315 props->maxPerStageDescriptorInlineUniformBlocks =
1316 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1317 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1318 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1319 props->maxDescriptorSetInlineUniformBlocks =
1320 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1321 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1322 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1323 break;
1324 }
1325
1326 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1327 VkPhysicalDeviceMaintenance3Properties *props =
1328 (VkPhysicalDeviceMaintenance3Properties *)ext;
1329 /* This value doesn't matter for us today as our per-stage
1330 * descriptors are the real limit.
1331 */
1332 props->maxPerSetDescriptors = 1024;
1333 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1334 break;
1335 }
1336
1337 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1338 VkPhysicalDeviceMultiviewProperties *properties =
1339 (VkPhysicalDeviceMultiviewProperties *)ext;
1340 properties->maxMultiviewViewCount = 16;
1341 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1342 break;
1343 }
1344
1345 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1346 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1347 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1348 properties->pciDomain = pdevice->pci_info.domain;
1349 properties->pciBus = pdevice->pci_info.bus;
1350 properties->pciDevice = pdevice->pci_info.device;
1351 properties->pciFunction = pdevice->pci_info.function;
1352 break;
1353 }
1354
1355 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1356 VkPhysicalDevicePointClippingProperties *properties =
1357 (VkPhysicalDevicePointClippingProperties *) ext;
1358 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1359 anv_finishme("Implement pop-free point clipping");
1360 break;
1361 }
1362
1363 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1364 VkPhysicalDeviceProtectedMemoryProperties *props =
1365 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1366 props->protectedNoFault = false;
1367 break;
1368 }
1369
1370 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1371 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1372 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1373
1374 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1375 break;
1376 }
1377
1378 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1379 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1380 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1381 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1382 properties->filterMinmaxSingleComponentFormats = true;
1383 break;
1384 }
1385
1386 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1387 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1388
1389 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1390
1391 VkShaderStageFlags scalar_stages = 0;
1392 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1393 if (pdevice->compiler->scalar_stage[stage])
1394 scalar_stages |= mesa_to_vk_shader_stage(stage);
1395 }
1396 properties->supportedStages = scalar_stages;
1397
1398 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1399 VK_SUBGROUP_FEATURE_VOTE_BIT |
1400 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1401 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1402 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1403 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1404 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1405 VK_SUBGROUP_FEATURE_QUAD_BIT;
1406 properties->quadOperationsInAllStages = true;
1407 break;
1408 }
1409
1410 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1411 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1412 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1413
1414 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1415 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1416 props->maxTransformFeedbackBufferSize = (1ull << 32);
1417 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1418 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1419 props->maxTransformFeedbackBufferDataStride = 2048;
1420 props->transformFeedbackQueries = true;
1421 props->transformFeedbackStreamsLinesTriangles = false;
1422 props->transformFeedbackRasterizationStreamSelect = false;
1423 props->transformFeedbackDraw = true;
1424 break;
1425 }
1426
1427 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1428 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1429 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1430 /* We have to restrict this a bit for multiview */
1431 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1432 break;
1433 }
1434
1435 default:
1436 anv_debug_ignored_stype(ext->sType);
1437 break;
1438 }
1439 }
1440 }
1441
1442 /* We support exactly one queue family. */
1443 static const VkQueueFamilyProperties
1444 anv_queue_family_properties = {
1445 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1446 VK_QUEUE_COMPUTE_BIT |
1447 VK_QUEUE_TRANSFER_BIT,
1448 .queueCount = 1,
1449 .timestampValidBits = 36, /* XXX: Real value here */
1450 .minImageTransferGranularity = { 1, 1, 1 },
1451 };
1452
1453 void anv_GetPhysicalDeviceQueueFamilyProperties(
1454 VkPhysicalDevice physicalDevice,
1455 uint32_t* pCount,
1456 VkQueueFamilyProperties* pQueueFamilyProperties)
1457 {
1458 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1459
1460 vk_outarray_append(&out, p) {
1461 *p = anv_queue_family_properties;
1462 }
1463 }
1464
1465 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1466 VkPhysicalDevice physicalDevice,
1467 uint32_t* pQueueFamilyPropertyCount,
1468 VkQueueFamilyProperties2* pQueueFamilyProperties)
1469 {
1470
1471 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1472
1473 vk_outarray_append(&out, p) {
1474 p->queueFamilyProperties = anv_queue_family_properties;
1475
1476 vk_foreach_struct(s, p->pNext) {
1477 anv_debug_ignored_stype(s->sType);
1478 }
1479 }
1480 }
1481
1482 void anv_GetPhysicalDeviceMemoryProperties(
1483 VkPhysicalDevice physicalDevice,
1484 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1485 {
1486 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1487
1488 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1489 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1490 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1491 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1492 .heapIndex = physical_device->memory.types[i].heapIndex,
1493 };
1494 }
1495
1496 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1497 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1498 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1499 .size = physical_device->memory.heaps[i].size,
1500 .flags = physical_device->memory.heaps[i].flags,
1501 };
1502 }
1503 }
1504
1505 void anv_GetPhysicalDeviceMemoryProperties2(
1506 VkPhysicalDevice physicalDevice,
1507 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1508 {
1509 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1510 &pMemoryProperties->memoryProperties);
1511
1512 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1513 switch (ext->sType) {
1514 default:
1515 anv_debug_ignored_stype(ext->sType);
1516 break;
1517 }
1518 }
1519 }
1520
1521 void
1522 anv_GetDeviceGroupPeerMemoryFeatures(
1523 VkDevice device,
1524 uint32_t heapIndex,
1525 uint32_t localDeviceIndex,
1526 uint32_t remoteDeviceIndex,
1527 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1528 {
1529 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1530 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1531 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1532 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1533 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1534 }
1535
1536 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1537 VkInstance _instance,
1538 const char* pName)
1539 {
1540 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1541
1542 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1543 * when we have to return valid function pointers, NULL, or it's left
1544 * undefined. See the table for exact details.
