f314d7667d6b8220f87288f249576d46bdae66c4
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t *heap_size)
62 {
63 uint64_t gtt_size;
64 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
65 &gtt_size) == -1) {
66 /* If, for whatever reason, we can't actually get the GTT size from the
67 * kernel (too old?) fall back to the aperture size.
68 */
69 anv_perf_warn(NULL, NULL,
70 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
71
72 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
73 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get aperture size: %m");
75 }
76 }
77
78 /* Query the total ram from the system */
79 struct sysinfo info;
80 sysinfo(&info);
81
82 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
83
84 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
85 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
86 */
87 uint64_t available_ram;
88 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
89 available_ram = total_ram / 2;
90 else
91 available_ram = total_ram * 3 / 4;
92
93 /* We also want to leave some padding for things we allocate in the driver,
94 * so don't go over 3/4 of the GTT either.
95 */
96 uint64_t available_gtt = gtt_size * 3 / 4;
97
98 *heap_size = MIN2(available_ram, available_gtt);
99
100 return VK_SUCCESS;
101 }
102
103 static VkResult
104 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
105 {
106 /* The kernel query only tells us whether or not the kernel supports the
107 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
108 * hardware has actual 48bit address support.
109 */
110 device->supports_48bit_addresses =
111 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
112
113 uint64_t heap_size;
114 VkResult result = anv_compute_heap_size(fd, &heap_size);
115 if (result != VK_SUCCESS)
116 return result;
117
118 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
119 /* When running with an overridden PCI ID, we may get a GTT size from
120 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
121 * address support can still fail. Just clamp the address space size to
122 * 2 GiB if we don't have 48-bit support.
123 */
124 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
125 "not support for 48-bit addresses",
126 __FILE__, __LINE__);
127 heap_size = 2ull << 30;
128 }
129
130 if (heap_size <= 3ull * (1ull << 30)) {
131 /* In this case, everything fits nicely into the 32-bit address space,
132 * so there's no need for supporting 48bit addresses on client-allocated
133 * memory objects.
134 */
135 device->memory.heap_count = 1;
136 device->memory.heaps[0] = (struct anv_memory_heap) {
137 .size = heap_size,
138 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
139 .supports_48bit_addresses = false,
140 };
141 } else {
142 /* Not everything will fit nicely into a 32-bit address space. In this
143 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
144 * larger 48-bit heap. If we're in this case, then we have a total heap
145 * size larger than 3GiB which most likely means they have 8 GiB of
146 * video memory and so carving off 1 GiB for the 32-bit heap should be
147 * reasonable.
148 */
149 const uint64_t heap_size_32bit = 1ull << 30;
150 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
151
152 assert(device->supports_48bit_addresses);
153
154 device->memory.heap_count = 2;
155 device->memory.heaps[0] = (struct anv_memory_heap) {
156 .size = heap_size_48bit,
157 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
158 .supports_48bit_addresses = true,
159 };
160 device->memory.heaps[1] = (struct anv_memory_heap) {
161 .size = heap_size_32bit,
162 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
163 .supports_48bit_addresses = false,
164 };
165 }
166
167 uint32_t type_count = 0;
168 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
169 uint32_t valid_buffer_usage = ~0;
170
171 /* There appears to be a hardware issue in the VF cache where it only
172 * considers the bottom 32 bits of memory addresses. If you happen to
173 * have two vertex buffers which get placed exactly 4 GiB apart and use
174 * them in back-to-back draw calls, you can get collisions. In order to
175 * solve this problem, we require vertex and index buffers be bound to
176 * memory allocated out of the 32-bit heap.
177 */
178 if (device->memory.heaps[heap].supports_48bit_addresses) {
179 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
180 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
181 }
182
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 .valid_buffer_usage = valid_buffer_usage,
194 };
195 } else {
196 /* The spec requires that we expose a host-visible, coherent memory
197 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
198 * to give the application a choice between cached, but not coherent and
199 * coherent but uncached (WC though).
200 */
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
205 .heapIndex = heap,
206 .valid_buffer_usage = valid_buffer_usage,
207 };
208 device->memory.types[type_count++] = (struct anv_memory_type) {
209 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
210 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
212 .heapIndex = heap,
213 .valid_buffer_usage = valid_buffer_usage,
214 };
215 }
216 }
217 device->memory.type_count = type_count;
218
219 return VK_SUCCESS;
220 }
221
222 static VkResult
223 anv_physical_device_init_uuids(struct anv_physical_device *device)
224 {
225 const struct build_id_note *note =
226 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
227 if (!note) {
228 return vk_errorf(device->instance, device,
229 VK_ERROR_INITIALIZATION_FAILED,
230 "Failed to find build-id");
231 }
232
233 unsigned build_id_len = build_id_length(note);
234 if (build_id_len < 20) {
235 return vk_errorf(device->instance, device,
236 VK_ERROR_INITIALIZATION_FAILED,
237 "build-id too short. It needs to be a SHA");
238 }
239
240 struct mesa_sha1 sha1_ctx;
241 uint8_t sha1[20];
242 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
243
244 /* The pipeline cache UUID is used for determining when a pipeline cache is
245 * invalid. It needs both a driver build and the PCI ID of the device.
246 */
247 _mesa_sha1_init(&sha1_ctx);
248 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
249 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
250 sizeof(device->chipset_id));
251 _mesa_sha1_final(&sha1_ctx, sha1);
252 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
253
254 /* The driver UUID is used for determining sharability of images and memory
255 * between two Vulkan instances in separate processes. People who want to
256 * share memory need to also check the device UUID (below) so all this
257 * needs to be is the build-id.
258 */
259 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
260
261 /* The device UUID uniquely identifies the given device within the machine.
262 * Since we never have more than one device, this doesn't need to be a real
263 * UUID. However, on the off-chance that someone tries to use this to
264 * cache pre-tiled images or something of the like, we use the PCI ID and
265 * some bits of ISL info to ensure that this is safe.
