e4984f1fb74a28357fc8adf3f1a83fde47e3352f
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_SECTION_END
61 DRI_CONF_END;
62
63 /* This is probably far to big but it reflects the max size used for messages
64 * in OpenGLs KHR_debug.
65 */
66 #define MAX_DEBUG_MESSAGE_LENGTH 4096
67
68 static void
69 compiler_debug_log(void *data, const char *fmt, ...)
70 {
71 char str[MAX_DEBUG_MESSAGE_LENGTH];
72 struct anv_device *device = (struct anv_device *)data;
73
74 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
75 return;
76
77 va_list args;
78 va_start(args, fmt);
79 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
80 va_end(args);
81
82 vk_debug_report(&device->instance->debug_report_callbacks,
83 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
84 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
85 0, 0, 0, "anv", str);
86 }
87
88 static void
89 compiler_perf_log(void *data, const char *fmt, ...)
90 {
91 va_list args;
92 va_start(args, fmt);
93
94 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
95 intel_logd_v(fmt, args);
96
97 va_end(args);
98 }
99
100 static uint64_t
101 anv_compute_heap_size(int fd, uint64_t gtt_size)
102 {
103 /* Query the total ram from the system */
104 struct sysinfo info;
105 sysinfo(&info);
106
107 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
108
109 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
110 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
111 */
112 uint64_t available_ram;
113 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
114 available_ram = total_ram / 2;
115 else
116 available_ram = total_ram * 3 / 4;
117
118 /* We also want to leave some padding for things we allocate in the driver,
119 * so don't go over 3/4 of the GTT either.
120 */
121 uint64_t available_gtt = gtt_size * 3 / 4;
122
123 return MIN2(available_ram, available_gtt);
124 }
125
126 static VkResult
127 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
128 {
129 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
130 &device->gtt_size) == -1) {
131 /* If, for whatever reason, we can't actually get the GTT size from the
132 * kernel (too old?) fall back to the aperture size.
133 */
134 anv_perf_warn(NULL, NULL,
135 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
136
137 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
138 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
139 "failed to get aperture size: %m");
140 }
141 }
142
143 /* We only allow 48-bit addresses with softpin because knowing the actual
144 * address is required for the vertex cache flush workaround.
145 */
146 device->supports_48bit_addresses = (device->info.gen >= 8) &&
147 device->has_softpin &&
148 device->gtt_size > (4ULL << 30 /* GiB */);
149
150 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
151
152 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
153 /* When running with an overridden PCI ID, we may get a GTT size from
154 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
155 * address support can still fail. Just clamp the address space size to
156 * 2 GiB if we don't have 48-bit support.
157 */
158 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
159 "not support for 48-bit addresses",
160 __FILE__, __LINE__);
161 heap_size = 2ull << 30;
162 }
163
164 if (heap_size <= 3ull * (1ull << 30)) {
165 /* In this case, everything fits nicely into the 32-bit address space,
166 * so there's no need for supporting 48bit addresses on client-allocated
167 * memory objects.
168 */
169 device->memory.heap_count = 1;
170 device->memory.heaps[0] = (struct anv_memory_heap) {
171 .size = heap_size,
172 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
173 .supports_48bit_addresses = false,
174 };
175 } else {
176 /* Not everything will fit nicely into a 32-bit address space. In this
177 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
178 * larger 48-bit heap. If we're in this case, then we have a total heap
179 * size larger than 3GiB which most likely means they have 8 GiB of
180 * video memory and so carving off 1 GiB for the 32-bit heap should be
181 * reasonable.
182 */
183 const uint64_t heap_size_32bit = 1ull << 30;
184 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
185
186 assert(device->supports_48bit_addresses);
187
188 device->memory.heap_count = 2;
189 device->memory.heaps[0] = (struct anv_memory_heap) {
190 .size = heap_size_48bit,
191 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
192 .supports_48bit_addresses = true,
193 };
194 device->memory.heaps[1] = (struct anv_memory_heap) {
195 .size = heap_size_32bit,
196 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
197 .supports_48bit_addresses = false,
198 };
199 }
200
201 uint32_t type_count = 0;
202 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
203 uint32_t valid_buffer_usage = ~0;
204
205 /* There appears to be a hardware issue in the VF cache where it only
206 * considers the bottom 32 bits of memory addresses. If you happen to
207 * have two vertex buffers which get placed exactly 4 GiB apart and use
208 * them in back-to-back draw calls, you can get collisions. In order to
209 * solve this problem, we require vertex and index buffers be bound to
210 * memory allocated out of the 32-bit heap.
211 */
212 if (device->memory.heaps[heap].supports_48bit_addresses) {
213 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
214 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
215 }
216
217 if (device->info.has_llc) {
218 /* Big core GPUs share LLC with the CPU and thus one memory type can be
219 * both cached and coherent at the same time.
220 */
221 device->memory.types[type_count++] = (struct anv_memory_type) {
222 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
223 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
224 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
225 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
226 .heapIndex = heap,
227 .valid_buffer_usage = valid_buffer_usage,
228 };
229 } else {
230 /* The spec requires that we expose a host-visible, coherent memory
231 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
232 * to give the application a choice between cached, but not coherent and
233 * coherent but uncached (WC though).
234 */
235 device->memory.types[type_count++] = (struct anv_memory_type) {
236 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
237 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
238 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
239 .heapIndex = heap,
240 .valid_buffer_usage = valid_buffer_usage,
241 };
242 device->memory.types[type_count++] = (struct anv_memory_type) {
243 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
244 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
245 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
246 .heapIndex = heap,
247 .valid_buffer_usage = valid_buffer_usage,
248 };
249 }
250 }
251 device->memory.type_count = type_count;
252
253 return VK_SUCCESS;
254 }
255
256 static VkResult
257 anv_physical_device_init_uuids(struct anv_physical_device *device)
258 {
259 const struct build_id_note *note =
260 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
261 if (!note) {
262 return vk_errorf(device->instance, device,
263 VK_ERROR_INITIALIZATION_FAILED,
264 "Failed to find build-id");
265 }
266
267 unsigned build_id_len = build_id_length(note);
268 if (build_id_len < 20) {
269 return vk_errorf(device->instance, device,
270 VK_ERROR_INITIALIZATION_FAILED,
271 "build-id too short. It needs to be a SHA");
272 }
273
274 memcpy(device->driver_build_sha1, build_id_data(note), 20);
275
276 struct mesa_sha1 sha1_ctx;
277 uint8_t sha1[20];
278 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
279
280 /* The pipeline cache UUID is used for determining when a pipeline cache is
281 * invalid. It needs both a driver build and the PCI ID of the device.
282 */
283 _mesa_sha1_init(&sha1_ctx);
284 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
285 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
286 sizeof(device->chipset_id));
287 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
288 sizeof(device->always_use_bindless));
289 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
290 sizeof(device->has_a64_buffer_access));
291 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
292 sizeof(device->has_bindless_images));
293 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
294 sizeof(device->has_bindless_samplers));
295 _mesa_sha1_final(&sha1_ctx, sha1);
296 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
297
298 /* The driver UUID is used for determining sharability of images and memory
299 * between two Vulkan instances in separate processes. People who want to
300 * share memory need to also check the device UUID (below) so all this
301 * needs to be is the build-id.
302 */
303 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
304
305 /* The device UUID uniquely identifies the given device within the machine.
306 * Since we never have more than one device, this doesn't need to be a real
307 * UUID. However, on the off-chance that someone tries to use this to
308 * cache pre-tiled images or something of the like, we use the PCI ID and
309 * some bits of ISL info to ensure that this is safe.
310 */
311 _mesa_sha1_init(&sha1_ctx);
312 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
313 sizeof(device->chipset_id));
314 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
315 sizeof(device->isl_dev.has_bit6_swizzling));
316 _mesa_sha1_final(&sha1_ctx, sha1);
317 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
318
319 return VK_SUCCESS;
320 }
321
322 static void
323 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
324 {
325 #ifdef ENABLE_SHADER_CACHE
326 char renderer[10];
327 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
328 device->chipset_id);
329 assert(len == sizeof(renderer) - 2);
330
331 char timestamp[41];
332 _mesa_sha1_format(timestamp, device->driver_build_sha1);
333
334 const uint64_t driver_flags =
335 brw_get_compiler_config_value(device->compiler);
336 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
337 #else
338 device->disk_cache = NULL;
339 #endif
340 }
341
342 static void
343 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
344 {
345 #ifdef ENABLE_SHADER_CACHE
346 if (device->disk_cache)
347 disk_cache_destroy(device->disk_cache);
348 #else
349 assert(device->disk_cache == NULL);
350 #endif
351 }
352
353 static uint64_t
354 get_available_system_memory()
355 {
356 char *meminfo = os_read_file("/proc/meminfo");
357 if (!meminfo)
358 return 0;
359
360 char *str = strstr(meminfo, "MemAvailable:");
361 if (!str) {
362 free(meminfo);
363 return 0;
364 }
365
366 uint64_t kb_mem_available;
367 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
368 free(meminfo);
369 return kb_mem_available << 10;
370 }
371
372 free(meminfo);
373 return 0;
374 }
375
376 static VkResult
377 anv_physical_device_init(struct anv_physical_device *device,
378 struct anv_instance *instance,
379 drmDevicePtr drm_device)
380 {
381 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
382 const char *path = drm_device->nodes[DRM_NODE_RENDER];
383 VkResult result;
384 int fd;
385 int master_fd = -1;
386
387 brw_process_intel_debug_variable();
388
389 fd = open(path, O_RDWR | O_CLOEXEC);
390 if (fd < 0)
391 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
392
393 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
394 device->instance = instance;
395
396 assert(strlen(path) < ARRAY_SIZE(device->path));
397 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
398
399 if (!gen_get_device_info_from_fd(fd, &device->info)) {
400 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
401 goto fail;
402 }
403 device->chipset_id = device->info.chipset_id;
404 device->no_hw = device->info.no_hw;
405
406 if (getenv("INTEL_NO_HW") != NULL)
407 device->no_hw = true;
408
409 device->pci_info.domain = drm_device->businfo.pci->domain;
410 device->pci_info.bus = drm_device->businfo.pci->bus;
411 device->pci_info.device = drm_device->businfo.pci->dev;
412 device->pci_info.function = drm_device->businfo.pci->func;
413
414 device->name = gen_get_device_name(device->chipset_id);
415
416 if (device->info.is_haswell) {
417 intel_logw("Haswell Vulkan support is incomplete");
418 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
419 intel_logw("Ivy Bridge Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && device->info.is_baytrail) {
421 intel_logw("Bay Trail Vulkan support is incomplete");
422 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
423 /* Gen8-11 fully supported */
424 } else if (device->info.gen == 12) {
425 intel_logw("Vulkan is not yet fully supported on gen12");
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
468 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
469 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
470 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
471 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
472 device->has_syncobj_wait = device->has_syncobj &&
473 anv_gem_supports_syncobj_wait(fd);
474 device->has_context_priority = anv_gem_has_context_priority(fd);
475
476 result = anv_physical_device_init_heaps(device, fd);
477 if (result != VK_SUCCESS)
478 goto fail;
479
480 device->use_softpin = device->has_softpin &&
481 device->supports_48bit_addresses;
482
483 device->has_context_isolation =
484 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
485
486 device->always_use_bindless =
487 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
488
489 /* We first got the A64 messages on broadwell and we can only use them if
490 * we can pass addresses directly into the shader which requires softpin.
491 */
492 device->has_a64_buffer_access = device->info.gen >= 8 &&
493 device->use_softpin;
494
495 /* We first get bindless image access on Skylake and we can only really do
496 * it if we don't have any relocations so we need softpin.
497 */
498 device->has_bindless_images = device->info.gen >= 9 &&
499 device->use_softpin;
500
501 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
502 * because it's just a matter of setting the sampler address in the sample
503 * message header. However, we've not bothered to wire it up for vec4 so
504 * we leave it disabled on gen7.
505 */
506 device->has_bindless_samplers = device->info.gen >= 8;
507
508 device->has_mem_available = get_available_system_memory() != 0;
509
510 device->always_flush_cache =
511 driQueryOptionb(&instance->dri_options, "always_flush_cache");
512
513 /* Starting with Gen10, the timestamp frequency of the command streamer may
514 * vary from one part to another. We can query the value from the kernel.
515 */
516 if (device->info.gen >= 10) {
517 int timestamp_frequency =
518 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
519
520 if (timestamp_frequency < 0)
521 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
522 else
523 device->info.timestamp_frequency = timestamp_frequency;
524 }
525
526 /* GENs prior to 8 do not support EU/Subslice info */
527 if (device->info.gen >= 8) {
528 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
529 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
530
531 /* Without this information, we cannot get the right Braswell
532 * brandstrings, and we have to use conservative numbers for GPGPU on
533 * many platforms, but otherwise, things will just work.
534 */
535 if (device->subslice_total < 1 || device->eu_total < 1) {
536 intel_logw("Kernel 4.1 required to properly query GPU properties");
537 }
538 } else if (device->info.gen == 7) {
539 device->subslice_total = 1 << (device->info.gt - 1);
540 }
541
542 if (device->info.is_cherryview &&
543 device->subslice_total > 0 && device->eu_total > 0) {
544 /* Logical CS threads = EUs per subslice * num threads per EU */
545 uint32_t max_cs_threads =
546 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
547
548 /* Fuse configurations may give more threads than expected, never less. */
549 if (max_cs_threads > device->info.max_cs_threads)
550 device->info.max_cs_threads = max_cs_threads;
551 }
552
553 device->compiler = brw_compiler_create(NULL, &device->info);
554 if (device->compiler == NULL) {
555 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
556 goto fail;
557 }
558 device->compiler->shader_debug_log = compiler_debug_log;
559 device->compiler->shader_perf_log = compiler_perf_log;
560 device->compiler->supports_pull_constants = false;
561 device->compiler->constant_buffer_0_is_relative =
562 device->info.gen < 8 || !device->has_context_isolation;
563 device->compiler->supports_shader_constants = true;
564 device->compiler->compact_params = false;
565
566 /* Broadwell PRM says:
567 *
568 * "Before Gen8, there was a historical configuration control field to
569 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
570 * different places: TILECTL[1:0], ARB_MODE[5:4], and
571 * DISP_ARB_CTL[14:13].
572 *
573 * For Gen8 and subsequent generations, the swizzle fields are all
574 * reserved, and the CPU's memory controller performs all address
575 * swizzling modifications."
