anv: Advertise support for VK_EXT_fragment_shader_interlock
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1053 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1054 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1055 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1056 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1057 features->fragmentShaderShadingRateInterlock = false;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1062 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1063 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1064 features->hostQueryReset = true;
1065 break;
1066 }
1067
1068 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1069 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1070 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1071 features->shaderInputAttachmentArrayDynamicIndexing = false;
1072 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1073 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1074 features->shaderUniformBufferArrayNonUniformIndexing = false;
1075 features->shaderSampledImageArrayNonUniformIndexing = true;
1076 features->shaderStorageBufferArrayNonUniformIndexing = true;
1077 features->shaderStorageImageArrayNonUniformIndexing = true;
1078 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1079 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1080 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1081 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1082 features->descriptorBindingSampledImageUpdateAfterBind = true;
1083 features->descriptorBindingStorageImageUpdateAfterBind = true;
1084 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1085 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1086 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1087 features->descriptorBindingUpdateUnusedWhilePending = true;
1088 features->descriptorBindingPartiallyBound = true;
1089 features->descriptorBindingVariableDescriptorCount = false;
1090 features->runtimeDescriptorArray = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1095 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1096 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1097 features->inlineUniformBlock = true;
1098 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1103 VkPhysicalDeviceMultiviewFeatures *features =
1104 (VkPhysicalDeviceMultiviewFeatures *)ext;
1105 features->multiview = true;
1106 features->multiviewGeometryShader = true;
1107 features->multiviewTessellationShader = true;
1108 break;
1109 }
1110
1111 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1112 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1113 features->protectedMemory = false;
1114 break;
1115 }
1116
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1118 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1119 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1120 features->samplerYcbcrConversion = true;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1125 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1126 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1127 features->scalarBlockLayout = true;
1128 break;
1129 }
1130
1131 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1132 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1133 features->shaderBufferInt64Atomics =
1134 pdevice->info.gen >= 9 && pdevice->use_softpin;
1135 features->shaderSharedInt64Atomics = VK_FALSE;
1136 break;
1137 }
1138
1139 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1140 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1141 features->shaderDrawParameters = true;
1142 break;
1143 }
1144
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1146 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1147 features->variablePointersStorageBuffer = true;
1148 features->variablePointers = true;
1149 break;
1150 }
1151
1152 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1153 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1154 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1155 features->transformFeedback = true;
1156 features->geometryStreams = true;
1157 break;
1158 }
1159
1160 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1161 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1162 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1163 features->uniformBufferStandardLayout = true;
1164 break;
1165 }
1166
1167 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1168 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1169 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1170 features->vertexAttributeInstanceRateDivisor = true;
1171 features->vertexAttributeInstanceRateZeroDivisor = true;
1172 break;
1173 }
1174
1175 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1176 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1177 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1178 features->ycbcrImageArrays = true;
1179 break;
1180 }
1181
1182 default:
1183 anv_debug_ignored_stype(ext->sType);
1184 break;
1185 }
1186 }
1187 }
1188
1189 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1190
1191 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1192 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1193
1194 void anv_GetPhysicalDeviceProperties(
1195 VkPhysicalDevice physicalDevice,
1196 VkPhysicalDeviceProperties* pProperties)
1197 {
1198 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1199 const struct gen_device_info *devinfo = &pdevice->info;
1200
1201 /* See assertions made when programming the buffer surface state. */
1202 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1203 (1ul << 30) : (1ul << 27);
1204
1205 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1206 const uint32_t max_textures =
1207 pdevice->has_bindless_images ? UINT16_MAX : 128;
1208 const uint32_t max_samplers =
1209 pdevice->has_bindless_samplers ? UINT16_MAX :
1210 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1211 const uint32_t max_images =
1212 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1213
1214 /* The moment we have anything bindless, claim a high per-stage limit */
1215 const uint32_t max_per_stage =
1216 pdevice->has_a64_buffer_access ? UINT32_MAX :
1217 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1218
1219 VkSampleCountFlags sample_counts =
1220 isl_device_get_sample_counts(&pdevice->isl_dev);
1221
1222
1223 VkPhysicalDeviceLimits limits = {
1224 .maxImageDimension1D = (1 << 14),
1225 .maxImageDimension2D = (1 << 14),
1226 .maxImageDimension3D = (1 << 11),
1227 .maxImageDimensionCube = (1 << 14),
1228 .maxImageArrayLayers = (1 << 11),
1229 .maxTexelBufferElements = 128 * 1024 * 1024,
1230 .maxUniformBufferRange = (1ul << 27),
1231 .maxStorageBufferRange = max_raw_buffer_sz,
1232 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1233 .maxMemoryAllocationCount = UINT32_MAX,
1234 .maxSamplerAllocationCount = 64 * 1024,
1235 .bufferImageGranularity = 64, /* A cache line */
1236 .sparseAddressSpaceSize = 0,
1237 .maxBoundDescriptorSets = MAX_SETS,
1238 .maxPerStageDescriptorSamplers = max_samplers,
1239 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1240 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1241 .maxPerStageDescriptorSampledImages = max_textures,
1242 .maxPerStageDescriptorStorageImages = max_images,
1243 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1244 .maxPerStageResources = max_per_stage,
1245 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1246 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1247 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1248 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1249 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1250 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1251 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1252 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1253 .maxVertexInputAttributes = MAX_VBS,
1254 .maxVertexInputBindings = MAX_VBS,
1255 .maxVertexInputAttributeOffset = 2047,
1256 .maxVertexInputBindingStride = 2048,
1257 .maxVertexOutputComponents = 128,
1258 .maxTessellationGenerationLevel = 64,
1259 .maxTessellationPatchSize = 32,
1260 .maxTessellationControlPerVertexInputComponents = 128,
1261 .maxTessellationControlPerVertexOutputComponents = 128,
1262 .maxTessellationControlPerPatchOutputComponents = 128,
1263 .maxTessellationControlTotalOutputComponents = 2048,
1264 .maxTessellationEvaluationInputComponents = 128,
1265 .maxTessellationEvaluationOutputComponents = 128,
1266 .maxGeometryShaderInvocations = 32,
1267 .maxGeometryInputComponents = 64,
1268 .maxGeometryOutputComponents = 128,
1269 .maxGeometryOutputVertices = 256,
1270 .maxGeometryTotalOutputComponents = 1024,
1271 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1272 .maxFragmentOutputAttachments = 8,
1273 .maxFragmentDualSrcAttachments = 1,
1274 .maxFragmentCombinedOutputResources = 8,
1275 .maxComputeSharedMemorySize = 32768,
1276 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1277 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1278 .maxComputeWorkGroupSize = {
1279 16 * devinfo->max_cs_threads,
1280 16 * devinfo->max_cs_threads,
1281 16 * devinfo->max_cs_threads,
1282 },
1283 .subPixelPrecisionBits = 8,
1284 .subTexelPrecisionBits = 8,
1285 .mipmapPrecisionBits = 8,
1286 .maxDrawIndexedIndexValue = UINT32_MAX,
1287 .maxDrawIndirectCount = UINT32_MAX,
1288 .maxSamplerLodBias = 16,
1289 .maxSamplerAnisotropy = 16,
1290 .maxViewports = MAX_VIEWPORTS,
1291 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1292 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1293 .viewportSubPixelBits = 13, /* We take a float? */
1294 .minMemoryMapAlignment = 4096, /* A page */
1295 .minTexelBufferOffsetAlignment = 1,
1296 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1297 .minUniformBufferOffsetAlignment = 32,
1298 .minStorageBufferOffsetAlignment = 4,
1299 .minTexelOffset = -8,
1300 .maxTexelOffset = 7,
1301 .minTexelGatherOffset = -32,
1302 .maxTexelGatherOffset = 31,
1303 .minInterpolationOffset = -0.5,
1304 .maxInterpolationOffset = 0.4375,
1305 .subPixelInterpolationOffsetBits = 4,
1306 .maxFramebufferWidth = (1 << 14),
1307 .maxFramebufferHeight = (1 << 14),
1308 .maxFramebufferLayers = (1 << 11),
1309 .framebufferColorSampleCounts = sample_counts,
1310 .framebufferDepthSampleCounts = sample_counts,
1311 .framebufferStencilSampleCounts = sample_counts,
1312 .framebufferNoAttachmentsSampleCounts = sample_counts,
1313 .maxColorAttachments = MAX_RTS,
1314 .sampledImageColorSampleCounts = sample_counts,
1315 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1316 .sampledImageDepthSampleCounts = sample_counts,
1317 .sampledImageStencilSampleCounts = sample_counts,
1318 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1319 .maxSampleMaskWords = 1,
1320 .timestampComputeAndGraphics = false,
1321 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1322 .maxClipDistances = 8,
1323 .maxCullDistances = 8,
1324 .maxCombinedClipAndCullDistances = 8,
1325 .discreteQueuePriorities = 2,
1326 .pointSizeRange = { 0.125, 255.875 },
1327 .lineWidthRange = { 0.0, 7.9921875 },
1328 .pointSizeGranularity = (1.0 / 8.0),
1329 .lineWidthGranularity = (1.0 / 128.0),
1330 .strictLines = false, /* FINISHME */
1331 .standardSampleLocations = true,
1332 .optimalBufferCopyOffsetAlignment = 128,
1333 .optimalBufferCopyRowPitchAlignment = 128,
1334 .nonCoherentAtomSize = 64,
1335 };
1336
1337 *pProperties = (VkPhysicalDeviceProperties) {
1338 .apiVersion = anv_physical_device_api_version(pdevice),
1339 .driverVersion = vk_get_driver_version(),
1340 .vendorID = 0x8086,
1341 .deviceID = pdevice->chipset_id,
1342 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1343 .limits = limits,
1344 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1345 };
1346
1347 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1348 "%s", pdevice->name);
1349 memcpy(pProperties->pipelineCacheUUID,
1350 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1351 }
1352
1353 void anv_GetPhysicalDeviceProperties2(
1354 VkPhysicalDevice physicalDevice,
1355 VkPhysicalDeviceProperties2* pProperties)
1356 {
1357 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1358
1359 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1360
1361 vk_foreach_struct(ext, pProperties->pNext) {
1362 switch (ext->sType) {
1363 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1364 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1365 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1366
1367 /* We support all of the depth resolve modes */
1368 props->supportedDepthResolveModes =
1369 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1370 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1371 VK_RESOLVE_MODE_MIN_BIT_KHR |
1372 VK_RESOLVE_MODE_MAX_BIT_KHR;
1373
1374 /* Average doesn't make sense for stencil so we don't support that */
1375 props->supportedStencilResolveModes =
1376 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1377 if (pdevice->info.gen >= 8) {
1378 /* The advanced stencil resolve modes currently require stencil
1379 * sampling be supported by the hardware.