266 */
267 _mesa_sha1_init(&sha1_ctx);
268 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
269 sizeof(device->chipset_id));
270 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
271 sizeof(device->isl_dev.has_bit6_swizzling));
272 _mesa_sha1_final(&sha1_ctx, sha1);
273 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
274
275 return VK_SUCCESS;
276 }
277
278 static VkResult
279 anv_physical_device_init(struct anv_physical_device *device,
280 struct anv_instance *instance,
281 const char *path)
282 {
283 VkResult result;
284 int fd;
285
286 brw_process_intel_debug_variable();
287
288 fd = open(path, O_RDWR | O_CLOEXEC);
289 if (fd < 0)
290 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
291
292 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
293 device->instance = instance;
294
295 assert(strlen(path) < ARRAY_SIZE(device->path));
296 strncpy(device->path, path, ARRAY_SIZE(device->path));
297
298 device->no_hw = getenv("INTEL_NO_HW") != NULL;
299
300 const int pci_id_override = gen_get_pci_device_id_override();
301 if (pci_id_override < 0) {
302 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
303 if (!device->chipset_id) {
304 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
305 goto fail;
306 }
307 } else {
308 device->chipset_id = pci_id_override;
309 device->no_hw = true;
310 }
311
312 device->name = gen_get_device_name(device->chipset_id);
313 if (!gen_get_device_info(device->chipset_id, &device->info)) {
314 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
315 goto fail;
316 }
317
318 if (device->info.is_haswell) {
319 intel_logw("Haswell Vulkan support is incomplete");
320 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
321 intel_logw("Ivy Bridge Vulkan support is incomplete");
322 } else if (device->info.gen == 7 && device->info.is_baytrail) {
323 intel_logw("Bay Trail Vulkan support is incomplete");
324 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
325 /* Gen8-10 fully supported */
326 } else {
327 result = vk_errorf(device->instance, device,
328 VK_ERROR_INCOMPATIBLE_DRIVER,
329 "Vulkan not yet supported on %s", device->name);
330 goto fail;
331 }
332
333 device->cmd_parser_version = -1;
334 if (device->info.gen == 7) {
335 device->cmd_parser_version =
336 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
337 if (device->cmd_parser_version == -1) {
338 result = vk_errorf(device->instance, device,
339 VK_ERROR_INITIALIZATION_FAILED,
340 "failed to get command parser version");
341 goto fail;
342 }
343 }
344
345 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
346 result = vk_errorf(device->instance, device,
347 VK_ERROR_INITIALIZATION_FAILED,
348 "kernel missing gem wait");
349 goto fail;
350 }
351
352 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
353 result = vk_errorf(device->instance, device,
354 VK_ERROR_INITIALIZATION_FAILED,
355 "kernel missing execbuf2");
356 goto fail;
357 }
358
359 if (!device->info.has_llc &&
360 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
361 result = vk_errorf(device->instance, device,
362 VK_ERROR_INITIALIZATION_FAILED,
363 "kernel missing wc mmap");
364 goto fail;
365 }
366
367 result = anv_physical_device_init_heaps(device, fd);
368 if (result != VK_SUCCESS)
369 goto fail;
370
371 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
372 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
373 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
374 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
375 device->has_syncobj_wait = device->has_syncobj &&
376 anv_gem_supports_syncobj_wait(fd);
377
378 if (anv_gem_has_context_priority(fd))
379 device->has_context_priority = true;
380
381 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
382
383 /* Starting with Gen10, the timestamp frequency of the command streamer may
384 * vary from one part to another. We can query the value from the kernel.
385 */
386 if (device->info.gen >= 10) {
387 int timestamp_frequency =
388 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
389
390 if (timestamp_frequency < 0)
391 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
392 else
393 device->info.timestamp_frequency = timestamp_frequency;
394 }
395
396 /* GENs prior to 8 do not support EU/Subslice info */
397 if (device->info.gen >= 8) {
398 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
399 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
400
401 /* Without this information, we cannot get the right Braswell
402 * brandstrings, and we have to use conservative numbers for GPGPU on
403 * many platforms, but otherwise, things will just work.
404 */
405 if (device->subslice_total < 1 || device->eu_total < 1) {
406 intel_logw("Kernel 4.1 required to properly query GPU properties");
407 }
408 } else if (device->info.gen == 7) {
409 device->subslice_total = 1 << (device->info.gt - 1);
410 }
411
412 if (device->info.is_cherryview &&
413 device->subslice_total > 0 && device->eu_total > 0) {
414 /* Logical CS threads = EUs per subslice * num threads per EU */
415 uint32_t max_cs_threads =
416 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
417
418 /* Fuse configurations may give more threads than expected, never less. */
419 if (max_cs_threads > device->info.max_cs_threads)
420 device->info.max_cs_threads = max_cs_threads;
421 }
422
423 device->compiler = brw_compiler_create(NULL, &device->info);
424 if (device->compiler == NULL) {
425 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
426 goto fail;
427 }
428 device->compiler->shader_debug_log = compiler_debug_log;
429 device->compiler->shader_perf_log = compiler_perf_log;
430 device->compiler->supports_pull_constants = false;
431 device->compiler->constant_buffer_0_is_relative = true;
432
433 isl_device_init(&device->isl_dev, &device->info, swizzled);
434
435 result = anv_physical_device_init_uuids(device);
436 if (result != VK_SUCCESS)
437 goto fail;
438
439 result = anv_init_wsi(device);
440 if (result != VK_SUCCESS) {
441 ralloc_free(device->compiler);
442 goto fail;
443 }
444
445 anv_physical_device_get_supported_extensions(device,
446 &device->supported_extensions);
447
448 device->local_fd = fd;
449 return VK_SUCCESS;
450
451 fail:
452 close(fd);
453 return result;
454 }
455
456 static void
457 anv_physical_device_finish(struct anv_physical_device *device)
458 {
459 anv_finish_wsi(device);
460 ralloc_free(device->compiler);
461 close(device->local_fd);
462 }
463
464 static void *
465 default_alloc_func(void *pUserData, size_t size, size_t align,
466 VkSystemAllocationScope allocationScope)
467 {
468 return malloc(size);
469 }
470
471 static void *
472 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
473 size_t align, VkSystemAllocationScope allocationScope)
474 {
475 return realloc(pOriginal, size);
476 }
477
478 static void
479 default_free_func(void *pUserData, void *pMemory)
480 {
481 free(pMemory);
482 }
483
484 static const VkAllocationCallbacks default_alloc = {
485 .pUserData = NULL,
486 .pfnAllocation = default_alloc_func,
487 .pfnReallocation = default_realloc_func,
488 .pfnFree = default_free_func,
489 };
490
491 VkResult anv_EnumerateInstanceExtensionProperties(
492 const char* pLayerName,
493 uint32_t* pPropertyCount,
494 VkExtensionProperties* pProperties)
495 {
496 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
497
498 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
499 if (anv_instance_extensions_supported.extensions[i]) {
500 vk_outarray_append(&out, prop) {
501 *prop = anv_instance_extensions[i];
502 }
503 }
504 }
505
506 return vk_outarray_status(&out);
507 }
508
509 VkResult anv_CreateInstance(
510 const VkInstanceCreateInfo* pCreateInfo,
511 const VkAllocationCallbacks* pAllocator,
512 VkInstance* pInstance)
513 {
514 struct anv_instance *instance;
515 VkResult result;
516
517 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
518
519 /* Check if user passed a debug report callback to be used during
520 * Create/Destroy of instance.