1545 */
1546 if (pName == NULL)
1547 return NULL;
1548
1549 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1550 if (strcmp(pName, "vk" #entrypoint) == 0) \
1551 return (PFN_vkVoidFunction)anv_##entrypoint
1552
1553 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1554 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1555 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1556 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1557
1558 #undef LOOKUP_ANV_ENTRYPOINT
1559
1560 if (instance == NULL)
1561 return NULL;
1562
1563 int idx = anv_get_instance_entrypoint_index(pName);
1564 if (idx >= 0)
1565 return instance->dispatch.entrypoints[idx];
1566
1567 idx = anv_get_device_entrypoint_index(pName);
1568 if (idx >= 0)
1569 return instance->device_dispatch.entrypoints[idx];
1570
1571 return NULL;
1572 }
1573
1574 /* With version 1+ of the loader interface the ICD should expose
1575 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1576 */
1577 PUBLIC
1578 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1579 VkInstance instance,
1580 const char* pName);
1581
1582 PUBLIC
1583 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1584 VkInstance instance,
1585 const char* pName)
1586 {
1587 return anv_GetInstanceProcAddr(instance, pName);
1588 }
1589
1590 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1591 VkDevice _device,
1592 const char* pName)
1593 {
1594 ANV_FROM_HANDLE(anv_device, device, _device);
1595
1596 if (!device || !pName)
1597 return NULL;
1598
1599 int idx = anv_get_device_entrypoint_index(pName);
1600 if (idx < 0)
1601 return NULL;
1602
1603 return device->dispatch.entrypoints[idx];
1604 }
1605
1606 VkResult
1607 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1608 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1609 const VkAllocationCallbacks* pAllocator,
1610 VkDebugReportCallbackEXT* pCallback)
1611 {
1612 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1613 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1614 pCreateInfo, pAllocator, &instance->alloc,
1615 pCallback);
1616 }
1617
1618 void
1619 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1620 VkDebugReportCallbackEXT _callback,
1621 const VkAllocationCallbacks* pAllocator)
1622 {
1623 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1624 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1625 _callback, pAllocator, &instance->alloc);
1626 }
1627
1628 void
1629 anv_DebugReportMessageEXT(VkInstance _instance,
1630 VkDebugReportFlagsEXT flags,
1631 VkDebugReportObjectTypeEXT objectType,
1632 uint64_t object,
1633 size_t location,
1634 int32_t messageCode,
1635 const char* pLayerPrefix,
1636 const char* pMessage)
1637 {
1638 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1639 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1640 object, location, messageCode, pLayerPrefix, pMessage);
1641 }
1642
1643 static void
1644 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1645 {
1646 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1647 queue->device = device;
1648 queue->flags = 0;
1649 }
1650
1651 static void
1652 anv_queue_finish(struct anv_queue *queue)
1653 {
1654 }
1655
1656 static struct anv_state
1657 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1658 {
1659 struct anv_state state;
1660
1661 state = anv_state_pool_alloc(pool, size, align);
1662 memcpy(state.map, p, size);
1663
1664 return state;
1665 }
1666
1667 struct gen8_border_color {
1668 union {
1669 float float32[4];
1670 uint32_t uint32[4];
1671 };
1672 /* Pad out to 64 bytes */
1673 uint32_t _pad[12];
1674 };
1675
1676 static void
1677 anv_device_init_border_colors(struct anv_device *device)
1678 {
1679 static const struct gen8_border_color border_colors[] = {
1680 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1681 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1682 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1683 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1684 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1685 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1686 };
1687
1688 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1689 sizeof(border_colors), 64,
1690 border_colors);
1691 }
1692
1693 static void
1694 anv_device_init_trivial_batch(struct anv_device *device)
1695 {
1696 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1697
1698 if (device->instance->physicalDevice.has_exec_async)
1699 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1700
1701 if (device->instance->physicalDevice.use_softpin)
1702 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1703
1704 anv_vma_alloc(device, &device->trivial_batch_bo);
1705
1706 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1707 0, 4096, 0);
1708
1709 struct anv_batch batch = {
1710 .start = map,
1711 .next = map,
1712 .end = map + 4096,
1713 };
1714
1715 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1716 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1717
1718 if (!device->info.has_llc)
1719 gen_clflush_range(map, batch.next - map);
1720
1721 anv_gem_munmap(map, device->trivial_batch_bo.size);
1722 }
1723
1724 VkResult anv_EnumerateDeviceExtensionProperties(
1725 VkPhysicalDevice physicalDevice,
1726 const char* pLayerName,
1727 uint32_t* pPropertyCount,
1728 VkExtensionProperties* pProperties)
1729 {
1730 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1731 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1732
1733 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1734 if (device->supported_extensions.extensions[i]) {
1735 vk_outarray_append(&out, prop) {
1736 *prop = anv_device_extensions[i];
1737 }
1738 }
1739 }
1740
1741 return vk_outarray_status(&out);
1742 }
1743
1744 static void
1745 anv_device_init_dispatch(struct anv_device *device)
1746 {
1747 const struct anv_device_dispatch_table *genX_table;
1748 switch (device->info.gen) {
1749 case 11:
1750 genX_table = &gen11_device_dispatch_table;
1751 break;
1752 case 10:
1753 genX_table = &gen10_device_dispatch_table;
1754 break;
1755 case 9:
1756 genX_table = &gen9_device_dispatch_table;
1757 break;
1758 case 8:
1759 genX_table = &gen8_device_dispatch_table;
1760 break;
1761 case 7:
1762 if (device->info.is_haswell)
1763 genX_table = &gen75_device_dispatch_table;
1764 else
1765 genX_table = &gen7_device_dispatch_table;
1766 break;
1767 default:
1768 unreachable("unsupported gen\n");
1769 }
1770
1771 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1772 /* Vulkan requires that entrypoints for extensions which have not been
1773 * enabled must not be advertised.
1774 */
1775 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1776 &device->instance->enabled_extensions,
1777 &device->enabled_extensions)) {
1778 device->dispatch.entrypoints[i] = NULL;
1779 } else if (genX_table->entrypoints[i]) {
1780 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1781 } else {
1782 device->dispatch.entrypoints[i] =
1783 anv_device_dispatch_table.entrypoints[i];
1784 }
1785 }
1786 }
1787
1788 static int
1789 vk_priority_to_gen(int priority)
1790 {
1791 switch (priority) {
1792 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1793 return GEN_CONTEXT_LOW_PRIORITY;
1794 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1795 return GEN_CONTEXT_MEDIUM_PRIORITY;
1796 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1797 return GEN_CONTEXT_HIGH_PRIORITY;
1798 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1799 return GEN_CONTEXT_REALTIME_PRIORITY;
1800 default:
1801 unreachable("Invalid priority");
1802 }
1803 }
1804
1805 static void
1806 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1807 {
1808 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1809
1810 if (device->instance->physicalDevice.has_exec_async)
1811 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1812
1813 if (device->instance->physicalDevice.use_softpin)
1814 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1815
1816 anv_vma_alloc(device, &device->hiz_clear_bo);
1817
1818 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1819 0, 4096, 0);
1820
1821 union isl_color_value hiz_clear = { .u32 = { 0, } };
1822 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1823
1824 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1825 anv_gem_munmap(map, device->hiz_clear_bo.size);
1826 }
1827
1828 static bool
1829 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1830 struct anv_block_pool *pool,
1831 uint64_t address)
1832 {
1833 for (uint32_t i = 0; i < pool->nbos; i++) {
1834 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1835 uint32_t bo_size = pool->bos[i].size;
1836 if (address >= bo_address && address < (bo_address + bo_size)) {
1837 *ret = (struct gen_batch_decode_bo) {
1838 .addr = bo_address,
1839 .size = bo_size,
1840 .map = pool->bos[i].map,
1841 };
1842 return true;
1843 }
1844 }
1845 return false;
1846 }
1847
1848 /* Finding a buffer for batch decoding */
1849 static struct gen_batch_decode_bo
1850 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
1851 {
1852 struct anv_device *device = v_batch;
1853 struct gen_batch_decode_bo ret_bo = {};
1854
1855 assert(ppgtt);
1856
1857 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1858 return ret_bo;
1859 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1860 return ret_bo;
1861 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1862 return ret_bo;
1863 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1864 return ret_bo;
1865
1866 if (!device->cmd_buffer_being_decoded)
1867 return (struct gen_batch_decode_bo) { };
1868
1869 struct anv_batch_bo **bo;
1870
1871 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1872 /* The decoder zeroes out the top 16 bits, so we need to as well */
1873 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1874
1875 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1876 return (struct gen_batch_decode_bo) {
1877 .addr = bo_address,
1878 .size = (*bo)->bo.size,
1879 .map = (*bo)->bo.map,
1880 };
1881 }
1882 }
1883
1884 return (struct gen_batch_decode_bo) { };
1885 }
1886
1887 VkResult anv_CreateDevice(
1888 VkPhysicalDevice physicalDevice,
1889 const VkDeviceCreateInfo* pCreateInfo,
1890 const VkAllocationCallbacks* pAllocator,
1891 VkDevice* pDevice)
1892 {
1893 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1894 VkResult result;
1895 struct anv_device *device;
1896
1897 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1898
1899 struct anv_device_extension_table enabled_extensions = { };
1900 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1901 int idx;
1902 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1903 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1904 anv_device_extensions[idx].extensionName) == 0)
1905 break;
1906 }
1907
1908 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1909 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1910
1911 if (!physical_device->supported_extensions.extensions[idx])
1912 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1913
1914 enabled_extensions.extensions[idx] = true;
1915 }
1916
1917 /* Check enabled features */
1918 if (pCreateInfo->pEnabledFeatures) {
1919 VkPhysicalDeviceFeatures supported_features;
1920 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1921 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1922 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1923 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1924 for (uint32_t i = 0; i < num_features; i++) {
1925 if (enabled_feature[i] && !supported_feature[i])
1926 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1927 }
1928 }
1929
1930 /* Check requested queues and fail if we are requested to create any
1931 * queues with flags we don't support.