1380 */
1381 props->supportedStencilResolveModes |=
1382 VK_RESOLVE_MODE_MIN_BIT_KHR |
1383 VK_RESOLVE_MODE_MAX_BIT_KHR;
1384 }
1385
1386 props->independentResolveNone = true;
1387 props->independentResolve = true;
1388 break;
1389 }
1390
1391 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1392 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1393 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1394
1395 /* It's a bit hard to exactly map our implementation to the limits
1396 * described here. The bindless surface handle in the extended
1397 * message descriptors is 20 bits and it's an index into the table of
1398 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1399 * address. Given that most things consume two surface states per
1400 * view (general/sampled for textures and write-only/read-write for
1401 * images), we claim 2^19 things.
1402 *
1403 * For SSBOs, we just use A64 messages so there is no real limit
1404 * there beyond the limit on the total size of a descriptor set.
1405 */
1406 const unsigned max_bindless_views = 1 << 19;
1407
1408 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1409 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1410 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1411 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1412 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1413 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1414 props->robustBufferAccessUpdateAfterBind = true;
1415 props->quadDivergentImplicitLod = false;
1416 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1417 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1418 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1419 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1420 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1421 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1422 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1423 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1424 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1425 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1426 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1427 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1428 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1429 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1430 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1431 break;
1432 }
1433
1434 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1435 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1436 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1437
1438 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1439 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1440 "Intel open-source Mesa driver");
1441
1442 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1443 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1444
1445 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1446 .major = 1,
1447 .minor = 1,
1448 .subminor = 2,
1449 .patch = 0,
1450 };
1451 break;
1452 }
1453
1454 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1455 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1456 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1457 /* Userptr needs page aligned memory. */
1458 props->minImportedHostPointerAlignment = 4096;
1459 break;
1460 }
1461
1462 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1463 VkPhysicalDeviceIDProperties *id_props =
1464 (VkPhysicalDeviceIDProperties *)ext;
1465 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1466 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1467 /* The LUID is for Windows. */
1468 id_props->deviceLUIDValid = false;
1469 break;
1470 }
1471
1472 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1473 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1474 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1475 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1476 props->maxPerStageDescriptorInlineUniformBlocks =
1477 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1478 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1479 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1480 props->maxDescriptorSetInlineUniformBlocks =
1481 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1482 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1483 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1484 break;
1485 }
1486
1487 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1488 VkPhysicalDeviceMaintenance3Properties *props =
1489 (VkPhysicalDeviceMaintenance3Properties *)ext;
1490 /* This value doesn't matter for us today as our per-stage
1491 * descriptors are the real limit.
1492 */
1493 props->maxPerSetDescriptors = 1024;
1494 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1495 break;
1496 }
1497
1498 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1499 VkPhysicalDeviceMultiviewProperties *properties =
1500 (VkPhysicalDeviceMultiviewProperties *)ext;
1501 properties->maxMultiviewViewCount = 16;
1502 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1503 break;
1504 }
1505
1506 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1507 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1508 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1509 properties->pciDomain = pdevice->pci_info.domain;
1510 properties->pciBus = pdevice->pci_info.bus;
1511 properties->pciDevice = pdevice->pci_info.device;
1512 properties->pciFunction = pdevice->pci_info.function;
1513 break;
1514 }
1515
1516 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1517 VkPhysicalDevicePointClippingProperties *properties =
1518 (VkPhysicalDevicePointClippingProperties *) ext;
1519 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1520 anv_finishme("Implement pop-free point clipping");
1521 break;
1522 }
1523
1524 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1525 VkPhysicalDeviceProtectedMemoryProperties *props =
1526 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1527 props->protectedNoFault = false;
1528 break;
1529 }
1530
1531 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1532 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1533 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1534
1535 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1536 break;
1537 }
1538
1539 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1540 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1541 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1542 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1543 properties->filterMinmaxSingleComponentFormats = true;
1544 break;
1545 }
1546
1547 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1548 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1549
1550 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1551
1552 VkShaderStageFlags scalar_stages = 0;
1553 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1554 if (pdevice->compiler->scalar_stage[stage])
1555 scalar_stages |= mesa_to_vk_shader_stage(stage);
1556 }
1557 properties->supportedStages = scalar_stages;
1558
1559 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1560 VK_SUBGROUP_FEATURE_VOTE_BIT |
1561 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1562 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1563 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1564 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1565 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1566 VK_SUBGROUP_FEATURE_QUAD_BIT;
1567 properties->quadOperationsInAllStages = true;
1568 break;
1569 }
1570
1571 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1572 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1573 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1574
1575 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1576 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1577 props->maxTransformFeedbackBufferSize = (1ull << 32);
1578 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1579 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1580 props->maxTransformFeedbackBufferDataStride = 2048;
1581 props->transformFeedbackQueries = true;
1582 props->transformFeedbackStreamsLinesTriangles = false;
1583 props->transformFeedbackRasterizationStreamSelect = false;
1584 props->transformFeedbackDraw = true;
1585 break;
1586 }
1587
1588 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1589 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1590 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1591 /* We have to restrict this a bit for multiview */
1592 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1593 break;
1594 }
1595
1596 default:
1597 anv_debug_ignored_stype(ext->sType);
1598 break;
1599 }
1600 }
1601 }
1602
1603 /* We support exactly one queue family. */
1604 static const VkQueueFamilyProperties
1605 anv_queue_family_properties = {
1606 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1607 VK_QUEUE_COMPUTE_BIT |
1608 VK_QUEUE_TRANSFER_BIT,
1609 .queueCount = 1,
1610 .timestampValidBits = 36, /* XXX: Real value here */
1611 .minImageTransferGranularity = { 1, 1, 1 },
1612 };
1613
1614 void anv_GetPhysicalDeviceQueueFamilyProperties(
1615 VkPhysicalDevice physicalDevice,
1616 uint32_t* pCount,
1617 VkQueueFamilyProperties* pQueueFamilyProperties)
1618 {
1619 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1620
1621 vk_outarray_append(&out, p) {
1622 *p = anv_queue_family_properties;
1623 }
1624 }
1625
1626 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1627 VkPhysicalDevice physicalDevice,
1628 uint32_t* pQueueFamilyPropertyCount,
1629 VkQueueFamilyProperties2* pQueueFamilyProperties)
1630 {
1631
1632 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1633
1634 vk_outarray_append(&out, p) {
1635 p->queueFamilyProperties = anv_queue_family_properties;
1636
1637 vk_foreach_struct(s, p->pNext) {
1638 anv_debug_ignored_stype(s->sType);
1639 }
1640 }
1641 }
1642
1643 void anv_GetPhysicalDeviceMemoryProperties(
1644 VkPhysicalDevice physicalDevice,
1645 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1646 {
1647 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1648
1649 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1650 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1651 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1652 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1653 .heapIndex = physical_device->memory.types[i].heapIndex,
1654 };
1655 }
1656
1657 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1658 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1659 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1660 .size = physical_device->memory.heaps[i].size,
1661 .flags = physical_device->memory.heaps[i].flags,
1662 };
1663 }
1664 }
1665
1666 static void
1667 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1668 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1669 {
1670 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1671 uint64_t sys_available = get_available_system_memory();
1672 assert(sys_available > 0);
1673
1674 VkDeviceSize total_heaps_size = 0;
1675 for (size_t i = 0; i < device->memory.heap_count; i++)
1676 total_heaps_size += device->memory.heaps[i].size;
1677
1678 for (size_t i = 0; i < device->memory.heap_count; i++) {
1679 VkDeviceSize heap_size = device->memory.heaps[i].size;
1680 VkDeviceSize heap_used = device->memory.heaps[i].used;
1681 VkDeviceSize heap_budget;
1682
1683 double heap_proportion = (double) heap_size / total_heaps_size;
1684 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1685
1686 /*
1687 * Let's not incite the app to starve the system: report at most 90% of
1688 * available system memory.
1689 */
1690 uint64_t heap_available = sys_available_prop * 9 / 10;
1691 heap_budget = MIN2(heap_size, heap_used + heap_available);
1692
1693 /*
1694 * Round down to the nearest MB
1695 */
1696 heap_budget &= ~((1ull << 20) - 1);
1697
1698 /*
1699 * The heapBudget value must be non-zero for array elements less than
1700 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1701 * value must be less than or equal to VkMemoryHeap::size for each heap.
1702 */
1703 assert(0 < heap_budget && heap_budget <= heap_size);
1704
1705 memoryBudget->heapUsage[i] = heap_used;
1706 memoryBudget->heapBudget[i] = heap_budget;
1707 }
1708
1709 /* The heapBudget and heapUsage values must be zero for array elements
1710 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1711 */
1712 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1713 memoryBudget->heapBudget[i] = 0;
1714 memoryBudget->heapUsage[i] = 0;
1715 }
1716 }
1717
1718 void anv_GetPhysicalDeviceMemoryProperties2(
1719 VkPhysicalDevice physicalDevice,
1720 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1721 {
1722 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1723 &pMemoryProperties->memoryProperties);
1724
1725 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1726 switch (ext->sType) {
1727 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1728 anv_get_memory_budget(physicalDevice, (void*)ext);
1729 break;
1730 default:
1731 anv_debug_ignored_stype(ext->sType);
1732 break;
1733 }
1734 }
1735 }
1736
1737 void
1738 anv_GetDeviceGroupPeerMemoryFeatures(
1739 VkDevice device,
1740 uint32_t heapIndex,
1741 uint32_t localDeviceIndex,
1742 uint32_t remoteDeviceIndex,
1743 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1744 {
1745 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1746 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1747 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1748 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1749 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1750 }
1751
1752 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1753 VkInstance _instance,
1754 const char* pName)
1755 {
1756 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1757
1758 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1759 * when we have to return valid function pointers, NULL, or it's left
1760 * undefined. See the table for exact details.