521 */
522 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
523 vk_find_struct_const(pCreateInfo->pNext,
524 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
525
526 uint32_t client_version;
527 if (pCreateInfo->pApplicationInfo &&
528 pCreateInfo->pApplicationInfo->apiVersion != 0) {
529 client_version = pCreateInfo->pApplicationInfo->apiVersion;
530 } else {
531 client_version = VK_MAKE_VERSION(1, 0, 0);
532 }
533
534 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
535 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
536
537 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
538 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
539 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
540 VK_NULL_HANDLE, /* No handle available yet. */
541 __LINE__,
542 0,
543 "anv",
544 "incompatible driver version",
545 ctor_cb->pUserData);
546
547 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
548 "Client requested version %d.%d.%d",
549 VK_VERSION_MAJOR(client_version),
550 VK_VERSION_MINOR(client_version),
551 VK_VERSION_PATCH(client_version));
552 }
553
554 struct anv_instance_extension_table enabled_extensions = {};
555 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
556 int idx;
557 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
558 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
559 anv_instance_extensions[idx].extensionName) == 0)
560 break;
561 }
562
563 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
564 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
565
566 if (!anv_instance_extensions_supported.extensions[idx])
567 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
568
569 enabled_extensions.extensions[idx] = true;
570 }
571
572 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
573 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
574 if (!instance)
575 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
576
577 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
578
579 if (pAllocator)
580 instance->alloc = *pAllocator;
581 else
582 instance->alloc = default_alloc;
583
584 instance->apiVersion = client_version;
585 instance->enabled_extensions = enabled_extensions;
586
587 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
588 /* Vulkan requires that entrypoints for extensions which have not been
589 * enabled must not be advertised.
590 */
591 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
592 &instance->enabled_extensions, NULL)) {
593 instance->dispatch.entrypoints[i] = NULL;
594 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
595 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
596 } else {
597 instance->dispatch.entrypoints[i] =
598 anv_tramp_dispatch_table.entrypoints[i];
599 }
600 }
601
602 instance->physicalDeviceCount = -1;
603
604 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
605 if (result != VK_SUCCESS) {
606 vk_free2(&default_alloc, pAllocator, instance);
607 return vk_error(result);
608 }
609
610 _mesa_locale_init();
611
612 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
613
614 *pInstance = anv_instance_to_handle(instance);
615
616 return VK_SUCCESS;
617 }
618
619 void anv_DestroyInstance(
620 VkInstance _instance,
621 const VkAllocationCallbacks* pAllocator)
622 {
623 ANV_FROM_HANDLE(anv_instance, instance, _instance);
624
625 if (!instance)
626 return;
627
628 if (instance->physicalDeviceCount > 0) {
629 /* We support at most one physical device. */
630 assert(instance->physicalDeviceCount == 1);
631 anv_physical_device_finish(&instance->physicalDevice);
632 }
633
634 VG(VALGRIND_DESTROY_MEMPOOL(instance));
635
636 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
637
638 _mesa_locale_fini();
639
640 vk_free(&instance->alloc, instance);
641 }
642
643 static VkResult
644 anv_enumerate_devices(struct anv_instance *instance)
645 {
646 /* TODO: Check for more devices ? */
647 drmDevicePtr devices[8];
648 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
649 int max_devices;
650
651 instance->physicalDeviceCount = 0;
652
653 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
654 if (max_devices < 1)
655 return VK_ERROR_INCOMPATIBLE_DRIVER;
656
657 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
658 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
659 devices[i]->bustype == DRM_BUS_PCI &&
660 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
661
662 result = anv_physical_device_init(&instance->physicalDevice,
663 instance,
664 devices[i]->nodes[DRM_NODE_RENDER]);
665 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
666 break;
667 }
668 }
669 drmFreeDevices(devices, max_devices);
670
671 if (result == VK_SUCCESS)
672 instance->physicalDeviceCount = 1;
673
674 return result;
675 }
676
677
678 VkResult anv_EnumeratePhysicalDevices(
679 VkInstance _instance,
680 uint32_t* pPhysicalDeviceCount,
681 VkPhysicalDevice* pPhysicalDevices)
682 {
683 ANV_FROM_HANDLE(anv_instance, instance, _instance);
684 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
685 VkResult result;
686
687 if (instance->physicalDeviceCount < 0) {
688 result = anv_enumerate_devices(instance);
689 if (result != VK_SUCCESS &&
690 result != VK_ERROR_INCOMPATIBLE_DRIVER)
691 return result;
692 }
693
694 if (instance->physicalDeviceCount > 0) {
695 assert(instance->physicalDeviceCount == 1);
696 vk_outarray_append(&out, i) {
697 *i = anv_physical_device_to_handle(&instance->physicalDevice);
698 }
699 }
700
701 return vk_outarray_status(&out);
702 }
703
704 void anv_GetPhysicalDeviceFeatures(
705 VkPhysicalDevice physicalDevice,
706 VkPhysicalDeviceFeatures* pFeatures)
707 {
708 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
709
710 *pFeatures = (VkPhysicalDeviceFeatures) {
711 .robustBufferAccess = true,
712 .fullDrawIndexUint32 = true,
713 .imageCubeArray = true,
714 .independentBlend = true,
715 .geometryShader = true,
716 .tessellationShader = true,
717 .sampleRateShading = true,
718 .dualSrcBlend = true,
719 .logicOp = true,
720 .multiDrawIndirect = true,
721 .drawIndirectFirstInstance = true,
722 .depthClamp = true,
723 .depthBiasClamp = true,
724 .fillModeNonSolid = true,
725 .depthBounds = false,
726 .wideLines = true,
727 .largePoints = true,
728 .alphaToOne = true,
729 .multiViewport = true,
730 .samplerAnisotropy = true,
731 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
732 pdevice->info.is_baytrail,
733 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
734 .textureCompressionBC = true,
735 .occlusionQueryPrecise = true,
736 .pipelineStatisticsQuery = true,
737 .fragmentStoresAndAtomics = true,