1932 */
1933 assert(pCreateInfo->queueCreateInfoCount > 0);
1934 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1935 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1936 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1937 }
1938
1939 /* Check if client specified queue priority. */
1940 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1941 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1942 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1943
1944 VkQueueGlobalPriorityEXT priority =
1945 queue_priority ? queue_priority->globalPriority :
1946 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1947
1948 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1949 sizeof(*device), 8,
1950 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1951 if (!device)
1952 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1953
1954 const unsigned decode_flags =
1955 GEN_BATCH_DECODE_FULL |
1956 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
1957 GEN_BATCH_DECODE_OFFSETS |
1958 GEN_BATCH_DECODE_FLOATS;
1959
1960 gen_batch_decode_ctx_init(&device->decoder_ctx,
1961 &physical_device->info,
1962 stderr, decode_flags, NULL,
1963 decode_get_bo, NULL, device);
1964
1965 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1966 device->instance = physical_device->instance;
1967 device->chipset_id = physical_device->chipset_id;
1968 device->no_hw = physical_device->no_hw;
1969 device->_lost = false;
1970
1971 if (pAllocator)
1972 device->alloc = *pAllocator;
1973 else
1974 device->alloc = physical_device->instance->alloc;
1975
1976 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1977 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1978 if (device->fd == -1) {
1979 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1980 goto fail_device;
1981 }
1982
1983 device->context_id = anv_gem_create_context(device);
1984 if (device->context_id == -1) {
1985 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1986 goto fail_fd;
1987 }
1988
1989 if (physical_device->use_softpin) {
1990 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1991 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1992 goto fail_fd;
1993 }
1994
1995 /* keep the page with address zero out of the allocator */
1996 struct anv_memory_heap *low_heap =
1997 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
1998 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
1999 device->vma_lo_available = low_heap->size;
2000
2001 struct anv_memory_heap *high_heap =
2002 &physical_device->memory.heaps[0];
2003 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2004 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2005 high_heap->size;
2006 }
2007
2008 /* As per spec, the driver implementation may deny requests to acquire
2009 * a priority above the default priority (MEDIUM) if the caller does not
2010 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2011 * is returned.
2012 */
2013 if (physical_device->has_context_priority) {
2014 int err = anv_gem_set_context_param(device->fd, device->context_id,
2015 I915_CONTEXT_PARAM_PRIORITY,
2016 vk_priority_to_gen(priority));
2017 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2018 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2019 goto fail_fd;
2020 }
2021 }
2022
2023 device->info = physical_device->info;
2024 device->isl_dev = physical_device->isl_dev;
2025
2026 /* On Broadwell and later, we can use batch chaining to more efficiently
2027 * implement growing command buffers. Prior to Haswell, the kernel
2028 * command parser gets in the way and we have to fall back to growing
2029 * the batch.
2030 */
2031 device->can_chain_batches = device->info.gen >= 8;
2032
2033 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2034 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2035 device->enabled_extensions = enabled_extensions;
2036
2037 anv_device_init_dispatch(device);
2038
2039 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2040 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2041 goto fail_context_id;
2042 }
2043
2044 pthread_condattr_t condattr;
2045 if (pthread_condattr_init(&condattr) != 0) {
2046 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2047 goto fail_mutex;
2048 }
2049 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2050 pthread_condattr_destroy(&condattr);
2051 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2052 goto fail_mutex;
2053 }
2054 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2055 pthread_condattr_destroy(&condattr);
2056 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2057 goto fail_mutex;
2058 }
2059 pthread_condattr_destroy(&condattr);
2060
2061 uint64_t bo_flags =
2062 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2063 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2064 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2065 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2066
2067 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2068
2069 result = anv_bo_cache_init(&device->bo_cache);
2070 if (result != VK_SUCCESS)
2071 goto fail_batch_bo_pool;
2072
2073 if (!physical_device->use_softpin)
2074 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2075
2076 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2077 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2078 16384,
2079 bo_flags);
2080 if (result != VK_SUCCESS)
2081 goto fail_bo_cache;
2082
2083 result = anv_state_pool_init(&device->instruction_state_pool, device,
2084 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2085 16384,
2086 bo_flags);
2087 if (result != VK_SUCCESS)
2088 goto fail_dynamic_state_pool;
2089
2090 result = anv_state_pool_init(&device->surface_state_pool, device,
2091 SURFACE_STATE_POOL_MIN_ADDRESS,
2092 4096,
2093 bo_flags);
2094 if (result != VK_SUCCESS)
2095 goto fail_instruction_state_pool;
2096
2097 if (physical_device->use_softpin) {
2098 result = anv_state_pool_init(&device->binding_table_pool, device,
2099 BINDING_TABLE_POOL_MIN_ADDRESS,
2100 4096,
2101 bo_flags);
2102 if (result != VK_SUCCESS)
2103 goto fail_surface_state_pool;
2104 }
2105
2106 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2107 if (result != VK_SUCCESS)
2108 goto fail_binding_table_pool;
2109
2110 if (physical_device->use_softpin)
2111 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2112
2113 if (!anv_vma_alloc(device, &device->workaround_bo))
2114 goto fail_workaround_bo;
2115
2116 anv_device_init_trivial_batch(device);
2117
2118 if (device->info.gen >= 10)
2119 anv_device_init_hiz_clear_value_bo(device);
2120
2121 if (physical_device->use_softpin)
2122 device->pinned_buffers = _mesa_pointer_set_create(NULL);
2123
2124 anv_scratch_pool_init(device, &device->scratch_pool);
2125
2126 anv_queue_init(device, &device->queue);
2127
2128 switch (device->info.gen) {
2129 case 7:
2130 if (!device->info.is_haswell)
2131 result = gen7_init_device_state(device);
2132 else
2133 result = gen75_init_device_state(device);
2134 break;
2135 case 8:
2136 result = gen8_init_device_state(device);
2137 break;
2138 case 9:
2139 result = gen9_init_device_state(device);
2140 break;
2141 case 10:
2142 result = gen10_init_device_state(device);
2143 break;
2144 case 11:
2145 result = gen11_init_device_state(device);
2146 break;
2147 default:
2148 /* Shouldn't get here as we don't create physical devices for any other
2149 * gens. */
2150 unreachable("unhandled gen");
2151 }
2152 if (result != VK_SUCCESS)
2153 goto fail_workaround_bo;
2154
2155 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2156
2157 anv_device_init_blorp(device);
2158
2159 anv_device_init_border_colors(device);
2160
2161 *pDevice = anv_device_to_handle(device);
2162
2163 return VK_SUCCESS;
2164
2165 fail_workaround_bo:
2166 anv_queue_finish(&device->queue);
2167 anv_scratch_pool_finish(device, &device->scratch_pool);
2168 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2169 anv_gem_close(device, device->workaround_bo.gem_handle);
2170 fail_binding_table_pool:
2171 if (physical_device->use_softpin)
2172 anv_state_pool_finish(&device->binding_table_pool);
2173 fail_surface_state_pool:
2174 anv_state_pool_finish(&device->surface_state_pool);
2175 fail_instruction_state_pool:
2176 anv_state_pool_finish(&device->instruction_state_pool);
2177 fail_dynamic_state_pool:
2178 anv_state_pool_finish(&device->dynamic_state_pool);
2179 fail_bo_cache:
2180 anv_bo_cache_finish(&device->bo_cache);
2181 fail_batch_bo_pool:
2182 anv_bo_pool_finish(&device->batch_bo_pool);
2183 pthread_cond_destroy(&device->queue_submit);
2184 fail_mutex:
2185 pthread_mutex_destroy(&device->mutex);
2186 fail_context_id:
2187 anv_gem_destroy_context(device, device->context_id);
2188 fail_fd:
2189 close(device->fd);
2190 fail_device:
2191 vk_free(&device->alloc, device);
2192
2193 return result;
2194 }
2195
2196 void anv_DestroyDevice(
2197 VkDevice _device,
2198 const VkAllocationCallbacks* pAllocator)
2199 {
2200 ANV_FROM_HANDLE(anv_device, device, _device);
2201 struct anv_physical_device *physical_device;
2202
2203 if (!device)
2204 return;
2205
2206 physical_device = &device->instance->physicalDevice;
2207
2208 anv_device_finish_blorp(device);
2209
2210 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2211
2212 anv_queue_finish(&device->queue);
2213
2214 if (physical_device->use_softpin)
2215 _mesa_set_destroy(device->pinned_buffers, NULL);
2216
2217 #ifdef HAVE_VALGRIND
2218 /* We only need to free these to prevent valgrind errors. The backing
2219 * BO will go away in a couple of lines so we don't actually leak.