1761 */
1762 if (pName == NULL)
1763 return NULL;
1764
1765 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1766 if (strcmp(pName, "vk" #entrypoint) == 0) \
1767 return (PFN_vkVoidFunction)anv_##entrypoint
1768
1769 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1770 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1771 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1772 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1773
1774 #undef LOOKUP_ANV_ENTRYPOINT
1775
1776 if (instance == NULL)
1777 return NULL;
1778
1779 int idx = anv_get_instance_entrypoint_index(pName);
1780 if (idx >= 0)
1781 return instance->dispatch.entrypoints[idx];
1782
1783 idx = anv_get_device_entrypoint_index(pName);
1784 if (idx >= 0)
1785 return instance->device_dispatch.entrypoints[idx];
1786
1787 return NULL;
1788 }
1789
1790 /* With version 1+ of the loader interface the ICD should expose
1791 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1792 */
1793 PUBLIC
1794 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1795 VkInstance instance,
1796 const char* pName);
1797
1798 PUBLIC
1799 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1800 VkInstance instance,
1801 const char* pName)
1802 {
1803 return anv_GetInstanceProcAddr(instance, pName);
1804 }
1805
1806 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1807 VkDevice _device,
1808 const char* pName)
1809 {
1810 ANV_FROM_HANDLE(anv_device, device, _device);
1811
1812 if (!device || !pName)
1813 return NULL;
1814
1815 int idx = anv_get_device_entrypoint_index(pName);
1816 if (idx < 0)
1817 return NULL;
1818
1819 return device->dispatch.entrypoints[idx];
1820 }
1821
1822 VkResult
1823 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1824 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1825 const VkAllocationCallbacks* pAllocator,
1826 VkDebugReportCallbackEXT* pCallback)
1827 {
1828 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1829 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1830 pCreateInfo, pAllocator, &instance->alloc,
1831 pCallback);
1832 }
1833
1834 void
1835 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1836 VkDebugReportCallbackEXT _callback,
1837 const VkAllocationCallbacks* pAllocator)
1838 {
1839 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1840 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1841 _callback, pAllocator, &instance->alloc);
1842 }
1843
1844 void
1845 anv_DebugReportMessageEXT(VkInstance _instance,
1846 VkDebugReportFlagsEXT flags,
1847 VkDebugReportObjectTypeEXT objectType,
1848 uint64_t object,
1849 size_t location,
1850 int32_t messageCode,
1851 const char* pLayerPrefix,
1852 const char* pMessage)
1853 {
1854 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1855 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1856 object, location, messageCode, pLayerPrefix, pMessage);
1857 }
1858
1859 static void
1860 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1861 {
1862 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1863 queue->device = device;
1864 queue->flags = 0;
1865 }
1866
1867 static void
1868 anv_queue_finish(struct anv_queue *queue)
1869 {
1870 }
1871
1872 static struct anv_state
1873 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1874 {
1875 struct anv_state state;
1876
1877 state = anv_state_pool_alloc(pool, size, align);
1878 memcpy(state.map, p, size);
1879
1880 return state;
1881 }
1882
1883 struct gen8_border_color {
1884 union {
1885 float float32[4];
1886 uint32_t uint32[4];
1887 };
1888 /* Pad out to 64 bytes */
1889 uint32_t _pad[12];
1890 };
1891
1892 static void
1893 anv_device_init_border_colors(struct anv_device *device)
1894 {
1895 static const struct gen8_border_color border_colors[] = {
1896 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1897 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1898 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1899 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1900 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1901 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1902 };
1903
1904 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1905 sizeof(border_colors), 64,
1906 border_colors);
1907 }
1908
1909 static void
1910 anv_device_init_trivial_batch(struct anv_device *device)
1911 {
1912 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1913
1914 if (device->instance->physicalDevice.has_exec_async)
1915 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1916
1917 if (device->instance->physicalDevice.use_softpin)
1918 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1919
1920 anv_vma_alloc(device, &device->trivial_batch_bo);
1921
1922 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1923 0, 4096, 0);
1924
1925 struct anv_batch batch = {
1926 .start = map,
1927 .next = map,
1928 .end = map + 4096,
1929 };
1930
1931 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1932 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1933
1934 if (!device->info.has_llc)
1935 gen_clflush_range(map, batch.next - map);
1936
1937 anv_gem_munmap(map, device->trivial_batch_bo.size);
1938 }
1939
1940 VkResult anv_EnumerateDeviceExtensionProperties(
1941 VkPhysicalDevice physicalDevice,
1942 const char* pLayerName,
1943 uint32_t* pPropertyCount,
1944 VkExtensionProperties* pProperties)
1945 {
1946 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1947 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1948
1949 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1950 if (device->supported_extensions.extensions[i]) {
1951 vk_outarray_append(&out, prop) {
1952 *prop = anv_device_extensions[i];
1953 }
1954 }
1955 }
1956
1957 return vk_outarray_status(&out);
1958 }
1959
1960 static void
1961 anv_device_init_dispatch(struct anv_device *device)
1962 {
1963 const struct anv_device_dispatch_table *genX_table;
1964 switch (device->info.gen) {
1965 case 11:
1966 genX_table = &gen11_device_dispatch_table;
1967 break;
1968 case 10:
1969 genX_table = &gen10_device_dispatch_table;
1970 break;
1971 case 9:
1972 genX_table = &gen9_device_dispatch_table;
1973 break;
1974 case 8:
1975 genX_table = &gen8_device_dispatch_table;
1976 break;
1977 case 7:
1978 if (device->info.is_haswell)
1979 genX_table = &gen75_device_dispatch_table;
1980 else
1981 genX_table = &gen7_device_dispatch_table;
1982 break;
1983 default:
1984 unreachable("unsupported gen\n");
1985 }
1986
1987 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1988 /* Vulkan requires that entrypoints for extensions which have not been
1989 * enabled must not be advertised.
1990 */
1991 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1992 &device->instance->enabled_extensions,
1993 &device->enabled_extensions)) {
1994 device->dispatch.entrypoints[i] = NULL;
1995 } else if (genX_table->entrypoints[i]) {
1996 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1997 } else {
1998 device->dispatch.entrypoints[i] =
1999 anv_device_dispatch_table.entrypoints[i];
2000 }
2001 }
2002 }
2003
2004 static int
2005 vk_priority_to_gen(int priority)
2006 {
2007 switch (priority) {
2008 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2009 return GEN_CONTEXT_LOW_PRIORITY;
2010 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2011 return GEN_CONTEXT_MEDIUM_PRIORITY;
2012 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2013 return GEN_CONTEXT_HIGH_PRIORITY;
2014 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2015 return GEN_CONTEXT_REALTIME_PRIORITY;
2016 default:
2017 unreachable("Invalid priority");
2018 }
2019 }
2020
2021 static void
2022 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2023 {
2024 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2025
2026 if (device->instance->physicalDevice.has_exec_async)
2027 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2028
2029 if (device->instance->physicalDevice.use_softpin)
2030 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2031
2032 anv_vma_alloc(device, &device->hiz_clear_bo);
2033
2034 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2035 0, 4096, 0);
2036
2037 union isl_color_value hiz_clear = { .u32 = { 0, } };
2038 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2039
2040 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2041 anv_gem_munmap(map, device->hiz_clear_bo.size);
2042 }
2043
2044 static bool
2045 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2046 struct anv_block_pool *pool,
2047 uint64_t address)
2048 {
2049 for (uint32_t i = 0; i < pool->nbos; i++) {
2050 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2051 uint32_t bo_size = pool->bos[i].size;
2052 if (address >= bo_address && address < (bo_address + bo_size)) {
2053 *ret = (struct gen_batch_decode_bo) {
2054 .addr = bo_address,
2055 .size = bo_size,
2056 .map = pool->bos[i].map,
2057 };
2058 return true;
2059 }
2060 }
2061 return false;
2062 }
2063
2064 /* Finding a buffer for batch decoding */
2065 static struct gen_batch_decode_bo
2066 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2067 {
2068 struct anv_device *device = v_batch;
2069 struct gen_batch_decode_bo ret_bo = {};
2070
2071 assert(ppgtt);
2072
2073 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2074 return ret_bo;
2075 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2076 return ret_bo;
2077 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2078 return ret_bo;
2079 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2080 return ret_bo;
2081
2082 if (!device->cmd_buffer_being_decoded)
2083 return (struct gen_batch_decode_bo) { };
2084
2085 struct anv_batch_bo **bo;
2086
2087 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2088 /* The decoder zeroes out the top 16 bits, so we need to as well */
2089 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2090
2091 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2092 return (struct gen_batch_decode_bo) {
2093 .addr = bo_address,
2094 .size = (*bo)->bo.size,
2095 .map = (*bo)->bo.map,
2096 };
2097 }
2098 }
2099
2100 return (struct gen_batch_decode_bo) { };
2101 }
2102
2103 VkResult anv_CreateDevice(
2104 VkPhysicalDevice physicalDevice,
2105 const VkDeviceCreateInfo* pCreateInfo,
2106 const VkAllocationCallbacks* pAllocator,
2107 VkDevice* pDevice)
2108 {
2109 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2110 VkResult result;
2111 struct anv_device *device;
2112
2113 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2114
2115 struct anv_device_extension_table enabled_extensions = { };
2116 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2117 int idx;
2118 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2119 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2120 anv_device_extensions[idx].extensionName) == 0)
2121 break;
2122 }
2123
2124 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2125 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2126
2127 if (!physical_device->supported_extensions.extensions[idx])
2128 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2129
2130 enabled_extensions.extensions[idx] = true;
2131 }
2132
2133 /* Check enabled features */
2134 if (pCreateInfo->pEnabledFeatures) {
2135 VkPhysicalDeviceFeatures supported_features;
2136 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2137 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2138 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2139 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2140 for (uint32_t i = 0; i < num_features; i++) {
2141 if (enabled_feature[i] && !supported_feature[i])
2142 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2143 }
2144 }
2145
2146 /* Check requested queues and fail if we are requested to create any
2147 * queues with flags we don't support.