738 .shaderTessellationAndGeometryPointSize = true,
739 .shaderImageGatherExtended = true,
740 .shaderStorageImageExtendedFormats = true,
741 .shaderStorageImageMultisample = false,
742 .shaderStorageImageReadWithoutFormat = false,
743 .shaderStorageImageWriteWithoutFormat = true,
744 .shaderUniformBufferArrayDynamicIndexing = true,
745 .shaderSampledImageArrayDynamicIndexing = true,
746 .shaderStorageBufferArrayDynamicIndexing = true,
747 .shaderStorageImageArrayDynamicIndexing = true,
748 .shaderClipDistance = true,
749 .shaderCullDistance = true,
750 .shaderFloat64 = pdevice->info.gen >= 8,
751 .shaderInt64 = pdevice->info.gen >= 8,
752 .shaderInt16 = false,
753 .shaderResourceMinLod = false,
754 .variableMultisampleRate = false,
755 .inheritedQueries = true,
756 };
757
758 /* We can't do image stores in vec4 shaders */
759 pFeatures->vertexPipelineStoresAndAtomics =
760 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
761 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
762 }
763
764 void anv_GetPhysicalDeviceFeatures2KHR(
765 VkPhysicalDevice physicalDevice,
766 VkPhysicalDeviceFeatures2KHR* pFeatures)
767 {
768 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
769
770 vk_foreach_struct(ext, pFeatures->pNext) {
771 switch (ext->sType) {
772 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
773 VkPhysicalDeviceMultiviewFeaturesKHX *features =
774 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
775 features->multiview = true;
776 features->multiviewGeometryShader = true;
777 features->multiviewTessellationShader = true;
778 break;
779 }
780
781 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
782 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
783 features->variablePointersStorageBuffer = true;
784 features->variablePointers = true;
785 break;
786 }
787
788 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR: {
789 VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *features =
790 (VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *) ext;
791 features->samplerYcbcrConversion = true;
792 break;
793 }
794
795 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
796 VkPhysicalDevice16BitStorageFeaturesKHR *features =
797 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
798
799 features->storageBuffer16BitAccess = false;
800 features->uniformAndStorageBuffer16BitAccess = false;
801 features->storagePushConstant16 = false;
802 features->storageInputOutput16 = false;
803 break;
804 }
805
806 default:
807 anv_debug_ignored_stype(ext->sType);
808 break;
809 }
810 }
811 }
812
813 void anv_GetPhysicalDeviceProperties(
814 VkPhysicalDevice physicalDevice,
815 VkPhysicalDeviceProperties* pProperties)
816 {
817 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
818 const struct gen_device_info *devinfo = &pdevice->info;
819
820 /* See assertions made when programming the buffer surface state. */
821 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
822 (1ul << 30) : (1ul << 27);
823
824 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
825 128 : 16;
826
827 VkSampleCountFlags sample_counts =
828 isl_device_get_sample_counts(&pdevice->isl_dev);
829
830 VkPhysicalDeviceLimits limits = {
831 .maxImageDimension1D = (1 << 14),
832 .maxImageDimension2D = (1 << 14),
833 .maxImageDimension3D = (1 << 11),
834 .maxImageDimensionCube = (1 << 14),
835 .maxImageArrayLayers = (1 << 11),
836 .maxTexelBufferElements = 128 * 1024 * 1024,
837 .maxUniformBufferRange = (1ul << 27),
838 .maxStorageBufferRange = max_raw_buffer_sz,
839 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
840 .maxMemoryAllocationCount = UINT32_MAX,
841 .maxSamplerAllocationCount = 64 * 1024,
842 .bufferImageGranularity = 64, /* A cache line */
843 .sparseAddressSpaceSize = 0,
844 .maxBoundDescriptorSets = MAX_SETS,
845 .maxPerStageDescriptorSamplers = max_samplers,
846 .maxPerStageDescriptorUniformBuffers = 64,
847 .maxPerStageDescriptorStorageBuffers = 64,
848 .maxPerStageDescriptorSampledImages = max_samplers,
849 .maxPerStageDescriptorStorageImages = 64,
850 .maxPerStageDescriptorInputAttachments = 64,
851 .maxPerStageResources = 250,
852 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
853 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
854 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
855 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
856 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
857 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
858 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
859 .maxDescriptorSetInputAttachments = 256,
860 .maxVertexInputAttributes = MAX_VBS,
861 .maxVertexInputBindings = MAX_VBS,
862 .maxVertexInputAttributeOffset = 2047,
863 .maxVertexInputBindingStride = 2048,
864 .maxVertexOutputComponents = 128,
865 .maxTessellationGenerationLevel = 64,
866 .maxTessellationPatchSize = 32,
867 .maxTessellationControlPerVertexInputComponents = 128,
868 .maxTessellationControlPerVertexOutputComponents = 128,
869 .maxTessellationControlPerPatchOutputComponents = 128,
870 .maxTessellationControlTotalOutputComponents = 2048,
871 .maxTessellationEvaluationInputComponents = 128,
872 .maxTessellationEvaluationOutputComponents = 128,
873 .maxGeometryShaderInvocations = 32,
874 .maxGeometryInputComponents = 64,
875 .maxGeometryOutputComponents = 128,
876 .maxGeometryOutputVertices = 256,
877 .maxGeometryTotalOutputComponents = 1024,
878 .maxFragmentInputComponents = 128,
879 .maxFragmentOutputAttachments = 8,
880 .maxFragmentDualSrcAttachments = 1,
881 .maxFragmentCombinedOutputResources = 8,
882 .maxComputeSharedMemorySize = 32768,
883 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
884 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
885 .maxComputeWorkGroupSize = {
886 16 * devinfo->max_cs_threads,
887 16 * devinfo->max_cs_threads,
888 16 * devinfo->max_cs_threads,
889 },
890 .subPixelPrecisionBits = 4 /* FIXME */,
891 .subTexelPrecisionBits = 4 /* FIXME */,
892 .mipmapPrecisionBits = 4 /* FIXME */,
893 .maxDrawIndexedIndexValue = UINT32_MAX,
894 .maxDrawIndirectCount = UINT32_MAX,
895 .maxSamplerLodBias = 16,
896 .maxSamplerAnisotropy = 16,
897 .maxViewports = MAX_VIEWPORTS,
898 .maxViewportDimensions = { (1 << 14), (1 << 14) },
899 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
900 .viewportSubPixelBits = 13, /* We take a float? */
901 .minMemoryMapAlignment = 4096, /* A page */
902 .minTexelBufferOffsetAlignment = 1,
903 /* We need 16 for UBO block reads to work and 32 for push UBOs */
904 .minUniformBufferOffsetAlignment = 32,
905 .minStorageBufferOffsetAlignment = 4,