576 */
577 bool swizzled =
578 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
579
580 isl_device_init(&device->isl_dev, &device->info, swizzled);
581
582 result = anv_physical_device_init_uuids(device);
583 if (result != VK_SUCCESS)
584 goto fail;
585
586 anv_physical_device_init_disk_cache(device);
587
588 if (instance->enabled_extensions.KHR_display) {
589 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
590 if (master_fd >= 0) {
591 /* prod the device with a GETPARAM call which will fail if
592 * we don't have permission to even render on this device
593 */
594 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
595 close(master_fd);
596 master_fd = -1;
597 }
598 }
599 }
600 device->master_fd = master_fd;
601
602 result = anv_init_wsi(device);
603 if (result != VK_SUCCESS) {
604 ralloc_free(device->compiler);
605 anv_physical_device_free_disk_cache(device);
606 goto fail;
607 }
608
609 device->perf = anv_get_perf(&device->info, fd);
610
611 anv_physical_device_get_supported_extensions(device,
612 &device->supported_extensions);
613
614
615 device->local_fd = fd;
616
617 return VK_SUCCESS;
618
619 fail:
620 close(fd);
621 if (master_fd != -1)
622 close(master_fd);
623 return result;
624 }
625
626 static void
627 anv_physical_device_finish(struct anv_physical_device *device)
628 {
629 anv_finish_wsi(device);
630 anv_physical_device_free_disk_cache(device);
631 ralloc_free(device->compiler);
632 ralloc_free(device->perf);
633 close(device->local_fd);
634 if (device->master_fd >= 0)
635 close(device->master_fd);
636 }
637
638 static void *
639 default_alloc_func(void *pUserData, size_t size, size_t align,
640 VkSystemAllocationScope allocationScope)
641 {
642 return malloc(size);
643 }
644
645 static void *
646 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
647 size_t align, VkSystemAllocationScope allocationScope)
648 {
649 return realloc(pOriginal, size);
650 }
651
652 static void
653 default_free_func(void *pUserData, void *pMemory)
654 {
655 free(pMemory);
656 }
657
658 static const VkAllocationCallbacks default_alloc = {
659 .pUserData = NULL,
660 .pfnAllocation = default_alloc_func,
661 .pfnReallocation = default_realloc_func,
662 .pfnFree = default_free_func,
663 };
664
665 VkResult anv_EnumerateInstanceExtensionProperties(
666 const char* pLayerName,
667 uint32_t* pPropertyCount,
668 VkExtensionProperties* pProperties)
669 {
670 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
671
672 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
673 if (anv_instance_extensions_supported.extensions[i]) {
674 vk_outarray_append(&out, prop) {
675 *prop = anv_instance_extensions[i];
676 }
677 }
678 }
679
680 return vk_outarray_status(&out);
681 }
682
683 VkResult anv_CreateInstance(
684 const VkInstanceCreateInfo* pCreateInfo,
685 const VkAllocationCallbacks* pAllocator,
686 VkInstance* pInstance)
687 {
688 struct anv_instance *instance;
689 VkResult result;
690
691 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
692
693 struct anv_instance_extension_table enabled_extensions = {};
694 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
695 int idx;
696 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
697 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
698 anv_instance_extensions[idx].extensionName) == 0)
699 break;
700 }
701
702 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
703 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
704
705 if (!anv_instance_extensions_supported.extensions[idx])
706 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
707
708 enabled_extensions.extensions[idx] = true;
709 }
710
711 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
712 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
713 if (!instance)
714 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
715
716 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
717
718 if (pAllocator)
719 instance->alloc = *pAllocator;
720 else
721 instance->alloc = default_alloc;
722
723 instance->app_info = (struct anv_app_info) { .api_version = 0 };
724 if (pCreateInfo->pApplicationInfo) {
725 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
726
727 instance->app_info.app_name =
728 vk_strdup(&instance->alloc, app->pApplicationName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.app_version = app->applicationVersion;
731
732 instance->app_info.engine_name =
733 vk_strdup(&instance->alloc, app->pEngineName,
734 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
735 instance->app_info.engine_version = app->engineVersion;
736
737 instance->app_info.api_version = app->apiVersion;
738 }
739
740 if (instance->app_info.api_version == 0)
741 instance->app_info.api_version = VK_API_VERSION_1_0;
742
743 instance->enabled_extensions = enabled_extensions;
744
745 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
746 /* Vulkan requires that entrypoints for extensions which have not been
747 * enabled must not be advertised.
748 */
749 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
750 &instance->enabled_extensions)) {
751 instance->dispatch.entrypoints[i] = NULL;
752 } else {
753 instance->dispatch.entrypoints[i] =
754 anv_instance_dispatch_table.entrypoints[i];
755 }
756 }
757
758 struct anv_physical_device *pdevice = &instance->physicalDevice;
759 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
760 /* Vulkan requires that entrypoints for extensions which have not been
761 * enabled must not be advertised.
762 */
763 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
764 &instance->enabled_extensions)) {
765 pdevice->dispatch.entrypoints[i] = NULL;
766 } else {
767 pdevice->dispatch.entrypoints[i] =
768 anv_physical_device_dispatch_table.entrypoints[i];
769 }
770 }
771
772 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
773 /* Vulkan requires that entrypoints for extensions which have not been
774 * enabled must not be advertised.
775 */
776 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
777 &instance->enabled_extensions, NULL)) {
778 instance->device_dispatch.entrypoints[i] = NULL;
779 } else {
780 instance->device_dispatch.entrypoints[i] =
781 anv_device_dispatch_table.entrypoints[i];
782 }
783 }
784
785 instance->physicalDeviceCount = -1;
786
787 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
788 if (result != VK_SUCCESS) {
789 vk_free2(&default_alloc, pAllocator, instance);
790 return vk_error(result);
791 }
792
793 instance->pipeline_cache_enabled =
794 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
795
796 glsl_type_singleton_init_or_ref();
797
798 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
799
800 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
801 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
802 0, "anv", NULL,
803 instance->app_info.engine_name,
804 instance->app_info.engine_version);
805
806 *pInstance = anv_instance_to_handle(instance);
807
808 return VK_SUCCESS;
809 }
810
811 void anv_DestroyInstance(
812 VkInstance _instance,
813 const VkAllocationCallbacks* pAllocator)
814 {
815 ANV_FROM_HANDLE(anv_instance, instance, _instance);
816
817 if (!instance)
818 return;
819
820 if (instance->physicalDeviceCount > 0) {
821 /* We support at most one physical device. */
822 assert(instance->physicalDeviceCount == 1);
823 anv_physical_device_finish(&instance->physicalDevice);
824 }
825
826 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
827 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
828
829 VG(VALGRIND_DESTROY_MEMPOOL(instance));
830
831 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
832
833 glsl_type_singleton_decref();
834
835 driDestroyOptionCache(&instance->dri_options);
836 driDestroyOptionInfo(&instance->available_dri_options);
837
838 vk_free(&instance->alloc, instance);
839 }
840
841 static VkResult
842 anv_enumerate_devices(struct anv_instance *instance)
843 {
844 /* TODO: Check for more devices ? */
845 drmDevicePtr devices[8];
846 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
847 int max_devices;
848
849 instance->physicalDeviceCount = 0;
850
851 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
852 if (max_devices < 1)
853 return VK_ERROR_INCOMPATIBLE_DRIVER;
854
855 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
856 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
857 devices[i]->bustype == DRM_BUS_PCI &&
858 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
859
860 result = anv_physical_device_init(&instance->physicalDevice,
861 instance, devices[i]);
862 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
863 break;
864 }
865 }
866 drmFreeDevices(devices, max_devices);
867
868 if (result == VK_SUCCESS)
869 instance->physicalDeviceCount = 1;
870
871 return result;
872 }
873
874 static VkResult
875 anv_instance_ensure_physical_device(struct anv_instance *instance)
876 {
877 if (instance->physicalDeviceCount < 0) {
878 VkResult result = anv_enumerate_devices(instance);
879 if (result != VK_SUCCESS &&
880 result != VK_ERROR_INCOMPATIBLE_DRIVER)
881 return result;
882 }
883
884 return VK_SUCCESS;
885 }
886
887 VkResult anv_EnumeratePhysicalDevices(
888 VkInstance _instance,
889 uint32_t* pPhysicalDeviceCount,
890 VkPhysicalDevice* pPhysicalDevices)
891 {
892 ANV_FROM_HANDLE(anv_instance, instance, _instance);
893 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
894
895 VkResult result = anv_instance_ensure_physical_device(instance);
896 if (result != VK_SUCCESS)
897 return result;
898
899 if (instance->physicalDeviceCount == 0)
900 return VK_SUCCESS;
901
902 assert(instance->physicalDeviceCount == 1);
903 vk_outarray_append(&out, i) {
904 *i = anv_physical_device_to_handle(&instance->physicalDevice);
905 }
906
907 return vk_outarray_status(&out);
908 }
909
910 VkResult anv_EnumeratePhysicalDeviceGroups(
911 VkInstance _instance,
912 uint32_t* pPhysicalDeviceGroupCount,
913 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
914 {
915 ANV_FROM_HANDLE(anv_instance, instance, _instance);
916 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
917 pPhysicalDeviceGroupCount);
918
919 VkResult result = anv_instance_ensure_physical_device(instance);
920 if (result != VK_SUCCESS)
921 return result;
922
923 if (instance->physicalDeviceCount == 0)
924 return VK_SUCCESS;
925
926 assert(instance->physicalDeviceCount == 1);
927
928 vk_outarray_append(&out, p) {
929 p->physicalDeviceCount = 1;
930 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
931 p->physicalDevices[0] =
932 anv_physical_device_to_handle(&instance->physicalDevice);
933 p->subsetAllocation = false;
934
935 vk_foreach_struct(ext, p->pNext)
936 anv_debug_ignored_stype(ext->sType);
937 }
938
939 return vk_outarray_status(&out);
940 }
941
942 void anv_GetPhysicalDeviceFeatures(
943 VkPhysicalDevice physicalDevice,
944 VkPhysicalDeviceFeatures* pFeatures)
945 {
946 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
947
948 *pFeatures = (VkPhysicalDeviceFeatures) {
949 .robustBufferAccess = true,
950 .fullDrawIndexUint32 = true,
951 .imageCubeArray = true,
952 .independentBlend = true,
953 .geometryShader = true,
954 .tessellationShader = true,
955 .sampleRateShading = true,
956 .dualSrcBlend = true,
957 .logicOp = true,
958 .multiDrawIndirect = true,
959 .drawIndirectFirstInstance = true,
960 .depthClamp = true,
961 .depthBiasClamp = true,
962 .fillModeNonSolid = true,
963 .depthBounds = pdevice->info.gen >= 12,
964 .wideLines = true,
965 .largePoints = true,
966 .alphaToOne = true,
967 .multiViewport = true,
968 .samplerAnisotropy = true,
969 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
970 pdevice->info.is_baytrail,
971 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
972 .textureCompressionBC = true,
973 .occlusionQueryPrecise = true,
974 .pipelineStatisticsQuery = true,
975 .fragmentStoresAndAtomics = true,
976 .shaderTessellationAndGeometryPointSize = true,
977 .shaderImageGatherExtended = true,
978 .shaderStorageImageExtendedFormats = true,
979 .shaderStorageImageMultisample = false,
980 .shaderStorageImageReadWithoutFormat = false,
981 .shaderStorageImageWriteWithoutFormat = true,
982 .shaderUniformBufferArrayDynamicIndexing = true,
983 .shaderSampledImageArrayDynamicIndexing = true,
984 .shaderStorageBufferArrayDynamicIndexing = true,
985 .shaderStorageImageArrayDynamicIndexing = true,
986 .shaderClipDistance = true,
987 .shaderCullDistance = true,
988 .shaderFloat64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt64 = pdevice->info.gen >= 8 &&
991 pdevice->info.has_64bit_types,
992 .shaderInt16 = pdevice->info.gen >= 8,
993 .shaderResourceMinLod = pdevice->info.gen >= 9,
994 .variableMultisampleRate = true,
995 .inheritedQueries = true,
996 };
997
998 /* We can't do image stores in vec4 shaders */
999 pFeatures->vertexPipelineStoresAndAtomics =
1000 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
1001 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1002
1003 struct anv_app_info *app_info = &pdevice->instance->app_info;
1004
1005 /* The new DOOM and Wolfenstein games require depthBounds without
1006 * checking for it. They seem to run fine without it so just claim it's
1007 * there and accept the consequences.