2148 */
2149 assert(pCreateInfo->queueCreateInfoCount > 0);
2150 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2151 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2152 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2153 }
2154
2155 /* Check if client specified queue priority. */
2156 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2157 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2158 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2159
2160 VkQueueGlobalPriorityEXT priority =
2161 queue_priority ? queue_priority->globalPriority :
2162 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2163
2164 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2165 sizeof(*device), 8,
2166 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2167 if (!device)
2168 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2169
2170 const unsigned decode_flags =
2171 GEN_BATCH_DECODE_FULL |
2172 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2173 GEN_BATCH_DECODE_OFFSETS |
2174 GEN_BATCH_DECODE_FLOATS;
2175
2176 gen_batch_decode_ctx_init(&device->decoder_ctx,
2177 &physical_device->info,
2178 stderr, decode_flags, NULL,
2179 decode_get_bo, NULL, device);
2180
2181 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2182 device->instance = physical_device->instance;
2183 device->chipset_id = physical_device->chipset_id;
2184 device->no_hw = physical_device->no_hw;
2185 device->_lost = false;
2186
2187 if (pAllocator)
2188 device->alloc = *pAllocator;
2189 else
2190 device->alloc = physical_device->instance->alloc;
2191
2192 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2193 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2194 if (device->fd == -1) {
2195 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2196 goto fail_device;
2197 }
2198
2199 device->context_id = anv_gem_create_context(device);
2200 if (device->context_id == -1) {
2201 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2202 goto fail_fd;
2203 }
2204
2205 if (physical_device->use_softpin) {
2206 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2207 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2208 goto fail_fd;
2209 }
2210
2211 /* keep the page with address zero out of the allocator */
2212 struct anv_memory_heap *low_heap =
2213 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2214 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2215 device->vma_lo_available = low_heap->size;
2216
2217 struct anv_memory_heap *high_heap =
2218 &physical_device->memory.heaps[0];
2219 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2220 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2221 high_heap->size;
2222 }
2223
2224 list_inithead(&device->memory_objects);
2225
2226 /* As per spec, the driver implementation may deny requests to acquire
2227 * a priority above the default priority (MEDIUM) if the caller does not
2228 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2229 * is returned.
2230 */
2231 if (physical_device->has_context_priority) {
2232 int err = anv_gem_set_context_param(device->fd, device->context_id,
2233 I915_CONTEXT_PARAM_PRIORITY,
2234 vk_priority_to_gen(priority));
2235 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2236 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2237 goto fail_fd;
2238 }
2239 }
2240
2241 device->info = physical_device->info;
2242 device->isl_dev = physical_device->isl_dev;
2243
2244 /* On Broadwell and later, we can use batch chaining to more efficiently
2245 * implement growing command buffers. Prior to Haswell, the kernel
2246 * command parser gets in the way and we have to fall back to growing
2247 * the batch.
2248 */
2249 device->can_chain_batches = device->info.gen >= 8;
2250
2251 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2252 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2253 device->enabled_extensions = enabled_extensions;
2254
2255 anv_device_init_dispatch(device);
2256
2257 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2258 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2259 goto fail_context_id;
2260 }
2261
2262 pthread_condattr_t condattr;
2263 if (pthread_condattr_init(&condattr) != 0) {
2264 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2265 goto fail_mutex;
2266 }
2267 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2268 pthread_condattr_destroy(&condattr);
2269 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2270 goto fail_mutex;
2271 }
2272 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2273 pthread_condattr_destroy(&condattr);
2274 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2275 goto fail_mutex;
2276 }
2277 pthread_condattr_destroy(&condattr);
2278
2279 uint64_t bo_flags =
2280 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2281 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2282 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2283 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2284
2285 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2286
2287 result = anv_bo_cache_init(&device->bo_cache);
2288 if (result != VK_SUCCESS)
2289 goto fail_batch_bo_pool;
2290
2291 if (!physical_device->use_softpin)
2292 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2293
2294 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2295 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2296 16384,
2297 bo_flags);
2298 if (result != VK_SUCCESS)
2299 goto fail_bo_cache;
2300
2301 result = anv_state_pool_init(&device->instruction_state_pool, device,
2302 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2303 16384,
2304 bo_flags);
2305 if (result != VK_SUCCESS)
2306 goto fail_dynamic_state_pool;
2307
2308 result = anv_state_pool_init(&device->surface_state_pool, device,
2309 SURFACE_STATE_POOL_MIN_ADDRESS,
2310 4096,
2311 bo_flags);
2312 if (result != VK_SUCCESS)
2313 goto fail_instruction_state_pool;
2314
2315 if (physical_device->use_softpin) {
2316 result = anv_state_pool_init(&device->binding_table_pool, device,
2317 BINDING_TABLE_POOL_MIN_ADDRESS,
2318 4096,
2319 bo_flags);
2320 if (result != VK_SUCCESS)
2321 goto fail_surface_state_pool;
2322 }
2323
2324 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2325 if (result != VK_SUCCESS)
2326 goto fail_binding_table_pool;
2327
2328 if (physical_device->use_softpin)
2329 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2330
2331 if (!anv_vma_alloc(device, &device->workaround_bo))
2332 goto fail_workaround_bo;
2333
2334 anv_device_init_trivial_batch(device);
2335
2336 if (device->info.gen >= 10)
2337 anv_device_init_hiz_clear_value_bo(device);
2338
2339 anv_scratch_pool_init(device, &device->scratch_pool);
2340
2341 anv_queue_init(device, &device->queue);
2342
2343 switch (device->info.gen) {
2344 case 7:
2345 if (!device->info.is_haswell)
2346 result = gen7_init_device_state(device);
2347 else
2348 result = gen75_init_device_state(device);
2349 break;
2350 case 8:
2351 result = gen8_init_device_state(device);
2352 break;
2353 case 9:
2354 result = gen9_init_device_state(device);
2355 break;
2356 case 10:
2357 result = gen10_init_device_state(device);
2358 break;
2359 case 11:
2360 result = gen11_init_device_state(device);
2361 break;
2362 default:
2363 /* Shouldn't get here as we don't create physical devices for any other
2364 * gens. */
2365 unreachable("unhandled gen");
2366 }
2367 if (result != VK_SUCCESS)
2368 goto fail_workaround_bo;
2369
2370 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2371
2372 anv_device_init_blorp(device);
2373
2374 anv_device_init_border_colors(device);
2375
2376 *pDevice = anv_device_to_handle(device);
2377
2378 return VK_SUCCESS;
2379
2380 fail_workaround_bo:
2381 anv_queue_finish(&device->queue);
2382 anv_scratch_pool_finish(device, &device->scratch_pool);
2383 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2384 anv_gem_close(device, device->workaround_bo.gem_handle);
2385 fail_binding_table_pool:
2386 if (physical_device->use_softpin)
2387 anv_state_pool_finish(&device->binding_table_pool);
2388 fail_surface_state_pool:
2389 anv_state_pool_finish(&device->surface_state_pool);
2390 fail_instruction_state_pool:
2391 anv_state_pool_finish(&device->instruction_state_pool);
2392 fail_dynamic_state_pool:
2393 anv_state_pool_finish(&device->dynamic_state_pool);
2394 fail_bo_cache:
2395 anv_bo_cache_finish(&device->bo_cache);
2396 fail_batch_bo_pool:
2397 anv_bo_pool_finish(&device->batch_bo_pool);
2398 pthread_cond_destroy(&device->queue_submit);
2399 fail_mutex:
2400 pthread_mutex_destroy(&device->mutex);
2401 fail_context_id:
2402 anv_gem_destroy_context(device, device->context_id);
2403 fail_fd:
2404 close(device->fd);
2405 fail_device:
2406 vk_free(&device->alloc, device);
2407
2408 return result;
2409 }
2410
2411 void anv_DestroyDevice(
2412 VkDevice _device,
2413 const VkAllocationCallbacks* pAllocator)
2414 {
2415 ANV_FROM_HANDLE(anv_device, device, _device);
2416 struct anv_physical_device *physical_device;
2417
2418 if (!device)
2419 return;
2420
2421 physical_device = &device->instance->physicalDevice;
2422
2423 anv_device_finish_blorp(device);
2424
2425 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2426
2427 anv_queue_finish(&device->queue);
2428
2429 #ifdef HAVE_VALGRIND
2430 /* We only need to free these to prevent valgrind errors. The backing
2431 * BO will go away in a couple of lines so we don't actually leak.
