a0d9e9616dbcdba5c7d4d438b111ee9a431822d8
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo");
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_mem_available = get_available_system_memory() != 0;
474
475 device->always_flush_cache =
476 driQueryOptionb(&instance->dri_options, "always_flush_cache");
477
478 /* Starting with Gen10, the timestamp frequency of the command streamer may
479 * vary from one part to another. We can query the value from the kernel.
480 */
481 if (device->info.gen >= 10) {
482 int timestamp_frequency =
483 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
484
485 if (timestamp_frequency < 0)
486 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
487 else
488 device->info.timestamp_frequency = timestamp_frequency;
489 }
490
491 /* GENs prior to 8 do not support EU/Subslice info */
492 if (device->info.gen >= 8) {
493 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
494 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
495
496 /* Without this information, we cannot get the right Braswell
497 * brandstrings, and we have to use conservative numbers for GPGPU on
498 * many platforms, but otherwise, things will just work.
499 */
500 if (device->subslice_total < 1 || device->eu_total < 1) {
501 intel_logw("Kernel 4.1 required to properly query GPU properties");
502 }
503 } else if (device->info.gen == 7) {
504 device->subslice_total = 1 << (device->info.gt - 1);
505 }
506
507 if (device->info.is_cherryview &&
508 device->subslice_total > 0 && device->eu_total > 0) {
509 /* Logical CS threads = EUs per subslice * num threads per EU */
510 uint32_t max_cs_threads =
511 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
512
513 /* Fuse configurations may give more threads than expected, never less. */
514 if (max_cs_threads > device->info.max_cs_threads)
515 device->info.max_cs_threads = max_cs_threads;
516 }
517
518 device->compiler = brw_compiler_create(NULL, &device->info);
519 if (device->compiler == NULL) {
520 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
521 goto fail_alloc;
522 }
523 device->compiler->shader_debug_log = compiler_debug_log;
524 device->compiler->shader_perf_log = compiler_perf_log;
525 device->compiler->supports_pull_constants = false;
526 device->compiler->constant_buffer_0_is_relative =
527 device->info.gen < 8 || !device->has_context_isolation;
528 device->compiler->supports_shader_constants = true;
529 device->compiler->compact_params = false;
530
531 /* Broadwell PRM says:
532 *
533 * "Before Gen8, there was a historical configuration control field to
534 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
535 * different places: TILECTL[1:0], ARB_MODE[5:4], and
536 * DISP_ARB_CTL[14:13].
537 *
538 * For Gen8 and subsequent generations, the swizzle fields are all
539 * reserved, and the CPU's memory controller performs all address
540 * swizzling modifications."
541 */
542 bool swizzled =
543 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
544
545 isl_device_init(&device->isl_dev, &device->info, swizzled);
546
547 result = anv_physical_device_init_uuids(device);
548 if (result != VK_SUCCESS)
549 goto fail_compiler;
550
551 anv_physical_device_init_disk_cache(device);
552
553 if (instance->enabled_extensions.KHR_display) {
554 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
555 if (master_fd >= 0) {
556 /* prod the device with a GETPARAM call which will fail if
557 * we don't have permission to even render on this device
558 */
559 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
560 close(master_fd);
561 master_fd = -1;
562 }
563 }
564 }
565 device->master_fd = master_fd;
566
567 result = anv_init_wsi(device);
568 if (result != VK_SUCCESS)
569 goto fail_disk_cache;
570
571 device->perf = anv_get_perf(&device->info, fd);
572
573 anv_physical_device_get_supported_extensions(device,
574 &device->supported_extensions);
575
576
577 device->local_fd = fd;
578
579 *device_out = device;
580
581 return VK_SUCCESS;
582
583 fail_disk_cache:
584 anv_physical_device_free_disk_cache(device);
585 fail_compiler:
586 ralloc_free(device->compiler);
587 fail_alloc:
588 vk_free(&instance->alloc, device);
589 fail_fd:
590 close(fd);
591 if (master_fd != -1)
592 close(master_fd);
593 return result;
594 }
595
596 static void
597 anv_physical_device_destroy(struct anv_physical_device *device)
598 {
599 anv_finish_wsi(device);
600 anv_physical_device_free_disk_cache(device);
601 ralloc_free(device->compiler);
602 ralloc_free(device->perf);
603 close(device->local_fd);
604 if (device->master_fd >= 0)
605 close(device->master_fd);
606 vk_free(&device->instance->alloc, device);
607 }
608
609 static void *
610 default_alloc_func(void *pUserData, size_t size, size_t align,
611 VkSystemAllocationScope allocationScope)
612 {
613 return malloc(size);
614 }
615
616 static void *
617 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
618 size_t align, VkSystemAllocationScope allocationScope)
619 {
620 return realloc(pOriginal, size);
621 }
622
623 static void
624 default_free_func(void *pUserData, void *pMemory)
625 {
626 free(pMemory);
627 }
628
629 static const VkAllocationCallbacks default_alloc = {
630 .pUserData = NULL,
631 .pfnAllocation = default_alloc_func,
632 .pfnReallocation = default_realloc_func,
633 .pfnFree = default_free_func,
634 };
635
636 VkResult anv_EnumerateInstanceExtensionProperties(
637 const char* pLayerName,
638 uint32_t* pPropertyCount,
639 VkExtensionProperties* pProperties)
640 {
641 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
642
643 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
644 if (anv_instance_extensions_supported.extensions[i]) {
645 vk_outarray_append(&out, prop) {
646 *prop = anv_instance_extensions[i];
647 }
648 }
649 }
650
651 return vk_outarray_status(&out);
652 }
653
654 VkResult anv_CreateInstance(
655 const VkInstanceCreateInfo* pCreateInfo,
656 const VkAllocationCallbacks* pAllocator,
657 VkInstance* pInstance)
658 {
659 struct anv_instance *instance;
660 VkResult result;
661
662 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
663
664 struct anv_instance_extension_table enabled_extensions = {};
665 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
666 int idx;
667 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
668 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
669 anv_instance_extensions[idx].extensionName) == 0)
670 break;
671 }
672
673 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
674 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
675
676 if (!anv_instance_extensions_supported.extensions[idx])
677 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
678
679 enabled_extensions.extensions[idx] = true;
680 }
681
682 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
683 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
684 if (!instance)
685 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
686
687 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
688
689 if (pAllocator)
690 instance->alloc = *pAllocator;
691 else
692 instance->alloc = default_alloc;
693
694 instance->app_info = (struct anv_app_info) { .api_version = 0 };
695 if (pCreateInfo->pApplicationInfo) {
696 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
697
698 instance->app_info.app_name =
699 vk_strdup(&instance->alloc, app->pApplicationName,
700 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
701 instance->app_info.app_version = app->applicationVersion;
702
703 instance->app_info.engine_name =
704 vk_strdup(&instance->alloc, app->pEngineName,
705 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
706 instance->app_info.engine_version = app->engineVersion;
707
708 instance->app_info.api_version = app->apiVersion;
709 }
710
711 if (instance->app_info.api_version == 0)
712 instance->app_info.api_version = VK_API_VERSION_1_0;
713
714 instance->enabled_extensions = enabled_extensions;
715
716 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
717 /* Vulkan requires that entrypoints for extensions which have not been
718 * enabled must not be advertised.
719 */
720 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
721 &instance->enabled_extensions)) {
722 instance->dispatch.entrypoints[i] = NULL;
723 } else {
724 instance->dispatch.entrypoints[i] =
725 anv_instance_dispatch_table.entrypoints[i];
726 }
727 }
728
729 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
730 /* Vulkan requires that entrypoints for extensions which have not been
731 * enabled must not be advertised.
732 */
733 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
734 &instance->enabled_extensions)) {
735 instance->physical_device_dispatch.entrypoints[i] = NULL;
736 } else {
737 instance->physical_device_dispatch.entrypoints[i] =
738 anv_physical_device_dispatch_table.entrypoints[i];
739 }
740 }
741
742 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
743 /* Vulkan requires that entrypoints for extensions which have not been
744 * enabled must not be advertised.
745 */
746 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
747 &instance->enabled_extensions, NULL)) {
748 instance->device_dispatch.entrypoints[i] = NULL;
749 } else {
750 instance->device_dispatch.entrypoints[i] =
751 anv_device_dispatch_table.entrypoints[i];
752 }
753 }
754
755 instance->physical_devices_enumerated = false;
756 list_inithead(&instance->physical_devices);
757
758 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
759 if (result != VK_SUCCESS) {
760 vk_free2(&default_alloc, pAllocator, instance);
761 return vk_error(result);
762 }
763
764 instance->pipeline_cache_enabled =
765 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
766
767 glsl_type_singleton_init_or_ref();
768
769 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
770
771 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
772 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
773 0, "anv", NULL,
774 instance->app_info.engine_name,
775 instance->app_info.engine_version);
776
777 *pInstance = anv_instance_to_handle(instance);
778
779 return VK_SUCCESS;
780 }
781
782 void anv_DestroyInstance(
783 VkInstance _instance,
784 const VkAllocationCallbacks* pAllocator)
785 {
786 ANV_FROM_HANDLE(anv_instance, instance, _instance);
787
788 if (!instance)
789 return;
790
791 list_for_each_entry_safe(struct anv_physical_device, pdevice,
792 &instance->physical_devices, link)
793 anv_physical_device_destroy(pdevice);
794
795 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
796 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
797
798 VG(VALGRIND_DESTROY_MEMPOOL(instance));
799
800 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
801
802 glsl_type_singleton_decref();
803
804 driDestroyOptionCache(&instance->dri_options);
805 driDestroyOptionInfo(&instance->available_dri_options);
806
807 vk_free(&instance->alloc, instance);
808 }
809
810 static VkResult
811 anv_enumerate_physical_devices(struct anv_instance *instance)
812 {
813 if (instance->physical_devices_enumerated)
814 return VK_SUCCESS;
815
816 instance->physical_devices_enumerated = true;
817
818 /* TODO: Check for more devices ? */
819 drmDevicePtr devices[8];
820 int max_devices;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_SUCCESS;
825
826 VkResult result = VK_SUCCESS;
827 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
828 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
829 devices[i]->bustype == DRM_BUS_PCI &&
830 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
831
832 struct anv_physical_device *pdevice;
833 result = anv_physical_device_try_create(instance, devices[i],
834 &pdevice);
835 /* Incompatible DRM device, skip. */
836 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
837 result = VK_SUCCESS;
838 continue;
839 }
840
841 /* Error creating the physical device, report the error. */
842 if (result != VK_SUCCESS)
843 break;
844
845 list_addtail(&pdevice->link, &instance->physical_devices);
846 }
847 }
848 drmFreeDevices(devices, max_devices);
849
850 /* If we successfully enumerated any devices, call it success */
851 return result;
852 }
853
854 VkResult anv_EnumeratePhysicalDevices(
855 VkInstance _instance,
856 uint32_t* pPhysicalDeviceCount,
857 VkPhysicalDevice* pPhysicalDevices)
858 {
859 ANV_FROM_HANDLE(anv_instance, instance, _instance);
860 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
861
862 VkResult result = anv_enumerate_physical_devices(instance);
863 if (result != VK_SUCCESS)
864 return result;
865
866 list_for_each_entry(struct anv_physical_device, pdevice,
867 &instance->physical_devices, link) {
868 vk_outarray_append(&out, i) {
869 *i = anv_physical_device_to_handle(pdevice);
870 }
871 }
872
873 return vk_outarray_status(&out);
874 }
875
876 VkResult anv_EnumeratePhysicalDeviceGroups(
877 VkInstance _instance,
878 uint32_t* pPhysicalDeviceGroupCount,
879 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
880 {
881 ANV_FROM_HANDLE(anv_instance, instance, _instance);
882 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
883 pPhysicalDeviceGroupCount);
884
885 VkResult result = anv_enumerate_physical_devices(instance);
886 if (result != VK_SUCCESS)
887 return result;
888
889 list_for_each_entry(struct anv_physical_device, pdevice,
890 &instance->physical_devices, link) {
891 vk_outarray_append(&out, p) {
892 p->physicalDeviceCount = 1;
893 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
894 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
895 p->subsetAllocation = false;
896
897 vk_foreach_struct(ext, p->pNext)
898 anv_debug_ignored_stype(ext->sType);
899 }
900 }
901
902 return vk_outarray_status(&out);
903 }
904
905 void anv_GetPhysicalDeviceFeatures(
906 VkPhysicalDevice physicalDevice,
907 VkPhysicalDeviceFeatures* pFeatures)
908 {
909 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
910
911 *pFeatures = (VkPhysicalDeviceFeatures) {
912 .robustBufferAccess = true,
913 .fullDrawIndexUint32 = true,
914 .imageCubeArray = true,
915 .independentBlend = true,
916 .geometryShader = true,
917 .tessellationShader = true,
918 .sampleRateShading = true,
919 .dualSrcBlend = true,
920 .logicOp = true,
921 .multiDrawIndirect = true,
922 .drawIndirectFirstInstance = true,
923 .depthClamp = true,
924 .depthBiasClamp = true,
925 .fillModeNonSolid = true,
926 .depthBounds = pdevice->info.gen >= 12,
927 .wideLines = true,
928 .largePoints = true,
929 .alphaToOne = true,
930 .multiViewport = true,
931 .samplerAnisotropy = true,
932 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
933 pdevice->info.is_baytrail,
934 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
935 .textureCompressionBC = true,
936 .occlusionQueryPrecise = true,
937 .pipelineStatisticsQuery = true,
938 .fragmentStoresAndAtomics = true,
939 .shaderTessellationAndGeometryPointSize = true,
940 .shaderImageGatherExtended = true,
941 .shaderStorageImageExtendedFormats = true,
942 .shaderStorageImageMultisample = false,
943 .shaderStorageImageReadWithoutFormat = false,
944 .shaderStorageImageWriteWithoutFormat = true,
945 .shaderUniformBufferArrayDynamicIndexing = true,
946 .shaderSampledImageArrayDynamicIndexing = true,
947 .shaderStorageBufferArrayDynamicIndexing = true,
948 .shaderStorageImageArrayDynamicIndexing = true,
949 .shaderClipDistance = true,
950 .shaderCullDistance = true,
951 .shaderFloat64 = pdevice->info.gen >= 8 &&
952 pdevice->info.has_64bit_float,
953 .shaderInt64 = pdevice->info.gen >= 8 &&
954 pdevice->info.has_64bit_int,
955 .shaderInt16 = pdevice->info.gen >= 8,
956 .shaderResourceMinLod = pdevice->info.gen >= 9,
957 .variableMultisampleRate = true,
958 .inheritedQueries = true,
959 };
960
961 /* We can't do image stores in vec4 shaders */
962 pFeatures->vertexPipelineStoresAndAtomics =
963 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
964 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
965
966 struct anv_app_info *app_info = &pdevice->instance->app_info;
967
968 /* The new DOOM and Wolfenstein games require depthBounds without
969 * checking for it. They seem to run fine without it so just claim it's
970 * there and accept the consequences.