2220 */
2221 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2222 #endif
2223
2224 anv_scratch_pool_finish(device, &device->scratch_pool);
2225
2226 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2227 anv_vma_free(device, &device->workaround_bo);
2228 anv_gem_close(device, device->workaround_bo.gem_handle);
2229
2230 anv_vma_free(device, &device->trivial_batch_bo);
2231 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2232 if (device->info.gen >= 10)
2233 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2234
2235 if (physical_device->use_softpin)
2236 anv_state_pool_finish(&device->binding_table_pool);
2237 anv_state_pool_finish(&device->surface_state_pool);
2238 anv_state_pool_finish(&device->instruction_state_pool);
2239 anv_state_pool_finish(&device->dynamic_state_pool);
2240
2241 anv_bo_cache_finish(&device->bo_cache);
2242
2243 anv_bo_pool_finish(&device->batch_bo_pool);
2244
2245 pthread_cond_destroy(&device->queue_submit);
2246 pthread_mutex_destroy(&device->mutex);
2247
2248 anv_gem_destroy_context(device, device->context_id);
2249
2250 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2251
2252 close(device->fd);
2253
2254 vk_free(&device->alloc, device);
2255 }
2256
2257 VkResult anv_EnumerateInstanceLayerProperties(
2258 uint32_t* pPropertyCount,
2259 VkLayerProperties* pProperties)
2260 {
2261 if (pProperties == NULL) {
2262 *pPropertyCount = 0;
2263 return VK_SUCCESS;
2264 }
2265
2266 /* None supported at this time */
2267 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2268 }
2269
2270 VkResult anv_EnumerateDeviceLayerProperties(
2271 VkPhysicalDevice physicalDevice,
2272 uint32_t* pPropertyCount,
2273 VkLayerProperties* pProperties)
2274 {
2275 if (pProperties == NULL) {
2276 *pPropertyCount = 0;
2277 return VK_SUCCESS;
2278 }
2279
2280 /* None supported at this time */
2281 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2282 }
2283
2284 void anv_GetDeviceQueue(
2285 VkDevice _device,
2286 uint32_t queueNodeIndex,
2287 uint32_t queueIndex,
2288 VkQueue* pQueue)
2289 {
2290 ANV_FROM_HANDLE(anv_device, device, _device);
2291
2292 assert(queueIndex == 0);
2293
2294 *pQueue = anv_queue_to_handle(&device->queue);
2295 }
2296
2297 void anv_GetDeviceQueue2(
2298 VkDevice _device,
2299 const VkDeviceQueueInfo2* pQueueInfo,
2300 VkQueue* pQueue)
2301 {
2302 ANV_FROM_HANDLE(anv_device, device, _device);
2303
2304 assert(pQueueInfo->queueIndex == 0);
2305
2306 if (pQueueInfo->flags == device->queue.flags)
2307 *pQueue = anv_queue_to_handle(&device->queue);
2308 else
2309 *pQueue = NULL;
2310 }
2311
2312 VkResult
2313 _anv_device_set_lost(struct anv_device *device,
2314 const char *file, int line,
2315 const char *msg, ...)
2316 {
2317 VkResult err;
2318 va_list ap;
2319
2320 device->_lost = true;
2321
2322 va_start(ap, msg);
2323 err = __vk_errorv(device->instance, device,
2324 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2325 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2326 va_end(ap);
2327
2328 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2329 abort();
2330
2331 return err;
2332 }
2333
2334 VkResult
2335 anv_device_query_status(struct anv_device *device)
2336 {
2337 /* This isn't likely as most of the callers of this function already check
2338 * for it. However, it doesn't hurt to check and it potentially lets us
2339 * avoid an ioctl.
2340 */
2341 if (anv_device_is_lost(device))
2342 return VK_ERROR_DEVICE_LOST;
2343
2344 uint32_t active, pending;
2345 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2346 if (ret == -1) {
2347 /* We don't know the real error. */
2348 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2349 }
2350
2351 if (active) {
2352 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2353 } else if (pending) {
2354 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2355 }
2356
2357 return VK_SUCCESS;
2358 }
2359
2360 VkResult
2361 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2362 {
2363 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2364 * Other usages of the BO (such as on different hardware) will not be
2365 * flagged as "busy" by this ioctl. Use with care.
2366 */
2367 int ret = anv_gem_busy(device, bo->gem_handle);
2368 if (ret == 1) {
2369 return VK_NOT_READY;
2370 } else if (ret == -1) {
2371 /* We don't know the real error. */
2372 return anv_device_set_lost(device, "gem wait failed: %m");
2373 }
2374
2375 /* Query for device status after the busy call. If the BO we're checking
2376 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2377 * client because it clearly doesn't have valid data. Yes, this most
2378 * likely means an ioctl, but we just did an ioctl to query the busy status
2379 * so it's no great loss.
2380 */
2381 return anv_device_query_status(device);
2382 }
2383
2384 VkResult
2385 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2386 int64_t timeout)
2387 {
2388 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2389 if (ret == -1 && errno == ETIME) {
2390 return VK_TIMEOUT;
2391 } else if (ret == -1) {
2392 /* We don't know the real error. */
2393 return anv_device_set_lost(device, "gem wait failed: %m");
2394 }
2395
2396 /* Query for device status after the wait. If the BO we're waiting on got
2397 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2398 * because it clearly doesn't have valid data. Yes, this most likely means
2399 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2400 */
2401 return anv_device_query_status(device);
2402 }
2403
2404 VkResult anv_DeviceWaitIdle(
2405 VkDevice _device)
2406 {
2407 ANV_FROM_HANDLE(anv_device, device, _device);
2408 if (anv_device_is_lost(device))
2409 return VK_ERROR_DEVICE_LOST;
2410
2411 struct anv_batch batch;
2412
2413 uint32_t cmds[8];
2414 batch.start = batch.next = cmds;
2415 batch.end = (void *) cmds + sizeof(cmds);
2416
2417 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2418 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2419
2420 return anv_device_submit_simple_batch(device, &batch);
2421 }
2422
2423 bool
2424 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2425 {
2426 if (!(bo->flags & EXEC_OBJECT_PINNED))
2427 return true;
2428
2429 pthread_mutex_lock(&device->vma_mutex);
2430
2431 bo->offset = 0;
2432
2433 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2434 device->vma_hi_available >= bo->size) {
2435 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2436 if (addr) {
2437 bo->offset = gen_canonical_address(addr);
2438 assert(addr == gen_48b_address(bo->offset));
2439 device->vma_hi_available -= bo->size;
2440 }
2441 }
2442
2443 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2444 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2445 if (addr) {
2446 bo->offset = gen_canonical_address(addr);
2447 assert(addr == gen_48b_address(bo->offset));
2448 device->vma_lo_available -= bo->size;
2449 }
2450 }
2451
2452 pthread_mutex_unlock(&device->vma_mutex);
2453
2454 return bo->offset != 0;
2455 }
2456
2457 void
2458 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2459 {
2460 if (!(bo->flags & EXEC_OBJECT_PINNED))
2461 return;
2462
2463 const uint64_t addr_48b = gen_48b_address(bo->offset);
2464
2465 pthread_mutex_lock(&device->vma_mutex);
2466
2467 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2468 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2469 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2470 device->vma_lo_available += bo->size;
2471 } else {
2472 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2473 &device->instance->physicalDevice;
2474 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2475 addr_48b < (physical_device->memory.heaps[0].vma_start +
2476 physical_device->memory.heaps[0].vma_size));
2477 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2478 device->vma_hi_available += bo->size;
2479 }
2480
2481 pthread_mutex_unlock(&device->vma_mutex);
2482
2483 bo->offset = 0;
2484 }
2485
2486 VkResult
2487 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2488 {
2489 uint32_t gem_handle = anv_gem_create(device, size);
2490 if (!gem_handle)
2491 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2492
2493 anv_bo_init(bo, gem_handle, size);
2494
2495 return VK_SUCCESS;
2496 }
2497
2498 VkResult anv_AllocateMemory(
2499 VkDevice _device,
2500 const VkMemoryAllocateInfo* pAllocateInfo,
2501 const VkAllocationCallbacks* pAllocator,
2502 VkDeviceMemory* pMem)
2503 {
2504 ANV_FROM_HANDLE(anv_device, device, _device);
2505 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2506 struct anv_device_memory *mem;
2507 VkResult result = VK_SUCCESS;
2508
2509 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2510
2511 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2512 assert(pAllocateInfo->allocationSize > 0);
2513
2514 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2515 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2516
2517 /* FINISHME: Fail if allocation request exceeds heap size. */
2518
2519 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2520 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2521 if (mem == NULL)
2522 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2523
2524 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2525 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2526 mem->map = NULL;
2527 mem->map_size = 0;
2528 mem->ahw = NULL;
2529 mem->host_ptr = NULL;
2530
2531 uint64_t bo_flags = 0;
2532
2533 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2534 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2535 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2536
2537 const struct wsi_memory_allocate_info *wsi_info =
2538 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2539 if (wsi_info && wsi_info->implicit_sync) {
2540 /* We need to set the WRITE flag on window system buffers so that GEM
2541 * will know we're writing to them and synchronize uses on other rings
2542 * (eg if the display server uses the blitter ring).