906 .minTexelOffset = -8,
907 .maxTexelOffset = 7,
908 .minTexelGatherOffset = -32,
909 .maxTexelGatherOffset = 31,
910 .minInterpolationOffset = -0.5,
911 .maxInterpolationOffset = 0.4375,
912 .subPixelInterpolationOffsetBits = 4,
913 .maxFramebufferWidth = (1 << 14),
914 .maxFramebufferHeight = (1 << 14),
915 .maxFramebufferLayers = (1 << 11),
916 .framebufferColorSampleCounts = sample_counts,
917 .framebufferDepthSampleCounts = sample_counts,
918 .framebufferStencilSampleCounts = sample_counts,
919 .framebufferNoAttachmentsSampleCounts = sample_counts,
920 .maxColorAttachments = MAX_RTS,
921 .sampledImageColorSampleCounts = sample_counts,
922 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
923 .sampledImageDepthSampleCounts = sample_counts,
924 .sampledImageStencilSampleCounts = sample_counts,
925 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
926 .maxSampleMaskWords = 1,
927 .timestampComputeAndGraphics = false,
928 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
929 .maxClipDistances = 8,
930 .maxCullDistances = 8,
931 .maxCombinedClipAndCullDistances = 8,
932 .discreteQueuePriorities = 1,
933 .pointSizeRange = { 0.125, 255.875 },
934 .lineWidthRange = { 0.0, 7.9921875 },
935 .pointSizeGranularity = (1.0 / 8.0),
936 .lineWidthGranularity = (1.0 / 128.0),
937 .strictLines = false, /* FINISHME */
938 .standardSampleLocations = true,
939 .optimalBufferCopyOffsetAlignment = 128,
940 .optimalBufferCopyRowPitchAlignment = 128,
941 .nonCoherentAtomSize = 64,
942 };
943
944 *pProperties = (VkPhysicalDeviceProperties) {
945 .apiVersion = anv_physical_device_api_version(pdevice),
946 .driverVersion = vk_get_driver_version(),
947 .vendorID = 0x8086,
948 .deviceID = pdevice->chipset_id,
949 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
950 .limits = limits,
951 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
952 };
953
954 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
955 "%s", pdevice->name);
956 memcpy(pProperties->pipelineCacheUUID,
957 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
958 }
959
960 void anv_GetPhysicalDeviceProperties2KHR(
961 VkPhysicalDevice physicalDevice,
962 VkPhysicalDeviceProperties2KHR* pProperties)
963 {
964 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
965
966 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
967
968 vk_foreach_struct(ext, pProperties->pNext) {
969 switch (ext->sType) {
970 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
971 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
972 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
973
974 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
975 break;
976 }
977
978 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
979 VkPhysicalDeviceIDPropertiesKHR *id_props =
980 (VkPhysicalDeviceIDPropertiesKHR *)ext;
981 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
982 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
983 /* The LUID is for Windows. */
984 id_props->deviceLUIDValid = false;
985 break;
986 }
987
988 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
989 VkPhysicalDeviceMultiviewPropertiesKHX *properties =
990 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
991 properties->maxMultiviewViewCount = 16;
992 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
993 break;
994 }
995
996 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
997 VkPhysicalDevicePointClippingPropertiesKHR *properties =
998 (VkPhysicalDevicePointClippingPropertiesKHR *) ext;
999 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
1000 anv_finishme("Implement pop-free point clipping");
1001 break;
1002 }
1003
1004 default:
1005 anv_debug_ignored_stype(ext->sType);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* We support exactly one queue family. */
1012 static const VkQueueFamilyProperties
1013 anv_queue_family_properties = {
1014 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1015 VK_QUEUE_COMPUTE_BIT |
1016 VK_QUEUE_TRANSFER_BIT,
1017 .queueCount = 1,
1018 .timestampValidBits = 36, /* XXX: Real value here */
1019 .minImageTransferGranularity = { 1, 1, 1 },
1020 };
1021
1022 void anv_GetPhysicalDeviceQueueFamilyProperties(
1023 VkPhysicalDevice physicalDevice,
1024 uint32_t* pCount,
1025 VkQueueFamilyProperties* pQueueFamilyProperties)
1026 {
1027 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1028
1029 vk_outarray_append(&out, p) {
1030 *p = anv_queue_family_properties;
1031 }
1032 }
1033
1034 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
1035 VkPhysicalDevice physicalDevice,
1036 uint32_t* pQueueFamilyPropertyCount,
1037 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
1038 {
1039
1040 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1041
1042 vk_outarray_append(&out, p) {
1043 p->queueFamilyProperties = anv_queue_family_properties;
1044
1045 vk_foreach_struct(s, p->pNext) {
1046 anv_debug_ignored_stype(s->sType);
1047 }
1048 }
1049 }
1050
1051 void anv_GetPhysicalDeviceMemoryProperties(
1052 VkPhysicalDevice physicalDevice,
1053 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1054 {
1055 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1056
1057 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1058 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1059 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1060 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1061 .heapIndex = physical_device->memory.types[i].heapIndex,
1062 };
1063 }
1064
1065 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1066 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1067 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1068 .size = physical_device->memory.heaps[i].size,
1069 .flags = physical_device->memory.heaps[i].flags,
1070 };
1071 }
1072 }
1073
1074 void anv_GetPhysicalDeviceMemoryProperties2KHR(
1075 VkPhysicalDevice physicalDevice,
1076 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
1077 {
1078 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1079 &pMemoryProperties->memoryProperties);
1080
1081 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1082 switch (ext->sType) {
1083 default:
1084 anv_debug_ignored_stype(ext->sType);
1085 break;
1086 }
1087 }
1088 }
1089
1090 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1091 VkInstance _instance,
1092 const char* pName)
1093 {
1094 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1095
1096 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1097 * when we have to return valid function pointers, NULL, or it's left
1098 * undefined. See the table for exact details.