2432 */
2433 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2434 #endif
2435
2436 anv_scratch_pool_finish(device, &device->scratch_pool);
2437
2438 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2439 anv_vma_free(device, &device->workaround_bo);
2440 anv_gem_close(device, device->workaround_bo.gem_handle);
2441
2442 anv_vma_free(device, &device->trivial_batch_bo);
2443 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2444 if (device->info.gen >= 10)
2445 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2446
2447 if (physical_device->use_softpin)
2448 anv_state_pool_finish(&device->binding_table_pool);
2449 anv_state_pool_finish(&device->surface_state_pool);
2450 anv_state_pool_finish(&device->instruction_state_pool);
2451 anv_state_pool_finish(&device->dynamic_state_pool);
2452
2453 anv_bo_cache_finish(&device->bo_cache);
2454
2455 anv_bo_pool_finish(&device->batch_bo_pool);
2456
2457 pthread_cond_destroy(&device->queue_submit);
2458 pthread_mutex_destroy(&device->mutex);
2459
2460 anv_gem_destroy_context(device, device->context_id);
2461
2462 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2463
2464 close(device->fd);
2465
2466 vk_free(&device->alloc, device);
2467 }
2468
2469 VkResult anv_EnumerateInstanceLayerProperties(
2470 uint32_t* pPropertyCount,
2471 VkLayerProperties* pProperties)
2472 {
2473 if (pProperties == NULL) {
2474 *pPropertyCount = 0;
2475 return VK_SUCCESS;
2476 }
2477
2478 /* None supported at this time */
2479 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2480 }
2481
2482 VkResult anv_EnumerateDeviceLayerProperties(
2483 VkPhysicalDevice physicalDevice,
2484 uint32_t* pPropertyCount,
2485 VkLayerProperties* pProperties)
2486 {
2487 if (pProperties == NULL) {
2488 *pPropertyCount = 0;
2489 return VK_SUCCESS;
2490 }
2491
2492 /* None supported at this time */
2493 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2494 }
2495
2496 void anv_GetDeviceQueue(
2497 VkDevice _device,
2498 uint32_t queueNodeIndex,
2499 uint32_t queueIndex,
2500 VkQueue* pQueue)
2501 {
2502 ANV_FROM_HANDLE(anv_device, device, _device);
2503
2504 assert(queueIndex == 0);
2505
2506 *pQueue = anv_queue_to_handle(&device->queue);
2507 }
2508
2509 void anv_GetDeviceQueue2(
2510 VkDevice _device,
2511 const VkDeviceQueueInfo2* pQueueInfo,
2512 VkQueue* pQueue)
2513 {
2514 ANV_FROM_HANDLE(anv_device, device, _device);
2515
2516 assert(pQueueInfo->queueIndex == 0);
2517
2518 if (pQueueInfo->flags == device->queue.flags)
2519 *pQueue = anv_queue_to_handle(&device->queue);
2520 else
2521 *pQueue = NULL;
2522 }
2523
2524 VkResult
2525 _anv_device_set_lost(struct anv_device *device,
2526 const char *file, int line,
2527 const char *msg, ...)
2528 {
2529 VkResult err;
2530 va_list ap;
2531
2532 device->_lost = true;
2533
2534 va_start(ap, msg);
2535 err = __vk_errorv(device->instance, device,
2536 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2537 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2538 va_end(ap);
2539
2540 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2541 abort();
2542
2543 return err;
2544 }
2545
2546 VkResult
2547 anv_device_query_status(struct anv_device *device)
2548 {
2549 /* This isn't likely as most of the callers of this function already check
2550 * for it. However, it doesn't hurt to check and it potentially lets us
2551 * avoid an ioctl.
2552 */
2553 if (anv_device_is_lost(device))
2554 return VK_ERROR_DEVICE_LOST;
2555
2556 uint32_t active, pending;
2557 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2558 if (ret == -1) {
2559 /* We don't know the real error. */
2560 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2561 }
2562
2563 if (active) {
2564 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2565 } else if (pending) {
2566 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2567 }
2568
2569 return VK_SUCCESS;
2570 }
2571
2572 VkResult
2573 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2574 {
2575 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2576 * Other usages of the BO (such as on different hardware) will not be
2577 * flagged as "busy" by this ioctl. Use with care.
2578 */
2579 int ret = anv_gem_busy(device, bo->gem_handle);
2580 if (ret == 1) {
2581 return VK_NOT_READY;
2582 } else if (ret == -1) {
2583 /* We don't know the real error. */
2584 return anv_device_set_lost(device, "gem wait failed: %m");
2585 }
2586
2587 /* Query for device status after the busy call. If the BO we're checking
2588 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2589 * client because it clearly doesn't have valid data. Yes, this most
2590 * likely means an ioctl, but we just did an ioctl to query the busy status
2591 * so it's no great loss.
2592 */
2593 return anv_device_query_status(device);
2594 }
2595
2596 VkResult
2597 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2598 int64_t timeout)
2599 {
2600 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2601 if (ret == -1 && errno == ETIME) {
2602 return VK_TIMEOUT;
2603 } else if (ret == -1) {
2604 /* We don't know the real error. */
2605 return anv_device_set_lost(device, "gem wait failed: %m");
2606 }
2607
2608 /* Query for device status after the wait. If the BO we're waiting on got
2609 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2610 * because it clearly doesn't have valid data. Yes, this most likely means
2611 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2612 */
2613 return anv_device_query_status(device);
2614 }
2615
2616 VkResult anv_DeviceWaitIdle(
2617 VkDevice _device)
2618 {
2619 ANV_FROM_HANDLE(anv_device, device, _device);
2620 if (anv_device_is_lost(device))
2621 return VK_ERROR_DEVICE_LOST;
2622
2623 struct anv_batch batch;
2624
2625 uint32_t cmds[8];
2626 batch.start = batch.next = cmds;
2627 batch.end = (void *) cmds + sizeof(cmds);
2628
2629 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2630 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2631
2632 return anv_device_submit_simple_batch(device, &batch);
2633 }
2634
2635 bool
2636 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2637 {
2638 if (!(bo->flags & EXEC_OBJECT_PINNED))
2639 return true;
2640
2641 pthread_mutex_lock(&device->vma_mutex);
2642
2643 bo->offset = 0;
2644
2645 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2646 device->vma_hi_available >= bo->size) {
2647 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2648 if (addr) {
2649 bo->offset = gen_canonical_address(addr);
2650 assert(addr == gen_48b_address(bo->offset));
2651 device->vma_hi_available -= bo->size;
2652 }
2653 }
2654
2655 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2656 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2657 if (addr) {
2658 bo->offset = gen_canonical_address(addr);
2659 assert(addr == gen_48b_address(bo->offset));
2660 device->vma_lo_available -= bo->size;
2661 }
2662 }
2663
2664 pthread_mutex_unlock(&device->vma_mutex);
2665
2666 return bo->offset != 0;
2667 }
2668
2669 void
2670 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2671 {
2672 if (!(bo->flags & EXEC_OBJECT_PINNED))
2673 return;
2674
2675 const uint64_t addr_48b = gen_48b_address(bo->offset);
2676
2677 pthread_mutex_lock(&device->vma_mutex);
2678
2679 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2680 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2681 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2682 device->vma_lo_available += bo->size;
2683 } else {
2684 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2685 &device->instance->physicalDevice;
2686 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2687 addr_48b < (physical_device->memory.heaps[0].vma_start +
2688 physical_device->memory.heaps[0].vma_size));
2689 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2690 device->vma_hi_available += bo->size;
2691 }
2692
2693 pthread_mutex_unlock(&device->vma_mutex);
2694
2695 bo->offset = 0;
2696 }
2697
2698 VkResult
2699 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2700 {
2701 uint32_t gem_handle = anv_gem_create(device, size);
2702 if (!gem_handle)
2703 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2704
2705 anv_bo_init(bo, gem_handle, size);
2706
2707 return VK_SUCCESS;
2708 }
2709
2710 VkResult anv_AllocateMemory(
2711 VkDevice _device,
2712 const VkMemoryAllocateInfo* pAllocateInfo,
2713 const VkAllocationCallbacks* pAllocator,
2714 VkDeviceMemory* pMem)
2715 {
2716 ANV_FROM_HANDLE(anv_device, device, _device);
2717 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2718 struct anv_device_memory *mem;
2719 VkResult result = VK_SUCCESS;
2720
2721 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2722
2723 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2724 assert(pAllocateInfo->allocationSize > 0);
2725
2726 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2727 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2728
2729 /* FINISHME: Fail if allocation request exceeds heap size. */
2730
2731 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2732 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2733 if (mem == NULL)
2734 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2735
2736 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2737 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2738 mem->map = NULL;
2739 mem->map_size = 0;
2740 mem->ahw = NULL;
2741 mem->host_ptr = NULL;
2742
2743 uint64_t bo_flags = 0;
2744
2745 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2746 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2747 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2748
2749 const struct wsi_memory_allocate_info *wsi_info =
2750 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2751 if (wsi_info && wsi_info->implicit_sync) {
2752 /* We need to set the WRITE flag on window system buffers so that GEM
2753 * will know we're writing to them and synchronize uses on other rings
2754 * (eg if the display server uses the blitter ring).
2755 */
2756 bo_flags |= EXEC_OBJECT_WRITE;
2757 } else if (pdevice->has_exec_async) {
2758 bo_flags |= EXEC_OBJECT_ASYNC;
2759 }
2760
2761 if (pdevice->use_softpin)
2762 bo_flags |= EXEC_OBJECT_PINNED;
2763
2764 const VkExportMemoryAllocateInfo *export_info =
2765 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2766
2767 /* Check if we need to support Android HW buffer export. If so,
2768 * create AHardwareBuffer and import memory from it.
2769 */
2770 bool android_export = false;
2771 if (export_info && export_info->handleTypes &
2772 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2773 android_export = true;
2774
2775 /* Android memory import. */
2776 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2777 vk_find_struct_const(pAllocateInfo->pNext,
2778 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2779
2780 if (ahw_import_info) {
2781 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2782 if (result != VK_SUCCESS)
2783 goto fail;
2784
2785 goto success;
2786 } else if (android_export) {
2787 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2788 if (result != VK_SUCCESS)
2789 goto fail;
2790
2791 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2792 .buffer = mem->ahw,
2793 };
2794 result = anv_import_ahw_memory(_device, mem, &import_info);
2795 if (result != VK_SUCCESS)
2796 goto fail;
2797
2798 goto success;
2799 }
2800
2801 const VkImportMemoryFdInfoKHR *fd_info =
2802 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2803
2804 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2805 * ignored.