1008 */
1009 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1010 pFeatures->depthBounds = true;
1011 }
1012
1013 void anv_GetPhysicalDeviceFeatures2(
1014 VkPhysicalDevice physicalDevice,
1015 VkPhysicalDeviceFeatures2* pFeatures)
1016 {
1017 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1018 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1019
1020 vk_foreach_struct(ext, pFeatures->pNext) {
1021 switch (ext->sType) {
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1023 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1024 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1025 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1026 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1027 features->storagePushConstant8 = pdevice->info.gen >= 8;
1028 break;
1029 }
1030
1031 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1032 VkPhysicalDevice16BitStorageFeatures *features =
1033 (VkPhysicalDevice16BitStorageFeatures *)ext;
1034 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1035 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1036 features->storagePushConstant16 = pdevice->info.gen >= 8;
1037 features->storageInputOutput16 = false;
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1042 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1043 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1044 features->bufferDeviceAddressCaptureReplay = false;
1045 features->bufferDeviceAddressMultiDevice = false;
1046 break;
1047 }
1048
1049 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1050 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1051 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1052 features->computeDerivativeGroupQuads = true;
1053 features->computeDerivativeGroupLinear = true;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1058 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1059 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1060 features->conditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1063 pdevice->info.is_haswell;
1064 break;
1065 }
1066
1067 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1068 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1069 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1070 features->depthClipEnable = true;
1071 break;
1072 }
1073
1074 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1075 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1076 features->shaderFloat16 = pdevice->info.gen >= 8;
1077 features->shaderInt8 = pdevice->info.gen >= 8;
1078 break;
1079 }
1080
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1082 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1083 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1084 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1085 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1086 features->fragmentShaderShadingRateInterlock = false;
1087 break;
1088 }
1089
1090 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1091 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1092 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1093 features->hostQueryReset = true;
1094 break;
1095 }
1096
1097 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1098 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1099 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1100 features->shaderInputAttachmentArrayDynamicIndexing = false;
1101 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1102 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1103 features->shaderUniformBufferArrayNonUniformIndexing = false;
1104 features->shaderSampledImageArrayNonUniformIndexing = true;
1105 features->shaderStorageBufferArrayNonUniformIndexing = true;
1106 features->shaderStorageImageArrayNonUniformIndexing = true;
1107 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1108 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1109 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1110 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1111 features->descriptorBindingSampledImageUpdateAfterBind = true;
1112 features->descriptorBindingStorageImageUpdateAfterBind = true;
1113 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1114 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1115 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1116 features->descriptorBindingUpdateUnusedWhilePending = true;
1117 features->descriptorBindingPartiallyBound = true;
1118 features->descriptorBindingVariableDescriptorCount = false;
1119 features->runtimeDescriptorArray = true;
1120 break;
1121 }
1122
1123 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1124 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1125 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1126 features->indexTypeUint8 = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1131 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1132 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1133 features->inlineUniformBlock = true;
1134 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1139 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1140 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1141 features->rectangularLines = true;
1142 features->bresenhamLines = true;
1143 features->smoothLines = true;
1144 features->stippledRectangularLines = false;
1145 features->stippledBresenhamLines = true;
1146 features->stippledSmoothLines = false;
1147 break;
1148 }
1149
1150 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1151 VkPhysicalDeviceMultiviewFeatures *features =
1152 (VkPhysicalDeviceMultiviewFeatures *)ext;
1153 features->multiview = true;
1154 features->multiviewGeometryShader = true;
1155 features->multiviewTessellationShader = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1160 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1161 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1162 features->imagelessFramebuffer = true;
1163 break;
1164 }
1165
1166 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1167 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1168 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1169 features->pipelineExecutableInfo = true;
1170 break;
1171 }
1172
1173 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1174 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1175 features->protectedMemory = false;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1180 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1181 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1182 features->samplerYcbcrConversion = true;
1183 break;
1184 }
1185
1186 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1187 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1188 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1189 features->scalarBlockLayout = true;
1190 break;
1191 }
1192
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1194 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1195 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1196 features->separateDepthStencilLayouts = true;
1197 break;
1198 }
1199
1200 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1201 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1202 features->shaderBufferInt64Atomics =
1203 pdevice->info.gen >= 9 && pdevice->use_softpin;
1204 features->shaderSharedInt64Atomics = VK_FALSE;
1205 break;
1206 }
1207
1208 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1209 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1210 features->shaderDemoteToHelperInvocation = true;
1211 break;
1212 }
1213
1214 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1215 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1216 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1217 features->shaderSubgroupClock = true;
1218 features->shaderDeviceClock = false;
1219 break;
1220 }
1221
1222 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1223 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1224 features->shaderDrawParameters = true;
1225 break;
1226 }
1227
1228 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1229 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1230 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1231 features->shaderSubgroupExtendedTypes = true;
1232 break;
1233 }
1234
1235 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1236 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1237 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1238 features->subgroupSizeControl = true;
1239 features->computeFullSubgroups = true;
1240 break;
1241 }
1242
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1244 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1245 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1246 features->texelBufferAlignment = true;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1251 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1252 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1253 features->timelineSemaphore = true;
1254 break;
1255 }
1256
1257 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1258 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1259 features->variablePointersStorageBuffer = true;
1260 features->variablePointers = true;
1261 break;
1262 }
1263
1264 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1265 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1266 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1267 features->transformFeedback = true;
1268 features->geometryStreams = true;
1269 break;
1270 }
1271
1272 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1273 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1274 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1275 features->uniformBufferStandardLayout = true;
1276 break;
1277 }
1278
1279 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1280 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1281 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1282 features->vertexAttributeInstanceRateDivisor = true;
1283 features->vertexAttributeInstanceRateZeroDivisor = true;
1284 break;
1285 }
1286
1287 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1288 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1289 features->vulkanMemoryModel = true;
1290 features->vulkanMemoryModelDeviceScope = true;
1291 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1292 break;
1293 }
1294
1295 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1296 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1297 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1298 features->ycbcrImageArrays = true;
1299 break;
1300 }
1301
1302 default:
1303 anv_debug_ignored_stype(ext->sType);
1304 break;
1305 }
1306 }
1307 }
1308
1309 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1310
1311 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1312 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1313
1314 void anv_GetPhysicalDeviceProperties(
1315 VkPhysicalDevice physicalDevice,
1316 VkPhysicalDeviceProperties* pProperties)
1317 {
1318 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1319 const struct gen_device_info *devinfo = &pdevice->info;
1320
1321 /* See assertions made when programming the buffer surface state. */
1322 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1323 (1ul << 30) : (1ul << 27);
1324
1325 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1326 const uint32_t max_textures =
1327 pdevice->has_bindless_images ? UINT16_MAX : 128;
1328 const uint32_t max_samplers =
1329 pdevice->has_bindless_samplers ? UINT16_MAX :
1330 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1331 const uint32_t max_images =
1332 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1333
1334 /* If we can use bindless for everything, claim a high per-stage limit,
1335 * otherwise use the binding table size, minus the slots reserved for
1336 * render targets and one slot for the descriptor buffer. */
1337 const uint32_t max_per_stage =
1338 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1339 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1340
1341 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1342
1343 VkSampleCountFlags sample_counts =
1344 isl_device_get_sample_counts(&pdevice->isl_dev);
1345
1346
1347 VkPhysicalDeviceLimits limits = {
1348 .maxImageDimension1D = (1 << 14),
1349 .maxImageDimension2D = (1 << 14),
1350 .maxImageDimension3D = (1 << 11),
1351 .maxImageDimensionCube = (1 << 14),
1352 .maxImageArrayLayers = (1 << 11),
1353 .maxTexelBufferElements = 128 * 1024 * 1024,
1354 .maxUniformBufferRange = (1ul << 27),
1355 .maxStorageBufferRange = max_raw_buffer_sz,
1356 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1357 .maxMemoryAllocationCount = UINT32_MAX,
1358 .maxSamplerAllocationCount = 64 * 1024,
1359 .bufferImageGranularity = 64, /* A cache line */
1360 .sparseAddressSpaceSize = 0,
1361 .maxBoundDescriptorSets = MAX_SETS,
1362 .maxPerStageDescriptorSamplers = max_samplers,
1363 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1364 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1365 .maxPerStageDescriptorSampledImages = max_textures,
1366 .maxPerStageDescriptorStorageImages = max_images,
1367 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1368 .maxPerStageResources = max_per_stage,
1369 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1370 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1371 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1372 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1373 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1374 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1375 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1376 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1377 .maxVertexInputAttributes = MAX_VBS,
1378 .maxVertexInputBindings = MAX_VBS,
1379 .maxVertexInputAttributeOffset = 2047,
1380 .maxVertexInputBindingStride = 2048,
1381 .maxVertexOutputComponents = 128,
1382 .maxTessellationGenerationLevel = 64,
1383 .maxTessellationPatchSize = 32,
1384 .maxTessellationControlPerVertexInputComponents = 128,
1385 .maxTessellationControlPerVertexOutputComponents = 128,
1386 .maxTessellationControlPerPatchOutputComponents = 128,
1387 .maxTessellationControlTotalOutputComponents = 2048,
1388 .maxTessellationEvaluationInputComponents = 128,
1389 .maxTessellationEvaluationOutputComponents = 128,
1390 .maxGeometryShaderInvocations = 32,
1391 .maxGeometryInputComponents = 64,
1392 .maxGeometryOutputComponents = 128,
1393 .maxGeometryOutputVertices = 256,
1394 .maxGeometryTotalOutputComponents = 1024,
1395 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1396 .maxFragmentOutputAttachments = 8,
1397 .maxFragmentDualSrcAttachments = 1,
1398 .maxFragmentCombinedOutputResources = 8,
1399 .maxComputeSharedMemorySize = 64 * 1024,
1400 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1401 .maxComputeWorkGroupInvocations = max_workgroup_size,
1402 .maxComputeWorkGroupSize = {
1403 max_workgroup_size,
1404 max_workgroup_size,
1405 max_workgroup_size,
1406 },
1407 .subPixelPrecisionBits = 8,
1408 .subTexelPrecisionBits = 8,
1409 .mipmapPrecisionBits = 8,
1410 .maxDrawIndexedIndexValue = UINT32_MAX,
1411 .maxDrawIndirectCount = UINT32_MAX,
1412 .maxSamplerLodBias = 16,
1413 .maxSamplerAnisotropy = 16,
1414 .maxViewports = MAX_VIEWPORTS,
1415 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1416 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1417 .viewportSubPixelBits = 13, /* We take a float? */
1418 .minMemoryMapAlignment = 4096, /* A page */
1419 /* The dataport requires texel alignment so we need to assume a worst
1420 * case of R32G32B32A32 which is 16 bytes.
1421 */
1422 .minTexelBufferOffsetAlignment = 16,
1423 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1424 .minUniformBufferOffsetAlignment = 32,
1425 .minStorageBufferOffsetAlignment = 4,
1426 .minTexelOffset = -8,
1427 .maxTexelOffset = 7,
1428 .minTexelGatherOffset = -32,
1429 .maxTexelGatherOffset = 31,
1430 .minInterpolationOffset = -0.5,
1431 .maxInterpolationOffset = 0.4375,
1432 .subPixelInterpolationOffsetBits = 4,
1433 .maxFramebufferWidth = (1 << 14),
1434 .maxFramebufferHeight = (1 << 14),
1435 .maxFramebufferLayers = (1 << 11),
1436 .framebufferColorSampleCounts = sample_counts,
1437 .framebufferDepthSampleCounts = sample_counts,
1438 .framebufferStencilSampleCounts = sample_counts,
1439 .framebufferNoAttachmentsSampleCounts = sample_counts,
1440 .maxColorAttachments = MAX_RTS,
1441 .sampledImageColorSampleCounts = sample_counts,
1442 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1443 .sampledImageDepthSampleCounts = sample_counts,
1444 .sampledImageStencilSampleCounts = sample_counts,
1445 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1446 .maxSampleMaskWords = 1,
1447 .timestampComputeAndGraphics = true,
1448 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1449 .maxClipDistances = 8,
1450 .maxCullDistances = 8,
1451 .maxCombinedClipAndCullDistances = 8,
1452 .discreteQueuePriorities = 2,
1453 .pointSizeRange = { 0.125, 255.875 },
1454 .lineWidthRange = {
1455 0.0,
1456 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1457 2047.9921875 : 7.9921875,
1458 },
1459 .pointSizeGranularity = (1.0 / 8.0),
1460 .lineWidthGranularity = (1.0 / 128.0),
1461 .strictLines = false,
1462 .standardSampleLocations = true,
1463 .optimalBufferCopyOffsetAlignment = 128,
1464 .optimalBufferCopyRowPitchAlignment = 128,
1465 .nonCoherentAtomSize = 64,
1466 };
1467
1468 *pProperties = (VkPhysicalDeviceProperties) {
1469 .apiVersion = anv_physical_device_api_version(pdevice),
1470 .driverVersion = vk_get_driver_version(),
1471 .vendorID = 0x8086,
1472 .deviceID = pdevice->chipset_id,
1473 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1474 .limits = limits,
1475 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1476 };
1477
1478 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1479 "%s", pdevice->name);
1480 memcpy(pProperties->pipelineCacheUUID,
1481 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1482 }
1483
1484 void anv_GetPhysicalDeviceProperties2(
1485 VkPhysicalDevice physicalDevice,
1486 VkPhysicalDeviceProperties2* pProperties)
1487 {
1488 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1489
1490 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1491
1492 vk_foreach_struct(ext, pProperties->pNext) {
1493 switch (ext->sType) {
1494 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1495 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1496 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1497
1498 /* We support all of the depth resolve modes */
1499 props->supportedDepthResolveModes =
1500 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1501 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1502 VK_RESOLVE_MODE_MIN_BIT_KHR |
1503 VK_RESOLVE_MODE_MAX_BIT_KHR;
1504
1505 /* Average doesn't make sense for stencil so we don't support that */
1506 props->supportedStencilResolveModes =
1507 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1508 if (pdevice->info.gen >= 8) {
1509 /* The advanced stencil resolve modes currently require stencil
1510 * sampling be supported by the hardware.
1511 */
1512 props->supportedStencilResolveModes |=
1513 VK_RESOLVE_MODE_MIN_BIT_KHR |
1514 VK_RESOLVE_MODE_MAX_BIT_KHR;
1515 }
1516
1517 props->independentResolveNone = true;
1518 props->independentResolve = true;
1519 break;
1520 }
1521
1522 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1523 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1524 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1525
1526 /* It's a bit hard to exactly map our implementation to the limits
1527 * described here. The bindless surface handle in the extended
1528 * message descriptors is 20 bits and it's an index into the table of
1529 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1530 * address. Given that most things consume two surface states per
1531 * view (general/sampled for textures and write-only/read-write for
1532 * images), we claim 2^19 things.
1533 *
1534 * For SSBOs, we just use A64 messages so there is no real limit
1535 * there beyond the limit on the total size of a descriptor set.
1536 */
1537 const unsigned max_bindless_views = 1 << 19;
1538
1539 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1540 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1541 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1542 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1543 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1544 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1545 props->robustBufferAccessUpdateAfterBind = true;
1546 props->quadDivergentImplicitLod = false;
1547 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1548 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1549 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1550 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1551 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1552 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1553 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1554 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1555 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1556 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1557 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1558 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1559 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1560 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1561 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1562 break;
1563 }
1564
1565 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1566 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1567 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1568
1569 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1570 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1571 "Intel open-source Mesa driver");
1572
1573 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1574 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1575
1576 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1577 .major = 1,
1578 .minor = 1,
1579 .subminor = 2,
1580 .patch = 0,
1581 };
1582 break;
1583 }
1584
1585 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1586 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1587 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1588 /* Userptr needs page aligned memory. */
1589 props->minImportedHostPointerAlignment = 4096;
1590 break;
1591 }
1592
1593 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1594 VkPhysicalDeviceIDProperties *id_props =
1595 (VkPhysicalDeviceIDProperties *)ext;
1596 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1597 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1598 /* The LUID is for Windows. */
1599 id_props->deviceLUIDValid = false;
1600 break;
1601 }
1602
1603 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1604 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1605 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1606 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1607 props->maxPerStageDescriptorInlineUniformBlocks =
1608 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1609 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1610 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1611 props->maxDescriptorSetInlineUniformBlocks =
1612 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1613 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1614 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1615 break;
1616 }
1617
1618 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1619 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1620 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1621 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1622 * Sampling Rules - Legacy Mode", it says the following:
1623 *
1624 * "Note that the device divides a pixel into a 16x16 array of
1625 * subpixels, referenced by their upper left corners."
1626 *
1627 * This is the only known reference in the PRMs to the subpixel
1628 * precision of line rasterization and a "16x16 array of subpixels"
1629 * implies 4 subpixel precision bits. Empirical testing has shown
1630 * that 4 subpixel precision bits applies to all line rasterization
1631 * types.
1632 */
1633 props->lineSubPixelPrecisionBits = 4;
1634 break;
1635 }
1636
1637 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1638 VkPhysicalDeviceMaintenance3Properties *props =
1639 (VkPhysicalDeviceMaintenance3Properties *)ext;
1640 /* This value doesn't matter for us today as our per-stage
1641 * descriptors are the real limit.