971 */
972 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
973 pFeatures->depthBounds = true;
974 }
975
976 static void
977 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
978 VkPhysicalDeviceVulkan11Features *f)
979 {
980 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
981
982 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
983 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
984 f->storagePushConstant16 = pdevice->info.gen >= 8;
985 f->storageInputOutput16 = false;
986 f->multiview = true;
987 f->multiviewGeometryShader = true;
988 f->multiviewTessellationShader = true;
989 f->variablePointersStorageBuffer = true;
990 f->variablePointers = true;
991 f->protectedMemory = false;
992 f->samplerYcbcrConversion = true;
993 f->shaderDrawParameters = true;
994 }
995
996 static void
997 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
998 VkPhysicalDeviceVulkan12Features *f)
999 {
1000 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1001
1002 f->samplerMirrorClampToEdge = true;
1003 f->drawIndirectCount = true;
1004 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1005 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1006 f->storagePushConstant8 = pdevice->info.gen >= 8;
1007 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1008 pdevice->use_softpin;
1009 f->shaderSharedInt64Atomics = false;
1010 f->shaderFloat16 = pdevice->info.gen >= 8;
1011 f->shaderInt8 = pdevice->info.gen >= 8;
1012
1013 bool descIndexing = pdevice->has_a64_buffer_access &&
1014 pdevice->has_bindless_images;
1015 f->descriptorIndexing = descIndexing;
1016 f->shaderInputAttachmentArrayDynamicIndexing = false;
1017 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1018 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1019 f->shaderUniformBufferArrayNonUniformIndexing = false;
1020 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1021 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1022 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1023 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1024 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1025 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1026 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1027 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1028 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1029 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1030 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1031 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1032 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1033 f->descriptorBindingPartiallyBound = descIndexing;
1034 f->descriptorBindingVariableDescriptorCount = false;
1035 f->runtimeDescriptorArray = descIndexing;
1036
1037 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1038 f->scalarBlockLayout = true;
1039 f->imagelessFramebuffer = true;
1040 f->uniformBufferStandardLayout = true;
1041 f->shaderSubgroupExtendedTypes = true;
1042 f->separateDepthStencilLayouts = true;
1043 f->hostQueryReset = true;
1044 f->timelineSemaphore = true;
1045 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1046 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1047 f->bufferDeviceAddressMultiDevice = false;
1048 f->vulkanMemoryModel = true;
1049 f->vulkanMemoryModelDeviceScope = true;
1050 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1051 f->shaderOutputViewportIndex = true;
1052 f->shaderOutputLayer = true;
1053 f->subgroupBroadcastDynamicId = true;
1054 }
1055
1056 void anv_GetPhysicalDeviceFeatures2(
1057 VkPhysicalDevice physicalDevice,
1058 VkPhysicalDeviceFeatures2* pFeatures)
1059 {
1060 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1061 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1062
1063 VkPhysicalDeviceVulkan11Features core_1_1 = {
1064 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1065 };
1066 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1067
1068 VkPhysicalDeviceVulkan12Features core_1_2 = {
1069 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1070 };
1071 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1072
1073 #define CORE_FEATURE(major, minor, feature) \
1074 features->feature = core_##major##_##minor.feature
1075
1076
1077 vk_foreach_struct(ext, pFeatures->pNext) {
1078 switch (ext->sType) {
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1080 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1081 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1082 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1083 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1084 CORE_FEATURE(1, 2, storagePushConstant8);
1085 break;
1086 }
1087
1088 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1089 VkPhysicalDevice16BitStorageFeatures *features =
1090 (VkPhysicalDevice16BitStorageFeatures *)ext;
1091 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1092 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1093 CORE_FEATURE(1, 1, storagePushConstant16);
1094 CORE_FEATURE(1, 1, storageInputOutput16);
1095 break;
1096 }
1097
1098 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1099 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1100 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1101 features->bufferDeviceAddressCaptureReplay = false;
1102 features->bufferDeviceAddressMultiDevice = false;
1103 break;
1104 }
1105
1106 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1107 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1108 CORE_FEATURE(1, 2, bufferDeviceAddress);
1109 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1110 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1111 break;
1112 }
1113
1114 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1115 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1116 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1117 features->computeDerivativeGroupQuads = true;
1118 features->computeDerivativeGroupLinear = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1123 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1124 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1125 features->conditionalRendering = pdevice->info.gen >= 8 ||
1126 pdevice->info.is_haswell;
1127 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1128 pdevice->info.is_haswell;
1129 break;
1130 }
1131
1132 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1133 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1134 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1135 features->depthClipEnable = true;
1136 break;
1137 }
1138
1139 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1140 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1141 CORE_FEATURE(1, 2, shaderFloat16);
1142 CORE_FEATURE(1, 2, shaderInt8);
1143 break;
1144 }
1145
1146 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1147 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1148 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1149 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1150 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1151 features->fragmentShaderShadingRateInterlock = false;
1152 break;
1153 }
1154
1155 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1156 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1157 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1158 CORE_FEATURE(1, 2, hostQueryReset);
1159 break;
1160 }
1161
1162 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1163 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1164 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1165 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1166 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1167 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1168 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1169 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1170 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1171 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1172 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1173 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1174 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1175 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1176 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1177 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1178 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1179 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1180 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1181 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1182 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1183 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1184 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1185 break;
1186 }
1187
1188 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1189 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1190 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1191 features->indexTypeUint8 = true;
1192 break;
1193 }
1194
1195 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1196 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1197 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1198 features->inlineUniformBlock = true;
1199 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1200 break;
1201 }
1202
1203 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1204 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1205 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1206 features->rectangularLines = true;
1207 features->bresenhamLines = true;
1208 /* Support for Smooth lines with MSAA was removed on gen11. From the
1209 * BSpec section "Multisample ModesState" table for "AA Line Support
1210 * Requirements":
1211 *
1212 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1213 *
1214 * Fortunately, this isn't a case most people care about.
1215 */
1216 features->smoothLines = pdevice->info.gen < 10;
1217 features->stippledRectangularLines = false;
1218 features->stippledBresenhamLines = true;
1219 features->stippledSmoothLines = false;
1220 break;
1221 }
1222
1223 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1224 VkPhysicalDeviceMultiviewFeatures *features =
1225 (VkPhysicalDeviceMultiviewFeatures *)ext;
1226 CORE_FEATURE(1, 1, multiview);
1227 CORE_FEATURE(1, 1, multiviewGeometryShader);
1228 CORE_FEATURE(1, 1, multiviewTessellationShader);
1229 break;
1230 }
1231
1232 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1233 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1234 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1235 CORE_FEATURE(1, 2, imagelessFramebuffer);
1236 break;
1237 }
1238
1239 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1240 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1241 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1242 features->pipelineExecutableInfo = true;
1243 break;
1244 }
1245
1246 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1247 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1248 CORE_FEATURE(1, 1, protectedMemory);
1249 break;
1250 }
1251
1252 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1253 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1254 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1255 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1256 break;
1257 }
1258
1259 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1260 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1261 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1262 CORE_FEATURE(1, 2, scalarBlockLayout);
1263 break;
1264 }
1265
1266 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1267 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1268 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1269 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1270 break;
1271 }
1272
1273 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1274 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1275 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1276 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1277 break;
1278 }
1279
1280 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1281 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1282 features->shaderDemoteToHelperInvocation = true;
1283 break;
1284 }
1285
1286 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1287 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1288 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1289 features->shaderSubgroupClock = true;
1290 features->shaderDeviceClock = false;
1291 break;
1292 }
1293
1294 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1295 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1296 CORE_FEATURE(1, 1, shaderDrawParameters);
1297 break;
1298 }
1299
1300 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1301 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1302 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1303 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1304 break;
1305 }
1306
1307 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1308 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1309 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1310 features->subgroupSizeControl = true;
1311 features->computeFullSubgroups = true;
1312 break;
1313 }
1314
1315 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1316 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1317 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1318 features->texelBufferAlignment = true;
1319 break;
1320 }
1321
1322 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1323 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1324 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1325 CORE_FEATURE(1, 2, timelineSemaphore);
1326 break;
1327 }
1328
1329 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1330 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1331 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1332 CORE_FEATURE(1, 1, variablePointers);
1333 break;
1334 }
1335
1336 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1337 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1338 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1339 features->transformFeedback = true;
1340 features->geometryStreams = true;
1341 break;
1342 }
1343
1344 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1345 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1346 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1347 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1348 break;
1349 }
1350
1351 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1352 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1353 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1354 features->vertexAttributeInstanceRateDivisor = true;
1355 features->vertexAttributeInstanceRateZeroDivisor = true;
1356 break;
1357 }
1358
1359 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1360 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1361 break;
1362
1363 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1364 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1365 break;
1366
1367 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1368 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1369 CORE_FEATURE(1, 2, vulkanMemoryModel);
1370 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1371 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1372 break;
1373 }
1374
1375 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1376 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1377 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1378 features->ycbcrImageArrays = true;
1379 break;
1380 }
1381
1382 default:
1383 anv_debug_ignored_stype(ext->sType);
1384 break;
1385 }
1386 }
1387
1388 #undef CORE_FEATURE
1389 }
1390
1391 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1392
1393 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1394 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1395
1396 void anv_GetPhysicalDeviceProperties(
1397 VkPhysicalDevice physicalDevice,
1398 VkPhysicalDeviceProperties* pProperties)
1399 {
1400 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1401 const struct gen_device_info *devinfo = &pdevice->info;
1402
1403 /* See assertions made when programming the buffer surface state. */
1404 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1405 (1ul << 30) : (1ul << 27);
1406
1407 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1408 const uint32_t max_textures =
1409 pdevice->has_bindless_images ? UINT16_MAX : 128;
1410 const uint32_t max_samplers =
1411 pdevice->has_bindless_samplers ? UINT16_MAX :
1412 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1413 const uint32_t max_images =
1414 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1415
1416 /* If we can use bindless for everything, claim a high per-stage limit,
1417 * otherwise use the binding table size, minus the slots reserved for
1418 * render targets and one slot for the descriptor buffer. */
1419 const uint32_t max_per_stage =
1420 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1421 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1422
1423 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1424
1425 VkSampleCountFlags sample_counts =
1426 isl_device_get_sample_counts(&pdevice->isl_dev);
1427
1428
1429 VkPhysicalDeviceLimits limits = {
1430 .maxImageDimension1D = (1 << 14),
1431 .maxImageDimension2D = (1 << 14),
1432 .maxImageDimension3D = (1 << 11),
1433 .maxImageDimensionCube = (1 << 14),
1434 .maxImageArrayLayers = (1 << 11),
1435 .maxTexelBufferElements = 128 * 1024 * 1024,
1436 .maxUniformBufferRange = (1ul << 27),
1437 .maxStorageBufferRange = max_raw_buffer_sz,
1438 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1439 .maxMemoryAllocationCount = UINT32_MAX,
1440 .maxSamplerAllocationCount = 64 * 1024,
1441 .bufferImageGranularity = 64, /* A cache line */
1442 .sparseAddressSpaceSize = 0,
1443 .maxBoundDescriptorSets = MAX_SETS,
1444 .maxPerStageDescriptorSamplers = max_samplers,
1445 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1446 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1447 .maxPerStageDescriptorSampledImages = max_textures,
1448 .maxPerStageDescriptorStorageImages = max_images,
1449 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1450 .maxPerStageResources = max_per_stage,
1451 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1452 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1453 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1454 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1455 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1456 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1457 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1458 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1459 .maxVertexInputAttributes = MAX_VBS,
1460 .maxVertexInputBindings = MAX_VBS,
1461 .maxVertexInputAttributeOffset = 2047,
1462 .maxVertexInputBindingStride = 2048,
1463 .maxVertexOutputComponents = 128,
1464 .maxTessellationGenerationLevel = 64,
1465 .maxTessellationPatchSize = 32,
1466 .maxTessellationControlPerVertexInputComponents = 128,
1467 .maxTessellationControlPerVertexOutputComponents = 128,
1468 .maxTessellationControlPerPatchOutputComponents = 128,
1469 .maxTessellationControlTotalOutputComponents = 2048,
1470 .maxTessellationEvaluationInputComponents = 128,
1471 .maxTessellationEvaluationOutputComponents = 128,
1472 .maxGeometryShaderInvocations = 32,
1473 .maxGeometryInputComponents = 64,
1474 .maxGeometryOutputComponents = 128,
1475 .maxGeometryOutputVertices = 256,
1476 .maxGeometryTotalOutputComponents = 1024,
1477 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1478 .maxFragmentOutputAttachments = 8,
1479 .maxFragmentDualSrcAttachments = 1,
1480 .maxFragmentCombinedOutputResources = 8,
1481 .maxComputeSharedMemorySize = 64 * 1024,
1482 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1483 .maxComputeWorkGroupInvocations = max_workgroup_size,
1484 .maxComputeWorkGroupSize = {
1485 max_workgroup_size,
1486 max_workgroup_size,
1487 max_workgroup_size,
1488 },
1489 .subPixelPrecisionBits = 8,
1490 .subTexelPrecisionBits = 8,
1491 .mipmapPrecisionBits = 8,
1492 .maxDrawIndexedIndexValue = UINT32_MAX,
1493 .maxDrawIndirectCount = UINT32_MAX,
1494 .maxSamplerLodBias = 16,
1495 .maxSamplerAnisotropy = 16,
1496 .maxViewports = MAX_VIEWPORTS,
1497 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1498 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1499 .viewportSubPixelBits = 13, /* We take a float? */
1500 .minMemoryMapAlignment = 4096, /* A page */
1501 /* The dataport requires texel alignment so we need to assume a worst
1502 * case of R32G32B32A32 which is 16 bytes.