2806 */
2807 if (fd_info && fd_info->handleType) {
2808 /* At the moment, we support only the below handle types. */
2809 assert(fd_info->handleType ==
2810 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2811 fd_info->handleType ==
2812 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2813
2814 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2815 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2816 if (result != VK_SUCCESS)
2817 goto fail;
2818
2819 VkDeviceSize aligned_alloc_size =
2820 align_u64(pAllocateInfo->allocationSize, 4096);
2821
2822 /* For security purposes, we reject importing the bo if it's smaller
2823 * than the requested allocation size. This prevents a malicious client
2824 * from passing a buffer to a trusted client, lying about the size, and
2825 * telling the trusted client to try and texture from an image that goes
2826 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2827 * in the trusted client. The trusted client can protect itself against
2828 * this sort of attack but only if it can trust the buffer size.
2829 */
2830 if (mem->bo->size < aligned_alloc_size) {
2831 result = vk_errorf(device->instance, device,
2832 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2833 "aligned allocationSize too large for "
2834 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2835 "%"PRIu64"B > %"PRIu64"B",
2836 aligned_alloc_size, mem->bo->size);
2837 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2838 goto fail;
2839 }
2840
2841 /* From the Vulkan spec:
2842 *
2843 * "Importing memory from a file descriptor transfers ownership of
2844 * the file descriptor from the application to the Vulkan
2845 * implementation. The application must not perform any operations on
2846 * the file descriptor after a successful import."
2847 *
2848 * If the import fails, we leave the file descriptor open.
2849 */
2850 close(fd_info->fd);
2851 goto success;
2852 }
2853
2854 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2855 vk_find_struct_const(pAllocateInfo->pNext,
2856 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2857 if (host_ptr_info && host_ptr_info->handleType) {
2858 if (host_ptr_info->handleType ==
2859 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2860 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2861 goto fail;
2862 }
2863
2864 assert(host_ptr_info->handleType ==
2865 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2866
2867 result = anv_bo_cache_import_host_ptr(
2868 device, &device->bo_cache, host_ptr_info->pHostPointer,
2869 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2870
2871 if (result != VK_SUCCESS)
2872 goto fail;
2873
2874 mem->host_ptr = host_ptr_info->pHostPointer;
2875 goto success;
2876 }
2877
2878 /* Regular allocate (not importing memory). */
2879
2880 if (export_info && export_info->handleTypes)
2881 bo_flags |= ANV_BO_EXTERNAL;
2882
2883 result = anv_bo_cache_alloc(device, &device->bo_cache,
2884 pAllocateInfo->allocationSize, bo_flags,
2885 &mem->bo);
2886 if (result != VK_SUCCESS)
2887 goto fail;
2888
2889 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2890 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2891 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2892 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2893
2894 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2895 * the BO. In this case, we have a dedicated allocation.
2896 */
2897 if (image->needs_set_tiling) {
2898 const uint32_t i915_tiling =
2899 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2900 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2901 image->planes[0].surface.isl.row_pitch_B,
2902 i915_tiling);
2903 if (ret) {
2904 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2905 return vk_errorf(device->instance, NULL,
2906 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2907 "failed to set BO tiling: %m");
2908 }
2909 }
2910 }
2911
2912 success:
2913 pthread_mutex_lock(&device->mutex);
2914 list_addtail(&mem->link, &device->memory_objects);
2915 pthread_mutex_unlock(&device->mutex);
2916
2917 *pMem = anv_device_memory_to_handle(mem);
2918
2919 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
2920 mem->bo->size);
2921
2922 return VK_SUCCESS;
2923
2924 fail:
2925 vk_free2(&device->alloc, pAllocator, mem);
2926
2927 return result;
2928 }
2929
2930 VkResult anv_GetMemoryFdKHR(
2931 VkDevice device_h,
2932 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2933 int* pFd)
2934 {
2935 ANV_FROM_HANDLE(anv_device, dev, device_h);
2936 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2937
2938 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2939
2940 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2941 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2942
2943 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2944 }
2945
2946 VkResult anv_GetMemoryFdPropertiesKHR(
2947 VkDevice _device,
2948 VkExternalMemoryHandleTypeFlagBits handleType,
2949 int fd,
2950 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2951 {
2952 ANV_FROM_HANDLE(anv_device, device, _device);
2953 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2954
2955 switch (handleType) {
2956 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2957 /* dma-buf can be imported as any memory type */
2958 pMemoryFdProperties->memoryTypeBits =
2959 (1 << pdevice->memory.type_count) - 1;
2960 return VK_SUCCESS;
2961
2962 default:
2963 /* The valid usage section for this function says:
2964 *
2965 * "handleType must not be one of the handle types defined as
2966 * opaque."
2967 *
2968 * So opaque handle types fall into the default "unsupported" case.
2969 */
2970 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2971 }
2972 }
2973
2974 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2975 VkDevice _device,
2976 VkExternalMemoryHandleTypeFlagBits handleType,
2977 const void* pHostPointer,
2978 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2979 {
2980 ANV_FROM_HANDLE(anv_device, device, _device);
2981
2982 assert(pMemoryHostPointerProperties->sType ==
2983 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2984
2985 switch (handleType) {
2986 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2987 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2988
2989 /* Host memory can be imported as any memory type. */
2990 pMemoryHostPointerProperties->memoryTypeBits =
2991 (1ull << pdevice->memory.type_count) - 1;
2992
2993 return VK_SUCCESS;
2994 }
2995 default:
2996 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2997 }
2998 }
2999
3000 void anv_FreeMemory(
3001 VkDevice _device,
3002 VkDeviceMemory _mem,
3003 const VkAllocationCallbacks* pAllocator)
3004 {
3005 ANV_FROM_HANDLE(anv_device, device, _device);
3006 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3007 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3008
3009 if (mem == NULL)
3010 return;
3011
3012 pthread_mutex_lock(&device->mutex);
3013 list_del(&mem->link);
3014 pthread_mutex_unlock(&device->mutex);
3015
3016 if (mem->map)
3017 anv_UnmapMemory(_device, _mem);
3018
3019 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3020 -mem->bo->size);
3021
3022 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3023
3024 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3025 if (mem->ahw)
3026 AHardwareBuffer_release(mem->ahw);
3027 #endif
3028
3029 vk_free2(&device->alloc, pAllocator, mem);
3030 }
3031
3032 VkResult anv_MapMemory(
3033 VkDevice _device,
3034 VkDeviceMemory _memory,
3035 VkDeviceSize offset,
3036 VkDeviceSize size,
3037 VkMemoryMapFlags flags,
3038 void** ppData)
3039 {
3040 ANV_FROM_HANDLE(anv_device, device, _device);
3041 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3042
3043 if (mem == NULL) {
3044 *ppData = NULL;
3045 return VK_SUCCESS;
3046 }
3047
3048 if (mem->host_ptr) {
3049 *ppData = mem->host_ptr + offset;
3050 return VK_SUCCESS;
3051 }
3052
3053 if (size == VK_WHOLE_SIZE)
3054 size = mem->bo->size - offset;
3055
3056 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3057 *
3058 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3059 * assert(size != 0);
3060 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3061 * equal to the size of the memory minus offset
3062 */
3063 assert(size > 0);
3064 assert(offset + size <= mem->bo->size);
3065
3066 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3067 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3068 * at a time is valid. We could just mmap up front and return an offset
3069 * pointer here, but that may exhaust virtual memory on 32 bit
3070 * userspace. */
3071
3072 uint32_t gem_flags = 0;
3073
3074 if (!device->info.has_llc &&
3075 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3076 gem_flags |= I915_MMAP_WC;
3077
3078 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3079 uint64_t map_offset = offset & ~4095ull;
3080 assert(offset >= map_offset);
3081 uint64_t map_size = (offset + size) - map_offset;
3082
3083 /* Let's map whole pages */
3084 map_size = align_u64(map_size, 4096);
3085
3086 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3087 map_offset, map_size, gem_flags);
3088 if (map == MAP_FAILED)
3089 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3090
3091 mem->map = map;
3092 mem->map_size = map_size;
3093
3094 *ppData = mem->map + (offset - map_offset);
3095
3096 return VK_SUCCESS;
3097 }
3098
3099 void anv_UnmapMemory(
3100 VkDevice _device,
3101 VkDeviceMemory _memory)
3102 {
3103 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3104
3105 if (mem == NULL || mem->host_ptr)
3106 return;
3107
3108 anv_gem_munmap(mem->map, mem->map_size);
3109
3110 mem->map = NULL;
3111 mem->map_size = 0;
3112 }
3113
3114 static void
3115 clflush_mapped_ranges(struct anv_device *device,
3116 uint32_t count,
3117 const VkMappedMemoryRange *ranges)
3118 {
3119 for (uint32_t i = 0; i < count; i++) {
3120 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3121 if (ranges[i].offset >= mem->map_size)
3122 continue;
3123
3124 gen_clflush_range(mem->map + ranges[i].offset,
3125 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3126 }
3127 }
3128
3129 VkResult anv_FlushMappedMemoryRanges(
3130 VkDevice _device,
3131 uint32_t memoryRangeCount,
3132 const VkMappedMemoryRange* pMemoryRanges)
3133 {
3134 ANV_FROM_HANDLE(anv_device, device, _device);
3135
3136 if (device->info.has_llc)
3137 return VK_SUCCESS;
3138
3139 /* Make sure the writes we're flushing have landed. */
3140 __builtin_ia32_mfence();
3141
3142 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3143
3144 return VK_SUCCESS;
3145 }
3146
3147 VkResult anv_InvalidateMappedMemoryRanges(
3148 VkDevice _device,
3149 uint32_t memoryRangeCount,
3150 const VkMappedMemoryRange* pMemoryRanges)
3151 {
3152 ANV_FROM_HANDLE(anv_device, device, _device);
3153
3154 if (device->info.has_llc)
3155 return VK_SUCCESS;
3156
3157 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3158
3159 /* Make sure no reads get moved up above the invalidate. */
3160 __builtin_ia32_mfence();
3161
3162 return VK_SUCCESS;
3163 }
3164
3165 void anv_GetBufferMemoryRequirements(
3166 VkDevice _device,
3167 VkBuffer _buffer,
3168 VkMemoryRequirements* pMemoryRequirements)
3169 {
3170 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3171 ANV_FROM_HANDLE(anv_device, device, _device);
3172 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3173
3174 /* The Vulkan spec (git aaed022) says:
3175 *
3176 * memoryTypeBits is a bitfield and contains one bit set for every
3177 * supported memory type for the resource. The bit `1<<i` is set if and
3178 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3179 * structure for the physical device is supported.