1099 */
1100 if (pName == NULL)
1101 return NULL;
1102
1103 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1104 if (strcmp(pName, "vk" #entrypoint) == 0) \
1105 return (PFN_vkVoidFunction)anv_##entrypoint
1106
1107 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1108 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1109 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1110
1111 #undef LOOKUP_ANV_ENTRYPOINT
1112
1113 if (instance == NULL)
1114 return NULL;
1115
1116 int idx = anv_get_entrypoint_index(pName);
1117 if (idx < 0)
1118 return NULL;
1119
1120 return instance->dispatch.entrypoints[idx];
1121 }
1122
1123 /* With version 1+ of the loader interface the ICD should expose
1124 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1125 */
1126 PUBLIC
1127 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1128 VkInstance instance,
1129 const char* pName);
1130
1131 PUBLIC
1132 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1133 VkInstance instance,
1134 const char* pName)
1135 {
1136 return anv_GetInstanceProcAddr(instance, pName);
1137 }
1138
1139 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1140 VkDevice _device,
1141 const char* pName)
1142 {
1143 ANV_FROM_HANDLE(anv_device, device, _device);
1144
1145 if (!device || !pName)
1146 return NULL;
1147
1148 int idx = anv_get_entrypoint_index(pName);
1149 if (idx < 0)
1150 return NULL;
1151
1152 return device->dispatch.entrypoints[idx];
1153 }
1154
1155 VkResult
1156 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1157 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1158 const VkAllocationCallbacks* pAllocator,
1159 VkDebugReportCallbackEXT* pCallback)
1160 {
1161 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1162 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1163 pCreateInfo, pAllocator, &instance->alloc,
1164 pCallback);
1165 }
1166
1167 void
1168 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1169 VkDebugReportCallbackEXT _callback,
1170 const VkAllocationCallbacks* pAllocator)
1171 {
1172 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1173 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1174 _callback, pAllocator, &instance->alloc);
1175 }
1176
1177 void
1178 anv_DebugReportMessageEXT(VkInstance _instance,
1179 VkDebugReportFlagsEXT flags,
1180 VkDebugReportObjectTypeEXT objectType,
1181 uint64_t object,
1182 size_t location,
1183 int32_t messageCode,
1184 const char* pLayerPrefix,
1185 const char* pMessage)
1186 {
1187 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1188 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1189 object, location, messageCode, pLayerPrefix, pMessage);
1190 }
1191
1192 static void
1193 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1194 {
1195 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1196 queue->device = device;
1197 queue->pool = &device->surface_state_pool;
1198 }
1199
1200 static void
1201 anv_queue_finish(struct anv_queue *queue)
1202 {
1203 }
1204
1205 static struct anv_state
1206 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1207 {
1208 struct anv_state state;
1209
1210 state = anv_state_pool_alloc(pool, size, align);
1211 memcpy(state.map, p, size);
1212
1213 anv_state_flush(pool->block_pool.device, state);
1214
1215 return state;
1216 }
1217
1218 struct gen8_border_color {
1219 union {
1220 float float32[4];
1221 uint32_t uint32[4];
1222 };
1223 /* Pad out to 64 bytes */
1224 uint32_t _pad[12];
1225 };
1226
1227 static void
1228 anv_device_init_border_colors(struct anv_device *device)
1229 {
1230 static const struct gen8_border_color border_colors[] = {
1231 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1232 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1233 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1234 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1235 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1236 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1237 };
1238
1239 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1240 sizeof(border_colors), 64,
1241 border_colors);
1242 }
1243
1244 static void
1245 anv_device_init_trivial_batch(struct anv_device *device)
1246 {
1247 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1248
1249 if (device->instance->physicalDevice.has_exec_async)
1250 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1251
1252 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1253 0, 4096, 0);
1254
1255 struct anv_batch batch = {
1256 .start = map,
1257 .next = map,
1258 .end = map + 4096,
1259 };
1260
1261 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1262 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1263
1264 if (!device->info.has_llc)
1265 gen_clflush_range(map, batch.next - map);
1266
1267 anv_gem_munmap(map, device->trivial_batch_bo.size);
1268 }
1269
1270 VkResult anv_EnumerateDeviceExtensionProperties(
1271 VkPhysicalDevice physicalDevice,
1272 const char* pLayerName,
1273 uint32_t* pPropertyCount,
1274 VkExtensionProperties* pProperties)
1275 {
1276 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1277 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1278 (void)device;
1279
1280 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1281 if (device->supported_extensions.extensions[i]) {
1282 vk_outarray_append(&out, prop) {
1283 *prop = anv_device_extensions[i];
1284 }
1285 }
1286 }
1287
1288 return vk_outarray_status(&out);
1289 }
1290
1291 static void
1292 anv_device_init_dispatch(struct anv_device *device)
1293 {
1294 const struct anv_dispatch_table *genX_table;
1295 switch (device->info.gen) {
1296 case 10:
1297 genX_table = &gen10_dispatch_table;
1298 break;
1299 case 9:
1300 genX_table = &gen9_dispatch_table;
1301 break;
1302 case 8:
1303 genX_table = &gen8_dispatch_table;
1304 break;
1305 case 7:
1306 if (device->info.is_haswell)
1307 genX_table = &gen75_dispatch_table;
1308 else
1309 genX_table = &gen7_dispatch_table;
1310 break;
1311 default:
1312 unreachable("unsupported gen\n");
1313 }
1314
1315 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1316 /* Vulkan requires that entrypoints for extensions which have not been
1317 * enabled must not be advertised.
1318 */
1319 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1320 &device->instance->enabled_extensions,
1321 &device->enabled_extensions)) {
1322 device->dispatch.entrypoints[i] = NULL;
1323 } else if (genX_table->entrypoints[i]) {
1324 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1325 } else {
1326 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1327 }
1328 }
1329 }
1330
1331 static int
1332 vk_priority_to_gen(int priority)
1333 {
1334 switch (priority) {
1335 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1336 return GEN_CONTEXT_LOW_PRIORITY;
1337 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1338 return GEN_CONTEXT_MEDIUM_PRIORITY;
1339 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1340 return GEN_CONTEXT_HIGH_PRIORITY;
1341 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1342 return GEN_CONTEXT_REALTIME_PRIORITY;
1343 default:
1344 unreachable("Invalid priority");
1345 }
1346 }
1347
1348 VkResult anv_CreateDevice(
1349 VkPhysicalDevice physicalDevice,
1350 const VkDeviceCreateInfo* pCreateInfo,
1351 const VkAllocationCallbacks* pAllocator,
1352 VkDevice* pDevice)
1353 {
1354 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1355 VkResult result;
1356 struct anv_device *device;
1357
1358 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1359
1360 struct anv_device_extension_table enabled_extensions = { };
1361 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1362 int idx;
1363 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1364 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1365 anv_device_extensions[idx].extensionName) == 0)
1366 break;
1367 }
1368
1369 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1370 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1371
1372 if (!physical_device->supported_extensions.extensions[idx])
1373 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1374
1375 enabled_extensions.extensions[idx] = true;
1376 }
1377
1378 /* Check enabled features */
1379 if (pCreateInfo->pEnabledFeatures) {
1380 VkPhysicalDeviceFeatures supported_features;
1381 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1382 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1383 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1384 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1385 for (uint32_t i = 0; i < num_features; i++) {
1386 if (enabled_feature[i] && !supported_feature[i])
1387 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1388 }
1389 }
1390
1391 /* Check if client specified queue priority. */
1392 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1393 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1394 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1395
1396 VkQueueGlobalPriorityEXT priority =
1397 queue_priority ? queue_priority->globalPriority :
1398 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1399
1400 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1401 sizeof(*device), 8,
1402 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1403 if (!device)
1404 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1405
1406 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1407 device->instance = physical_device->instance;
1408 device->chipset_id = physical_device->chipset_id;
1409 device->no_hw = physical_device->no_hw;
1410 device->lost = false;
1411
1412 if (pAllocator)
1413 device->alloc = *pAllocator;
1414 else
1415 device->alloc = physical_device->instance->alloc;
1416
1417 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1418 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1419 if (device->fd == -1) {
1420 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1421 goto fail_device;
1422 }
1423
1424 device->context_id = anv_gem_create_context(device);
1425 if (device->context_id == -1) {
1426 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1427 goto fail_fd;
1428 }
1429
1430 /* As per spec, the driver implementation may deny requests to acquire
1431 * a priority above the default priority (MEDIUM) if the caller does not
1432 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1433 * is returned.