2543 */
2544 bo_flags |= EXEC_OBJECT_WRITE;
2545 } else if (pdevice->has_exec_async) {
2546 bo_flags |= EXEC_OBJECT_ASYNC;
2547 }
2548
2549 if (pdevice->use_softpin)
2550 bo_flags |= EXEC_OBJECT_PINNED;
2551
2552 const VkExportMemoryAllocateInfo *export_info =
2553 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2554
2555 /* Check if we need to support Android HW buffer export. If so,
2556 * create AHardwareBuffer and import memory from it.
2557 */
2558 bool android_export = false;
2559 if (export_info && export_info->handleTypes &
2560 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2561 android_export = true;
2562
2563 /* Android memory import. */
2564 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2565 vk_find_struct_const(pAllocateInfo->pNext,
2566 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2567
2568 if (ahw_import_info) {
2569 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2570 if (result != VK_SUCCESS)
2571 goto fail;
2572
2573 goto success;
2574 } else if (android_export) {
2575 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2576 if (result != VK_SUCCESS)
2577 goto fail;
2578
2579 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2580 .buffer = mem->ahw,
2581 };
2582 result = anv_import_ahw_memory(_device, mem, &import_info);
2583 if (result != VK_SUCCESS)
2584 goto fail;
2585
2586 goto success;
2587 }
2588
2589 const VkImportMemoryFdInfoKHR *fd_info =
2590 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2591
2592 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2593 * ignored.
2594 */
2595 if (fd_info && fd_info->handleType) {
2596 /* At the moment, we support only the below handle types. */
2597 assert(fd_info->handleType ==
2598 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2599 fd_info->handleType ==
2600 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2601
2602 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2603 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2604 if (result != VK_SUCCESS)
2605 goto fail;
2606
2607 VkDeviceSize aligned_alloc_size =
2608 align_u64(pAllocateInfo->allocationSize, 4096);
2609
2610 /* For security purposes, we reject importing the bo if it's smaller
2611 * than the requested allocation size. This prevents a malicious client
2612 * from passing a buffer to a trusted client, lying about the size, and
2613 * telling the trusted client to try and texture from an image that goes
2614 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2615 * in the trusted client. The trusted client can protect itself against
2616 * this sort of attack but only if it can trust the buffer size.
2617 */
2618 if (mem->bo->size < aligned_alloc_size) {
2619 result = vk_errorf(device->instance, device,
2620 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2621 "aligned allocationSize too large for "
2622 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2623 "%"PRIu64"B > %"PRIu64"B",
2624 aligned_alloc_size, mem->bo->size);
2625 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2626 goto fail;
2627 }
2628
2629 /* From the Vulkan spec:
2630 *
2631 * "Importing memory from a file descriptor transfers ownership of
2632 * the file descriptor from the application to the Vulkan
2633 * implementation. The application must not perform any operations on
2634 * the file descriptor after a successful import."
2635 *
2636 * If the import fails, we leave the file descriptor open.
2637 */
2638 close(fd_info->fd);
2639 goto success;
2640 }
2641
2642 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2643 vk_find_struct_const(pAllocateInfo->pNext,
2644 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2645 if (host_ptr_info && host_ptr_info->handleType) {
2646 if (host_ptr_info->handleType ==
2647 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2648 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2649 goto fail;
2650 }
2651
2652 assert(host_ptr_info->handleType ==
2653 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2654
2655 result = anv_bo_cache_import_host_ptr(
2656 device, &device->bo_cache, host_ptr_info->pHostPointer,
2657 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2658
2659 if (result != VK_SUCCESS)
2660 goto fail;
2661
2662 mem->host_ptr = host_ptr_info->pHostPointer;
2663 goto success;
2664 }
2665
2666 /* Regular allocate (not importing memory). */
2667
2668 if (export_info && export_info->handleTypes)
2669 bo_flags |= ANV_BO_EXTERNAL;
2670
2671 result = anv_bo_cache_alloc(device, &device->bo_cache,
2672 pAllocateInfo->allocationSize, bo_flags,
2673 &mem->bo);
2674 if (result != VK_SUCCESS)
2675 goto fail;
2676
2677 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2678 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2679 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2680 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2681
2682 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2683 * the BO. In this case, we have a dedicated allocation.
2684 */
2685 if (image->needs_set_tiling) {
2686 const uint32_t i915_tiling =
2687 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2688 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2689 image->planes[0].surface.isl.row_pitch_B,
2690 i915_tiling);
2691 if (ret) {
2692 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2693 return vk_errorf(device->instance, NULL,
2694 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2695 "failed to set BO tiling: %m");
2696 }
2697 }
2698 }
2699
2700 success:
2701 *pMem = anv_device_memory_to_handle(mem);
2702
2703 return VK_SUCCESS;
2704
2705 fail:
2706 vk_free2(&device->alloc, pAllocator, mem);
2707
2708 return result;
2709 }
2710
2711 VkResult anv_GetMemoryFdKHR(
2712 VkDevice device_h,
2713 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2714 int* pFd)
2715 {
2716 ANV_FROM_HANDLE(anv_device, dev, device_h);
2717 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2718
2719 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2720
2721 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2722 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2723
2724 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2725 }
2726
2727 VkResult anv_GetMemoryFdPropertiesKHR(
2728 VkDevice _device,
2729 VkExternalMemoryHandleTypeFlagBits handleType,
2730 int fd,
2731 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2732 {
2733 ANV_FROM_HANDLE(anv_device, device, _device);
2734 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2735
2736 switch (handleType) {
2737 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2738 /* dma-buf can be imported as any memory type */
2739 pMemoryFdProperties->memoryTypeBits =
2740 (1 << pdevice->memory.type_count) - 1;
2741 return VK_SUCCESS;
2742
2743 default:
2744 /* The valid usage section for this function says:
2745 *
2746 * "handleType must not be one of the handle types defined as
2747 * opaque."
2748 *
2749 * So opaque handle types fall into the default "unsupported" case.