1503 */
1504 .minTexelBufferOffsetAlignment = 16,
1505 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1506 .minUniformBufferOffsetAlignment = 32,
1507 .minStorageBufferOffsetAlignment = 4,
1508 .minTexelOffset = -8,
1509 .maxTexelOffset = 7,
1510 .minTexelGatherOffset = -32,
1511 .maxTexelGatherOffset = 31,
1512 .minInterpolationOffset = -0.5,
1513 .maxInterpolationOffset = 0.4375,
1514 .subPixelInterpolationOffsetBits = 4,
1515 .maxFramebufferWidth = (1 << 14),
1516 .maxFramebufferHeight = (1 << 14),
1517 .maxFramebufferLayers = (1 << 11),
1518 .framebufferColorSampleCounts = sample_counts,
1519 .framebufferDepthSampleCounts = sample_counts,
1520 .framebufferStencilSampleCounts = sample_counts,
1521 .framebufferNoAttachmentsSampleCounts = sample_counts,
1522 .maxColorAttachments = MAX_RTS,
1523 .sampledImageColorSampleCounts = sample_counts,
1524 .sampledImageIntegerSampleCounts = sample_counts,
1525 .sampledImageDepthSampleCounts = sample_counts,
1526 .sampledImageStencilSampleCounts = sample_counts,
1527 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1528 .maxSampleMaskWords = 1,
1529 .timestampComputeAndGraphics = true,
1530 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1531 .maxClipDistances = 8,
1532 .maxCullDistances = 8,
1533 .maxCombinedClipAndCullDistances = 8,
1534 .discreteQueuePriorities = 2,
1535 .pointSizeRange = { 0.125, 255.875 },
1536 .lineWidthRange = {
1537 0.0,
1538 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1539 2047.9921875 : 7.9921875,
1540 },
1541 .pointSizeGranularity = (1.0 / 8.0),
1542 .lineWidthGranularity = (1.0 / 128.0),
1543 .strictLines = false,
1544 .standardSampleLocations = true,
1545 .optimalBufferCopyOffsetAlignment = 128,
1546 .optimalBufferCopyRowPitchAlignment = 128,
1547 .nonCoherentAtomSize = 64,
1548 };
1549
1550 *pProperties = (VkPhysicalDeviceProperties) {
1551 .apiVersion = anv_physical_device_api_version(pdevice),
1552 .driverVersion = vk_get_driver_version(),
1553 .vendorID = 0x8086,
1554 .deviceID = pdevice->info.chipset_id,
1555 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1556 .limits = limits,
1557 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1558 };
1559
1560 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1561 "%s", pdevice->name);
1562 memcpy(pProperties->pipelineCacheUUID,
1563 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1564 }
1565
1566 static void
1567 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1568 VkPhysicalDeviceVulkan11Properties *p)
1569 {
1570 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1571
1572 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1573 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1574 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1575 p->deviceNodeMask = 0;
1576 p->deviceLUIDValid = false;
1577
1578 p->subgroupSize = BRW_SUBGROUP_SIZE;
1579 VkShaderStageFlags scalar_stages = 0;
1580 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1581 if (pdevice->compiler->scalar_stage[stage])
1582 scalar_stages |= mesa_to_vk_shader_stage(stage);
1583 }
1584 p->subgroupSupportedStages = scalar_stages;
1585 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1586 VK_SUBGROUP_FEATURE_VOTE_BIT |
1587 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1588 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1589 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1590 VK_SUBGROUP_FEATURE_QUAD_BIT;
1591 if (pdevice->info.gen >= 8) {
1592 /* TODO: There's no technical reason why these can't be made to
1593 * work on gen7 but they don't at the moment so it's best to leave
1594 * the feature disabled than enabled and broken.
1595 */
1596 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1597 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1598 }
1599 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1600
1601 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1602 p->maxMultiviewViewCount = 16;
1603 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1604 p->protectedNoFault = false;
1605 /* This value doesn't matter for us today as our per-stage descriptors are
1606 * the real limit.
1607 */
1608 p->maxPerSetDescriptors = 1024;
1609 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1610 }
1611
1612 static void
1613 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1614 VkPhysicalDeviceVulkan12Properties *p)
1615 {
1616 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1617
1618 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1619 memset(p->driverName, 0, sizeof(p->driverName));
1620 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1621 "Intel open-source Mesa driver");
1622 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1623 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1624 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1625 p->conformanceVersion = (VkConformanceVersionKHR) {
1626 .major = 1,
1627 .minor = 2,
1628 .subminor = 0,
1629 .patch = 0,
1630 };
1631
1632 p->denormBehaviorIndependence =
1633 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1634 p->roundingModeIndependence =
1635 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1636
1637 /* Broadwell does not support HF denorms and there are restrictions
1638 * other gens. According to Kabylake's PRM:
1639 *
1640 * "math - Extended Math Function
1641 * [...]
1642 * Restriction : Half-float denorms are always retained."
1643 */
1644 p->shaderDenormFlushToZeroFloat16 = false;
1645 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1646 p->shaderRoundingModeRTEFloat16 = true;
1647 p->shaderRoundingModeRTZFloat16 = true;
1648 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1649
1650 p->shaderDenormFlushToZeroFloat32 = true;
1651 p->shaderDenormPreserveFloat32 = true;
1652 p->shaderRoundingModeRTEFloat32 = true;
1653 p->shaderRoundingModeRTZFloat32 = true;
1654 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1655
1656 p->shaderDenormFlushToZeroFloat64 = true;
1657 p->shaderDenormPreserveFloat64 = true;
1658 p->shaderRoundingModeRTEFloat64 = true;
1659 p->shaderRoundingModeRTZFloat64 = true;
1660 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1661
1662 /* It's a bit hard to exactly map our implementation to the limits
1663 * described here. The bindless surface handle in the extended
1664 * message descriptors is 20 bits and it's an index into the table of
1665 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1666 * address. Given that most things consume two surface states per
1667 * view (general/sampled for textures and write-only/read-write for
1668 * images), we claim 2^19 things.
1669 *
1670 * For SSBOs, we just use A64 messages so there is no real limit
1671 * there beyond the limit on the total size of a descriptor set.
1672 */
1673 const unsigned max_bindless_views = 1 << 19;
1674 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1675 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1676 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1677 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1678 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1679 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1680 p->robustBufferAccessUpdateAfterBind = true;
1681 p->quadDivergentImplicitLod = false;
1682 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1683 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1684 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1685 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1686 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1687 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1688 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1689 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1690 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1691 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1692 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1693 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1694 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1695 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1696 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1697
1698 /* We support all of the depth resolve modes */
1699 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1700 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1701 VK_RESOLVE_MODE_MIN_BIT_KHR |
1702 VK_RESOLVE_MODE_MAX_BIT_KHR;
1703 /* Average doesn't make sense for stencil so we don't support that */
1704 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1705 if (pdevice->info.gen >= 8) {
1706 /* The advanced stencil resolve modes currently require stencil
1707 * sampling be supported by the hardware.
1708 */
1709 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1710 VK_RESOLVE_MODE_MAX_BIT_KHR;
1711 }
1712 p->independentResolveNone = true;
1713 p->independentResolve = true;
1714
1715 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1716 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1717
1718 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1719
1720 p->framebufferIntegerColorSampleCounts =
1721 isl_device_get_sample_counts(&pdevice->isl_dev);
1722 }
1723
1724 void anv_GetPhysicalDeviceProperties2(
1725 VkPhysicalDevice physicalDevice,
1726 VkPhysicalDeviceProperties2* pProperties)
1727 {
1728 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1729
1730 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1731
1732 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1733 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1734 };
1735 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1736
1737 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1738 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1739 };
1740 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1741
1742 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1743 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1744 sizeof(core_##major##_##minor.core_property))
1745
1746 #define CORE_PROPERTY(major, minor, property) \
1747 CORE_RENAMED_PROPERTY(major, minor, property, property)
1748
1749 vk_foreach_struct(ext, pProperties->pNext) {
1750 switch (ext->sType) {
1751 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1752 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1753 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1754 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1755 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1756 CORE_PROPERTY(1, 2, independentResolveNone);
1757 CORE_PROPERTY(1, 2, independentResolve);
1758 break;
1759 }
1760
1761 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1762 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1763 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1764 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1765 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1766 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1767 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1768 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1769 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1770 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1771 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1772 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1773 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1774 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1775 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1776 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1777 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1778 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1779 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1780 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1781 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1782 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1783 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1784 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1785 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1786 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1787 break;
1788 }
1789
1790 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1791 VkPhysicalDeviceDriverPropertiesKHR *properties =
1792 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1793 CORE_PROPERTY(1, 2, driverID);
1794 CORE_PROPERTY(1, 2, driverName);
1795 CORE_PROPERTY(1, 2, driverInfo);
1796 CORE_PROPERTY(1, 2, conformanceVersion);
1797 break;
1798 }
1799
1800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1801 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1802 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1803 /* Userptr needs page aligned memory. */
1804 props->minImportedHostPointerAlignment = 4096;
1805 break;
1806 }
1807
1808 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1809 VkPhysicalDeviceIDProperties *properties =
1810 (VkPhysicalDeviceIDProperties *)ext;
1811 CORE_PROPERTY(1, 1, deviceUUID);
1812 CORE_PROPERTY(1, 1, driverUUID);
1813 CORE_PROPERTY(1, 1, deviceLUID);
1814 CORE_PROPERTY(1, 1, deviceLUIDValid);
1815 break;
1816 }
1817
1818 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1819 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1820 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1821 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1822 props->maxPerStageDescriptorInlineUniformBlocks =
1823 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1824 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1825 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1826 props->maxDescriptorSetInlineUniformBlocks =
1827 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1828 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1829 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1830 break;
1831 }
1832
1833 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1834 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1835 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1836 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1837 * Sampling Rules - Legacy Mode", it says the following:
1838 *
1839 * "Note that the device divides a pixel into a 16x16 array of
1840 * subpixels, referenced by their upper left corners."
1841 *
1842 * This is the only known reference in the PRMs to the subpixel
1843 * precision of line rasterization and a "16x16 array of subpixels"
1844 * implies 4 subpixel precision bits. Empirical testing has shown
1845 * that 4 subpixel precision bits applies to all line rasterization
1846 * types.
1847 */
1848 props->lineSubPixelPrecisionBits = 4;
1849 break;
1850 }
1851
1852 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1853 VkPhysicalDeviceMaintenance3Properties *properties =
1854 (VkPhysicalDeviceMaintenance3Properties *)ext;
1855 /* This value doesn't matter for us today as our per-stage
1856 * descriptors are the real limit.
1857 */
1858 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1859 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1860 break;
1861 }
1862
1863 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1864 VkPhysicalDeviceMultiviewProperties *properties =
1865 (VkPhysicalDeviceMultiviewProperties *)ext;
1866 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1867 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1868 break;
1869 }
1870
1871 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1872 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1873 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1874 properties->pciDomain = pdevice->pci_info.domain;
1875 properties->pciBus = pdevice->pci_info.bus;
1876 properties->pciDevice = pdevice->pci_info.device;
1877 properties->pciFunction = pdevice->pci_info.function;
1878 break;
1879 }
1880
1881 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1882 VkPhysicalDevicePointClippingProperties *properties =
1883 (VkPhysicalDevicePointClippingProperties *) ext;
1884 CORE_PROPERTY(1, 1, pointClippingBehavior);
1885 break;
1886 }
1887
1888 #pragma GCC diagnostic push
1889 #pragma GCC diagnostic ignored "-Wswitch"
1890 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1891 VkPhysicalDevicePresentationPropertiesANDROID *props =
1892 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1893 props->sharedImage = VK_FALSE;
1894 break;
1895 }
1896 #pragma GCC diagnostic pop
1897
1898 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1899 VkPhysicalDeviceProtectedMemoryProperties *properties =
1900 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1901 CORE_PROPERTY(1, 1, protectedNoFault);
1902 break;
1903 }
1904
1905 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1906 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1907 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1908 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1909 break;
1910 }
1911
1912 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1913 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1914 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1915 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1916 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1917 break;
1918 }
1919
1920 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1921 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1922 CORE_PROPERTY(1, 1, subgroupSize);
1923 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1924 subgroupSupportedStages);
1925 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1926 subgroupSupportedOperations);
1927 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1928 subgroupQuadOperationsInAllStages);
1929 break;
1930 }
1931
1932 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1933 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1934 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1935 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1936 props->minSubgroupSize = 8;
1937 props->maxSubgroupSize = 32;
1938 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1939 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1940 break;
1941 }
1942 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1943 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1944 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1945 CORE_PROPERTY(1, 2, roundingModeIndependence);
1946 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1947 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1948 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1949 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1950 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1951 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1952 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1953 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1954 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1955 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1956 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1957 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1958 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1959 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1960 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1961 break;
1962 }
1963
1964 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1965 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1966 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1967
1968 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1969 * Base Address:
1970 *
1971 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1972 * specifies the base address of the first element of the surface,
1973 * computed in software by adding the surface base address to the
1974 * byte offset of the element in the buffer. The base address must
1975 * be aligned to element size."
1976 *
1977 * The typed dataport messages require that things be texel aligned.
1978 * Otherwise, we may just load/store the wrong data or, in the worst
1979 * case, there may be hangs.