1434 */
1435 if (physical_device->has_context_priority) {
1436 int err =
1437 anv_gem_set_context_priority(device, vk_priority_to_gen(priority));
1438 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1439 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1440 goto fail_fd;
1441 }
1442 }
1443
1444 device->info = physical_device->info;
1445 device->isl_dev = physical_device->isl_dev;
1446
1447 /* On Broadwell and later, we can use batch chaining to more efficiently
1448 * implement growing command buffers. Prior to Haswell, the kernel
1449 * command parser gets in the way and we have to fall back to growing
1450 * the batch.
1451 */
1452 device->can_chain_batches = device->info.gen >= 8;
1453
1454 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1455 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1456 device->enabled_extensions = enabled_extensions;
1457
1458 anv_device_init_dispatch(device);
1459
1460 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1461 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1462 goto fail_context_id;
1463 }
1464
1465 pthread_condattr_t condattr;
1466 if (pthread_condattr_init(&condattr) != 0) {
1467 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1468 goto fail_mutex;
1469 }
1470 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1471 pthread_condattr_destroy(&condattr);
1472 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1473 goto fail_mutex;
1474 }
1475 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1476 pthread_condattr_destroy(&condattr);
1477 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1478 goto fail_mutex;
1479 }
1480 pthread_condattr_destroy(&condattr);
1481
1482 uint64_t bo_flags =
1483 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1484 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1485 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1486
1487 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1488
1489 result = anv_bo_cache_init(&device->bo_cache);
1490 if (result != VK_SUCCESS)
1491 goto fail_batch_bo_pool;
1492
1493 /* For the state pools we explicitly disable 48bit. */
1494 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1495 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1496
1497 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1498 bo_flags);
1499 if (result != VK_SUCCESS)
1500 goto fail_bo_cache;
1501
1502 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1503 bo_flags);
1504 if (result != VK_SUCCESS)
1505 goto fail_dynamic_state_pool;
1506
1507 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1508 bo_flags);
1509 if (result != VK_SUCCESS)
1510 goto fail_instruction_state_pool;
1511
1512 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1513 if (result != VK_SUCCESS)
1514 goto fail_surface_state_pool;
1515
1516 anv_device_init_trivial_batch(device);
1517
1518 anv_scratch_pool_init(device, &device->scratch_pool);
1519
1520 anv_queue_init(device, &device->queue);
1521
1522 switch (device->info.gen) {
1523 case 7:
1524 if (!device->info.is_haswell)
1525 result = gen7_init_device_state(device);
1526 else
1527 result = gen75_init_device_state(device);
1528 break;
1529 case 8:
1530 result = gen8_init_device_state(device);
1531 break;
1532 case 9:
1533 result = gen9_init_device_state(device);
1534 break;
1535 case 10:
1536 result = gen10_init_device_state(device);
1537 break;
1538 case 11:
1539 result = gen11_init_device_state(device);
1540 break;
1541 default:
1542 /* Shouldn't get here as we don't create physical devices for any other
1543 * gens. */
1544 unreachable("unhandled gen");
1545 }
1546 if (result != VK_SUCCESS)
1547 goto fail_workaround_bo;
1548
1549 anv_device_init_blorp(device);
1550
1551 anv_device_init_border_colors(device);
1552
1553 *pDevice = anv_device_to_handle(device);
1554
1555 return VK_SUCCESS;
1556
1557 fail_workaround_bo:
1558 anv_queue_finish(&device->queue);
1559 anv_scratch_pool_finish(device, &device->scratch_pool);
1560 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1561 anv_gem_close(device, device->workaround_bo.gem_handle);
1562 fail_surface_state_pool:
1563 anv_state_pool_finish(&device->surface_state_pool);
1564 fail_instruction_state_pool:
1565 anv_state_pool_finish(&device->instruction_state_pool);
1566 fail_dynamic_state_pool:
1567 anv_state_pool_finish(&device->dynamic_state_pool);
1568 fail_bo_cache:
1569 anv_bo_cache_finish(&device->bo_cache);
1570 fail_batch_bo_pool:
1571 anv_bo_pool_finish(&device->batch_bo_pool);
1572 pthread_cond_destroy(&device->queue_submit);
1573 fail_mutex:
1574 pthread_mutex_destroy(&device->mutex);
1575 fail_context_id:
1576 anv_gem_destroy_context(device, device->context_id);
1577 fail_fd:
1578 close(device->fd);
1579 fail_device:
1580 vk_free(&device->alloc, device);
1581
1582 return result;
1583 }
1584
1585 void anv_DestroyDevice(
1586 VkDevice _device,
1587 const VkAllocationCallbacks* pAllocator)
1588 {
1589 ANV_FROM_HANDLE(anv_device, device, _device);
1590
1591 if (!device)
1592 return;
1593
1594 anv_device_finish_blorp(device);
1595
1596 anv_queue_finish(&device->queue);
1597
1598 #ifdef HAVE_VALGRIND
1599 /* We only need to free these to prevent valgrind errors. The backing
1600 * BO will go away in a couple of lines so we don't actually leak.