3180 */
3181 uint32_t memory_types = 0;
3182 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3183 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3184 if ((valid_usage & buffer->usage) == buffer->usage)
3185 memory_types |= (1u << i);
3186 }
3187
3188 /* Base alignment requirement of a cache line */
3189 uint32_t alignment = 16;
3190
3191 /* We need an alignment of 32 for pushing UBOs */
3192 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3193 alignment = MAX2(alignment, 32);
3194
3195 pMemoryRequirements->size = buffer->size;
3196 pMemoryRequirements->alignment = alignment;
3197
3198 /* Storage and Uniform buffers should have their size aligned to
3199 * 32-bits to avoid boundary checks when last DWord is not complete.
3200 * This would ensure that not internal padding would be needed for
3201 * 16-bit types.
3202 */
3203 if (device->robust_buffer_access &&
3204 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3205 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3206 pMemoryRequirements->size = align_u64(buffer->size, 4);
3207
3208 pMemoryRequirements->memoryTypeBits = memory_types;
3209 }
3210
3211 void anv_GetBufferMemoryRequirements2(
3212 VkDevice _device,
3213 const VkBufferMemoryRequirementsInfo2* pInfo,
3214 VkMemoryRequirements2* pMemoryRequirements)
3215 {
3216 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3217 &pMemoryRequirements->memoryRequirements);
3218
3219 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3220 switch (ext->sType) {
3221 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3222 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3223 requirements->prefersDedicatedAllocation = false;
3224 requirements->requiresDedicatedAllocation = false;
3225 break;
3226 }
3227
3228 default:
3229 anv_debug_ignored_stype(ext->sType);
3230 break;
3231 }
3232 }
3233 }
3234
3235 void anv_GetImageMemoryRequirements(
3236 VkDevice _device,
3237 VkImage _image,
3238 VkMemoryRequirements* pMemoryRequirements)
3239 {
3240 ANV_FROM_HANDLE(anv_image, image, _image);
3241 ANV_FROM_HANDLE(anv_device, device, _device);
3242 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3243
3244 /* The Vulkan spec (git aaed022) says:
3245 *
3246 * memoryTypeBits is a bitfield and contains one bit set for every
3247 * supported memory type for the resource. The bit `1<<i` is set if and
3248 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3249 * structure for the physical device is supported.
3250 *
3251 * All types are currently supported for images.
3252 */
3253 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3254
3255 /* We must have image allocated or imported at this point. According to the
3256 * specification, external images must have been bound to memory before
3257 * calling GetImageMemoryRequirements.
3258 */
3259 assert(image->size > 0);
3260
3261 pMemoryRequirements->size = image->size;
3262 pMemoryRequirements->alignment = image->alignment;
3263 pMemoryRequirements->memoryTypeBits = memory_types;
3264 }
3265
3266 void anv_GetImageMemoryRequirements2(
3267 VkDevice _device,
3268 const VkImageMemoryRequirementsInfo2* pInfo,
3269 VkMemoryRequirements2* pMemoryRequirements)
3270 {
3271 ANV_FROM_HANDLE(anv_device, device, _device);
3272 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3273
3274 anv_GetImageMemoryRequirements(_device, pInfo->image,
3275 &pMemoryRequirements->memoryRequirements);
3276
3277 vk_foreach_struct_const(ext, pInfo->pNext) {
3278 switch (ext->sType) {
3279 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3280 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3281 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3282 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3283 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3284 plane_reqs->planeAspect);
3285
3286 assert(image->planes[plane].offset == 0);
3287
3288 /* The Vulkan spec (git aaed022) says:
3289 *
3290 * memoryTypeBits is a bitfield and contains one bit set for every
3291 * supported memory type for the resource. The bit `1<<i` is set
3292 * if and only if the memory type `i` in the
3293 * VkPhysicalDeviceMemoryProperties structure for the physical
3294 * device is supported.
3295 *
3296 * All types are currently supported for images.
3297 */
3298 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3299 (1ull << pdevice->memory.type_count) - 1;
3300
3301 /* We must have image allocated or imported at this point. According to the
3302 * specification, external images must have been bound to memory before
3303 * calling GetImageMemoryRequirements.
3304 */
3305 assert(image->planes[plane].size > 0);
3306
3307 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3308 pMemoryRequirements->memoryRequirements.alignment =
3309 image->planes[plane].alignment;
3310 break;
3311 }
3312
3313 default:
3314 anv_debug_ignored_stype(ext->sType);
3315 break;
3316 }
3317 }
3318
3319 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3320 switch (ext->sType) {
3321 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3322 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3323 if (image->needs_set_tiling || image->external_format) {
3324 /* If we need to set the tiling for external consumers, we need a
3325 * dedicated allocation.
3326 *
3327 * See also anv_AllocateMemory.
3328 */
3329 requirements->prefersDedicatedAllocation = true;
3330 requirements->requiresDedicatedAllocation = true;
3331 } else {
3332 requirements->prefersDedicatedAllocation = false;
3333 requirements->requiresDedicatedAllocation = false;
3334 }
3335 break;
3336 }
3337
3338 default:
3339 anv_debug_ignored_stype(ext->sType);
3340 break;
3341 }
3342 }
3343 }
3344
3345 void anv_GetImageSparseMemoryRequirements(
3346 VkDevice device,
3347 VkImage image,
3348 uint32_t* pSparseMemoryRequirementCount,
3349 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3350 {
3351 *pSparseMemoryRequirementCount = 0;
3352 }
3353
3354 void anv_GetImageSparseMemoryRequirements2(
3355 VkDevice device,
3356 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3357 uint32_t* pSparseMemoryRequirementCount,
3358 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3359 {
3360 *pSparseMemoryRequirementCount = 0;
3361 }
3362
3363 void anv_GetDeviceMemoryCommitment(
3364 VkDevice device,
3365 VkDeviceMemory memory,
3366 VkDeviceSize* pCommittedMemoryInBytes)
3367 {
3368 *pCommittedMemoryInBytes = 0;
3369 }
3370
3371 static void
3372 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3373 {
3374 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3375 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3376
3377 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3378
3379 if (mem) {
3380 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3381 buffer->address = (struct anv_address) {
3382 .bo = mem->bo,
3383 .offset = pBindInfo->memoryOffset,
3384 };
3385 } else {
3386 buffer->address = ANV_NULL_ADDRESS;
3387 }
3388 }
3389
3390 VkResult anv_BindBufferMemory(
3391 VkDevice device,
3392 VkBuffer buffer,
3393 VkDeviceMemory memory,
3394 VkDeviceSize memoryOffset)
3395 {
3396 anv_bind_buffer_memory(
3397 &(VkBindBufferMemoryInfo) {
3398 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3399 .buffer = buffer,
3400 .memory = memory,
3401 .memoryOffset = memoryOffset,
3402 });
3403
3404 return VK_SUCCESS;
3405 }
3406
3407 VkResult anv_BindBufferMemory2(
3408 VkDevice device,
3409 uint32_t bindInfoCount,
3410 const VkBindBufferMemoryInfo* pBindInfos)
3411 {
3412 for (uint32_t i = 0; i < bindInfoCount; i++)
3413 anv_bind_buffer_memory(&pBindInfos[i]);
3414
3415 return VK_SUCCESS;
3416 }
3417
3418 VkResult anv_QueueBindSparse(
3419 VkQueue _queue,
3420 uint32_t bindInfoCount,
3421 const VkBindSparseInfo* pBindInfo,
3422 VkFence fence)
3423 {
3424 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3425 if (anv_device_is_lost(queue->device))
3426 return VK_ERROR_DEVICE_LOST;
3427
3428 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3429 }
3430
3431 // Event functions
3432
3433 VkResult anv_CreateEvent(
3434 VkDevice _device,
3435 const VkEventCreateInfo* pCreateInfo,
3436 const VkAllocationCallbacks* pAllocator,
3437 VkEvent* pEvent)
3438 {
3439 ANV_FROM_HANDLE(anv_device, device, _device);
3440 struct anv_state state;
3441 struct anv_event *event;
3442
3443 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3444
3445 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3446 sizeof(*event), 8);
3447 event = state.map;
3448 event->state = state;
3449 event->semaphore = VK_EVENT_RESET;
3450
3451 if (!device->info.has_llc) {
3452 /* Make sure the writes we're flushing have landed. */
3453 __builtin_ia32_mfence();
3454 __builtin_ia32_clflush(event);
3455 }
3456
3457 *pEvent = anv_event_to_handle(event);
3458
3459 return VK_SUCCESS;
3460 }
3461
3462 void anv_DestroyEvent(
3463 VkDevice _device,
3464 VkEvent _event,
3465 const VkAllocationCallbacks* pAllocator)
3466 {
3467 ANV_FROM_HANDLE(anv_device, device, _device);
3468 ANV_FROM_HANDLE(anv_event, event, _event);
3469
3470 if (!event)
3471 return;
3472
3473 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3474 }
3475
3476 VkResult anv_GetEventStatus(
3477 VkDevice _device,
3478 VkEvent _event)
3479 {
3480 ANV_FROM_HANDLE(anv_device, device, _device);
3481 ANV_FROM_HANDLE(anv_event, event, _event);
3482
3483 if (anv_device_is_lost(device))
3484 return VK_ERROR_DEVICE_LOST;
3485
3486 if (!device->info.has_llc) {
3487 /* Invalidate read cache before reading event written by GPU. */
3488 __builtin_ia32_clflush(event);
3489 __builtin_ia32_mfence();
3490
3491 }
3492
3493 return event->semaphore;
3494 }
3495
3496 VkResult anv_SetEvent(
3497 VkDevice _device,
3498 VkEvent _event)
3499 {
3500 ANV_FROM_HANDLE(anv_device, device, _device);
3501 ANV_FROM_HANDLE(anv_event, event, _event);
3502
3503 event->semaphore = VK_EVENT_SET;
3504
3505 if (!device->info.has_llc) {
3506 /* Make sure the writes we're flushing have landed. */
3507 __builtin_ia32_mfence();
3508 __builtin_ia32_clflush(event);
3509 }
3510
3511 return VK_SUCCESS;