1980 */
1981 props->storageTexelBufferOffsetAlignmentBytes = 16;
1982 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1983
1984 /* The sampler, however, is much more forgiving and it can handle
1985 * arbitrary byte alignment for linear and buffer surfaces. It's
1986 * hard to find a good PRM citation for this but years of empirical
1987 * experience demonstrate that this is true.
1988 */
1989 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1990 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1991 break;
1992 }
1993
1994 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1995 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
1996 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1997 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
1998 break;
1999 }
2000
2001 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2002 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2003 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2004
2005 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2006 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2007 props->maxTransformFeedbackBufferSize = (1ull << 32);
2008 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2009 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2010 props->maxTransformFeedbackBufferDataStride = 2048;
2011 props->transformFeedbackQueries = true;
2012 props->transformFeedbackStreamsLinesTriangles = false;
2013 props->transformFeedbackRasterizationStreamSelect = false;
2014 props->transformFeedbackDraw = true;
2015 break;
2016 }
2017
2018 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2019 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2020 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2021 /* We have to restrict this a bit for multiview */
2022 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2023 break;
2024 }
2025
2026 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2027 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2028 break;
2029
2030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2031 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2032 break;
2033
2034 default:
2035 anv_debug_ignored_stype(ext->sType);
2036 break;
2037 }
2038 }
2039
2040 #undef CORE_RENAMED_PROPERTY
2041 #undef CORE_PROPERTY
2042 }
2043
2044 /* We support exactly one queue family. */
2045 static const VkQueueFamilyProperties
2046 anv_queue_family_properties = {
2047 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2048 VK_QUEUE_COMPUTE_BIT |
2049 VK_QUEUE_TRANSFER_BIT,
2050 .queueCount = 1,
2051 .timestampValidBits = 36, /* XXX: Real value here */
2052 .minImageTransferGranularity = { 1, 1, 1 },
2053 };
2054
2055 void anv_GetPhysicalDeviceQueueFamilyProperties(
2056 VkPhysicalDevice physicalDevice,
2057 uint32_t* pCount,
2058 VkQueueFamilyProperties* pQueueFamilyProperties)
2059 {
2060 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2061
2062 vk_outarray_append(&out, p) {
2063 *p = anv_queue_family_properties;
2064 }
2065 }
2066
2067 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2068 VkPhysicalDevice physicalDevice,
2069 uint32_t* pQueueFamilyPropertyCount,
2070 VkQueueFamilyProperties2* pQueueFamilyProperties)
2071 {
2072
2073 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2074
2075 vk_outarray_append(&out, p) {
2076 p->queueFamilyProperties = anv_queue_family_properties;
2077
2078 vk_foreach_struct(s, p->pNext) {
2079 anv_debug_ignored_stype(s->sType);
2080 }
2081 }
2082 }
2083
2084 void anv_GetPhysicalDeviceMemoryProperties(
2085 VkPhysicalDevice physicalDevice,
2086 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2087 {
2088 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2089
2090 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2091 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2092 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2093 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2094 .heapIndex = physical_device->memory.types[i].heapIndex,
2095 };
2096 }
2097
2098 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2099 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2100 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2101 .size = physical_device->memory.heaps[i].size,
2102 .flags = physical_device->memory.heaps[i].flags,
2103 };
2104 }
2105 }
2106
2107 static void
2108 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2109 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2110 {
2111 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2112 uint64_t sys_available = get_available_system_memory();
2113 assert(sys_available > 0);
2114
2115 VkDeviceSize total_heaps_size = 0;
2116 for (size_t i = 0; i < device->memory.heap_count; i++)
2117 total_heaps_size += device->memory.heaps[i].size;
2118
2119 for (size_t i = 0; i < device->memory.heap_count; i++) {
2120 VkDeviceSize heap_size = device->memory.heaps[i].size;
2121 VkDeviceSize heap_used = device->memory.heaps[i].used;
2122 VkDeviceSize heap_budget;
2123
2124 double heap_proportion = (double) heap_size / total_heaps_size;
2125 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2126
2127 /*
2128 * Let's not incite the app to starve the system: report at most 90% of
2129 * available system memory.
2130 */
2131 uint64_t heap_available = sys_available_prop * 9 / 10;
2132 heap_budget = MIN2(heap_size, heap_used + heap_available);
2133
2134 /*
2135 * Round down to the nearest MB
2136 */
2137 heap_budget &= ~((1ull << 20) - 1);
2138
2139 /*
2140 * The heapBudget value must be non-zero for array elements less than
2141 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2142 * value must be less than or equal to VkMemoryHeap::size for each heap.
2143 */
2144 assert(0 < heap_budget && heap_budget <= heap_size);
2145
2146 memoryBudget->heapUsage[i] = heap_used;
2147 memoryBudget->heapBudget[i] = heap_budget;
2148 }
2149
2150 /* The heapBudget and heapUsage values must be zero for array elements
2151 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2152 */
2153 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2154 memoryBudget->heapBudget[i] = 0;
2155 memoryBudget->heapUsage[i] = 0;
2156 }
2157 }
2158
2159 void anv_GetPhysicalDeviceMemoryProperties2(
2160 VkPhysicalDevice physicalDevice,
2161 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2162 {
2163 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2164 &pMemoryProperties->memoryProperties);
2165
2166 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2167 switch (ext->sType) {
2168 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2169 anv_get_memory_budget(physicalDevice, (void*)ext);
2170 break;
2171 default:
2172 anv_debug_ignored_stype(ext->sType);
2173 break;
2174 }
2175 }
2176 }
2177
2178 void
2179 anv_GetDeviceGroupPeerMemoryFeatures(
2180 VkDevice device,
2181 uint32_t heapIndex,
2182 uint32_t localDeviceIndex,
2183 uint32_t remoteDeviceIndex,
2184 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2185 {
2186 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2187 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2188 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2189 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2190 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2191 }
2192
2193 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2194 VkInstance _instance,
2195 const char* pName)
2196 {
2197 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2198
2199 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2200 * when we have to return valid function pointers, NULL, or it's left
2201 * undefined. See the table for exact details.
2202 */
2203 if (pName == NULL)
2204 return NULL;
2205
2206 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2207 if (strcmp(pName, "vk" #entrypoint) == 0) \
2208 return (PFN_vkVoidFunction)anv_##entrypoint
2209
2210 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2211 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2212 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2213 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2214
2215 #undef LOOKUP_ANV_ENTRYPOINT
2216
2217 if (instance == NULL)
2218 return NULL;
2219
2220 int idx = anv_get_instance_entrypoint_index(pName);
2221 if (idx >= 0)
2222 return instance->dispatch.entrypoints[idx];
2223
2224 idx = anv_get_physical_device_entrypoint_index(pName);
2225 if (idx >= 0)
2226 return instance->physical_device_dispatch.entrypoints[idx];
2227
2228 idx = anv_get_device_entrypoint_index(pName);
2229 if (idx >= 0)
2230 return instance->device_dispatch.entrypoints[idx];
2231
2232 return NULL;
2233 }
2234
2235 /* With version 1+ of the loader interface the ICD should expose
2236 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2237 */
2238 PUBLIC
2239 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2240 VkInstance instance,
2241 const char* pName);
2242
2243 PUBLIC
2244 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2245 VkInstance instance,
2246 const char* pName)
2247 {
2248 return anv_GetInstanceProcAddr(instance, pName);
2249 }
2250
2251 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2252 VkDevice _device,
2253 const char* pName)
2254 {
2255 ANV_FROM_HANDLE(anv_device, device, _device);
2256
2257 if (!device || !pName)
2258 return NULL;
2259
2260 int idx = anv_get_device_entrypoint_index(pName);
2261 if (idx < 0)
2262 return NULL;
2263
2264 return device->dispatch.entrypoints[idx];
2265 }
2266
2267 /* With version 4+ of the loader interface the ICD should expose
2268 * vk_icdGetPhysicalDeviceProcAddr()
2269 */
2270 PUBLIC
2271 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2272 VkInstance _instance,
2273 const char* pName);
2274
2275 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2276 VkInstance _instance,
2277 const char* pName)
2278 {
2279 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2280
2281 if (!pName || !instance)
2282 return NULL;
2283
2284 int idx = anv_get_physical_device_entrypoint_index(pName);
2285 if (idx < 0)
2286 return NULL;
2287
2288 return instance->physical_device_dispatch.entrypoints[idx];
2289 }
2290
2291
2292 VkResult
2293 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2294 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2295 const VkAllocationCallbacks* pAllocator,
2296 VkDebugReportCallbackEXT* pCallback)
2297 {
2298 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2299 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2300 pCreateInfo, pAllocator, &instance->alloc,
2301 pCallback);
2302 }
2303
2304 void
2305 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2306 VkDebugReportCallbackEXT _callback,
2307 const VkAllocationCallbacks* pAllocator)
2308 {
2309 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2310 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2311 _callback, pAllocator, &instance->alloc);
2312 }
2313
2314 void
2315 anv_DebugReportMessageEXT(VkInstance _instance,
2316 VkDebugReportFlagsEXT flags,
2317 VkDebugReportObjectTypeEXT objectType,
2318 uint64_t object,
2319 size_t location,
2320 int32_t messageCode,
2321 const char* pLayerPrefix,
2322 const char* pMessage)
2323 {
2324 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2325 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2326 object, location, messageCode, pLayerPrefix, pMessage);
2327 }
2328
2329 static struct anv_state
2330 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2331 {
2332 struct anv_state state;
2333
2334 state = anv_state_pool_alloc(pool, size, align);
2335 memcpy(state.map, p, size);
2336
2337 return state;
2338 }
2339
2340 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2341 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2342 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2343 * color as a separate entry /after/ the float color. The layout of this entry
2344 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2345 *
2346 * Since we don't know the format/bpp, we can't make any of the border colors
2347 * containing '1' work for all formats, as it would be in the wrong place for
2348 * some of them. We opt to make 32-bit integers work as this seems like the
2349 * most common option. Fortunately, transparent black works regardless, as
2350 * all zeroes is the same in every bit-size.
2351 */
2352 struct hsw_border_color {
2353 float float32[4];
2354 uint32_t _pad0[12];
2355 uint32_t uint32[4];
2356 uint32_t _pad1[108];
2357 };
2358
2359 struct gen8_border_color {
2360 union {
2361 float float32[4];
2362 uint32_t uint32[4];
2363 };
2364 /* Pad out to 64 bytes */
2365 uint32_t _pad[12];
2366 };
2367
2368 static void
2369 anv_device_init_border_colors(struct anv_device *device)
2370 {
2371 if (device->info.is_haswell) {
2372 static const struct hsw_border_color border_colors[] = {
2373 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2374 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2375 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2376 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2377 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2378 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2379 };
2380
2381 device->border_colors =
2382 anv_state_pool_emit_data(&device->dynamic_state_pool,
2383 sizeof(border_colors), 512, border_colors);
2384 } else {
2385 static const struct gen8_border_color border_colors[] = {
2386 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2387 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2388 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2389 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2390 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2391 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2392 };
2393
2394 device->border_colors =
2395 anv_state_pool_emit_data(&device->dynamic_state_pool,
2396 sizeof(border_colors), 64, border_colors);
2397 }
2398 }
2399
2400 static VkResult
2401 anv_device_init_trivial_batch(struct anv_device *device)
2402 {
2403 VkResult result = anv_device_alloc_bo(device, 4096,
2404 ANV_BO_ALLOC_MAPPED,
2405 0 /* explicit_address */,
2406 &device->trivial_batch_bo);
2407 if (result != VK_SUCCESS)
2408 return result;
2409
2410 struct anv_batch batch = {
2411 .start = device->trivial_batch_bo->map,
2412 .next = device->trivial_batch_bo->map,
2413 .end = device->trivial_batch_bo->map + 4096,
2414 };
2415
2416 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2417 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2418
2419 if (!device->info.has_llc)
2420 gen_clflush_range(batch.start, batch.next - batch.start);
2421
2422 return VK_SUCCESS;
2423 }
2424
2425 VkResult anv_EnumerateDeviceExtensionProperties(
2426 VkPhysicalDevice physicalDevice,
2427 const char* pLayerName,
2428 uint32_t* pPropertyCount,
2429 VkExtensionProperties* pProperties)
2430 {
2431 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2432 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2433
2434 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2435 if (device->supported_extensions.extensions[i]) {
2436 vk_outarray_append(&out, prop) {
2437 *prop = anv_device_extensions[i];
2438 }
2439 }
2440 }
2441
2442 return vk_outarray_status(&out);
2443 }
2444
2445 static void
2446 anv_device_init_dispatch(struct anv_device *device)
2447 {
2448 const struct anv_instance *instance = device->physical->instance;
2449
2450 const struct anv_device_dispatch_table *genX_table;
2451 switch (device->info.gen) {
2452 case 12:
2453 genX_table = &gen12_device_dispatch_table;
2454 break;
2455 case 11:
2456 genX_table = &gen11_device_dispatch_table;
2457 break;
2458 case 10:
2459 genX_table = &gen10_device_dispatch_table;
2460 break;
2461 case 9:
2462 genX_table = &gen9_device_dispatch_table;
2463 break;
2464 case 8:
2465 genX_table = &gen8_device_dispatch_table;
2466 break;
2467 case 7:
2468 if (device->info.is_haswell)
2469 genX_table = &gen75_device_dispatch_table;
2470 else
2471 genX_table = &gen7_device_dispatch_table;
2472 break;
2473 default:
2474 unreachable("unsupported gen\n");
2475 }
2476
2477 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2478 /* Vulkan requires that entrypoints for extensions which have not been
2479 * enabled must not be advertised.