1642 */
1643 props->maxPerSetDescriptors = 1024;
1644 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1645 break;
1646 }
1647
1648 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1649 VkPhysicalDeviceMultiviewProperties *properties =
1650 (VkPhysicalDeviceMultiviewProperties *)ext;
1651 properties->maxMultiviewViewCount = 16;
1652 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1653 break;
1654 }
1655
1656 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1657 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1658 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1659 properties->pciDomain = pdevice->pci_info.domain;
1660 properties->pciBus = pdevice->pci_info.bus;
1661 properties->pciDevice = pdevice->pci_info.device;
1662 properties->pciFunction = pdevice->pci_info.function;
1663 break;
1664 }
1665
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1667 VkPhysicalDevicePointClippingProperties *properties =
1668 (VkPhysicalDevicePointClippingProperties *) ext;
1669 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1670 break;
1671 }
1672
1673 #pragma GCC diagnostic push
1674 #pragma GCC diagnostic ignored "-Wswitch"
1675 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1676 VkPhysicalDevicePresentationPropertiesANDROID *props =
1677 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1678 props->sharedImage = VK_FALSE;
1679 break;
1680 }
1681 #pragma GCC diagnostic pop
1682
1683 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1684 VkPhysicalDeviceProtectedMemoryProperties *props =
1685 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1686 props->protectedNoFault = false;
1687 break;
1688 }
1689
1690 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1691 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1692 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1693
1694 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1695 break;
1696 }
1697
1698 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1699 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1700 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1701 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1702 properties->filterMinmaxSingleComponentFormats = true;
1703 break;
1704 }
1705
1706 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1707 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1708
1709 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1710
1711 VkShaderStageFlags scalar_stages = 0;
1712 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1713 if (pdevice->compiler->scalar_stage[stage])
1714 scalar_stages |= mesa_to_vk_shader_stage(stage);
1715 }
1716 properties->supportedStages = scalar_stages;
1717
1718 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1719 VK_SUBGROUP_FEATURE_VOTE_BIT |
1720 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1721 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1722 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1723 VK_SUBGROUP_FEATURE_QUAD_BIT;
1724 if (pdevice->info.gen >= 8) {
1725 /* TODO: There's no technical reason why these can't be made to
1726 * work on gen7 but they don't at the moment so it's best to leave
1727 * the feature disabled than enabled and broken.
1728 */
1729 properties->supportedOperations |=
1730 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1731 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1732 }
1733 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1734 break;
1735 }
1736
1737 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1738 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1739 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1740 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1741 props->minSubgroupSize = 8;
1742 props->maxSubgroupSize = 32;
1743 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1744 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1745 break;
1746 }
1747 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1748 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1749 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1750 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1751
1752 /* Broadwell does not support HF denorms and there are restrictions
1753 * other gens. According to Kabylake's PRM:
1754 *
1755 * "math - Extended Math Function
1756 * [...]
1757 * Restriction : Half-float denorms are always retained."
1758 */
1759 properties->shaderDenormFlushToZeroFloat16 = false;
1760 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1761 properties->shaderRoundingModeRTEFloat16 = true;
1762 properties->shaderRoundingModeRTZFloat16 = true;
1763 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1764
1765 properties->shaderDenormFlushToZeroFloat32 = true;
1766 properties->shaderDenormPreserveFloat32 = true;
1767 properties->shaderRoundingModeRTEFloat32 = true;
1768 properties->shaderRoundingModeRTZFloat32 = true;
1769 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1770
1771 properties->shaderDenormFlushToZeroFloat64 = true;
1772 properties->shaderDenormPreserveFloat64 = true;
1773 properties->shaderRoundingModeRTEFloat64 = true;
1774 properties->shaderRoundingModeRTZFloat64 = true;
1775 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1776 break;
1777 }
1778
1779 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1780 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1781 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1782
1783 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1784 * Base Address:
1785 *
1786 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1787 * specifies the base address of the first element of the surface,
1788 * computed in software by adding the surface base address to the
1789 * byte offset of the element in the buffer. The base address must
1790 * be aligned to element size."
1791 *
1792 * The typed dataport messages require that things be texel aligned.
1793 * Otherwise, we may just load/store the wrong data or, in the worst
1794 * case, there may be hangs.
1795 */
1796 props->storageTexelBufferOffsetAlignmentBytes = 16;
1797 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1798
1799 /* The sampler, however, is much more forgiving and it can handle
1800 * arbitrary byte alignment for linear and buffer surfaces. It's
1801 * hard to find a good PRM citation for this but years of empirical
1802 * experience demonstrate that this is true.
1803 */
1804 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1805 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1806 break;
1807 }
1808
1809 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1810 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1811 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1812 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1813 break;
1814 }
1815
1816 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1817 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1818 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1819
1820 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1821 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1822 props->maxTransformFeedbackBufferSize = (1ull << 32);
1823 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1824 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1825 props->maxTransformFeedbackBufferDataStride = 2048;
1826 props->transformFeedbackQueries = true;
1827 props->transformFeedbackStreamsLinesTriangles = false;
1828 props->transformFeedbackRasterizationStreamSelect = false;
1829 props->transformFeedbackDraw = true;
1830 break;
1831 }
1832
1833 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1834 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1835 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1836 /* We have to restrict this a bit for multiview */
1837 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1838 break;
1839 }
1840
1841 default:
1842 anv_debug_ignored_stype(ext->sType);
1843 break;
1844 }
1845 }
1846 }
1847
1848 /* We support exactly one queue family. */
1849 static const VkQueueFamilyProperties
1850 anv_queue_family_properties = {
1851 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1852 VK_QUEUE_COMPUTE_BIT |
1853 VK_QUEUE_TRANSFER_BIT,
1854 .queueCount = 1,
1855 .timestampValidBits = 36, /* XXX: Real value here */
1856 .minImageTransferGranularity = { 1, 1, 1 },
1857 };
1858
1859 void anv_GetPhysicalDeviceQueueFamilyProperties(
1860 VkPhysicalDevice physicalDevice,
1861 uint32_t* pCount,
1862 VkQueueFamilyProperties* pQueueFamilyProperties)
1863 {
1864 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1865
1866 vk_outarray_append(&out, p) {
1867 *p = anv_queue_family_properties;
1868 }
1869 }
1870
1871 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1872 VkPhysicalDevice physicalDevice,
1873 uint32_t* pQueueFamilyPropertyCount,
1874 VkQueueFamilyProperties2* pQueueFamilyProperties)
1875 {
1876
1877 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1878
1879 vk_outarray_append(&out, p) {
1880 p->queueFamilyProperties = anv_queue_family_properties;
1881
1882 vk_foreach_struct(s, p->pNext) {
1883 anv_debug_ignored_stype(s->sType);
1884 }
1885 }
1886 }
1887
1888 void anv_GetPhysicalDeviceMemoryProperties(
1889 VkPhysicalDevice physicalDevice,
1890 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1891 {
1892 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1893
1894 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1895 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1896 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1897 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1898 .heapIndex = physical_device->memory.types[i].heapIndex,
1899 };
1900 }
1901
1902 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1903 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1904 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1905 .size = physical_device->memory.heaps[i].size,
1906 .flags = physical_device->memory.heaps[i].flags,
1907 };
1908 }
1909 }
1910
1911 static void
1912 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1913 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1914 {
1915 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1916 uint64_t sys_available = get_available_system_memory();
1917 assert(sys_available > 0);
1918
1919 VkDeviceSize total_heaps_size = 0;
1920 for (size_t i = 0; i < device->memory.heap_count; i++)
1921 total_heaps_size += device->memory.heaps[i].size;
1922
1923 for (size_t i = 0; i < device->memory.heap_count; i++) {
1924 VkDeviceSize heap_size = device->memory.heaps[i].size;
1925 VkDeviceSize heap_used = device->memory.heaps[i].used;
1926 VkDeviceSize heap_budget;
1927
1928 double heap_proportion = (double) heap_size / total_heaps_size;
1929 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1930
1931 /*
1932 * Let's not incite the app to starve the system: report at most 90% of
1933 * available system memory.
1934 */
1935 uint64_t heap_available = sys_available_prop * 9 / 10;
1936 heap_budget = MIN2(heap_size, heap_used + heap_available);
1937
1938 /*
1939 * Round down to the nearest MB
1940 */
1941 heap_budget &= ~((1ull << 20) - 1);
1942
1943 /*
1944 * The heapBudget value must be non-zero for array elements less than
1945 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1946 * value must be less than or equal to VkMemoryHeap::size for each heap.
1947 */
1948 assert(0 < heap_budget && heap_budget <= heap_size);
1949
1950 memoryBudget->heapUsage[i] = heap_used;
1951 memoryBudget->heapBudget[i] = heap_budget;
1952 }
1953
1954 /* The heapBudget and heapUsage values must be zero for array elements
1955 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1956 */
1957 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1958 memoryBudget->heapBudget[i] = 0;
1959 memoryBudget->heapUsage[i] = 0;
1960 }
1961 }
1962
1963 void anv_GetPhysicalDeviceMemoryProperties2(
1964 VkPhysicalDevice physicalDevice,
1965 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1966 {
1967 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1968 &pMemoryProperties->memoryProperties);
1969
1970 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1971 switch (ext->sType) {
1972 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1973 anv_get_memory_budget(physicalDevice, (void*)ext);
1974 break;
1975 default:
1976 anv_debug_ignored_stype(ext->sType);
1977 break;
1978 }
1979 }
1980 }
1981
1982 void
1983 anv_GetDeviceGroupPeerMemoryFeatures(
1984 VkDevice device,
1985 uint32_t heapIndex,
1986 uint32_t localDeviceIndex,
1987 uint32_t remoteDeviceIndex,
1988 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1989 {
1990 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1991 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1992 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1993 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1994 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1995 }
1996
1997 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1998 VkInstance _instance,
1999 const char* pName)
2000 {
2001 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2002
2003 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2004 * when we have to return valid function pointers, NULL, or it's left
2005 * undefined. See the table for exact details.
2006 */
2007 if (pName == NULL)
2008 return NULL;
2009
2010 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2011 if (strcmp(pName, "vk" #entrypoint) == 0) \
2012 return (PFN_vkVoidFunction)anv_##entrypoint
2013
2014 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2015 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2016 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2017 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2018
2019 #undef LOOKUP_ANV_ENTRYPOINT
2020
2021 if (instance == NULL)
2022 return NULL;
2023
2024 int idx = anv_get_instance_entrypoint_index(pName);
2025 if (idx >= 0)
2026 return instance->dispatch.entrypoints[idx];
2027
2028 idx = anv_get_physical_device_entrypoint_index(pName);
2029 if (idx >= 0)
2030 return instance->physicalDevice.dispatch.entrypoints[idx];
2031
2032 idx = anv_get_device_entrypoint_index(pName);
2033 if (idx >= 0)
2034 return instance->device_dispatch.entrypoints[idx];
2035
2036 return NULL;
2037 }
2038
2039 /* With version 1+ of the loader interface the ICD should expose
2040 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2041 */
2042 PUBLIC
2043 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2044 VkInstance instance,
2045 const char* pName);
2046
2047 PUBLIC
2048 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2049 VkInstance instance,
2050 const char* pName)
2051 {
2052 return anv_GetInstanceProcAddr(instance, pName);
2053 }
2054
2055 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2056 VkDevice _device,
2057 const char* pName)
2058 {
2059 ANV_FROM_HANDLE(anv_device, device, _device);
2060
2061 if (!device || !pName)
2062 return NULL;
2063
2064 int idx = anv_get_device_entrypoint_index(pName);
2065 if (idx < 0)
2066 return NULL;
2067
2068 return device->dispatch.entrypoints[idx];
2069 }
2070
2071 /* With version 4+ of the loader interface the ICD should expose
2072 * vk_icdGetPhysicalDeviceProcAddr()
2073 */
2074 PUBLIC
2075 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2076 VkInstance _instance,
2077 const char* pName);
2078
2079 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2080 VkInstance _instance,
2081 const char* pName)
2082 {
2083 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2084
2085 if (!pName || !instance)
2086 return NULL;
2087
2088 int idx = anv_get_physical_device_entrypoint_index(pName);
2089 if (idx < 0)
2090 return NULL;
2091
2092 return instance->physicalDevice.dispatch.entrypoints[idx];
2093 }
2094
2095
2096 VkResult
2097 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2098 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2099 const VkAllocationCallbacks* pAllocator,
2100 VkDebugReportCallbackEXT* pCallback)
2101 {
2102 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2103 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2104 pCreateInfo, pAllocator, &instance->alloc,
2105 pCallback);
2106 }
2107
2108 void
2109 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2110 VkDebugReportCallbackEXT _callback,
2111 const VkAllocationCallbacks* pAllocator)
2112 {
2113 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2114 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2115 _callback, pAllocator, &instance->alloc);
2116 }
2117
2118 void
2119 anv_DebugReportMessageEXT(VkInstance _instance,
2120 VkDebugReportFlagsEXT flags,
2121 VkDebugReportObjectTypeEXT objectType,
2122 uint64_t object,
2123 size_t location,
2124 int32_t messageCode,
2125 const char* pLayerPrefix,
2126 const char* pMessage)
2127 {
2128 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2129 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2130 object, location, messageCode, pLayerPrefix, pMessage);
2131 }
2132
2133 static struct anv_state
2134 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2135 {
2136 struct anv_state state;
2137
2138 state = anv_state_pool_alloc(pool, size, align);
2139 memcpy(state.map, p, size);
2140
2141 return state;
2142 }
2143
2144 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2145 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2146 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2147 * color as a separate entry /after/ the float color. The layout of this entry
2148 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2149 *
2150 * Since we don't know the format/bpp, we can't make any of the border colors
2151 * containing '1' work for all formats, as it would be in the wrong place for
2152 * some of them. We opt to make 32-bit integers work as this seems like the
2153 * most common option. Fortunately, transparent black works regardless, as
2154 * all zeroes is the same in every bit-size.