2750 */
2751 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2752 }
2753 }
2754
2755 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2756 VkDevice _device,
2757 VkExternalMemoryHandleTypeFlagBits handleType,
2758 const void* pHostPointer,
2759 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2760 {
2761 ANV_FROM_HANDLE(anv_device, device, _device);
2762
2763 assert(pMemoryHostPointerProperties->sType ==
2764 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2765
2766 switch (handleType) {
2767 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2768 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2769
2770 /* Host memory can be imported as any memory type. */
2771 pMemoryHostPointerProperties->memoryTypeBits =
2772 (1ull << pdevice->memory.type_count) - 1;
2773
2774 return VK_SUCCESS;
2775 }
2776 default:
2777 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2778 }
2779 }
2780
2781 void anv_FreeMemory(
2782 VkDevice _device,
2783 VkDeviceMemory _mem,
2784 const VkAllocationCallbacks* pAllocator)
2785 {
2786 ANV_FROM_HANDLE(anv_device, device, _device);
2787 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2788
2789 if (mem == NULL)
2790 return;
2791
2792 if (mem->map)
2793 anv_UnmapMemory(_device, _mem);
2794
2795 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2796
2797 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
2798 if (mem->ahw)
2799 AHardwareBuffer_release(mem->ahw);
2800 #endif
2801
2802 vk_free2(&device->alloc, pAllocator, mem);
2803 }
2804
2805 VkResult anv_MapMemory(
2806 VkDevice _device,
2807 VkDeviceMemory _memory,
2808 VkDeviceSize offset,
2809 VkDeviceSize size,
2810 VkMemoryMapFlags flags,
2811 void** ppData)
2812 {
2813 ANV_FROM_HANDLE(anv_device, device, _device);
2814 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2815
2816 if (mem == NULL) {
2817 *ppData = NULL;
2818 return VK_SUCCESS;
2819 }
2820
2821 if (mem->host_ptr) {
2822 *ppData = mem->host_ptr + offset;
2823 return VK_SUCCESS;
2824 }
2825
2826 if (size == VK_WHOLE_SIZE)
2827 size = mem->bo->size - offset;
2828
2829 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2830 *
2831 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2832 * assert(size != 0);
2833 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2834 * equal to the size of the memory minus offset
2835 */
2836 assert(size > 0);
2837 assert(offset + size <= mem->bo->size);
2838
2839 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2840 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2841 * at a time is valid. We could just mmap up front and return an offset
2842 * pointer here, but that may exhaust virtual memory on 32 bit
2843 * userspace. */
2844
2845 uint32_t gem_flags = 0;
2846
2847 if (!device->info.has_llc &&
2848 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2849 gem_flags |= I915_MMAP_WC;
2850
2851 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2852 uint64_t map_offset = offset & ~4095ull;
2853 assert(offset >= map_offset);
2854 uint64_t map_size = (offset + size) - map_offset;
2855
2856 /* Let's map whole pages */
2857 map_size = align_u64(map_size, 4096);
2858
2859 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2860 map_offset, map_size, gem_flags);
2861 if (map == MAP_FAILED)
2862 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2863
2864 mem->map = map;
2865 mem->map_size = map_size;
2866
2867 *ppData = mem->map + (offset - map_offset);
2868
2869 return VK_SUCCESS;
2870 }
2871
2872 void anv_UnmapMemory(
2873 VkDevice _device,
2874 VkDeviceMemory _memory)
2875 {
2876 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2877
2878 if (mem == NULL || mem->host_ptr)
2879 return;
2880
2881 anv_gem_munmap(mem->map, mem->map_size);
2882
2883 mem->map = NULL;
2884 mem->map_size = 0;
2885 }
2886
2887 static void
2888 clflush_mapped_ranges(struct anv_device *device,
2889 uint32_t count,
2890 const VkMappedMemoryRange *ranges)
2891 {
2892 for (uint32_t i = 0; i < count; i++) {
2893 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2894 if (ranges[i].offset >= mem->map_size)
2895 continue;
2896
2897 gen_clflush_range(mem->map + ranges[i].offset,
2898 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2899 }
2900 }
2901
2902 VkResult anv_FlushMappedMemoryRanges(
2903 VkDevice _device,
2904 uint32_t memoryRangeCount,
2905 const VkMappedMemoryRange* pMemoryRanges)
2906 {
2907 ANV_FROM_HANDLE(anv_device, device, _device);
2908
2909 if (device->info.has_llc)
2910 return VK_SUCCESS;
2911
2912 /* Make sure the writes we're flushing have landed. */
2913 __builtin_ia32_mfence();
2914
2915 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2916
2917 return VK_SUCCESS;
2918 }
2919
2920 VkResult anv_InvalidateMappedMemoryRanges(
2921 VkDevice _device,
2922 uint32_t memoryRangeCount,
2923 const VkMappedMemoryRange* pMemoryRanges)
2924 {
2925 ANV_FROM_HANDLE(anv_device, device, _device);
2926
2927 if (device->info.has_llc)
2928 return VK_SUCCESS;
2929
2930 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2931
2932 /* Make sure no reads get moved up above the invalidate. */
2933 __builtin_ia32_mfence();
2934
2935 return VK_SUCCESS;
2936 }
2937
2938 void anv_GetBufferMemoryRequirements(
2939 VkDevice _device,
2940 VkBuffer _buffer,
2941 VkMemoryRequirements* pMemoryRequirements)
2942 {
2943 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2944 ANV_FROM_HANDLE(anv_device, device, _device);
2945 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2946
2947 /* The Vulkan spec (git aaed022) says:
2948 *
2949 * memoryTypeBits is a bitfield and contains one bit set for every
2950 * supported memory type for the resource. The bit `1<<i` is set if and
2951 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2952 * structure for the physical device is supported.
2953 */
2954 uint32_t memory_types = 0;
2955 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2956 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2957 if ((valid_usage & buffer->usage) == buffer->usage)
2958 memory_types |= (1u << i);
2959 }
2960
2961 /* Base alignment requirement of a cache line */
2962 uint32_t alignment = 16;
2963
2964 /* We need an alignment of 32 for pushing UBOs */
2965 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2966 alignment = MAX2(alignment, 32);
2967
2968 pMemoryRequirements->size = buffer->size;
2969 pMemoryRequirements->alignment = alignment;
2970
2971 /* Storage and Uniform buffers should have their size aligned to
2972 * 32-bits to avoid boundary checks when last DWord is not complete.
2973 * This would ensure that not internal padding would be needed for
2974 * 16-bit types.
2975 */
2976 if (device->robust_buffer_access &&
2977 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2978 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2979 pMemoryRequirements->size = align_u64(buffer->size, 4);
2980
2981 pMemoryRequirements->memoryTypeBits = memory_types;
2982 }
2983
2984 void anv_GetBufferMemoryRequirements2(
2985 VkDevice _device,
2986 const VkBufferMemoryRequirementsInfo2* pInfo,
2987 VkMemoryRequirements2* pMemoryRequirements)
2988 {
2989 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2990 &pMemoryRequirements->memoryRequirements);
2991
2992 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2993 switch (ext->sType) {
2994 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2995 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2996 requirements->prefersDedicatedAllocation = false;
2997 requirements->requiresDedicatedAllocation = false;
2998 break;
2999 }
3000
3001 default:
3002 anv_debug_ignored_stype(ext->sType);
3003 break;
3004 }
3005 }
3006 }
3007
3008 void anv_GetImageMemoryRequirements(
3009 VkDevice _device,
3010 VkImage _image,
3011 VkMemoryRequirements* pMemoryRequirements)
3012 {
3013 ANV_FROM_HANDLE(anv_image, image, _image);
3014 ANV_FROM_HANDLE(anv_device, device, _device);
3015 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3016
3017 /* The Vulkan spec (git aaed022) says:
3018 *
3019 * memoryTypeBits is a bitfield and contains one bit set for every
3020 * supported memory type for the resource. The bit `1<<i` is set if and
3021 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3022 * structure for the physical device is supported.
3023 *
3024 * All types are currently supported for images.
3025 */
3026 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3027
3028 /* We must have image allocated or imported at this point. According to the
3029 * specification, external images must have been bound to memory before
3030 * calling GetImageMemoryRequirements.
3031 */
3032 assert(image->size > 0);
3033
3034 pMemoryRequirements->size = image->size;
3035 pMemoryRequirements->alignment = image->alignment;
3036 pMemoryRequirements->memoryTypeBits = memory_types;
3037 }
3038
3039 void anv_GetImageMemoryRequirements2(
3040 VkDevice _device,
3041 const VkImageMemoryRequirementsInfo2* pInfo,
3042 VkMemoryRequirements2* pMemoryRequirements)
3043 {
3044 ANV_FROM_HANDLE(anv_device, device, _device);
3045 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3046
3047 anv_GetImageMemoryRequirements(_device, pInfo->image,
3048 &pMemoryRequirements->memoryRequirements);
3049
3050 vk_foreach_struct_const(ext, pInfo->pNext) {
3051 switch (ext->sType) {
3052 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3053 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3054 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3055 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3056 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3057 plane_reqs->planeAspect);
3058
3059 assert(image->planes[plane].offset == 0);
3060
3061 /* The Vulkan spec (git aaed022) says:
3062 *
3063 * memoryTypeBits is a bitfield and contains one bit set for every
3064 * supported memory type for the resource. The bit `1<<i` is set
3065 * if and only if the memory type `i` in the
3066 * VkPhysicalDeviceMemoryProperties structure for the physical
3067 * device is supported.