2480 */
2481 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2482 &instance->enabled_extensions,
2483 &device->enabled_extensions)) {
2484 device->dispatch.entrypoints[i] = NULL;
2485 } else if (genX_table->entrypoints[i]) {
2486 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2487 } else {
2488 device->dispatch.entrypoints[i] =
2489 anv_device_dispatch_table.entrypoints[i];
2490 }
2491 }
2492 }
2493
2494 static int
2495 vk_priority_to_gen(int priority)
2496 {
2497 switch (priority) {
2498 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2499 return GEN_CONTEXT_LOW_PRIORITY;
2500 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2501 return GEN_CONTEXT_MEDIUM_PRIORITY;
2502 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2503 return GEN_CONTEXT_HIGH_PRIORITY;
2504 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2505 return GEN_CONTEXT_REALTIME_PRIORITY;
2506 default:
2507 unreachable("Invalid priority");
2508 }
2509 }
2510
2511 static VkResult
2512 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2513 {
2514 VkResult result = anv_device_alloc_bo(device, 4096,
2515 ANV_BO_ALLOC_MAPPED,
2516 0 /* explicit_address */,
2517 &device->hiz_clear_bo);
2518 if (result != VK_SUCCESS)
2519 return result;
2520
2521 union isl_color_value hiz_clear = { .u32 = { 0, } };
2522 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2523
2524 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2525
2526 if (!device->info.has_llc)
2527 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2528
2529 return VK_SUCCESS;
2530 }
2531
2532 static bool
2533 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2534 struct anv_block_pool *pool,
2535 uint64_t address)
2536 {
2537 anv_block_pool_foreach_bo(bo, pool) {
2538 uint64_t bo_address = gen_48b_address(bo->offset);
2539 if (address >= bo_address && address < (bo_address + bo->size)) {
2540 *ret = (struct gen_batch_decode_bo) {
2541 .addr = bo_address,
2542 .size = bo->size,
2543 .map = bo->map,
2544 };
2545 return true;
2546 }
2547 }
2548 return false;
2549 }
2550
2551 /* Finding a buffer for batch decoding */
2552 static struct gen_batch_decode_bo
2553 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2554 {
2555 struct anv_device *device = v_batch;
2556 struct gen_batch_decode_bo ret_bo = {};
2557
2558 assert(ppgtt);
2559
2560 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2561 return ret_bo;
2562 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2563 return ret_bo;
2564 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2565 return ret_bo;
2566 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2567 return ret_bo;
2568
2569 if (!device->cmd_buffer_being_decoded)
2570 return (struct gen_batch_decode_bo) { };
2571
2572 struct anv_batch_bo **bo;
2573
2574 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2575 /* The decoder zeroes out the top 16 bits, so we need to as well */
2576 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2577
2578 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2579 return (struct gen_batch_decode_bo) {
2580 .addr = bo_address,
2581 .size = (*bo)->bo->size,
2582 .map = (*bo)->bo->map,
2583 };
2584 }
2585 }
2586
2587 return (struct gen_batch_decode_bo) { };
2588 }
2589
2590 struct gen_aux_map_buffer {
2591 struct gen_buffer base;
2592 struct anv_state state;
2593 };
2594
2595 static struct gen_buffer *
2596 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2597 {
2598 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2599 if (!buf)
2600 return NULL;
2601
2602 struct anv_device *device = (struct anv_device*)driver_ctx;
2603 assert(device->physical->supports_48bit_addresses &&
2604 device->physical->use_softpin);
2605
2606 struct anv_state_pool *pool = &device->dynamic_state_pool;
2607 buf->state = anv_state_pool_alloc(pool, size, size);
2608
2609 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2610 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2611 buf->base.map = buf->state.map;
2612 buf->base.driver_bo = &buf->state;
2613 return &buf->base;
2614 }
2615
2616 static void
2617 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2618 {
2619 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2620 struct anv_device *device = (struct anv_device*)driver_ctx;
2621 struct anv_state_pool *pool = &device->dynamic_state_pool;
2622 anv_state_pool_free(pool, buf->state);
2623 free(buf);
2624 }
2625
2626 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2627 .alloc = gen_aux_map_buffer_alloc,
2628 .free = gen_aux_map_buffer_free,
2629 };
2630
2631 VkResult anv_CreateDevice(
2632 VkPhysicalDevice physicalDevice,
2633 const VkDeviceCreateInfo* pCreateInfo,
2634 const VkAllocationCallbacks* pAllocator,
2635 VkDevice* pDevice)
2636 {
2637 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2638 VkResult result;
2639 struct anv_device *device;
2640
2641 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2642
2643 struct anv_device_extension_table enabled_extensions = { };
2644 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2645 int idx;
2646 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2647 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2648 anv_device_extensions[idx].extensionName) == 0)
2649 break;
2650 }
2651
2652 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2653 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2654
2655 if (!physical_device->supported_extensions.extensions[idx])
2656 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2657
2658 enabled_extensions.extensions[idx] = true;
2659 }
2660
2661 /* Check enabled features */
2662 if (pCreateInfo->pEnabledFeatures) {
2663 VkPhysicalDeviceFeatures supported_features;
2664 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2665 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2666 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2667 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2668 for (uint32_t i = 0; i < num_features; i++) {
2669 if (enabled_feature[i] && !supported_feature[i])
2670 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2671 }
2672 }
2673
2674 /* Check requested queues and fail if we are requested to create any
2675 * queues with flags we don't support.
2676 */
2677 assert(pCreateInfo->queueCreateInfoCount > 0);
2678 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2679 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2680 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2681 }
2682
2683 /* Check if client specified queue priority. */
2684 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2685 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2686 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2687
2688 VkQueueGlobalPriorityEXT priority =
2689 queue_priority ? queue_priority->globalPriority :
2690 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2691
2692 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2693 sizeof(*device), 8,
2694 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2695 if (!device)
2696 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2697
2698 if (INTEL_DEBUG & DEBUG_BATCH) {
2699 const unsigned decode_flags =
2700 GEN_BATCH_DECODE_FULL |
2701 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2702 GEN_BATCH_DECODE_OFFSETS |
2703 GEN_BATCH_DECODE_FLOATS;
2704
2705 gen_batch_decode_ctx_init(&device->decoder_ctx,
2706 &physical_device->info,
2707 stderr, decode_flags, NULL,
2708 decode_get_bo, NULL, device);
2709 }
2710
2711 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2712 device->physical = physical_device;
2713 device->no_hw = physical_device->no_hw;
2714 device->_lost = false;
2715
2716 if (pAllocator)
2717 device->alloc = *pAllocator;
2718 else
2719 device->alloc = physical_device->instance->alloc;
2720
2721 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2722 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2723 if (device->fd == -1) {
2724 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2725 goto fail_device;
2726 }
2727
2728 device->context_id = anv_gem_create_context(device);
2729 if (device->context_id == -1) {
2730 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2731 goto fail_fd;
2732 }
2733
2734 result = anv_queue_init(device, &device->queue);
2735 if (result != VK_SUCCESS)
2736 goto fail_context_id;
2737
2738 if (physical_device->use_softpin) {
2739 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2740 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2741 goto fail_queue;
2742 }
2743
2744 /* keep the page with address zero out of the allocator */
2745 util_vma_heap_init(&device->vma_lo,
2746 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2747
2748 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2749 CLIENT_VISIBLE_HEAP_SIZE);
2750
2751 /* Leave the last 4GiB out of the high vma range, so that no state
2752 * base address + size can overflow 48 bits. For more information see
2753 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2754 */
2755 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2756 physical_device->gtt_size - (1ull << 32) -
2757 HIGH_HEAP_MIN_ADDRESS);
2758 }
2759
2760 list_inithead(&device->memory_objects);
2761
2762 /* As per spec, the driver implementation may deny requests to acquire
2763 * a priority above the default priority (MEDIUM) if the caller does not
2764 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2765 * is returned.
2766 */
2767 if (physical_device->has_context_priority) {
2768 int err = anv_gem_set_context_param(device->fd, device->context_id,
2769 I915_CONTEXT_PARAM_PRIORITY,
2770 vk_priority_to_gen(priority));
2771 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2772 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2773 goto fail_vmas;
2774 }
2775 }
2776
2777 device->info = physical_device->info;
2778 device->isl_dev = physical_device->isl_dev;
2779
2780 /* On Broadwell and later, we can use batch chaining to more efficiently
2781 * implement growing command buffers. Prior to Haswell, the kernel
2782 * command parser gets in the way and we have to fall back to growing
2783 * the batch.
2784 */
2785 device->can_chain_batches = device->info.gen >= 8;
2786
2787 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2788 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2789 device->enabled_extensions = enabled_extensions;
2790
2791 anv_device_init_dispatch(device);
2792
2793 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2794 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2795 goto fail_queue;
2796 }
2797
2798 pthread_condattr_t condattr;
2799 if (pthread_condattr_init(&condattr) != 0) {
2800 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2801 goto fail_mutex;
2802 }
2803 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2804 pthread_condattr_destroy(&condattr);
2805 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2806 goto fail_mutex;
2807 }
2808 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2809 pthread_condattr_destroy(&condattr);
2810 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2811 goto fail_mutex;
2812 }
2813 pthread_condattr_destroy(&condattr);
2814
2815 result = anv_bo_cache_init(&device->bo_cache);
2816 if (result != VK_SUCCESS)
2817 goto fail_queue_cond;
2818
2819 anv_bo_pool_init(&device->batch_bo_pool, device);
2820
2821 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2822 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2823 if (result != VK_SUCCESS)
2824 goto fail_batch_bo_pool;
2825
2826 result = anv_state_pool_init(&device->instruction_state_pool, device,
2827 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2828 if (result != VK_SUCCESS)
2829 goto fail_dynamic_state_pool;
2830
2831 result = anv_state_pool_init(&device->surface_state_pool, device,
2832 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2833 if (result != VK_SUCCESS)
2834 goto fail_instruction_state_pool;
2835
2836 if (physical_device->use_softpin) {
2837 result = anv_state_pool_init(&device->binding_table_pool, device,
2838 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2839 if (result != VK_SUCCESS)
2840 goto fail_surface_state_pool;
2841 }
2842
2843 if (device->info.gen >= 12) {
2844 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2845 &physical_device->info);
2846 if (!device->aux_map_ctx)
2847 goto fail_binding_table_pool;
2848 }
2849
2850 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2851 0 /* explicit_address */,
2852 &device->workaround_bo);
2853 if (result != VK_SUCCESS)
2854 goto fail_surface_aux_map_pool;
2855
2856 result = anv_device_init_trivial_batch(device);
2857 if (result != VK_SUCCESS)
2858 goto fail_workaround_bo;
2859
2860 if (device->info.gen >= 10) {
2861 result = anv_device_init_hiz_clear_value_bo(device);
2862 if (result != VK_SUCCESS)
2863 goto fail_trivial_batch_bo;
2864 }
2865
2866 anv_scratch_pool_init(device, &device->scratch_pool);
2867
2868 switch (device->info.gen) {
2869 case 7:
2870 if (!device->info.is_haswell)
2871 result = gen7_init_device_state(device);
2872 else
2873 result = gen75_init_device_state(device);
2874 break;
2875 case 8:
2876 result = gen8_init_device_state(device);
2877 break;
2878 case 9:
2879 result = gen9_init_device_state(device);
2880 break;
2881 case 10:
2882 result = gen10_init_device_state(device);
2883 break;
2884 case 11:
2885 result = gen11_init_device_state(device);
2886 break;
2887 case 12:
2888 result = gen12_init_device_state(device);
2889 break;
2890 default:
2891 /* Shouldn't get here as we don't create physical devices for any other
2892 * gens. */
2893 unreachable("unhandled gen");
2894 }
2895 if (result != VK_SUCCESS)
2896 goto fail_workaround_bo;
2897
2898 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2899
2900 anv_device_init_blorp(device);
2901
2902 anv_device_init_border_colors(device);
2903
2904 anv_device_perf_init(device);
2905
2906 *pDevice = anv_device_to_handle(device);
2907
2908 return VK_SUCCESS;
2909
2910 fail_workaround_bo:
2911 anv_scratch_pool_finish(device, &device->scratch_pool);
2912 if (device->info.gen >= 10)
2913 anv_device_release_bo(device, device->hiz_clear_bo);
2914 anv_device_release_bo(device, device->workaround_bo);
2915 fail_trivial_batch_bo:
2916 anv_device_release_bo(device, device->trivial_batch_bo);
2917 fail_surface_aux_map_pool:
2918 if (device->info.gen >= 12) {
2919 gen_aux_map_finish(device->aux_map_ctx);
2920 device->aux_map_ctx = NULL;
2921 }
2922 fail_binding_table_pool:
2923 if (physical_device->use_softpin)
2924 anv_state_pool_finish(&device->binding_table_pool);
2925 fail_surface_state_pool:
2926 anv_state_pool_finish(&device->surface_state_pool);
2927 fail_instruction_state_pool:
2928 anv_state_pool_finish(&device->instruction_state_pool);
2929 fail_dynamic_state_pool:
2930 anv_state_pool_finish(&device->dynamic_state_pool);
2931 fail_batch_bo_pool:
2932 anv_bo_pool_finish(&device->batch_bo_pool);
2933 anv_bo_cache_finish(&device->bo_cache);
2934 fail_queue_cond:
2935 pthread_cond_destroy(&device->queue_submit);
2936 fail_mutex:
2937 pthread_mutex_destroy(&device->mutex);
2938 fail_vmas:
2939 if (physical_device->use_softpin) {
2940 util_vma_heap_finish(&device->vma_hi);
2941 util_vma_heap_finish(&device->vma_cva);
2942 util_vma_heap_finish(&device->vma_lo);
2943 }
2944 fail_queue:
2945 anv_queue_finish(&device->queue);
2946 fail_context_id:
2947 anv_gem_destroy_context(device, device->context_id);
2948 fail_fd:
2949 close(device->fd);
2950 fail_device:
2951 vk_free(&device->alloc, device);
2952
2953 return result;
2954 }
2955
2956 void anv_DestroyDevice(
2957 VkDevice _device,
2958 const VkAllocationCallbacks* pAllocator)
2959 {
2960 ANV_FROM_HANDLE(anv_device, device, _device);
2961
2962 if (!device)
2963 return;
2964
2965 anv_device_finish_blorp(device);
2966
2967 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2968
2969 anv_queue_finish(&device->queue);
2970
2971 #ifdef HAVE_VALGRIND
2972 /* We only need to free these to prevent valgrind errors. The backing
2973 * BO will go away in a couple of lines so we don't actually leak.