2155 */
2156 struct hsw_border_color {
2157 float float32[4];
2158 uint32_t _pad0[12];
2159 uint32_t uint32[4];
2160 uint32_t _pad1[108];
2161 };
2162
2163 struct gen8_border_color {
2164 union {
2165 float float32[4];
2166 uint32_t uint32[4];
2167 };
2168 /* Pad out to 64 bytes */
2169 uint32_t _pad[12];
2170 };
2171
2172 static void
2173 anv_device_init_border_colors(struct anv_device *device)
2174 {
2175 if (device->info.is_haswell) {
2176 static const struct hsw_border_color border_colors[] = {
2177 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2178 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2179 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2180 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2181 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2182 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2183 };
2184
2185 device->border_colors =
2186 anv_state_pool_emit_data(&device->dynamic_state_pool,
2187 sizeof(border_colors), 512, border_colors);
2188 } else {
2189 static const struct gen8_border_color border_colors[] = {
2190 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2191 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2192 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2193 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2194 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2195 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2196 };
2197
2198 device->border_colors =
2199 anv_state_pool_emit_data(&device->dynamic_state_pool,
2200 sizeof(border_colors), 64, border_colors);
2201 }
2202 }
2203
2204 static VkResult
2205 anv_device_init_trivial_batch(struct anv_device *device)
2206 {
2207 VkResult result = anv_device_alloc_bo(device, 4096,
2208 ANV_BO_ALLOC_MAPPED,
2209 &device->trivial_batch_bo);
2210 if (result != VK_SUCCESS)
2211 return result;
2212
2213 struct anv_batch batch = {
2214 .start = device->trivial_batch_bo->map,
2215 .next = device->trivial_batch_bo->map,
2216 .end = device->trivial_batch_bo->map + 4096,
2217 };
2218
2219 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2220 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2221
2222 if (!device->info.has_llc)
2223 gen_clflush_range(batch.start, batch.next - batch.start);
2224
2225 return VK_SUCCESS;
2226 }
2227
2228 VkResult anv_EnumerateDeviceExtensionProperties(
2229 VkPhysicalDevice physicalDevice,
2230 const char* pLayerName,
2231 uint32_t* pPropertyCount,
2232 VkExtensionProperties* pProperties)
2233 {
2234 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2235 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2236
2237 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2238 if (device->supported_extensions.extensions[i]) {
2239 vk_outarray_append(&out, prop) {
2240 *prop = anv_device_extensions[i];
2241 }
2242 }
2243 }
2244
2245 return vk_outarray_status(&out);
2246 }
2247
2248 static void
2249 anv_device_init_dispatch(struct anv_device *device)
2250 {
2251 const struct anv_device_dispatch_table *genX_table;
2252 switch (device->info.gen) {
2253 case 12:
2254 genX_table = &gen12_device_dispatch_table;
2255 break;
2256 case 11:
2257 genX_table = &gen11_device_dispatch_table;
2258 break;
2259 case 10:
2260 genX_table = &gen10_device_dispatch_table;
2261 break;
2262 case 9:
2263 genX_table = &gen9_device_dispatch_table;
2264 break;
2265 case 8:
2266 genX_table = &gen8_device_dispatch_table;
2267 break;
2268 case 7:
2269 if (device->info.is_haswell)
2270 genX_table = &gen75_device_dispatch_table;
2271 else
2272 genX_table = &gen7_device_dispatch_table;
2273 break;
2274 default:
2275 unreachable("unsupported gen\n");
2276 }
2277
2278 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2279 /* Vulkan requires that entrypoints for extensions which have not been
2280 * enabled must not be advertised.
2281 */
2282 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2283 &device->instance->enabled_extensions,
2284 &device->enabled_extensions)) {
2285 device->dispatch.entrypoints[i] = NULL;
2286 } else if (genX_table->entrypoints[i]) {
2287 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2288 } else {
2289 device->dispatch.entrypoints[i] =
2290 anv_device_dispatch_table.entrypoints[i];
2291 }
2292 }
2293 }
2294
2295 static int
2296 vk_priority_to_gen(int priority)
2297 {
2298 switch (priority) {
2299 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2300 return GEN_CONTEXT_LOW_PRIORITY;
2301 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2302 return GEN_CONTEXT_MEDIUM_PRIORITY;
2303 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2304 return GEN_CONTEXT_HIGH_PRIORITY;
2305 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2306 return GEN_CONTEXT_REALTIME_PRIORITY;
2307 default:
2308 unreachable("Invalid priority");
2309 }
2310 }
2311
2312 static VkResult
2313 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2314 {
2315 VkResult result = anv_device_alloc_bo(device, 4096,
2316 ANV_BO_ALLOC_MAPPED,
2317 &device->hiz_clear_bo);
2318 if (result != VK_SUCCESS)
2319 return result;
2320
2321 union isl_color_value hiz_clear = { .u32 = { 0, } };
2322 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2323
2324 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2325
2326 if (!device->info.has_llc)
2327 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2328
2329 return VK_SUCCESS;
2330 }
2331
2332 static bool
2333 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2334 struct anv_block_pool *pool,
2335 uint64_t address)
2336 {
2337 anv_block_pool_foreach_bo(bo, pool) {
2338 uint64_t bo_address = gen_48b_address(bo->offset);
2339 if (address >= bo_address && address < (bo_address + bo->size)) {
2340 *ret = (struct gen_batch_decode_bo) {
2341 .addr = bo_address,
2342 .size = bo->size,
2343 .map = bo->map,
2344 };
2345 return true;
2346 }
2347 }
2348 return false;
2349 }
2350
2351 /* Finding a buffer for batch decoding */
2352 static struct gen_batch_decode_bo
2353 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2354 {
2355 struct anv_device *device = v_batch;
2356 struct gen_batch_decode_bo ret_bo = {};
2357
2358 assert(ppgtt);
2359
2360 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2361 return ret_bo;
2362 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2363 return ret_bo;
2364 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2365 return ret_bo;
2366 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2367 return ret_bo;
2368
2369 if (!device->cmd_buffer_being_decoded)
2370 return (struct gen_batch_decode_bo) { };
2371
2372 struct anv_batch_bo **bo;
2373
2374 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2375 /* The decoder zeroes out the top 16 bits, so we need to as well */
2376 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2377
2378 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2379 return (struct gen_batch_decode_bo) {
2380 .addr = bo_address,
2381 .size = (*bo)->bo->size,
2382 .map = (*bo)->bo->map,
2383 };
2384 }
2385 }
2386
2387 return (struct gen_batch_decode_bo) { };
2388 }
2389
2390 struct gen_aux_map_buffer {
2391 struct gen_buffer base;
2392 struct anv_state state;
2393 };
2394
2395 static struct gen_buffer *
2396 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2397 {
2398 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2399 if (!buf)
2400 return NULL;
2401
2402 struct anv_device *device = (struct anv_device*)driver_ctx;
2403 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2404 device->instance->physicalDevice.use_softpin);
2405
2406 struct anv_state_pool *pool = &device->dynamic_state_pool;
2407 buf->state = anv_state_pool_alloc(pool, size, size);
2408
2409 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2410 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2411 buf->base.map = buf->state.map;
2412 buf->base.driver_bo = &buf->state;
2413 return &buf->base;
2414 }
2415
2416 static void
2417 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2418 {
2419 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2420 struct anv_device *device = (struct anv_device*)driver_ctx;
2421 struct anv_state_pool *pool = &device->dynamic_state_pool;
2422 anv_state_pool_free(pool, buf->state);
2423 free(buf);
2424 }
2425
2426 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2427 .alloc = gen_aux_map_buffer_alloc,
2428 .free = gen_aux_map_buffer_free,
2429 };
2430
2431 VkResult anv_CreateDevice(
2432 VkPhysicalDevice physicalDevice,
2433 const VkDeviceCreateInfo* pCreateInfo,
2434 const VkAllocationCallbacks* pAllocator,
2435 VkDevice* pDevice)
2436 {
2437 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2438 VkResult result;
2439 struct anv_device *device;
2440
2441 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2442
2443 struct anv_device_extension_table enabled_extensions = { };
2444 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2445 int idx;
2446 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2447 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2448 anv_device_extensions[idx].extensionName) == 0)
2449 break;
2450 }
2451
2452 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2453 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2454
2455 if (!physical_device->supported_extensions.extensions[idx])
2456 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2457
2458 enabled_extensions.extensions[idx] = true;
2459 }
2460
2461 /* Check enabled features */
2462 if (pCreateInfo->pEnabledFeatures) {
2463 VkPhysicalDeviceFeatures supported_features;
2464 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2465 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2466 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2467 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2468 for (uint32_t i = 0; i < num_features; i++) {
2469 if (enabled_feature[i] && !supported_feature[i])
2470 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2471 }
2472 }
2473
2474 /* Check requested queues and fail if we are requested to create any
2475 * queues with flags we don't support.
2476 */
2477 assert(pCreateInfo->queueCreateInfoCount > 0);
2478 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2479 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2480 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2481 }
2482
2483 /* Check if client specified queue priority. */
2484 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2485 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2486 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2487
2488 VkQueueGlobalPriorityEXT priority =
2489 queue_priority ? queue_priority->globalPriority :
2490 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2491
2492 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2493 sizeof(*device), 8,
2494 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2495 if (!device)
2496 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2497
2498 if (INTEL_DEBUG & DEBUG_BATCH) {
2499 const unsigned decode_flags =
2500 GEN_BATCH_DECODE_FULL |
2501 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2502 GEN_BATCH_DECODE_OFFSETS |
2503 GEN_BATCH_DECODE_FLOATS;
2504
2505 gen_batch_decode_ctx_init(&device->decoder_ctx,
2506 &physical_device->info,
2507 stderr, decode_flags, NULL,
2508 decode_get_bo, NULL, device);
2509 }
2510
2511 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2512 device->instance = physical_device->instance;
2513 device->chipset_id = physical_device->chipset_id;
2514 device->no_hw = physical_device->no_hw;
2515 device->_lost = false;
2516
2517 if (pAllocator)
2518 device->alloc = *pAllocator;
2519 else
2520 device->alloc = physical_device->instance->alloc;
2521
2522 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2523 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2524 if (device->fd == -1) {
2525 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2526 goto fail_device;
2527 }
2528
2529 device->context_id = anv_gem_create_context(device);
2530 if (device->context_id == -1) {
2531 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2532 goto fail_fd;
2533 }
2534
2535 result = anv_queue_init(device, &device->queue);
2536 if (result != VK_SUCCESS)
2537 goto fail_context_id;
2538
2539 if (physical_device->use_softpin) {
2540 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2541 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2542 goto fail_queue;
2543 }
2544
2545 /* keep the page with address zero out of the allocator */
2546 util_vma_heap_init(&device->vma_lo,
2547 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2548
2549 /* Leave the last 4GiB out of the high vma range, so that no state
2550 * base address + size can overflow 48 bits. For more information see
2551 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2552 */
2553 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2554 physical_device->gtt_size - (1ull << 32) -
2555 HIGH_HEAP_MIN_ADDRESS);
2556 }
2557
2558 list_inithead(&device->memory_objects);
2559
2560 /* As per spec, the driver implementation may deny requests to acquire
2561 * a priority above the default priority (MEDIUM) if the caller does not
2562 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2563 * is returned.
2564 */
2565 if (physical_device->has_context_priority) {
2566 int err = anv_gem_set_context_param(device->fd, device->context_id,
2567 I915_CONTEXT_PARAM_PRIORITY,
2568 vk_priority_to_gen(priority));
2569 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2570 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2571 goto fail_vmas;
2572 }
2573 }
2574
2575 device->info = physical_device->info;
2576 device->isl_dev = physical_device->isl_dev;
2577
2578 /* On Broadwell and later, we can use batch chaining to more efficiently
2579 * implement growing command buffers. Prior to Haswell, the kernel
2580 * command parser gets in the way and we have to fall back to growing
2581 * the batch.
2582 */
2583 device->can_chain_batches = device->info.gen >= 8;
2584
2585 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2586 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2587 device->enabled_extensions = enabled_extensions;
2588
2589 anv_device_init_dispatch(device);
2590
2591 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2592 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2593 goto fail_queue;
2594 }
2595
2596 pthread_condattr_t condattr;
2597 if (pthread_condattr_init(&condattr) != 0) {
2598 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2599 goto fail_mutex;
2600 }
2601 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2602 pthread_condattr_destroy(&condattr);
2603 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2604 goto fail_mutex;
2605 }
2606 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2607 pthread_condattr_destroy(&condattr);
2608 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2609 goto fail_mutex;
2610 }
2611 pthread_condattr_destroy(&condattr);
2612
2613 result = anv_bo_cache_init(&device->bo_cache);
2614 if (result != VK_SUCCESS)
2615 goto fail_queue_cond;
2616
2617 anv_bo_pool_init(&device->batch_bo_pool, device);
2618
2619 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2620 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2621 if (result != VK_SUCCESS)
2622 goto fail_batch_bo_pool;
2623
2624 result = anv_state_pool_init(&device->instruction_state_pool, device,
2625 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2626 if (result != VK_SUCCESS)
2627 goto fail_dynamic_state_pool;
2628
2629 result = anv_state_pool_init(&device->surface_state_pool, device,
2630 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2631 if (result != VK_SUCCESS)
2632 goto fail_instruction_state_pool;
2633
2634 if (physical_device->use_softpin) {
2635 result = anv_state_pool_init(&device->binding_table_pool, device,
2636 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2637 if (result != VK_SUCCESS)
2638 goto fail_surface_state_pool;
2639 }
2640
2641 if (device->info.gen >= 12) {
2642 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2643 &physical_device->info);
2644 if (!device->aux_map_ctx)
2645 goto fail_binding_table_pool;
2646 }
2647
2648 result = anv_device_alloc_bo(device, 4096, 0, &device->workaround_bo);
2649 if (result != VK_SUCCESS)
2650 goto fail_surface_aux_map_pool;
2651
2652 result = anv_device_init_trivial_batch(device);
2653 if (result != VK_SUCCESS)
2654 goto fail_workaround_bo;
2655
2656 if (device->info.gen >= 10) {
2657 result = anv_device_init_hiz_clear_value_bo(device);
2658 if (result != VK_SUCCESS)
2659 goto fail_trivial_batch_bo;
2660 }
2661
2662 anv_scratch_pool_init(device, &device->scratch_pool);
2663
2664 switch (device->info.gen) {
2665 case 7:
2666 if (!device->info.is_haswell)
2667 result = gen7_init_device_state(device);
2668 else
2669 result = gen75_init_device_state(device);
2670 break;
2671 case 8:
2672 result = gen8_init_device_state(device);
2673 break;
2674 case 9:
2675 result = gen9_init_device_state(device);
2676 break;
2677 case 10:
2678 result = gen10_init_device_state(device);
2679 break;
2680 case 11:
2681 result = gen11_init_device_state(device);
2682 break;
2683 case 12:
2684 result = gen12_init_device_state(device);
2685 break;
2686 default:
2687 /* Shouldn't get here as we don't create physical devices for any other
2688 * gens. */
2689 unreachable("unhandled gen");
2690 }
2691 if (result != VK_SUCCESS)
2692 goto fail_workaround_bo;
2693
2694 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2695
2696 anv_device_init_blorp(device);
2697
2698 anv_device_init_border_colors(device);
2699
2700 anv_device_perf_init(device);
2701
2702 *pDevice = anv_device_to_handle(device);
2703
2704 return VK_SUCCESS;
2705
2706 fail_workaround_bo:
2707 anv_scratch_pool_finish(device, &device->scratch_pool);
2708 if (device->info.gen >= 10)
2709 anv_device_release_bo(device, device->hiz_clear_bo);
2710 anv_device_release_bo(device, device->workaround_bo);
2711 fail_trivial_batch_bo:
2712 anv_device_release_bo(device, device->trivial_batch_bo);
2713 fail_surface_aux_map_pool:
2714 if (device->info.gen >= 12) {
2715 gen_aux_map_finish(device->aux_map_ctx);
2716 device->aux_map_ctx = NULL;
2717 }
2718 fail_binding_table_pool:
2719 if (physical_device->use_softpin)
2720 anv_state_pool_finish(&device->binding_table_pool);
2721 fail_surface_state_pool:
2722 anv_state_pool_finish(&device->surface_state_pool);
2723 fail_instruction_state_pool:
2724 anv_state_pool_finish(&device->instruction_state_pool);
2725 fail_dynamic_state_pool:
2726 anv_state_pool_finish(&device->dynamic_state_pool);
2727 fail_batch_bo_pool:
2728 anv_bo_pool_finish(&device->batch_bo_pool);
2729 anv_bo_cache_finish(&device->bo_cache);
2730 fail_queue_cond:
2731 pthread_cond_destroy(&device->queue_submit);
2732 fail_mutex:
2733 pthread_mutex_destroy(&device->mutex);
2734 fail_vmas:
2735 if (physical_device->use_softpin) {
2736 util_vma_heap_finish(&device->vma_hi);
2737 util_vma_heap_finish(&device->vma_lo);
2738 }
2739 fail_queue:
2740 anv_queue_finish(&device->queue);
2741 fail_context_id:
2742 anv_gem_destroy_context(device, device->context_id);
2743 fail_fd:
2744 close(device->fd);
2745 fail_device:
2746 vk_free(&device->alloc, device);
2747
2748 return result;
2749 }
2750
2751 void anv_DestroyDevice(
2752 VkDevice _device,
2753 const VkAllocationCallbacks* pAllocator)
2754 {
2755 ANV_FROM_HANDLE(anv_device, device, _device);
2756 struct anv_physical_device *physical_device;
2757
2758 if (!device)
2759 return;
2760
2761 physical_device = &device->instance->physicalDevice;
2762
2763 anv_device_finish_blorp(device);
2764
2765 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2766
2767 anv_queue_finish(&device->queue);
2768
2769 #ifdef HAVE_VALGRIND
2770 /* We only need to free these to prevent valgrind errors. The backing
2771 * BO will go away in a couple of lines so we don't actually leak.