3068 *
3069 * All types are currently supported for images.
3070 */
3071 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3072 (1ull << pdevice->memory.type_count) - 1;
3073
3074 /* We must have image allocated or imported at this point. According to the
3075 * specification, external images must have been bound to memory before
3076 * calling GetImageMemoryRequirements.
3077 */
3078 assert(image->planes[plane].size > 0);
3079
3080 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3081 pMemoryRequirements->memoryRequirements.alignment =
3082 image->planes[plane].alignment;
3083 break;
3084 }
3085
3086 default:
3087 anv_debug_ignored_stype(ext->sType);
3088 break;
3089 }
3090 }
3091
3092 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3093 switch (ext->sType) {
3094 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3095 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3096 if (image->needs_set_tiling || image->external_format) {
3097 /* If we need to set the tiling for external consumers, we need a
3098 * dedicated allocation.
3099 *
3100 * See also anv_AllocateMemory.
3101 */
3102 requirements->prefersDedicatedAllocation = true;
3103 requirements->requiresDedicatedAllocation = true;
3104 } else {
3105 requirements->prefersDedicatedAllocation = false;
3106 requirements->requiresDedicatedAllocation = false;
3107 }
3108 break;
3109 }
3110
3111 default:
3112 anv_debug_ignored_stype(ext->sType);
3113 break;
3114 }
3115 }
3116 }
3117
3118 void anv_GetImageSparseMemoryRequirements(
3119 VkDevice device,
3120 VkImage image,
3121 uint32_t* pSparseMemoryRequirementCount,
3122 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3123 {
3124 *pSparseMemoryRequirementCount = 0;
3125 }
3126
3127 void anv_GetImageSparseMemoryRequirements2(
3128 VkDevice device,
3129 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3130 uint32_t* pSparseMemoryRequirementCount,
3131 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3132 {
3133 *pSparseMemoryRequirementCount = 0;
3134 }
3135
3136 void anv_GetDeviceMemoryCommitment(
3137 VkDevice device,
3138 VkDeviceMemory memory,
3139 VkDeviceSize* pCommittedMemoryInBytes)
3140 {
3141 *pCommittedMemoryInBytes = 0;
3142 }
3143
3144 static void
3145 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3146 {
3147 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3148 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3149
3150 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3151
3152 if (mem) {
3153 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3154 buffer->address = (struct anv_address) {
3155 .bo = mem->bo,
3156 .offset = pBindInfo->memoryOffset,
3157 };
3158 } else {
3159 buffer->address = ANV_NULL_ADDRESS;
3160 }
3161 }
3162
3163 VkResult anv_BindBufferMemory(
3164 VkDevice device,
3165 VkBuffer buffer,
3166 VkDeviceMemory memory,
3167 VkDeviceSize memoryOffset)
3168 {
3169 anv_bind_buffer_memory(
3170 &(VkBindBufferMemoryInfo) {
3171 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3172 .buffer = buffer,
3173 .memory = memory,
3174 .memoryOffset = memoryOffset,
3175 });
3176
3177 return VK_SUCCESS;
3178 }
3179
3180 VkResult anv_BindBufferMemory2(
3181 VkDevice device,
3182 uint32_t bindInfoCount,
3183 const VkBindBufferMemoryInfo* pBindInfos)
3184 {
3185 for (uint32_t i = 0; i < bindInfoCount; i++)
3186 anv_bind_buffer_memory(&pBindInfos[i]);
3187
3188 return VK_SUCCESS;
3189 }
3190
3191 VkResult anv_QueueBindSparse(
3192 VkQueue _queue,
3193 uint32_t bindInfoCount,
3194 const VkBindSparseInfo* pBindInfo,
3195 VkFence fence)
3196 {
3197 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3198 if (anv_device_is_lost(queue->device))
3199 return VK_ERROR_DEVICE_LOST;
3200
3201 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3202 }
3203
3204 // Event functions
3205
3206 VkResult anv_CreateEvent(
3207 VkDevice _device,
3208 const VkEventCreateInfo* pCreateInfo,
3209 const VkAllocationCallbacks* pAllocator,
3210 VkEvent* pEvent)
3211 {
3212 ANV_FROM_HANDLE(anv_device, device, _device);
3213 struct anv_state state;
3214 struct anv_event *event;
3215
3216 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3217
3218 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3219 sizeof(*event), 8);
3220 event = state.map;
3221 event->state = state;
3222 event->semaphore = VK_EVENT_RESET;
3223
3224 if (!device->info.has_llc) {
3225 /* Make sure the writes we're flushing have landed. */
3226 __builtin_ia32_mfence();
3227 __builtin_ia32_clflush(event);
3228 }
3229
3230 *pEvent = anv_event_to_handle(event);
3231
3232 return VK_SUCCESS;
3233 }
3234
3235 void anv_DestroyEvent(
3236 VkDevice _device,
3237 VkEvent _event,
3238 const VkAllocationCallbacks* pAllocator)
3239 {
3240 ANV_FROM_HANDLE(anv_device, device, _device);
3241 ANV_FROM_HANDLE(anv_event, event, _event);
3242
3243 if (!event)
3244 return;
3245
3246 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3247 }
3248
3249 VkResult anv_GetEventStatus(
3250 VkDevice _device,
3251 VkEvent _event)
3252 {
3253 ANV_FROM_HANDLE(anv_device, device, _device);
3254 ANV_FROM_HANDLE(anv_event, event, _event);
3255
3256 if (anv_device_is_lost(device))
3257 return VK_ERROR_DEVICE_LOST;
3258
3259 if (!device->info.has_llc) {
3260 /* Invalidate read cache before reading event written by GPU. */
3261 __builtin_ia32_clflush(event);
3262 __builtin_ia32_mfence();
3263
3264 }
3265
3266 return event->semaphore;
3267 }
3268
3269 VkResult anv_SetEvent(
3270 VkDevice _device,
3271 VkEvent _event)
3272 {
3273 ANV_FROM_HANDLE(anv_device, device, _device);
3274 ANV_FROM_HANDLE(anv_event, event, _event);
3275
3276 event->semaphore = VK_EVENT_SET;
3277
3278 if (!device->info.has_llc) {
3279 /* Make sure the writes we're flushing have landed. */
3280 __builtin_ia32_mfence();
3281 __builtin_ia32_clflush(event);
3282 }
3283
3284 return VK_SUCCESS;
3285 }
3286
3287 VkResult anv_ResetEvent(
3288 VkDevice _device,
3289 VkEvent _event)
3290 {
3291 ANV_FROM_HANDLE(anv_device, device, _device);
3292 ANV_FROM_HANDLE(anv_event, event, _event);
3293
3294 event->semaphore = VK_EVENT_RESET;
3295
3296 if (!device->info.has_llc) {
3297 /* Make sure the writes we're flushing have landed. */
3298 __builtin_ia32_mfence();
3299 __builtin_ia32_clflush(event);
3300 }
3301
3302 return VK_SUCCESS;
3303 }
3304
3305 // Buffer functions
3306
3307 VkResult anv_CreateBuffer(
3308 VkDevice _device,
3309 const VkBufferCreateInfo* pCreateInfo,
3310 const VkAllocationCallbacks* pAllocator,
3311 VkBuffer* pBuffer)
3312 {
3313 ANV_FROM_HANDLE(anv_device, device, _device);
3314 struct anv_buffer *buffer;
3315
3316 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3317
3318 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3319 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3320 if (buffer == NULL)
3321 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3322
3323 buffer->size = pCreateInfo->size;
3324 buffer->usage = pCreateInfo->usage;
3325 buffer->address = ANV_NULL_ADDRESS;
3326
3327 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3328 pthread_mutex_lock(&device->mutex);
3329 _mesa_set_add(device->pinned_buffers, buffer);
3330 pthread_mutex_unlock(&device->mutex);
3331 }
3332
3333 *pBuffer = anv_buffer_to_handle(buffer);
3334
3335 return VK_SUCCESS;
3336 }
3337
3338 void anv_DestroyBuffer(
3339 VkDevice _device,
3340 VkBuffer _buffer,
3341 const VkAllocationCallbacks* pAllocator)
3342 {
3343 ANV_FROM_HANDLE(anv_device, device, _device);
3344 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3345
3346 if (!buffer)
3347 return;
3348
3349 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3350 pthread_mutex_lock(&device->mutex);
3351 _mesa_set_remove_key(device->pinned_buffers, buffer);
3352 pthread_mutex_unlock(&device->mutex);
3353 }
3354
3355 vk_free2(&device->alloc, pAllocator, buffer);
3356 }
3357
3358 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3359 VkDevice device,
3360 const VkBufferDeviceAddressInfoEXT* pInfo)
3361 {
3362 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3363
3364 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3365