2974 */
2975 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2976 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2977 #endif
2978
2979 anv_scratch_pool_finish(device, &device->scratch_pool);
2980
2981 anv_device_release_bo(device, device->workaround_bo);
2982 anv_device_release_bo(device, device->trivial_batch_bo);
2983 if (device->info.gen >= 10)
2984 anv_device_release_bo(device, device->hiz_clear_bo);
2985
2986 if (device->info.gen >= 12) {
2987 gen_aux_map_finish(device->aux_map_ctx);
2988 device->aux_map_ctx = NULL;
2989 }
2990
2991 if (device->physical->use_softpin)
2992 anv_state_pool_finish(&device->binding_table_pool);
2993 anv_state_pool_finish(&device->surface_state_pool);
2994 anv_state_pool_finish(&device->instruction_state_pool);
2995 anv_state_pool_finish(&device->dynamic_state_pool);
2996
2997 anv_bo_pool_finish(&device->batch_bo_pool);
2998
2999 anv_bo_cache_finish(&device->bo_cache);
3000
3001 if (device->physical->use_softpin) {
3002 util_vma_heap_finish(&device->vma_hi);
3003 util_vma_heap_finish(&device->vma_cva);
3004 util_vma_heap_finish(&device->vma_lo);
3005 }
3006
3007 pthread_cond_destroy(&device->queue_submit);
3008 pthread_mutex_destroy(&device->mutex);
3009
3010 anv_gem_destroy_context(device, device->context_id);
3011
3012 if (INTEL_DEBUG & DEBUG_BATCH)
3013 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3014
3015 close(device->fd);
3016
3017 vk_free(&device->alloc, device);
3018 }
3019
3020 VkResult anv_EnumerateInstanceLayerProperties(
3021 uint32_t* pPropertyCount,
3022 VkLayerProperties* pProperties)
3023 {
3024 if (pProperties == NULL) {
3025 *pPropertyCount = 0;
3026 return VK_SUCCESS;
3027 }
3028
3029 /* None supported at this time */
3030 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3031 }
3032
3033 VkResult anv_EnumerateDeviceLayerProperties(
3034 VkPhysicalDevice physicalDevice,
3035 uint32_t* pPropertyCount,
3036 VkLayerProperties* pProperties)
3037 {
3038 if (pProperties == NULL) {
3039 *pPropertyCount = 0;
3040 return VK_SUCCESS;
3041 }
3042
3043 /* None supported at this time */
3044 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3045 }
3046
3047 void anv_GetDeviceQueue(
3048 VkDevice _device,
3049 uint32_t queueNodeIndex,
3050 uint32_t queueIndex,
3051 VkQueue* pQueue)
3052 {
3053 const VkDeviceQueueInfo2 info = {
3054 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3055 .pNext = NULL,
3056 .flags = 0,
3057 .queueFamilyIndex = queueNodeIndex,
3058 .queueIndex = queueIndex,
3059 };
3060
3061 anv_GetDeviceQueue2(_device, &info, pQueue);
3062 }
3063
3064 void anv_GetDeviceQueue2(
3065 VkDevice _device,
3066 const VkDeviceQueueInfo2* pQueueInfo,
3067 VkQueue* pQueue)
3068 {
3069 ANV_FROM_HANDLE(anv_device, device, _device);
3070
3071 assert(pQueueInfo->queueIndex == 0);
3072
3073 if (pQueueInfo->flags == device->queue.flags)
3074 *pQueue = anv_queue_to_handle(&device->queue);
3075 else
3076 *pQueue = NULL;
3077 }
3078
3079 VkResult
3080 _anv_device_set_lost(struct anv_device *device,
3081 const char *file, int line,
3082 const char *msg, ...)
3083 {
3084 VkResult err;
3085 va_list ap;
3086
3087 p_atomic_inc(&device->_lost);
3088
3089 va_start(ap, msg);
3090 err = __vk_errorv(device->physical->instance, device,
3091 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3092 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3093 va_end(ap);
3094
3095 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3096 abort();
3097
3098 return err;
3099 }
3100
3101 VkResult
3102 _anv_queue_set_lost(struct anv_queue *queue,
3103 const char *file, int line,
3104 const char *msg, ...)
3105 {
3106 VkResult err;
3107 va_list ap;
3108
3109 p_atomic_inc(&queue->device->_lost);
3110
3111 va_start(ap, msg);
3112 err = __vk_errorv(queue->device->physical->instance, queue->device,
3113 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3114 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3115 va_end(ap);
3116
3117 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3118 abort();
3119
3120 return err;
3121 }
3122
3123 VkResult
3124 anv_device_query_status(struct anv_device *device)
3125 {
3126 /* This isn't likely as most of the callers of this function already check
3127 * for it. However, it doesn't hurt to check and it potentially lets us
3128 * avoid an ioctl.
3129 */
3130 if (anv_device_is_lost(device))
3131 return VK_ERROR_DEVICE_LOST;
3132
3133 uint32_t active, pending;
3134 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3135 if (ret == -1) {
3136 /* We don't know the real error. */
3137 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3138 }
3139
3140 if (active) {
3141 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3142 } else if (pending) {
3143 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3144 }
3145
3146 return VK_SUCCESS;
3147 }
3148
3149 VkResult
3150 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3151 {
3152 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3153 * Other usages of the BO (such as on different hardware) will not be
3154 * flagged as "busy" by this ioctl. Use with care.
3155 */
3156 int ret = anv_gem_busy(device, bo->gem_handle);
3157 if (ret == 1) {
3158 return VK_NOT_READY;
3159 } else if (ret == -1) {
3160 /* We don't know the real error. */
3161 return anv_device_set_lost(device, "gem wait failed: %m");
3162 }
3163
3164 /* Query for device status after the busy call. If the BO we're checking
3165 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3166 * client because it clearly doesn't have valid data. Yes, this most
3167 * likely means an ioctl, but we just did an ioctl to query the busy status
3168 * so it's no great loss.
3169 */
3170 return anv_device_query_status(device);
3171 }
3172
3173 VkResult
3174 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3175 int64_t timeout)
3176 {
3177 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3178 if (ret == -1 && errno == ETIME) {
3179 return VK_TIMEOUT;
3180 } else if (ret == -1) {
3181 /* We don't know the real error. */
3182 return anv_device_set_lost(device, "gem wait failed: %m");
3183 }
3184
3185 /* Query for device status after the wait. If the BO we're waiting on got
3186 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3187 * because it clearly doesn't have valid data. Yes, this most likely means
3188 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3189 */
3190 return anv_device_query_status(device);
3191 }
3192
3193 VkResult anv_DeviceWaitIdle(
3194 VkDevice _device)
3195 {
3196 ANV_FROM_HANDLE(anv_device, device, _device);
3197
3198 if (anv_device_is_lost(device))
3199 return VK_ERROR_DEVICE_LOST;
3200
3201 return anv_queue_submit_simple_batch(&device->queue, NULL);
3202 }
3203
3204 uint64_t
3205 anv_vma_alloc(struct anv_device *device,
3206 uint64_t size, uint64_t align,
3207 enum anv_bo_alloc_flags alloc_flags,
3208 uint64_t client_address)
3209 {
3210 pthread_mutex_lock(&device->vma_mutex);
3211
3212 uint64_t addr = 0;
3213
3214 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3215 if (client_address) {
3216 if (util_vma_heap_alloc_addr(&device->vma_cva,
3217 client_address, size)) {
3218 addr = client_address;
3219 }
3220 } else {
3221 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3222 }
3223 /* We don't want to fall back to other heaps */
3224 goto done;
3225 }
3226
3227 assert(client_address == 0);
3228
3229 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3230 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3231
3232 if (addr == 0)
3233 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3234
3235 done:
3236 pthread_mutex_unlock(&device->vma_mutex);
3237
3238 assert(addr == gen_48b_address(addr));
3239 return gen_canonical_address(addr);
3240 }
3241
3242 void
3243 anv_vma_free(struct anv_device *device,
3244 uint64_t address, uint64_t size)
3245 {
3246 const uint64_t addr_48b = gen_48b_address(address);
3247
3248 pthread_mutex_lock(&device->vma_mutex);
3249
3250 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3251 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3252 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3253 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3254 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3255 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3256 } else {
3257 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3258 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3259 }
3260
3261 pthread_mutex_unlock(&device->vma_mutex);
3262 }
3263
3264 VkResult anv_AllocateMemory(
3265 VkDevice _device,
3266 const VkMemoryAllocateInfo* pAllocateInfo,
3267 const VkAllocationCallbacks* pAllocator,
3268 VkDeviceMemory* pMem)
3269 {
3270 ANV_FROM_HANDLE(anv_device, device, _device);
3271 struct anv_physical_device *pdevice = device->physical;
3272 struct anv_device_memory *mem;
3273 VkResult result = VK_SUCCESS;
3274
3275 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3276
3277 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3278 assert(pAllocateInfo->allocationSize > 0);
3279
3280 VkDeviceSize aligned_alloc_size =
3281 align_u64(pAllocateInfo->allocationSize, 4096);
3282
3283 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3284 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3285
3286 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3287 struct anv_memory_type *mem_type =
3288 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3289 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3290 struct anv_memory_heap *mem_heap =
3291 &pdevice->memory.heaps[mem_type->heapIndex];
3292
3293 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3294 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3295 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3296
3297 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3298 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3299 if (mem == NULL)
3300 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3301
3302 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3303 mem->type = mem_type;
3304 mem->map = NULL;
3305 mem->map_size = 0;
3306 mem->ahw = NULL;
3307 mem->host_ptr = NULL;
3308
3309 enum anv_bo_alloc_flags alloc_flags = 0;
3310
3311 const VkExportMemoryAllocateInfo *export_info = NULL;
3312 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3313 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3314 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3315 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3316 VkMemoryAllocateFlags vk_flags = 0;
3317 uint64_t client_address = 0;
3318
3319 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3320 switch (ext->sType) {
3321 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3322 export_info = (void *)ext;
3323 break;
3324
3325 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3326 ahw_import_info = (void *)ext;
3327 break;
3328
3329 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3330 fd_info = (void *)ext;
3331 break;
3332
3333 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3334 host_ptr_info = (void *)ext;
3335 break;
3336
3337 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3338 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3339 vk_flags = flags_info->flags;
3340 break;
3341 }
3342
3343 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3344 dedicated_info = (void *)ext;
3345 break;
3346
3347 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3348 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3349 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3350 client_address = addr_info->opaqueCaptureAddress;
3351 break;
3352 }
3353
3354 default:
3355 anv_debug_ignored_stype(ext->sType);
3356 break;
3357 }
3358 }
3359
3360 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3361 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3362
3363 /* Check if we need to support Android HW buffer export. If so,
3364 * create AHardwareBuffer and import memory from it.
3365 */
3366 bool android_export = false;
3367 if (export_info && export_info->handleTypes &
3368 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3369 android_export = true;
3370
3371 if (ahw_import_info) {
3372 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3373 if (result != VK_SUCCESS)
3374 goto fail;
3375
3376 goto success;
3377 } else if (android_export) {
3378 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3379 if (result != VK_SUCCESS)
3380 goto fail;
3381
3382 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3383 .buffer = mem->ahw,
3384 };
3385 result = anv_import_ahw_memory(_device, mem, &import_info);
3386 if (result != VK_SUCCESS)
3387 goto fail;
3388
3389 goto success;
3390 }
3391
3392 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3393 * ignored.
3394 */
3395 if (fd_info && fd_info->handleType) {
3396 /* At the moment, we support only the below handle types. */
3397 assert(fd_info->handleType ==
3398 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3399 fd_info->handleType ==
3400 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3401
3402 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3403 client_address, &mem->bo);
3404 if (result != VK_SUCCESS)
3405 goto fail;
3406
3407 /* For security purposes, we reject importing the bo if it's smaller
3408 * than the requested allocation size. This prevents a malicious client
3409 * from passing a buffer to a trusted client, lying about the size, and
3410 * telling the trusted client to try and texture from an image that goes
3411 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3412 * in the trusted client. The trusted client can protect itself against
3413 * this sort of attack but only if it can trust the buffer size.
3414 */
3415 if (mem->bo->size < aligned_alloc_size) {
3416 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3417 "aligned allocationSize too large for "
3418 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3419 "%"PRIu64"B > %"PRIu64"B",
3420 aligned_alloc_size, mem->bo->size);
3421 anv_device_release_bo(device, mem->bo);
3422 goto fail;
3423 }
3424
3425 /* From the Vulkan spec:
3426 *
3427 * "Importing memory from a file descriptor transfers ownership of
3428 * the file descriptor from the application to the Vulkan
3429 * implementation. The application must not perform any operations on
3430 * the file descriptor after a successful import."
3431 *
3432 * If the import fails, we leave the file descriptor open.
3433 */
3434 close(fd_info->fd);
3435 goto success;
3436 }
3437
3438 if (host_ptr_info && host_ptr_info->handleType) {
3439 if (host_ptr_info->handleType ==
3440 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3441 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3442 goto fail;
3443 }
3444
3445 assert(host_ptr_info->handleType ==
3446 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3447
3448 result = anv_device_import_bo_from_host_ptr(device,
3449 host_ptr_info->pHostPointer,
3450 pAllocateInfo->allocationSize,
3451 alloc_flags,
3452 client_address,
3453 &mem->bo);
3454 if (result != VK_SUCCESS)
3455 goto fail;
3456
3457 mem->host_ptr = host_ptr_info->pHostPointer;
3458 goto success;
3459 }
3460
3461 /* Regular allocate (not importing memory). */
3462
3463 if (export_info && export_info->handleTypes)
3464 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3465
3466 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3467 alloc_flags, client_address, &mem->bo);
3468 if (result != VK_SUCCESS)
3469 goto fail;
3470
3471 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3472 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3473
3474 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3475 * the BO. In this case, we have a dedicated allocation.