3512 }
3513
3514 VkResult anv_ResetEvent(
3515 VkDevice _device,
3516 VkEvent _event)
3517 {
3518 ANV_FROM_HANDLE(anv_device, device, _device);
3519 ANV_FROM_HANDLE(anv_event, event, _event);
3520
3521 event->semaphore = VK_EVENT_RESET;
3522
3523 if (!device->info.has_llc) {
3524 /* Make sure the writes we're flushing have landed. */
3525 __builtin_ia32_mfence();
3526 __builtin_ia32_clflush(event);
3527 }
3528
3529 return VK_SUCCESS;
3530 }
3531
3532 // Buffer functions
3533
3534 VkResult anv_CreateBuffer(
3535 VkDevice _device,
3536 const VkBufferCreateInfo* pCreateInfo,
3537 const VkAllocationCallbacks* pAllocator,
3538 VkBuffer* pBuffer)
3539 {
3540 ANV_FROM_HANDLE(anv_device, device, _device);
3541 struct anv_buffer *buffer;
3542
3543 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3544
3545 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3546 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3547 if (buffer == NULL)
3548 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3549
3550 buffer->size = pCreateInfo->size;
3551 buffer->usage = pCreateInfo->usage;
3552 buffer->address = ANV_NULL_ADDRESS;
3553
3554 *pBuffer = anv_buffer_to_handle(buffer);
3555
3556 return VK_SUCCESS;
3557 }
3558
3559 void anv_DestroyBuffer(
3560 VkDevice _device,
3561 VkBuffer _buffer,
3562 const VkAllocationCallbacks* pAllocator)
3563 {
3564 ANV_FROM_HANDLE(anv_device, device, _device);
3565 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3566
3567 if (!buffer)
3568 return;
3569
3570 vk_free2(&device->alloc, pAllocator, buffer);
3571 }
3572
3573 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3574 VkDevice device,
3575 const VkBufferDeviceAddressInfoEXT* pInfo)
3576 {
3577 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3578
3579 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3580
3581 return anv_address_physical(buffer->address);
3582 }
3583
3584 void
3585 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3586 enum isl_format format,
3587 struct anv_address address,
3588 uint32_t range, uint32_t stride)
3589 {
3590 isl_buffer_fill_state(&device->isl_dev, state.map,
3591 .address = anv_address_physical(address),
3592 .mocs = device->default_mocs,
3593 .size_B = range,
3594 .format = format,
3595 .swizzle = ISL_SWIZZLE_IDENTITY,
3596 .stride_B = stride);
3597 }
3598
3599 void anv_DestroySampler(
3600 VkDevice _device,
3601 VkSampler _sampler,
3602 const VkAllocationCallbacks* pAllocator)
3603 {
3604 ANV_FROM_HANDLE(anv_device, device, _device);
3605 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3606
3607 if (!sampler)
3608 return;
3609
3610 if (sampler->bindless_state.map) {
3611 anv_state_pool_free(&device->dynamic_state_pool,
3612 sampler->bindless_state);
3613 }
3614
3615 vk_free2(&device->alloc, pAllocator, sampler);
3616 }
3617
3618 VkResult anv_CreateFramebuffer(
3619 VkDevice _device,
3620 const VkFramebufferCreateInfo* pCreateInfo,
3621 const VkAllocationCallbacks* pAllocator,
3622 VkFramebuffer* pFramebuffer)
3623 {
3624 ANV_FROM_HANDLE(anv_device, device, _device);
3625 struct anv_framebuffer *framebuffer;
3626
3627 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3628
3629 size_t size = sizeof(*framebuffer) +
3630 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3631 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3632 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3633 if (framebuffer == NULL)
3634 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3635
3636 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3637 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3638 VkImageView _iview = pCreateInfo->pAttachments[i];
3639 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3640 }
3641
3642 framebuffer->width = pCreateInfo->width;
3643 framebuffer->height = pCreateInfo->height;
3644 framebuffer->layers = pCreateInfo->layers;
3645
3646 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3647
3648 return VK_SUCCESS;
3649 }
3650
3651 void anv_DestroyFramebuffer(
3652 VkDevice _device,
3653 VkFramebuffer _fb,
3654 const VkAllocationCallbacks* pAllocator)
3655 {
3656 ANV_FROM_HANDLE(anv_device, device, _device);
3657 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3658
3659 if (!fb)
3660 return;
3661
3662 vk_free2(&device->alloc, pAllocator, fb);
3663 }
3664
3665 static const VkTimeDomainEXT anv_time_domains[] = {
3666 VK_TIME_DOMAIN_DEVICE_EXT,
3667 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3668 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3669 };
3670
3671 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3672 VkPhysicalDevice physicalDevice,
3673 uint32_t *pTimeDomainCount,
3674 VkTimeDomainEXT *pTimeDomains)
3675 {
3676 int d;
3677 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3678
3679 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3680 vk_outarray_append(&out, i) {
3681 *i = anv_time_domains[d];
3682 }
3683 }
3684
3685 return vk_outarray_status(&out);
3686 }
3687
3688 static uint64_t
3689 anv_clock_gettime(clockid_t clock_id)
3690 {
3691 struct timespec current;
3692 int ret;
3693
3694 ret = clock_gettime(clock_id, &current);
3695 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3696 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3697 if (ret < 0)
3698 return 0;
3699
3700 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3701 }
3702
3703 #define TIMESTAMP 0x2358
3704
3705 VkResult anv_GetCalibratedTimestampsEXT(
3706 VkDevice _device,
3707 uint32_t timestampCount,
3708 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3709 uint64_t *pTimestamps,
3710 uint64_t *pMaxDeviation)
3711 {
3712 ANV_FROM_HANDLE(anv_device, device, _device);
3713 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3714 int ret;
3715 int d;
3716 uint64_t begin, end;
3717 uint64_t max_clock_period = 0;
3718
3719 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3720
3721 for (d = 0; d < timestampCount; d++) {
3722 switch (pTimestampInfos[d].timeDomain) {
3723 case VK_TIME_DOMAIN_DEVICE_EXT:
3724 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3725 &pTimestamps[d]);
3726
3727 if (ret != 0) {
3728 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3729 "register: %m");
3730 }
3731 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3732 max_clock_period = MAX2(max_clock_period, device_period);
3733 break;
3734 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3735 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3736 max_clock_period = MAX2(max_clock_period, 1);
3737 break;
3738
3739 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3740 pTimestamps[d] = begin;
3741 break;
3742 default:
3743 pTimestamps[d] = 0;
3744 break;
3745 }
3746 }
3747
3748 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3749
3750 /*
3751 * The maximum deviation is the sum of the interval over which we
3752 * perform the sampling and the maximum period of any sampled
3753 * clock. That's because the maximum skew between any two sampled
3754 * clock edges is when the sampled clock with the largest period is
3755 * sampled at the end of that period but right at the beginning of the
3756 * sampling interval and some other clock is sampled right at the
3757 * begining of its sampling period and right at the end of the
3758 * sampling interval. Let's assume the GPU has the longest clock
3759 * period and that the application is sampling GPU and monotonic:
3760 *
3761 * s e
3762 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3763 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3764 *
3765 * g
3766 * 0 1 2 3
3767 * GPU -----_____-----_____-----_____-----_____
3768 *
3769 * m
3770 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3771 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3772 *
3773 * Interval <----------------->
3774 * Deviation <-------------------------->
3775 *
3776 * s = read(raw) 2
3777 * g = read(GPU) 1
3778 * m = read(monotonic) 2
3779 * e = read(raw) b
3780 *
3781 * We round the sample interval up by one tick to cover sampling error
3782 * in the interval clock
3783 */
3784
3785 uint64_t sample_interval = end - begin + 1;
3786
3787 *pMaxDeviation = sample_interval + max_clock_period;
3788
3789 return VK_SUCCESS;
3790 }
3791
3792 /* vk_icd.h does not declare this function, so we declare it here to
3793 * suppress Wmissing-prototypes.
3794 */
3795 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3796 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3797
3798 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3799 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3800 {
3801 /* For the full details on loader interface versioning, see
3802 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3803 * What follows is a condensed summary, to help you navigate the large and
3804 * confusing official doc.
3805 *
3806 * - Loader interface v0 is incompatible with later versions. We don't
3807 * support it.
3808 *
3809 * - In loader interface v1:
3810 * - The first ICD entrypoint called by the loader is
3811 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3812 * entrypoint.
3813 * - The ICD must statically expose no other Vulkan symbol unless it is
3814 * linked with -Bsymbolic.
3815 * - Each dispatchable Vulkan handle created by the ICD must be
3816 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3817 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3818 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3819 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3820 * such loader-managed surfaces.
3821 *
3822 * - Loader interface v2 differs from v1 in:
3823 * - The first ICD entrypoint called by the loader is
3824 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3825 * statically expose this entrypoint.
3826 *
3827 * - Loader interface v3 differs from v2 in:
3828 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3829 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3830 * because the loader no longer does so.
3831 */
3832 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3833 return VK_SUCCESS;
3834 }