2772 */
2773 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2774 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2775 #endif
2776
2777 anv_scratch_pool_finish(device, &device->scratch_pool);
2778
2779 anv_device_release_bo(device, device->workaround_bo);
2780 anv_device_release_bo(device, device->trivial_batch_bo);
2781 if (device->info.gen >= 10)
2782 anv_device_release_bo(device, device->hiz_clear_bo);
2783
2784 if (device->info.gen >= 12) {
2785 gen_aux_map_finish(device->aux_map_ctx);
2786 device->aux_map_ctx = NULL;
2787 }
2788
2789 if (physical_device->use_softpin)
2790 anv_state_pool_finish(&device->binding_table_pool);
2791 anv_state_pool_finish(&device->surface_state_pool);
2792 anv_state_pool_finish(&device->instruction_state_pool);
2793 anv_state_pool_finish(&device->dynamic_state_pool);
2794
2795 anv_bo_pool_finish(&device->batch_bo_pool);
2796
2797 anv_bo_cache_finish(&device->bo_cache);
2798
2799 if (physical_device->use_softpin) {
2800 util_vma_heap_finish(&device->vma_hi);
2801 util_vma_heap_finish(&device->vma_lo);
2802 }
2803
2804 pthread_cond_destroy(&device->queue_submit);
2805 pthread_mutex_destroy(&device->mutex);
2806
2807 anv_gem_destroy_context(device, device->context_id);
2808
2809 if (INTEL_DEBUG & DEBUG_BATCH)
2810 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2811
2812 close(device->fd);
2813
2814 vk_free(&device->alloc, device);
2815 }
2816
2817 VkResult anv_EnumerateInstanceLayerProperties(
2818 uint32_t* pPropertyCount,
2819 VkLayerProperties* pProperties)
2820 {
2821 if (pProperties == NULL) {
2822 *pPropertyCount = 0;
2823 return VK_SUCCESS;
2824 }
2825
2826 /* None supported at this time */
2827 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2828 }
2829
2830 VkResult anv_EnumerateDeviceLayerProperties(
2831 VkPhysicalDevice physicalDevice,
2832 uint32_t* pPropertyCount,
2833 VkLayerProperties* pProperties)
2834 {
2835 if (pProperties == NULL) {
2836 *pPropertyCount = 0;
2837 return VK_SUCCESS;
2838 }
2839
2840 /* None supported at this time */
2841 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2842 }
2843
2844 void anv_GetDeviceQueue(
2845 VkDevice _device,
2846 uint32_t queueNodeIndex,
2847 uint32_t queueIndex,
2848 VkQueue* pQueue)
2849 {
2850 const VkDeviceQueueInfo2 info = {
2851 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2852 .pNext = NULL,
2853 .flags = 0,
2854 .queueFamilyIndex = queueNodeIndex,
2855 .queueIndex = queueIndex,
2856 };
2857
2858 anv_GetDeviceQueue2(_device, &info, pQueue);
2859 }
2860
2861 void anv_GetDeviceQueue2(
2862 VkDevice _device,
2863 const VkDeviceQueueInfo2* pQueueInfo,
2864 VkQueue* pQueue)
2865 {
2866 ANV_FROM_HANDLE(anv_device, device, _device);
2867
2868 assert(pQueueInfo->queueIndex == 0);
2869
2870 if (pQueueInfo->flags == device->queue.flags)
2871 *pQueue = anv_queue_to_handle(&device->queue);
2872 else
2873 *pQueue = NULL;
2874 }
2875
2876 VkResult
2877 _anv_device_set_lost(struct anv_device *device,
2878 const char *file, int line,
2879 const char *msg, ...)
2880 {
2881 VkResult err;
2882 va_list ap;
2883
2884 p_atomic_inc(&device->_lost);
2885
2886 va_start(ap, msg);
2887 err = __vk_errorv(device->instance, device,
2888 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2889 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2890 va_end(ap);
2891
2892 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2893 abort();
2894
2895 return err;
2896 }
2897
2898 VkResult
2899 _anv_queue_set_lost(struct anv_queue *queue,
2900 const char *file, int line,
2901 const char *msg, ...)
2902 {
2903 VkResult err;
2904 va_list ap;
2905
2906 p_atomic_inc(&queue->device->_lost);
2907
2908 va_start(ap, msg);
2909 err = __vk_errorv(queue->device->instance, queue->device,
2910 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2911 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2912 va_end(ap);
2913
2914 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2915 abort();
2916
2917 return err;
2918 }
2919
2920 VkResult
2921 anv_device_query_status(struct anv_device *device)
2922 {
2923 /* This isn't likely as most of the callers of this function already check
2924 * for it. However, it doesn't hurt to check and it potentially lets us
2925 * avoid an ioctl.
2926 */
2927 if (anv_device_is_lost(device))
2928 return VK_ERROR_DEVICE_LOST;
2929
2930 uint32_t active, pending;
2931 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2932 if (ret == -1) {
2933 /* We don't know the real error. */
2934 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2935 }
2936
2937 if (active) {
2938 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2939 } else if (pending) {
2940 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2941 }
2942
2943 return VK_SUCCESS;
2944 }
2945
2946 VkResult
2947 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2948 {
2949 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2950 * Other usages of the BO (such as on different hardware) will not be
2951 * flagged as "busy" by this ioctl. Use with care.
2952 */
2953 int ret = anv_gem_busy(device, bo->gem_handle);
2954 if (ret == 1) {
2955 return VK_NOT_READY;
2956 } else if (ret == -1) {
2957 /* We don't know the real error. */
2958 return anv_device_set_lost(device, "gem wait failed: %m");
2959 }
2960
2961 /* Query for device status after the busy call. If the BO we're checking
2962 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2963 * client because it clearly doesn't have valid data. Yes, this most
2964 * likely means an ioctl, but we just did an ioctl to query the busy status
2965 * so it's no great loss.
2966 */
2967 return anv_device_query_status(device);
2968 }
2969
2970 VkResult
2971 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2972 int64_t timeout)
2973 {
2974 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2975 if (ret == -1 && errno == ETIME) {
2976 return VK_TIMEOUT;
2977 } else if (ret == -1) {
2978 /* We don't know the real error. */
2979 return anv_device_set_lost(device, "gem wait failed: %m");
2980 }
2981
2982 /* Query for device status after the wait. If the BO we're waiting on got
2983 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2984 * because it clearly doesn't have valid data. Yes, this most likely means
2985 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2986 */
2987 return anv_device_query_status(device);
2988 }
2989
2990 VkResult anv_DeviceWaitIdle(
2991 VkDevice _device)
2992 {
2993 ANV_FROM_HANDLE(anv_device, device, _device);
2994
2995 if (anv_device_is_lost(device))
2996 return VK_ERROR_DEVICE_LOST;
2997
2998 return anv_queue_submit_simple_batch(&device->queue, NULL);
2999 }
3000
3001 bool
3002 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
3003 {
3004 if (!(bo->flags & EXEC_OBJECT_PINNED))
3005 return true;
3006
3007 pthread_mutex_lock(&device->vma_mutex);
3008
3009 bo->offset = 0;
3010
3011 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) {
3012 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
3013 if (addr) {
3014 bo->offset = gen_canonical_address(addr);
3015 assert(addr == gen_48b_address(bo->offset));
3016 }
3017 }
3018
3019 if (bo->offset == 0) {
3020 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
3021 if (addr) {
3022 bo->offset = gen_canonical_address(addr);
3023 assert(addr == gen_48b_address(bo->offset));
3024 }
3025 }
3026
3027 pthread_mutex_unlock(&device->vma_mutex);
3028
3029 return bo->offset != 0;
3030 }
3031
3032 void
3033 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3034 {
3035 if (!(bo->flags & EXEC_OBJECT_PINNED))
3036 return;
3037
3038 const uint64_t addr_48b = gen_48b_address(bo->offset);
3039
3040 pthread_mutex_lock(&device->vma_mutex);
3041
3042 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3043 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3044 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3045 } else {
3046 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3047 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3048 }
3049
3050 pthread_mutex_unlock(&device->vma_mutex);
3051
3052 bo->offset = 0;
3053 }
3054
3055 VkResult anv_AllocateMemory(
3056 VkDevice _device,
3057 const VkMemoryAllocateInfo* pAllocateInfo,
3058 const VkAllocationCallbacks* pAllocator,
3059 VkDeviceMemory* pMem)
3060 {
3061 ANV_FROM_HANDLE(anv_device, device, _device);
3062 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3063 struct anv_device_memory *mem;
3064 VkResult result = VK_SUCCESS;
3065
3066 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3067
3068 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3069 assert(pAllocateInfo->allocationSize > 0);
3070
3071 VkDeviceSize aligned_alloc_size =
3072 align_u64(pAllocateInfo->allocationSize, 4096);
3073
3074 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3075 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3076
3077 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3078 struct anv_memory_type *mem_type =
3079 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3080 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3081 struct anv_memory_heap *mem_heap =
3082 &pdevice->memory.heaps[mem_type->heapIndex];
3083
3084 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3085 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3086 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3087
3088 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3089 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3090 if (mem == NULL)
3091 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3092
3093 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3094 mem->type = mem_type;
3095 mem->map = NULL;
3096 mem->map_size = 0;
3097 mem->ahw = NULL;
3098 mem->host_ptr = NULL;
3099
3100 enum anv_bo_alloc_flags alloc_flags = 0;
3101
3102 if (!mem_heap->supports_48bit_addresses)
3103 alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
3104
3105 const struct wsi_memory_allocate_info *wsi_info =
3106 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3107 if (wsi_info && wsi_info->implicit_sync) {
3108 /* We need to set the WRITE flag on window system buffers so that GEM
3109 * will know we're writing to them and synchronize uses on other rings
3110 * (eg if the display server uses the blitter ring).
3111 */
3112 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC |
3113 ANV_BO_ALLOC_IMPLICIT_WRITE;
3114 }
3115
3116 const VkExportMemoryAllocateInfo *export_info =
3117 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3118
3119 /* Check if we need to support Android HW buffer export. If so,
3120 * create AHardwareBuffer and import memory from it.
3121 */
3122 bool android_export = false;
3123 if (export_info && export_info->handleTypes &
3124 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3125 android_export = true;
3126
3127 /* Android memory import. */
3128 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3129 vk_find_struct_const(pAllocateInfo->pNext,
3130 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3131
3132 if (ahw_import_info) {
3133 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3134 if (result != VK_SUCCESS)
3135 goto fail;
3136
3137 goto success;
3138 } else if (android_export) {
3139 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3140 if (result != VK_SUCCESS)
3141 goto fail;
3142
3143 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3144 .buffer = mem->ahw,
3145 };
3146 result = anv_import_ahw_memory(_device, mem, &import_info);
3147 if (result != VK_SUCCESS)
3148 goto fail;
3149
3150 goto success;
3151 }
3152
3153 const VkImportMemoryFdInfoKHR *fd_info =
3154 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3155
3156 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3157 * ignored.
3158 */
3159 if (fd_info && fd_info->handleType) {
3160 /* At the moment, we support only the below handle types. */
3161 assert(fd_info->handleType ==
3162 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3163 fd_info->handleType ==
3164 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3165
3166 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3167 &mem->bo);
3168 if (result != VK_SUCCESS)
3169 goto fail;
3170
3171 VkDeviceSize aligned_alloc_size =
3172 align_u64(pAllocateInfo->allocationSize, 4096);
3173
3174 /* For security purposes, we reject importing the bo if it's smaller
3175 * than the requested allocation size. This prevents a malicious client
3176 * from passing a buffer to a trusted client, lying about the size, and
3177 * telling the trusted client to try and texture from an image that goes
3178 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3179 * in the trusted client. The trusted client can protect itself against
3180 * this sort of attack but only if it can trust the buffer size.