3476 */
3477 if (image->needs_set_tiling) {
3478 const uint32_t i915_tiling =
3479 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3480 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3481 image->planes[0].surface.isl.row_pitch_B,
3482 i915_tiling);
3483 if (ret) {
3484 anv_device_release_bo(device, mem->bo);
3485 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3486 "failed to set BO tiling: %m");
3487 goto fail;
3488 }
3489 }
3490 }
3491
3492 success:
3493 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3494 if (mem_heap_used > mem_heap->size) {
3495 p_atomic_add(&mem_heap->used, -mem->bo->size);
3496 anv_device_release_bo(device, mem->bo);
3497 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3498 "Out of heap memory");
3499 goto fail;
3500 }
3501
3502 pthread_mutex_lock(&device->mutex);
3503 list_addtail(&mem->link, &device->memory_objects);
3504 pthread_mutex_unlock(&device->mutex);
3505
3506 *pMem = anv_device_memory_to_handle(mem);
3507
3508 return VK_SUCCESS;
3509
3510 fail:
3511 vk_free2(&device->alloc, pAllocator, mem);
3512
3513 return result;
3514 }
3515
3516 VkResult anv_GetMemoryFdKHR(
3517 VkDevice device_h,
3518 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3519 int* pFd)
3520 {
3521 ANV_FROM_HANDLE(anv_device, dev, device_h);
3522 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3523
3524 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3525
3526 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3527 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3528
3529 return anv_device_export_bo(dev, mem->bo, pFd);
3530 }
3531
3532 VkResult anv_GetMemoryFdPropertiesKHR(
3533 VkDevice _device,
3534 VkExternalMemoryHandleTypeFlagBits handleType,
3535 int fd,
3536 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3537 {
3538 ANV_FROM_HANDLE(anv_device, device, _device);
3539
3540 switch (handleType) {
3541 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3542 /* dma-buf can be imported as any memory type */
3543 pMemoryFdProperties->memoryTypeBits =
3544 (1 << device->physical->memory.type_count) - 1;
3545 return VK_SUCCESS;
3546
3547 default:
3548 /* The valid usage section for this function says:
3549 *
3550 * "handleType must not be one of the handle types defined as
3551 * opaque."
3552 *
3553 * So opaque handle types fall into the default "unsupported" case.
3554 */
3555 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3556 }
3557 }
3558
3559 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3560 VkDevice _device,
3561 VkExternalMemoryHandleTypeFlagBits handleType,
3562 const void* pHostPointer,
3563 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3564 {
3565 ANV_FROM_HANDLE(anv_device, device, _device);
3566
3567 assert(pMemoryHostPointerProperties->sType ==
3568 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3569
3570 switch (handleType) {
3571 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3572 /* Host memory can be imported as any memory type. */
3573 pMemoryHostPointerProperties->memoryTypeBits =
3574 (1ull << device->physical->memory.type_count) - 1;
3575
3576 return VK_SUCCESS;
3577
3578 default:
3579 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3580 }
3581 }
3582
3583 void anv_FreeMemory(
3584 VkDevice _device,
3585 VkDeviceMemory _mem,
3586 const VkAllocationCallbacks* pAllocator)
3587 {
3588 ANV_FROM_HANDLE(anv_device, device, _device);
3589 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3590
3591 if (mem == NULL)
3592 return;
3593
3594 pthread_mutex_lock(&device->mutex);
3595 list_del(&mem->link);
3596 pthread_mutex_unlock(&device->mutex);
3597
3598 if (mem->map)
3599 anv_UnmapMemory(_device, _mem);
3600
3601 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3602 -mem->bo->size);
3603
3604 anv_device_release_bo(device, mem->bo);
3605
3606 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3607 if (mem->ahw)
3608 AHardwareBuffer_release(mem->ahw);
3609 #endif
3610
3611 vk_free2(&device->alloc, pAllocator, mem);
3612 }
3613
3614 VkResult anv_MapMemory(
3615 VkDevice _device,
3616 VkDeviceMemory _memory,
3617 VkDeviceSize offset,
3618 VkDeviceSize size,
3619 VkMemoryMapFlags flags,
3620 void** ppData)
3621 {
3622 ANV_FROM_HANDLE(anv_device, device, _device);
3623 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3624
3625 if (mem == NULL) {
3626 *ppData = NULL;
3627 return VK_SUCCESS;
3628 }
3629
3630 if (mem->host_ptr) {
3631 *ppData = mem->host_ptr + offset;
3632 return VK_SUCCESS;
3633 }
3634
3635 if (size == VK_WHOLE_SIZE)
3636 size = mem->bo->size - offset;
3637
3638 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3639 *
3640 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3641 * assert(size != 0);
3642 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3643 * equal to the size of the memory minus offset
3644 */
3645 assert(size > 0);
3646 assert(offset + size <= mem->bo->size);
3647
3648 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3649 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3650 * at a time is valid. We could just mmap up front and return an offset
3651 * pointer here, but that may exhaust virtual memory on 32 bit
3652 * userspace. */
3653
3654 uint32_t gem_flags = 0;
3655
3656 if (!device->info.has_llc &&
3657 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3658 gem_flags |= I915_MMAP_WC;
3659
3660 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3661 uint64_t map_offset = offset & ~4095ull;
3662 assert(offset >= map_offset);
3663 uint64_t map_size = (offset + size) - map_offset;
3664
3665 /* Let's map whole pages */
3666 map_size = align_u64(map_size, 4096);
3667
3668 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3669 map_offset, map_size, gem_flags);
3670 if (map == MAP_FAILED)
3671 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3672
3673 mem->map = map;
3674 mem->map_size = map_size;
3675
3676 *ppData = mem->map + (offset - map_offset);
3677
3678 return VK_SUCCESS;
3679 }
3680
3681 void anv_UnmapMemory(
3682 VkDevice _device,
3683 VkDeviceMemory _memory)
3684 {
3685 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3686
3687 if (mem == NULL || mem->host_ptr)
3688 return;
3689
3690 anv_gem_munmap(mem->map, mem->map_size);
3691
3692 mem->map = NULL;
3693 mem->map_size = 0;
3694 }
3695
3696 static void
3697 clflush_mapped_ranges(struct anv_device *device,
3698 uint32_t count,
3699 const VkMappedMemoryRange *ranges)
3700 {
3701 for (uint32_t i = 0; i < count; i++) {
3702 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3703 if (ranges[i].offset >= mem->map_size)
3704 continue;
3705
3706 gen_clflush_range(mem->map + ranges[i].offset,
3707 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3708 }
3709 }
3710
3711 VkResult anv_FlushMappedMemoryRanges(
3712 VkDevice _device,
3713 uint32_t memoryRangeCount,
3714 const VkMappedMemoryRange* pMemoryRanges)
3715 {
3716 ANV_FROM_HANDLE(anv_device, device, _device);
3717
3718 if (device->info.has_llc)
3719 return VK_SUCCESS;
3720
3721 /* Make sure the writes we're flushing have landed. */
3722 __builtin_ia32_mfence();
3723
3724 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3725
3726 return VK_SUCCESS;
3727 }
3728
3729 VkResult anv_InvalidateMappedMemoryRanges(
3730 VkDevice _device,
3731 uint32_t memoryRangeCount,
3732 const VkMappedMemoryRange* pMemoryRanges)
3733 {
3734 ANV_FROM_HANDLE(anv_device, device, _device);
3735
3736 if (device->info.has_llc)
3737 return VK_SUCCESS;
3738
3739 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3740
3741 /* Make sure no reads get moved up above the invalidate. */
3742 __builtin_ia32_mfence();
3743
3744 return VK_SUCCESS;
3745 }
3746
3747 void anv_GetBufferMemoryRequirements(
3748 VkDevice _device,
3749 VkBuffer _buffer,
3750 VkMemoryRequirements* pMemoryRequirements)
3751 {
3752 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3753 ANV_FROM_HANDLE(anv_device, device, _device);
3754
3755 /* The Vulkan spec (git aaed022) says:
3756 *
3757 * memoryTypeBits is a bitfield and contains one bit set for every
3758 * supported memory type for the resource. The bit `1<<i` is set if and
3759 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3760 * structure for the physical device is supported.
3761 */
3762 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3763
3764 /* Base alignment requirement of a cache line */
3765 uint32_t alignment = 16;
3766
3767 /* We need an alignment of 32 for pushing UBOs */
3768 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3769 alignment = MAX2(alignment, 32);
3770
3771 pMemoryRequirements->size = buffer->size;
3772 pMemoryRequirements->alignment = alignment;
3773
3774 /* Storage and Uniform buffers should have their size aligned to
3775 * 32-bits to avoid boundary checks when last DWord is not complete.
3776 * This would ensure that not internal padding would be needed for
3777 * 16-bit types.
3778 */
3779 if (device->robust_buffer_access &&
3780 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3781 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3782 pMemoryRequirements->size = align_u64(buffer->size, 4);
3783
3784 pMemoryRequirements->memoryTypeBits = memory_types;
3785 }
3786
3787 void anv_GetBufferMemoryRequirements2(
3788 VkDevice _device,
3789 const VkBufferMemoryRequirementsInfo2* pInfo,
3790 VkMemoryRequirements2* pMemoryRequirements)
3791 {
3792 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3793 &pMemoryRequirements->memoryRequirements);
3794
3795 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3796 switch (ext->sType) {
3797 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3798 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3799 requirements->prefersDedicatedAllocation = false;
3800 requirements->requiresDedicatedAllocation = false;
3801 break;
3802 }
3803
3804 default:
3805 anv_debug_ignored_stype(ext->sType);
3806 break;
3807 }
3808 }
3809 }
3810
3811 void anv_GetImageMemoryRequirements(
3812 VkDevice _device,
3813 VkImage _image,
3814 VkMemoryRequirements* pMemoryRequirements)
3815 {
3816 ANV_FROM_HANDLE(anv_image, image, _image);
3817 ANV_FROM_HANDLE(anv_device, device, _device);
3818
3819 /* The Vulkan spec (git aaed022) says:
3820 *
3821 * memoryTypeBits is a bitfield and contains one bit set for every
3822 * supported memory type for the resource. The bit `1<<i` is set if and
3823 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3824 * structure for the physical device is supported.
3825 *
3826 * All types are currently supported for images.
3827 */
3828 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3829
3830 /* We must have image allocated or imported at this point. According to the
3831 * specification, external images must have been bound to memory before
3832 * calling GetImageMemoryRequirements.
3833 */
3834 assert(image->size > 0);
3835
3836 pMemoryRequirements->size = image->size;
3837 pMemoryRequirements->alignment = image->alignment;
3838 pMemoryRequirements->memoryTypeBits = memory_types;
3839 }
3840
3841 void anv_GetImageMemoryRequirements2(
3842 VkDevice _device,
3843 const VkImageMemoryRequirementsInfo2* pInfo,
3844 VkMemoryRequirements2* pMemoryRequirements)
3845 {
3846 ANV_FROM_HANDLE(anv_device, device, _device);
3847 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3848
3849 anv_GetImageMemoryRequirements(_device, pInfo->image,
3850 &pMemoryRequirements->memoryRequirements);
3851
3852 vk_foreach_struct_const(ext, pInfo->pNext) {
3853 switch (ext->sType) {
3854 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3855 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3856 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3857 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3858 plane_reqs->planeAspect);
3859
3860 assert(image->planes[plane].offset == 0);
3861
3862 /* The Vulkan spec (git aaed022) says:
3863 *
3864 * memoryTypeBits is a bitfield and contains one bit set for every
3865 * supported memory type for the resource. The bit `1<<i` is set
3866 * if and only if the memory type `i` in the
3867 * VkPhysicalDeviceMemoryProperties structure for the physical
3868 * device is supported.
3869 *
3870 * All types are currently supported for images.
3871 */
3872 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3873 (1ull << device->physical->memory.type_count) - 1;
3874
3875 /* We must have image allocated or imported at this point. According to the
3876 * specification, external images must have been bound to memory before
3877 * calling GetImageMemoryRequirements.
3878 */
3879 assert(image->planes[plane].size > 0);
3880
3881 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3882 pMemoryRequirements->memoryRequirements.alignment =
3883 image->planes[plane].alignment;
3884 break;
3885 }
3886
3887 default:
3888 anv_debug_ignored_stype(ext->sType);
3889 break;
3890 }
3891 }
3892
3893 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3894 switch (ext->sType) {
3895 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3896 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3897 if (image->needs_set_tiling || image->external_format) {
3898 /* If we need to set the tiling for external consumers, we need a
3899 * dedicated allocation.
3900 *
3901 * See also anv_AllocateMemory.