3366 return anv_address_physical(buffer->address);
3367 }
3368
3369 void
3370 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3371 enum isl_format format,
3372 struct anv_address address,
3373 uint32_t range, uint32_t stride)
3374 {
3375 isl_buffer_fill_state(&device->isl_dev, state.map,
3376 .address = anv_address_physical(address),
3377 .mocs = device->default_mocs,
3378 .size_B = range,
3379 .format = format,
3380 .swizzle = ISL_SWIZZLE_IDENTITY,
3381 .stride_B = stride);
3382 }
3383
3384 void anv_DestroySampler(
3385 VkDevice _device,
3386 VkSampler _sampler,
3387 const VkAllocationCallbacks* pAllocator)
3388 {
3389 ANV_FROM_HANDLE(anv_device, device, _device);
3390 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3391
3392 if (!sampler)
3393 return;
3394
3395 vk_free2(&device->alloc, pAllocator, sampler);
3396 }
3397
3398 VkResult anv_CreateFramebuffer(
3399 VkDevice _device,
3400 const VkFramebufferCreateInfo* pCreateInfo,
3401 const VkAllocationCallbacks* pAllocator,
3402 VkFramebuffer* pFramebuffer)
3403 {
3404 ANV_FROM_HANDLE(anv_device, device, _device);
3405 struct anv_framebuffer *framebuffer;
3406
3407 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3408
3409 size_t size = sizeof(*framebuffer) +
3410 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3411 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3412 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3413 if (framebuffer == NULL)
3414 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3415
3416 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3417 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3418 VkImageView _iview = pCreateInfo->pAttachments[i];
3419 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3420 }
3421
3422 framebuffer->width = pCreateInfo->width;
3423 framebuffer->height = pCreateInfo->height;
3424 framebuffer->layers = pCreateInfo->layers;
3425
3426 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3427
3428 return VK_SUCCESS;
3429 }
3430
3431 void anv_DestroyFramebuffer(
3432 VkDevice _device,
3433 VkFramebuffer _fb,
3434 const VkAllocationCallbacks* pAllocator)
3435 {
3436 ANV_FROM_HANDLE(anv_device, device, _device);
3437 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3438
3439 if (!fb)
3440 return;
3441
3442 vk_free2(&device->alloc, pAllocator, fb);
3443 }
3444
3445 static const VkTimeDomainEXT anv_time_domains[] = {
3446 VK_TIME_DOMAIN_DEVICE_EXT,
3447 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3448 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3449 };
3450
3451 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3452 VkPhysicalDevice physicalDevice,
3453 uint32_t *pTimeDomainCount,
3454 VkTimeDomainEXT *pTimeDomains)
3455 {
3456 int d;
3457 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3458
3459 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3460 vk_outarray_append(&out, i) {
3461 *i = anv_time_domains[d];
3462 }
3463 }
3464
3465 return vk_outarray_status(&out);
3466 }
3467
3468 static uint64_t
3469 anv_clock_gettime(clockid_t clock_id)
3470 {
3471 struct timespec current;
3472 int ret;
3473
3474 ret = clock_gettime(clock_id, &current);
3475 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3476 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3477 if (ret < 0)
3478 return 0;
3479
3480 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3481 }
3482
3483 #define TIMESTAMP 0x2358
3484
3485 VkResult anv_GetCalibratedTimestampsEXT(
3486 VkDevice _device,
3487 uint32_t timestampCount,
3488 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3489 uint64_t *pTimestamps,
3490 uint64_t *pMaxDeviation)
3491 {
3492 ANV_FROM_HANDLE(anv_device, device, _device);
3493 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3494 int ret;
3495 int d;
3496 uint64_t begin, end;
3497 uint64_t max_clock_period = 0;
3498
3499 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3500
3501 for (d = 0; d < timestampCount; d++) {
3502 switch (pTimestampInfos[d].timeDomain) {
3503 case VK_TIME_DOMAIN_DEVICE_EXT:
3504 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3505 &pTimestamps[d]);
3506
3507 if (ret != 0) {
3508 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3509 "register: %m");
3510 }
3511 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3512 max_clock_period = MAX2(max_clock_period, device_period);
3513 break;
3514 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3515 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3516 max_clock_period = MAX2(max_clock_period, 1);
3517 break;
3518
3519 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3520 pTimestamps[d] = begin;
3521 break;
3522 default:
3523 pTimestamps[d] = 0;
3524 break;
3525 }
3526 }
3527
3528 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3529
3530 /*
3531 * The maximum deviation is the sum of the interval over which we
3532 * perform the sampling and the maximum period of any sampled
3533 * clock. That's because the maximum skew between any two sampled
3534 * clock edges is when the sampled clock with the largest period is
3535 * sampled at the end of that period but right at the beginning of the
3536 * sampling interval and some other clock is sampled right at the
3537 * begining of its sampling period and right at the end of the
3538 * sampling interval. Let's assume the GPU has the longest clock
3539 * period and that the application is sampling GPU and monotonic:
3540 *
3541 * s e
3542 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3543 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3544 *
3545 * g
3546 * 0 1 2 3
3547 * GPU -----_____-----_____-----_____-----_____
3548 *
3549 * m
3550 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3551 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3552 *
3553 * Interval <----------------->
3554 * Deviation <-------------------------->
3555 *
3556 * s = read(raw) 2
3557 * g = read(GPU) 1
3558 * m = read(monotonic) 2
3559 * e = read(raw) b
3560 *
3561 * We round the sample interval up by one tick to cover sampling error
3562 * in the interval clock
3563 */
3564
3565 uint64_t sample_interval = end - begin + 1;
3566
3567 *pMaxDeviation = sample_interval + max_clock_period;
3568
3569 return VK_SUCCESS;
3570 }
3571
3572 /* vk_icd.h does not declare this function, so we declare it here to
3573 * suppress Wmissing-prototypes.
3574 */
3575 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3576 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3577
3578 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3579 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3580 {
3581 /* For the full details on loader interface versioning, see
3582 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3583 * What follows is a condensed summary, to help you navigate the large and
3584 * confusing official doc.
3585 *
3586 * - Loader interface v0 is incompatible with later versions. We don't
3587 * support it.
3588 *
3589 * - In loader interface v1:
3590 * - The first ICD entrypoint called by the loader is
3591 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3592 * entrypoint.
3593 * - The ICD must statically expose no other Vulkan symbol unless it is
3594 * linked with -Bsymbolic.
3595 * - Each dispatchable Vulkan handle created by the ICD must be
3596 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3597 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3598 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3599 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3600 * such loader-managed surfaces.
3601 *
3602 * - Loader interface v2 differs from v1 in:
3603 * - The first ICD entrypoint called by the loader is
3604 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3605 * statically expose this entrypoint.
3606 *
3607 * - Loader interface v3 differs from v2 in:
3608 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3609 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3610 * because the loader no longer does so.
3611 */
3612 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3613 return VK_SUCCESS;
3614 }