3181 */
3182 if (mem->bo->size < aligned_alloc_size) {
3183 result = vk_errorf(device->instance, device,
3184 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3185 "aligned allocationSize too large for "
3186 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3187 "%"PRIu64"B > %"PRIu64"B",
3188 aligned_alloc_size, mem->bo->size);
3189 anv_device_release_bo(device, mem->bo);
3190 goto fail;
3191 }
3192
3193 /* From the Vulkan spec:
3194 *
3195 * "Importing memory from a file descriptor transfers ownership of
3196 * the file descriptor from the application to the Vulkan
3197 * implementation. The application must not perform any operations on
3198 * the file descriptor after a successful import."
3199 *
3200 * If the import fails, we leave the file descriptor open.
3201 */
3202 close(fd_info->fd);
3203 goto success;
3204 }
3205
3206 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3207 vk_find_struct_const(pAllocateInfo->pNext,
3208 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3209 if (host_ptr_info && host_ptr_info->handleType) {
3210 if (host_ptr_info->handleType ==
3211 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3212 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3213 goto fail;
3214 }
3215
3216 assert(host_ptr_info->handleType ==
3217 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3218
3219 result = anv_device_import_bo_from_host_ptr(device,
3220 host_ptr_info->pHostPointer,
3221 pAllocateInfo->allocationSize,
3222 alloc_flags,
3223 &mem->bo);
3224
3225 if (result != VK_SUCCESS)
3226 goto fail;
3227
3228 mem->host_ptr = host_ptr_info->pHostPointer;
3229 goto success;
3230 }
3231
3232 /* Regular allocate (not importing memory). */
3233
3234 if (export_info && export_info->handleTypes)
3235 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3236
3237 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3238 alloc_flags, &mem->bo);
3239 if (result != VK_SUCCESS)
3240 goto fail;
3241
3242 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3243 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3244 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3245 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3246
3247 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3248 * the BO. In this case, we have a dedicated allocation.
3249 */
3250 if (image->needs_set_tiling) {
3251 const uint32_t i915_tiling =
3252 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3253 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3254 image->planes[0].surface.isl.row_pitch_B,
3255 i915_tiling);
3256 if (ret) {
3257 anv_device_release_bo(device, mem->bo);
3258 result = vk_errorf(device->instance, NULL,
3259 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3260 "failed to set BO tiling: %m");
3261 goto fail;
3262 }
3263 }
3264 }
3265
3266 success:
3267 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3268 if (mem_heap_used > mem_heap->size) {
3269 p_atomic_add(&mem_heap->used, -mem->bo->size);
3270 anv_device_release_bo(device, mem->bo);
3271 result = vk_errorf(device->instance, NULL,
3272 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3273 "Out of heap memory");
3274 goto fail;
3275 }
3276
3277 pthread_mutex_lock(&device->mutex);
3278 list_addtail(&mem->link, &device->memory_objects);
3279 pthread_mutex_unlock(&device->mutex);
3280
3281 *pMem = anv_device_memory_to_handle(mem);
3282
3283 return VK_SUCCESS;
3284
3285 fail:
3286 vk_free2(&device->alloc, pAllocator, mem);
3287
3288 return result;
3289 }
3290
3291 VkResult anv_GetMemoryFdKHR(
3292 VkDevice device_h,
3293 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3294 int* pFd)
3295 {
3296 ANV_FROM_HANDLE(anv_device, dev, device_h);
3297 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3298
3299 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3300
3301 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3302 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3303
3304 return anv_device_export_bo(dev, mem->bo, pFd);
3305 }
3306
3307 VkResult anv_GetMemoryFdPropertiesKHR(
3308 VkDevice _device,
3309 VkExternalMemoryHandleTypeFlagBits handleType,
3310 int fd,
3311 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3312 {
3313 ANV_FROM_HANDLE(anv_device, device, _device);
3314 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3315
3316 switch (handleType) {
3317 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3318 /* dma-buf can be imported as any memory type */
3319 pMemoryFdProperties->memoryTypeBits =
3320 (1 << pdevice->memory.type_count) - 1;
3321 return VK_SUCCESS;
3322
3323 default:
3324 /* The valid usage section for this function says:
3325 *
3326 * "handleType must not be one of the handle types defined as
3327 * opaque."
3328 *
3329 * So opaque handle types fall into the default "unsupported" case.
3330 */
3331 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3332 }
3333 }
3334
3335 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3336 VkDevice _device,
3337 VkExternalMemoryHandleTypeFlagBits handleType,
3338 const void* pHostPointer,
3339 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3340 {
3341 ANV_FROM_HANDLE(anv_device, device, _device);
3342
3343 assert(pMemoryHostPointerProperties->sType ==
3344 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3345
3346 switch (handleType) {
3347 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3348 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3349
3350 /* Host memory can be imported as any memory type. */
3351 pMemoryHostPointerProperties->memoryTypeBits =
3352 (1ull << pdevice->memory.type_count) - 1;
3353
3354 return VK_SUCCESS;
3355 }
3356 default:
3357 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3358 }
3359 }
3360
3361 void anv_FreeMemory(
3362 VkDevice _device,
3363 VkDeviceMemory _mem,
3364 const VkAllocationCallbacks* pAllocator)
3365 {
3366 ANV_FROM_HANDLE(anv_device, device, _device);
3367 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3368 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3369
3370 if (mem == NULL)
3371 return;
3372
3373 pthread_mutex_lock(&device->mutex);
3374 list_del(&mem->link);
3375 pthread_mutex_unlock(&device->mutex);
3376
3377 if (mem->map)
3378 anv_UnmapMemory(_device, _mem);
3379
3380 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3381 -mem->bo->size);
3382
3383 anv_device_release_bo(device, mem->bo);
3384
3385 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3386 if (mem->ahw)
3387 AHardwareBuffer_release(mem->ahw);
3388 #endif
3389
3390 vk_free2(&device->alloc, pAllocator, mem);
3391 }
3392
3393 VkResult anv_MapMemory(
3394 VkDevice _device,
3395 VkDeviceMemory _memory,
3396 VkDeviceSize offset,
3397 VkDeviceSize size,
3398 VkMemoryMapFlags flags,
3399 void** ppData)
3400 {
3401 ANV_FROM_HANDLE(anv_device, device, _device);
3402 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3403
3404 if (mem == NULL) {
3405 *ppData = NULL;
3406 return VK_SUCCESS;
3407 }
3408
3409 if (mem->host_ptr) {
3410 *ppData = mem->host_ptr + offset;
3411 return VK_SUCCESS;
3412 }
3413
3414 if (size == VK_WHOLE_SIZE)
3415 size = mem->bo->size - offset;
3416
3417 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3418 *
3419 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3420 * assert(size != 0);
3421 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3422 * equal to the size of the memory minus offset
3423 */
3424 assert(size > 0);
3425 assert(offset + size <= mem->bo->size);
3426
3427 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3428 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3429 * at a time is valid. We could just mmap up front and return an offset
3430 * pointer here, but that may exhaust virtual memory on 32 bit
3431 * userspace. */
3432
3433 uint32_t gem_flags = 0;
3434
3435 if (!device->info.has_llc &&
3436 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3437 gem_flags |= I915_MMAP_WC;
3438
3439 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3440 uint64_t map_offset = offset & ~4095ull;
3441 assert(offset >= map_offset);
3442 uint64_t map_size = (offset + size) - map_offset;
3443
3444 /* Let's map whole pages */
3445 map_size = align_u64(map_size, 4096);
3446
3447 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3448 map_offset, map_size, gem_flags);
3449 if (map == MAP_FAILED)
3450 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3451
3452 mem->map = map;
3453 mem->map_size = map_size;
3454
3455 *ppData = mem->map + (offset - map_offset);
3456
3457 return VK_SUCCESS;
3458 }
3459
3460 void anv_UnmapMemory(
3461 VkDevice _device,
3462 VkDeviceMemory _memory)
3463 {
3464 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3465
3466 if (mem == NULL || mem->host_ptr)
3467 return;
3468
3469 anv_gem_munmap(mem->map, mem->map_size);
3470
3471 mem->map = NULL;
3472 mem->map_size = 0;
3473 }
3474
3475 static void
3476 clflush_mapped_ranges(struct anv_device *device,
3477 uint32_t count,
3478 const VkMappedMemoryRange *ranges)
3479 {
3480 for (uint32_t i = 0; i < count; i++) {
3481 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3482 if (ranges[i].offset >= mem->map_size)
3483 continue;
3484
3485 gen_clflush_range(mem->map + ranges[i].offset,
3486 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3487 }
3488 }
3489
3490 VkResult anv_FlushMappedMemoryRanges(
3491 VkDevice _device,
3492 uint32_t memoryRangeCount,
3493 const VkMappedMemoryRange* pMemoryRanges)
3494 {
3495 ANV_FROM_HANDLE(anv_device, device, _device);
3496
3497 if (device->info.has_llc)
3498 return VK_SUCCESS;
3499
3500 /* Make sure the writes we're flushing have landed. */
3501 __builtin_ia32_mfence();
3502
3503 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3504
3505 return VK_SUCCESS;
3506 }
3507
3508 VkResult anv_InvalidateMappedMemoryRanges(
3509 VkDevice _device,
3510 uint32_t memoryRangeCount,
3511 const VkMappedMemoryRange* pMemoryRanges)
3512 {
3513 ANV_FROM_HANDLE(anv_device, device, _device);
3514
3515 if (device->info.has_llc)
3516 return VK_SUCCESS;
3517
3518 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3519
3520 /* Make sure no reads get moved up above the invalidate. */
3521 __builtin_ia32_mfence();
3522
3523 return VK_SUCCESS;
3524 }
3525
3526 void anv_GetBufferMemoryRequirements(
3527 VkDevice _device,
3528 VkBuffer _buffer,
3529 VkMemoryRequirements* pMemoryRequirements)
3530 {
3531 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3532 ANV_FROM_HANDLE(anv_device, device, _device);
3533 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3534
3535 /* The Vulkan spec (git aaed022) says:
3536 *
3537 * memoryTypeBits is a bitfield and contains one bit set for every
3538 * supported memory type for the resource. The bit `1<<i` is set if and
3539 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3540 * structure for the physical device is supported.
3541 */
3542 uint32_t memory_types = 0;
3543 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3544 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3545 if ((valid_usage & buffer->usage) == buffer->usage)
3546 memory_types |= (1u << i);
3547 }
3548
3549 /* Base alignment requirement of a cache line */
3550 uint32_t alignment = 16;
3551
3552 /* We need an alignment of 32 for pushing UBOs */
3553 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3554 alignment = MAX2(alignment, 32);
3555
3556 pMemoryRequirements->size = buffer->size;
3557 pMemoryRequirements->alignment = alignment;
3558
3559 /* Storage and Uniform buffers should have their size aligned to
3560 * 32-bits to avoid boundary checks when last DWord is not complete.
3561 * This would ensure that not internal padding would be needed for
3562 * 16-bit types.
3563 */
3564 if (device->robust_buffer_access &&
3565 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3566 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3567 pMemoryRequirements->size = align_u64(buffer->size, 4);
3568
3569 pMemoryRequirements->memoryTypeBits = memory_types;
3570 }
3571
3572 void anv_GetBufferMemoryRequirements2(
3573 VkDevice _device,
3574 const VkBufferMemoryRequirementsInfo2* pInfo,
3575 VkMemoryRequirements2* pMemoryRequirements)
3576 {
3577 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3578 &pMemoryRequirements->memoryRequirements);
3579
3580 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3581 switch (ext->sType) {
3582 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3583 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3584 requirements->prefersDedicatedAllocation = false;
3585 requirements->requiresDedicatedAllocation = false;
3586 break;
3587 }
3588
3589 default:
3590 anv_debug_ignored_stype(ext->sType);
3591 break;
3592 }
3593 }
3594 }
3595
3596 void anv_GetImageMemoryRequirements(
3597 VkDevice _device,
3598 VkImage _image,
3599 VkMemoryRequirements* pMemoryRequirements)
3600 {
3601 ANV_FROM_HANDLE(anv_image, image, _image);
3602 ANV_FROM_HANDLE(anv_device, device, _device);
3603 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3604
3605 /* The Vulkan spec (git aaed022) says:
3606 *
3607 * memoryTypeBits is a bitfield and contains one bit set for every
3608 * supported memory type for the resource. The bit `1<<i` is set if and
3609 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3610 * structure for the physical device is supported.
3611 *
3612 * All types are currently supported for images.
3613 */
3614 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3615
3616 /* We must have image allocated or imported at this point. According to the
3617 * specification, external images must have been bound to memory before
3618 * calling GetImageMemoryRequirements.
3619 */
3620 assert(image->size > 0);
3621
3622 pMemoryRequirements->size = image->size;
3623 pMemoryRequirements->alignment = image->alignment;
3624 pMemoryRequirements->memoryTypeBits = memory_types;
3625 }
3626
3627 void anv_GetImageMemoryRequirements2(
3628 VkDevice _device,
3629 const VkImageMemoryRequirementsInfo2* pInfo,
3630 VkMemoryRequirements2* pMemoryRequirements)
3631 {
3632 ANV_FROM_HANDLE(anv_device, device, _device);
3633 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3634
3635 anv_GetImageMemoryRequirements(_device, pInfo->image,
3636 &pMemoryRequirements->memoryRequirements);
3637
3638 vk_foreach_struct_const(ext, pInfo->pNext) {
3639 switch (ext->sType) {
3640 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3641 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3642 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3643 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3644 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3645 plane_reqs->planeAspect);
3646
3647 assert(image->planes[plane].offset == 0);
3648
3649 /* The Vulkan spec (git aaed022) says:
3650 *
3651 * memoryTypeBits is a bitfield and contains one bit set for every
3652 * supported memory type for the resource. The bit `1<<i` is set
3653 * if and only if the memory type `i` in the
3654 * VkPhysicalDeviceMemoryProperties structure for the physical
3655 * device is supported.
3656 *
3657 * All types are currently supported for images.
3658 */
3659 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3660 (1ull << pdevice->memory.type_count) - 1;
3661
3662 /* We must have image allocated or imported at this point. According to the
3663 * specification, external images must have been bound to memory before
3664 * calling GetImageMemoryRequirements.
3665 */
3666 assert(image->planes[plane].size > 0);
3667
3668 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3669 pMemoryRequirements->memoryRequirements.alignment =
3670 image->planes[plane].alignment;
3671 break;
3672 }
3673
3674 default:
3675 anv_debug_ignored_stype(ext->sType);
3676 break;
3677 }
3678 }
3679
3680 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3681 switch (ext->sType) {
3682 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3683 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3684 if (image->needs_set_tiling || image->external_format) {
3685 /* If we need to set the tiling for external consumers, we need a
3686 * dedicated allocation.
3687 *
3688 * See also anv_AllocateMemory.