3902 */
3903 requirements->prefersDedicatedAllocation = true;
3904 requirements->requiresDedicatedAllocation = true;
3905 } else {
3906 requirements->prefersDedicatedAllocation = false;
3907 requirements->requiresDedicatedAllocation = false;
3908 }
3909 break;
3910 }
3911
3912 default:
3913 anv_debug_ignored_stype(ext->sType);
3914 break;
3915 }
3916 }
3917 }
3918
3919 void anv_GetImageSparseMemoryRequirements(
3920 VkDevice device,
3921 VkImage image,
3922 uint32_t* pSparseMemoryRequirementCount,
3923 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3924 {
3925 *pSparseMemoryRequirementCount = 0;
3926 }
3927
3928 void anv_GetImageSparseMemoryRequirements2(
3929 VkDevice device,
3930 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3931 uint32_t* pSparseMemoryRequirementCount,
3932 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3933 {
3934 *pSparseMemoryRequirementCount = 0;
3935 }
3936
3937 void anv_GetDeviceMemoryCommitment(
3938 VkDevice device,
3939 VkDeviceMemory memory,
3940 VkDeviceSize* pCommittedMemoryInBytes)
3941 {
3942 *pCommittedMemoryInBytes = 0;
3943 }
3944
3945 static void
3946 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3947 {
3948 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3949 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3950
3951 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3952
3953 if (mem) {
3954 buffer->address = (struct anv_address) {
3955 .bo = mem->bo,
3956 .offset = pBindInfo->memoryOffset,
3957 };
3958 } else {
3959 buffer->address = ANV_NULL_ADDRESS;
3960 }
3961 }
3962
3963 VkResult anv_BindBufferMemory(
3964 VkDevice device,
3965 VkBuffer buffer,
3966 VkDeviceMemory memory,
3967 VkDeviceSize memoryOffset)
3968 {
3969 anv_bind_buffer_memory(
3970 &(VkBindBufferMemoryInfo) {
3971 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3972 .buffer = buffer,
3973 .memory = memory,
3974 .memoryOffset = memoryOffset,
3975 });
3976
3977 return VK_SUCCESS;
3978 }
3979
3980 VkResult anv_BindBufferMemory2(
3981 VkDevice device,
3982 uint32_t bindInfoCount,
3983 const VkBindBufferMemoryInfo* pBindInfos)
3984 {
3985 for (uint32_t i = 0; i < bindInfoCount; i++)
3986 anv_bind_buffer_memory(&pBindInfos[i]);
3987
3988 return VK_SUCCESS;
3989 }
3990
3991 VkResult anv_QueueBindSparse(
3992 VkQueue _queue,
3993 uint32_t bindInfoCount,
3994 const VkBindSparseInfo* pBindInfo,
3995 VkFence fence)
3996 {
3997 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3998 if (anv_device_is_lost(queue->device))
3999 return VK_ERROR_DEVICE_LOST;
4000
4001 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4002 }
4003
4004 // Event functions
4005
4006 VkResult anv_CreateEvent(
4007 VkDevice _device,
4008 const VkEventCreateInfo* pCreateInfo,
4009 const VkAllocationCallbacks* pAllocator,
4010 VkEvent* pEvent)
4011 {
4012 ANV_FROM_HANDLE(anv_device, device, _device);
4013 struct anv_state state;
4014 struct anv_event *event;
4015
4016 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4017
4018 state = anv_state_pool_alloc(&device->dynamic_state_pool,
4019 sizeof(*event), 8);
4020 event = state.map;
4021 event->state = state;
4022 event->semaphore = VK_EVENT_RESET;
4023
4024 if (!device->info.has_llc) {
4025 /* Make sure the writes we're flushing have landed. */
4026 __builtin_ia32_mfence();
4027 __builtin_ia32_clflush(event);
4028 }
4029
4030 *pEvent = anv_event_to_handle(event);
4031
4032 return VK_SUCCESS;
4033 }
4034
4035 void anv_DestroyEvent(
4036 VkDevice _device,
4037 VkEvent _event,
4038 const VkAllocationCallbacks* pAllocator)
4039 {
4040 ANV_FROM_HANDLE(anv_device, device, _device);
4041 ANV_FROM_HANDLE(anv_event, event, _event);
4042
4043 if (!event)
4044 return;
4045
4046 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4047 }
4048
4049 VkResult anv_GetEventStatus(
4050 VkDevice _device,
4051 VkEvent _event)
4052 {
4053 ANV_FROM_HANDLE(anv_device, device, _device);
4054 ANV_FROM_HANDLE(anv_event, event, _event);
4055
4056 if (anv_device_is_lost(device))
4057 return VK_ERROR_DEVICE_LOST;
4058
4059 if (!device->info.has_llc) {
4060 /* Invalidate read cache before reading event written by GPU. */
4061 __builtin_ia32_clflush(event);
4062 __builtin_ia32_mfence();
4063
4064 }
4065
4066 return event->semaphore;
4067 }
4068
4069 VkResult anv_SetEvent(
4070 VkDevice _device,
4071 VkEvent _event)
4072 {
4073 ANV_FROM_HANDLE(anv_device, device, _device);
4074 ANV_FROM_HANDLE(anv_event, event, _event);
4075
4076 event->semaphore = VK_EVENT_SET;
4077
4078 if (!device->info.has_llc) {
4079 /* Make sure the writes we're flushing have landed. */
4080 __builtin_ia32_mfence();
4081 __builtin_ia32_clflush(event);
4082 }
4083
4084 return VK_SUCCESS;
4085 }
4086
4087 VkResult anv_ResetEvent(
4088 VkDevice _device,
4089 VkEvent _event)
4090 {
4091 ANV_FROM_HANDLE(anv_device, device, _device);
4092 ANV_FROM_HANDLE(anv_event, event, _event);
4093
4094 event->semaphore = VK_EVENT_RESET;
4095
4096 if (!device->info.has_llc) {
4097 /* Make sure the writes we're flushing have landed. */
4098 __builtin_ia32_mfence();
4099 __builtin_ia32_clflush(event);
4100 }
4101
4102 return VK_SUCCESS;
4103 }
4104
4105 // Buffer functions
4106
4107 VkResult anv_CreateBuffer(
4108 VkDevice _device,
4109 const VkBufferCreateInfo* pCreateInfo,
4110 const VkAllocationCallbacks* pAllocator,
4111 VkBuffer* pBuffer)
4112 {
4113 ANV_FROM_HANDLE(anv_device, device, _device);
4114 struct anv_buffer *buffer;
4115
4116 /* Don't allow creating buffers bigger than our address space. The real
4117 * issue here is that we may align up the buffer size and we don't want
4118 * doing so to cause roll-over. However, no one has any business
4119 * allocating a buffer larger than our GTT size.
4120 */
4121 if (pCreateInfo->size > device->physical->gtt_size)
4122 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4123
4124 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4125
4126 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
4127 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4128 if (buffer == NULL)
4129 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4130
4131 buffer->size = pCreateInfo->size;
4132 buffer->usage = pCreateInfo->usage;
4133 buffer->address = ANV_NULL_ADDRESS;
4134
4135 *pBuffer = anv_buffer_to_handle(buffer);
4136
4137 return VK_SUCCESS;
4138 }
4139
4140 void anv_DestroyBuffer(
4141 VkDevice _device,
4142 VkBuffer _buffer,
4143 const VkAllocationCallbacks* pAllocator)
4144 {
4145 ANV_FROM_HANDLE(anv_device, device, _device);
4146 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4147
4148 if (!buffer)
4149 return;
4150
4151 vk_free2(&device->alloc, pAllocator, buffer);
4152 }
4153
4154 VkDeviceAddress anv_GetBufferDeviceAddress(
4155 VkDevice device,
4156 const VkBufferDeviceAddressInfoKHR* pInfo)
4157 {
4158 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4159
4160 assert(!anv_address_is_null(buffer->address));
4161 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4162
4163 return anv_address_physical(buffer->address);
4164 }
4165
4166 uint64_t anv_GetBufferOpaqueCaptureAddress(
4167 VkDevice device,
4168 const VkBufferDeviceAddressInfoKHR* pInfo)
4169 {
4170 return 0;
4171 }
4172
4173 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4174 VkDevice device,
4175 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4176 {
4177 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4178
4179 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4180 assert(memory->bo->has_client_visible_address);
4181
4182 return gen_48b_address(memory->bo->offset);
4183 }
4184
4185 void
4186 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4187 enum isl_format format,
4188 struct anv_address address,
4189 uint32_t range, uint32_t stride)
4190 {
4191 isl_buffer_fill_state(&device->isl_dev, state.map,
4192 .address = anv_address_physical(address),
4193 .mocs = device->isl_dev.mocs.internal,
4194 .size_B = range,
4195 .format = format,
4196 .swizzle = ISL_SWIZZLE_IDENTITY,
4197 .stride_B = stride);
4198 }
4199
4200 void anv_DestroySampler(
4201 VkDevice _device,
4202 VkSampler _sampler,
4203 const VkAllocationCallbacks* pAllocator)
4204 {
4205 ANV_FROM_HANDLE(anv_device, device, _device);
4206 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4207
4208 if (!sampler)
4209 return;
4210
4211 if (sampler->bindless_state.map) {
4212 anv_state_pool_free(&device->dynamic_state_pool,
4213 sampler->bindless_state);
4214 }
4215
4216 vk_free2(&device->alloc, pAllocator, sampler);
4217 }
4218
4219 VkResult anv_CreateFramebuffer(
4220 VkDevice _device,
4221 const VkFramebufferCreateInfo* pCreateInfo,
4222 const VkAllocationCallbacks* pAllocator,
4223 VkFramebuffer* pFramebuffer)
4224 {
4225 ANV_FROM_HANDLE(anv_device, device, _device);
4226 struct anv_framebuffer *framebuffer;
4227
4228 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4229
4230 size_t size = sizeof(*framebuffer);
4231
4232 /* VK_KHR_imageless_framebuffer extension says:
4233 *
4234 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4235 * parameter pAttachments is ignored.
4236 */
4237 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4238 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4239 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4240 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4241 if (framebuffer == NULL)
4242 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4243
4244 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4245 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4246 framebuffer->attachments[i] = iview;
4247 }
4248 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4249 } else {
4250 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4251 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4252 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4253 if (framebuffer == NULL)
4254 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4255
4256 framebuffer->attachment_count = 0;
4257 }
4258
4259 framebuffer->width = pCreateInfo->width;
4260 framebuffer->height = pCreateInfo->height;
4261 framebuffer->layers = pCreateInfo->layers;
4262
4263 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4264
4265 return VK_SUCCESS;
4266 }
4267
4268 void anv_DestroyFramebuffer(
4269 VkDevice _device,
4270 VkFramebuffer _fb,
4271 const VkAllocationCallbacks* pAllocator)
4272 {
4273 ANV_FROM_HANDLE(anv_device, device, _device);
4274 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4275
4276 if (!fb)
4277 return;
4278
4279 vk_free2(&device->alloc, pAllocator, fb);
4280 }
4281
4282 static const VkTimeDomainEXT anv_time_domains[] = {
4283 VK_TIME_DOMAIN_DEVICE_EXT,
4284 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4285 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4286 };
4287
4288 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4289 VkPhysicalDevice physicalDevice,
4290 uint32_t *pTimeDomainCount,
4291 VkTimeDomainEXT *pTimeDomains)
4292 {
4293 int d;
4294 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4295
4296 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4297 vk_outarray_append(&out, i) {
4298 *i = anv_time_domains[d];
4299 }
4300 }
4301
4302 return vk_outarray_status(&out);
4303 }
4304
4305 static uint64_t
4306 anv_clock_gettime(clockid_t clock_id)
4307 {
4308 struct timespec current;
4309 int ret;
4310
4311 ret = clock_gettime(clock_id, &current);
4312 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4313 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4314 if (ret < 0)
4315 return 0;
4316
4317 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4318 }
4319
4320 #define TIMESTAMP 0x2358
4321
4322 VkResult anv_GetCalibratedTimestampsEXT(
4323 VkDevice _device,
4324 uint32_t timestampCount,
4325 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4326 uint64_t *pTimestamps,
4327 uint64_t *pMaxDeviation)
4328 {
4329 ANV_FROM_HANDLE(anv_device, device, _device);
4330 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4331 int ret;
4332 int d;
4333 uint64_t begin, end;
4334 uint64_t max_clock_period = 0;
4335
4336 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4337
4338 for (d = 0; d < timestampCount; d++) {
4339 switch (pTimestampInfos[d].timeDomain) {
4340 case VK_TIME_DOMAIN_DEVICE_EXT:
4341 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4342 &pTimestamps[d]);
4343
4344 if (ret != 0) {
4345 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4346 "register: %m");
4347 }
4348 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4349 max_clock_period = MAX2(max_clock_period, device_period);
4350 break;
4351 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4352 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4353 max_clock_period = MAX2(max_clock_period, 1);
4354 break;
4355
4356 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4357 pTimestamps[d] = begin;
4358 break;
4359 default:
4360 pTimestamps[d] = 0;
4361 break;
4362 }
4363 }
4364
4365 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4366
4367 /*
4368 * The maximum deviation is the sum of the interval over which we
4369 * perform the sampling and the maximum period of any sampled
4370 * clock. That's because the maximum skew between any two sampled
4371 * clock edges is when the sampled clock with the largest period is
4372 * sampled at the end of that period but right at the beginning of the
4373 * sampling interval and some other clock is sampled right at the
4374 * begining of its sampling period and right at the end of the
4375 * sampling interval. Let's assume the GPU has the longest clock
4376 * period and that the application is sampling GPU and monotonic:
4377 *
4378 * s e
4379 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4380 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4381 *
4382 * g
4383 * 0 1 2 3
4384 * GPU -----_____-----_____-----_____-----_____
4385 *
4386 * m
4387 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4388 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4389 *
4390 * Interval <----------------->
4391 * Deviation <-------------------------->
4392 *
4393 * s = read(raw) 2
4394 * g = read(GPU) 1
4395 * m = read(monotonic) 2
4396 * e = read(raw) b
4397 *
4398 * We round the sample interval up by one tick to cover sampling error
4399 * in the interval clock
4400 */
4401
4402 uint64_t sample_interval = end - begin + 1;
4403
4404 *pMaxDeviation = sample_interval + max_clock_period;
4405
4406 return VK_SUCCESS;
4407 }
4408
4409 /* vk_icd.h does not declare this function, so we declare it here to
4410 * suppress Wmissing-prototypes.
4411 */
4412 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4413 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4414
4415 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4416 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4417 {
4418 /* For the full details on loader interface versioning, see
4419 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4420 * What follows is a condensed summary, to help you navigate the large and
4421 * confusing official doc.
4422 *
4423 * - Loader interface v0 is incompatible with later versions. We don't
4424 * support it.
4425 *
4426 * - In loader interface v1:
4427 * - The first ICD entrypoint called by the loader is
4428 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4429 * entrypoint.
4430 * - The ICD must statically expose no other Vulkan symbol unless it is
4431 * linked with -Bsymbolic.
4432 * - Each dispatchable Vulkan handle created by the ICD must be
4433 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4434 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4435 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4436 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4437 * such loader-managed surfaces.
4438 *
4439 * - Loader interface v2 differs from v1 in:
4440 * - The first ICD entrypoint called by the loader is
4441 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4442 * statically expose this entrypoint.
4443 *
4444 * - Loader interface v3 differs from v2 in:
4445 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4446 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4447 * because the loader no longer does so.
4448 *
4449 * - Loader interface v4 differs from v3 in:
4450 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4451 */
4452 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4453 return VK_SUCCESS;
4454 }