3689 */
3690 requirements->prefersDedicatedAllocation = true;
3691 requirements->requiresDedicatedAllocation = true;
3692 } else {
3693 requirements->prefersDedicatedAllocation = false;
3694 requirements->requiresDedicatedAllocation = false;
3695 }
3696 break;
3697 }
3698
3699 default:
3700 anv_debug_ignored_stype(ext->sType);
3701 break;
3702 }
3703 }
3704 }
3705
3706 void anv_GetImageSparseMemoryRequirements(
3707 VkDevice device,
3708 VkImage image,
3709 uint32_t* pSparseMemoryRequirementCount,
3710 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3711 {
3712 *pSparseMemoryRequirementCount = 0;
3713 }
3714
3715 void anv_GetImageSparseMemoryRequirements2(
3716 VkDevice device,
3717 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3718 uint32_t* pSparseMemoryRequirementCount,
3719 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3720 {
3721 *pSparseMemoryRequirementCount = 0;
3722 }
3723
3724 void anv_GetDeviceMemoryCommitment(
3725 VkDevice device,
3726 VkDeviceMemory memory,
3727 VkDeviceSize* pCommittedMemoryInBytes)
3728 {
3729 *pCommittedMemoryInBytes = 0;
3730 }
3731
3732 static void
3733 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3734 {
3735 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3736 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3737
3738 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3739
3740 if (mem) {
3741 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3742 buffer->address = (struct anv_address) {
3743 .bo = mem->bo,
3744 .offset = pBindInfo->memoryOffset,
3745 };
3746 } else {
3747 buffer->address = ANV_NULL_ADDRESS;
3748 }
3749 }
3750
3751 VkResult anv_BindBufferMemory(
3752 VkDevice device,
3753 VkBuffer buffer,
3754 VkDeviceMemory memory,
3755 VkDeviceSize memoryOffset)
3756 {
3757 anv_bind_buffer_memory(
3758 &(VkBindBufferMemoryInfo) {
3759 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3760 .buffer = buffer,
3761 .memory = memory,
3762 .memoryOffset = memoryOffset,
3763 });
3764
3765 return VK_SUCCESS;
3766 }
3767
3768 VkResult anv_BindBufferMemory2(
3769 VkDevice device,
3770 uint32_t bindInfoCount,
3771 const VkBindBufferMemoryInfo* pBindInfos)
3772 {
3773 for (uint32_t i = 0; i < bindInfoCount; i++)
3774 anv_bind_buffer_memory(&pBindInfos[i]);
3775
3776 return VK_SUCCESS;
3777 }
3778
3779 VkResult anv_QueueBindSparse(
3780 VkQueue _queue,
3781 uint32_t bindInfoCount,
3782 const VkBindSparseInfo* pBindInfo,
3783 VkFence fence)
3784 {
3785 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3786 if (anv_device_is_lost(queue->device))
3787 return VK_ERROR_DEVICE_LOST;
3788
3789 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3790 }
3791
3792 // Event functions
3793
3794 VkResult anv_CreateEvent(
3795 VkDevice _device,
3796 const VkEventCreateInfo* pCreateInfo,
3797 const VkAllocationCallbacks* pAllocator,
3798 VkEvent* pEvent)
3799 {
3800 ANV_FROM_HANDLE(anv_device, device, _device);
3801 struct anv_state state;
3802 struct anv_event *event;
3803
3804 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3805
3806 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3807 sizeof(*event), 8);
3808 event = state.map;
3809 event->state = state;
3810 event->semaphore = VK_EVENT_RESET;
3811
3812 if (!device->info.has_llc) {
3813 /* Make sure the writes we're flushing have landed. */
3814 __builtin_ia32_mfence();
3815 __builtin_ia32_clflush(event);
3816 }
3817
3818 *pEvent = anv_event_to_handle(event);
3819
3820 return VK_SUCCESS;
3821 }
3822
3823 void anv_DestroyEvent(
3824 VkDevice _device,
3825 VkEvent _event,
3826 const VkAllocationCallbacks* pAllocator)
3827 {
3828 ANV_FROM_HANDLE(anv_device, device, _device);
3829 ANV_FROM_HANDLE(anv_event, event, _event);
3830
3831 if (!event)
3832 return;
3833
3834 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3835 }
3836
3837 VkResult anv_GetEventStatus(
3838 VkDevice _device,
3839 VkEvent _event)
3840 {
3841 ANV_FROM_HANDLE(anv_device, device, _device);
3842 ANV_FROM_HANDLE(anv_event, event, _event);
3843
3844 if (anv_device_is_lost(device))
3845 return VK_ERROR_DEVICE_LOST;
3846
3847 if (!device->info.has_llc) {
3848 /* Invalidate read cache before reading event written by GPU. */
3849 __builtin_ia32_clflush(event);
3850 __builtin_ia32_mfence();
3851
3852 }
3853
3854 return event->semaphore;
3855 }
3856
3857 VkResult anv_SetEvent(
3858 VkDevice _device,
3859 VkEvent _event)
3860 {
3861 ANV_FROM_HANDLE(anv_device, device, _device);
3862 ANV_FROM_HANDLE(anv_event, event, _event);
3863
3864 event->semaphore = VK_EVENT_SET;
3865
3866 if (!device->info.has_llc) {
3867 /* Make sure the writes we're flushing have landed. */
3868 __builtin_ia32_mfence();
3869 __builtin_ia32_clflush(event);
3870 }
3871
3872 return VK_SUCCESS;
3873 }
3874
3875 VkResult anv_ResetEvent(
3876 VkDevice _device,
3877 VkEvent _event)
3878 {
3879 ANV_FROM_HANDLE(anv_device, device, _device);
3880 ANV_FROM_HANDLE(anv_event, event, _event);
3881
3882 event->semaphore = VK_EVENT_RESET;
3883
3884 if (!device->info.has_llc) {
3885 /* Make sure the writes we're flushing have landed. */
3886 __builtin_ia32_mfence();
3887 __builtin_ia32_clflush(event);
3888 }
3889
3890 return VK_SUCCESS;
3891 }
3892
3893 // Buffer functions
3894
3895 VkResult anv_CreateBuffer(
3896 VkDevice _device,
3897 const VkBufferCreateInfo* pCreateInfo,
3898 const VkAllocationCallbacks* pAllocator,
3899 VkBuffer* pBuffer)
3900 {
3901 ANV_FROM_HANDLE(anv_device, device, _device);
3902 struct anv_buffer *buffer;
3903
3904 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3905
3906 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3907 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3908 if (buffer == NULL)
3909 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3910
3911 buffer->size = pCreateInfo->size;
3912 buffer->usage = pCreateInfo->usage;
3913 buffer->address = ANV_NULL_ADDRESS;
3914
3915 *pBuffer = anv_buffer_to_handle(buffer);
3916
3917 return VK_SUCCESS;
3918 }
3919
3920 void anv_DestroyBuffer(
3921 VkDevice _device,
3922 VkBuffer _buffer,
3923 const VkAllocationCallbacks* pAllocator)
3924 {
3925 ANV_FROM_HANDLE(anv_device, device, _device);
3926 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3927
3928 if (!buffer)
3929 return;
3930
3931 vk_free2(&device->alloc, pAllocator, buffer);
3932 }
3933
3934 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3935 VkDevice device,
3936 const VkBufferDeviceAddressInfoEXT* pInfo)
3937 {
3938 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3939
3940 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3941
3942 return anv_address_physical(buffer->address);
3943 }
3944
3945 void
3946 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3947 enum isl_format format,
3948 struct anv_address address,
3949 uint32_t range, uint32_t stride)
3950 {
3951 isl_buffer_fill_state(&device->isl_dev, state.map,
3952 .address = anv_address_physical(address),
3953 .mocs = device->isl_dev.mocs.internal,
3954 .size_B = range,
3955 .format = format,
3956 .swizzle = ISL_SWIZZLE_IDENTITY,
3957 .stride_B = stride);
3958 }
3959
3960 void anv_DestroySampler(
3961 VkDevice _device,
3962 VkSampler _sampler,
3963 const VkAllocationCallbacks* pAllocator)
3964 {
3965 ANV_FROM_HANDLE(anv_device, device, _device);
3966 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3967
3968 if (!sampler)
3969 return;
3970
3971 if (sampler->bindless_state.map) {
3972 anv_state_pool_free(&device->dynamic_state_pool,
3973 sampler->bindless_state);
3974 }
3975
3976 vk_free2(&device->alloc, pAllocator, sampler);
3977 }
3978
3979 VkResult anv_CreateFramebuffer(
3980 VkDevice _device,
3981 const VkFramebufferCreateInfo* pCreateInfo,
3982 const VkAllocationCallbacks* pAllocator,
3983 VkFramebuffer* pFramebuffer)
3984 {
3985 ANV_FROM_HANDLE(anv_device, device, _device);
3986 struct anv_framebuffer *framebuffer;
3987
3988 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3989
3990 size_t size = sizeof(*framebuffer);
3991
3992 /* VK_KHR_imageless_framebuffer extension says:
3993 *
3994 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3995 * parameter pAttachments is ignored.
3996 */
3997 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3998 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3999 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4000 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4001 if (framebuffer == NULL)
4002 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4003
4004 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4005 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4006 framebuffer->attachments[i] = iview;
4007 }
4008 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4009 } else {
4010 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4011 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4012 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4013 if (framebuffer == NULL)
4014 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4015
4016 framebuffer->attachment_count = 0;
4017 }
4018
4019 framebuffer->width = pCreateInfo->width;
4020 framebuffer->height = pCreateInfo->height;
4021 framebuffer->layers = pCreateInfo->layers;
4022
4023 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4024
4025 return VK_SUCCESS;
4026 }
4027
4028 void anv_DestroyFramebuffer(
4029 VkDevice _device,
4030 VkFramebuffer _fb,
4031 const VkAllocationCallbacks* pAllocator)
4032 {
4033 ANV_FROM_HANDLE(anv_device, device, _device);
4034 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4035
4036 if (!fb)
4037 return;
4038
4039 vk_free2(&device->alloc, pAllocator, fb);
4040 }
4041
4042 static const VkTimeDomainEXT anv_time_domains[] = {
4043 VK_TIME_DOMAIN_DEVICE_EXT,
4044 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4045 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4046 };
4047
4048 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4049 VkPhysicalDevice physicalDevice,
4050 uint32_t *pTimeDomainCount,
4051 VkTimeDomainEXT *pTimeDomains)
4052 {
4053 int d;
4054 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4055
4056 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4057 vk_outarray_append(&out, i) {
4058 *i = anv_time_domains[d];
4059 }
4060 }
4061
4062 return vk_outarray_status(&out);
4063 }
4064
4065 static uint64_t
4066 anv_clock_gettime(clockid_t clock_id)
4067 {
4068 struct timespec current;
4069 int ret;
4070
4071 ret = clock_gettime(clock_id, &current);
4072 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4073 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4074 if (ret < 0)
4075 return 0;
4076
4077 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4078 }
4079
4080 #define TIMESTAMP 0x2358
4081
4082 VkResult anv_GetCalibratedTimestampsEXT(
4083 VkDevice _device,
4084 uint32_t timestampCount,
4085 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4086 uint64_t *pTimestamps,
4087 uint64_t *pMaxDeviation)
4088 {
4089 ANV_FROM_HANDLE(anv_device, device, _device);
4090 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4091 int ret;
4092 int d;
4093 uint64_t begin, end;
4094 uint64_t max_clock_period = 0;
4095
4096 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4097
4098 for (d = 0; d < timestampCount; d++) {
4099 switch (pTimestampInfos[d].timeDomain) {
4100 case VK_TIME_DOMAIN_DEVICE_EXT:
4101 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4102 &pTimestamps[d]);
4103
4104 if (ret != 0) {
4105 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4106 "register: %m");
4107 }
4108 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4109 max_clock_period = MAX2(max_clock_period, device_period);
4110 break;
4111 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4112 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4113 max_clock_period = MAX2(max_clock_period, 1);
4114 break;
4115
4116 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4117 pTimestamps[d] = begin;
4118 break;
4119 default:
4120 pTimestamps[d] = 0;
4121 break;
4122 }
4123 }
4124
4125 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4126
4127 /*
4128 * The maximum deviation is the sum of the interval over which we
4129 * perform the sampling and the maximum period of any sampled
4130 * clock. That's because the maximum skew between any two sampled
4131 * clock edges is when the sampled clock with the largest period is
4132 * sampled at the end of that period but right at the beginning of the
4133 * sampling interval and some other clock is sampled right at the
4134 * begining of its sampling period and right at the end of the
4135 * sampling interval. Let's assume the GPU has the longest clock
4136 * period and that the application is sampling GPU and monotonic:
4137 *
4138 * s e
4139 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4140 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4141 *
4142 * g
4143 * 0 1 2 3
4144 * GPU -----_____-----_____-----_____-----_____
4145 *
4146 * m
4147 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4148 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4149 *
4150 * Interval <----------------->
4151 * Deviation <-------------------------->
4152 *
4153 * s = read(raw) 2
4154 * g = read(GPU) 1
4155 * m = read(monotonic) 2
4156 * e = read(raw) b
4157 *
4158 * We round the sample interval up by one tick to cover sampling error
4159 * in the interval clock
4160 */
4161
4162 uint64_t sample_interval = end - begin + 1;
4163
4164 *pMaxDeviation = sample_interval + max_clock_period;
4165
4166 return VK_SUCCESS;
4167 }
4168
4169 /* vk_icd.h does not declare this function, so we declare it here to
4170 * suppress Wmissing-prototypes.
4171 */
4172 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4173 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4174
4175 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4176 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4177 {
4178 /* For the full details on loader interface versioning, see
4179 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4180 * What follows is a condensed summary, to help you navigate the large and
4181 * confusing official doc.
4182 *
4183 * - Loader interface v0 is incompatible with later versions. We don't
4184 * support it.
4185 *
4186 * - In loader interface v1:
4187 * - The first ICD entrypoint called by the loader is
4188 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4189 * entrypoint.
4190 * - The ICD must statically expose no other Vulkan symbol unless it is
4191 * linked with -Bsymbolic.
4192 * - Each dispatchable Vulkan handle created by the ICD must be
4193 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4194 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4195 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4196 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4197 * such loader-managed surfaces.
4198 *
4199 * - Loader interface v2 differs from v1 in:
4200 * - The first ICD entrypoint called by the loader is
4201 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4202 * statically expose this entrypoint.
4203 *
4204 * - Loader interface v3 differs from v2 in:
4205 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4206 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4207 * because the loader no longer does so.
4208 *
4209 * - Loader interface v4 differs from v3 in:
4210 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4211 */
4212 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4213 return VK_SUCCESS;
4214 }