1601 */
1602 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1603 #endif
1604
1605 anv_scratch_pool_finish(device, &device->scratch_pool);
1606
1607 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1608 anv_gem_close(device, device->workaround_bo.gem_handle);
1609
1610 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1611
1612 anv_state_pool_finish(&device->surface_state_pool);
1613 anv_state_pool_finish(&device->instruction_state_pool);
1614 anv_state_pool_finish(&device->dynamic_state_pool);
1615
1616 anv_bo_cache_finish(&device->bo_cache);
1617
1618 anv_bo_pool_finish(&device->batch_bo_pool);
1619
1620 pthread_cond_destroy(&device->queue_submit);
1621 pthread_mutex_destroy(&device->mutex);
1622
1623 anv_gem_destroy_context(device, device->context_id);
1624
1625 close(device->fd);
1626
1627 vk_free(&device->alloc, device);
1628 }
1629
1630 VkResult anv_EnumerateInstanceLayerProperties(
1631 uint32_t* pPropertyCount,
1632 VkLayerProperties* pProperties)
1633 {
1634 if (pProperties == NULL) {
1635 *pPropertyCount = 0;
1636 return VK_SUCCESS;
1637 }
1638
1639 /* None supported at this time */
1640 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1641 }
1642
1643 VkResult anv_EnumerateDeviceLayerProperties(
1644 VkPhysicalDevice physicalDevice,
1645 uint32_t* pPropertyCount,
1646 VkLayerProperties* pProperties)
1647 {
1648 if (pProperties == NULL) {
1649 *pPropertyCount = 0;
1650 return VK_SUCCESS;
1651 }
1652
1653 /* None supported at this time */
1654 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1655 }
1656
1657 void anv_GetDeviceQueue(
1658 VkDevice _device,
1659 uint32_t queueNodeIndex,
1660 uint32_t queueIndex,
1661 VkQueue* pQueue)
1662 {
1663 ANV_FROM_HANDLE(anv_device, device, _device);
1664
1665 assert(queueIndex == 0);
1666
1667 *pQueue = anv_queue_to_handle(&device->queue);
1668 }
1669
1670 VkResult
1671 anv_device_query_status(struct anv_device *device)
1672 {
1673 /* This isn't likely as most of the callers of this function already check
1674 * for it. However, it doesn't hurt to check and it potentially lets us
1675 * avoid an ioctl.
1676 */
1677 if (unlikely(device->lost))
1678 return VK_ERROR_DEVICE_LOST;
1679
1680 uint32_t active, pending;
1681 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1682 if (ret == -1) {
1683 /* We don't know the real error. */
1684 device->lost = true;
1685 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1686 "get_reset_stats failed: %m");
1687 }
1688
1689 if (active) {
1690 device->lost = true;
1691 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1692 "GPU hung on one of our command buffers");
1693 } else if (pending) {
1694 device->lost = true;
1695 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1696 "GPU hung with commands in-flight");
1697 }
1698
1699 return VK_SUCCESS;
1700 }
1701
1702 VkResult
1703 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1704 {
1705 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1706 * Other usages of the BO (such as on different hardware) will not be
1707 * flagged as "busy" by this ioctl. Use with care.
1708 */
1709 int ret = anv_gem_busy(device, bo->gem_handle);
1710 if (ret == 1) {
1711 return VK_NOT_READY;
1712 } else if (ret == -1) {
1713 /* We don't know the real error. */
1714 device->lost = true;
1715 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1716 "gem wait failed: %m");
1717 }
1718
1719 /* Query for device status after the busy call. If the BO we're checking
1720 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1721 * client because it clearly doesn't have valid data. Yes, this most
1722 * likely means an ioctl, but we just did an ioctl to query the busy status
1723 * so it's no great loss.
1724 */
1725 return anv_device_query_status(device);
1726 }
1727
1728 VkResult
1729 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1730 int64_t timeout)
1731 {
1732 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1733 if (ret == -1 && errno == ETIME) {
1734 return VK_TIMEOUT;
1735 } else if (ret == -1) {
1736 /* We don't know the real error. */
1737 device->lost = true;
1738 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1739 "gem wait failed: %m");
1740 }
1741
1742 /* Query for device status after the wait. If the BO we're waiting on got
1743 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1744 * because it clearly doesn't have valid data. Yes, this most likely means
1745 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1746 */
1747 return anv_device_query_status(device);
1748 }
1749
1750 VkResult anv_DeviceWaitIdle(
1751 VkDevice _device)
1752 {
1753 ANV_FROM_HANDLE(anv_device, device, _device);
1754 if (unlikely(device->lost))
1755 return VK_ERROR_DEVICE_LOST;
1756
1757 struct anv_batch batch;
1758
1759 uint32_t cmds[8];
1760 batch.start = batch.next = cmds;
1761 batch.end = (void *) cmds + sizeof(cmds);
1762
1763 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1764 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1765
1766 return anv_device_submit_simple_batch(device, &batch);
1767 }
1768
1769 VkResult
1770 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1771 {
1772 uint32_t gem_handle = anv_gem_create(device, size);
1773 if (!gem_handle)
1774 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1775
1776 anv_bo_init(bo, gem_handle, size);
1777
1778 return VK_SUCCESS;
1779 }
1780
1781 VkResult anv_AllocateMemory(
1782 VkDevice _device,
1783 const VkMemoryAllocateInfo* pAllocateInfo,
1784 const VkAllocationCallbacks* pAllocator,
1785 VkDeviceMemory* pMem)
1786 {
1787 ANV_FROM_HANDLE(anv_device, device, _device);
1788 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1789 struct anv_device_memory *mem;
1790 VkResult result = VK_SUCCESS;
1791
1792 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1793
1794 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1795 assert(pAllocateInfo->allocationSize > 0);
1796
1797 /* The kernel relocation API has a limitation of a 32-bit delta value
1798 * applied to the address before it is written which, in spite of it being
1799 * unsigned, is treated as signed . Because of the way that this maps to
1800 * the Vulkan API, we cannot handle an offset into a buffer that does not
1801 * fit into a signed 32 bits. The only mechanism we have for dealing with
1802 * this at the moment is to limit all VkDeviceMemory objects to a maximum
1803 * of 2GB each. The Vulkan spec allows us to do this:
1804 *
1805 * "Some platforms may have a limit on the maximum size of a single
1806 * allocation. For example, certain systems may fail to create
1807 * allocations with a size greater than or equal to 4GB. Such a limit is
1808 * implementation-dependent, and if such a failure occurs then the error
1809 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
1810 *
1811 * We don't use vk_error here because it's not an error so much as an
1812 * indication to the application that the allocation is too large.
1813 */
1814 if (pAllocateInfo->allocationSize > (1ull << 31))
1815 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1816
1817 /* FINISHME: Fail if allocation request exceeds heap size. */
1818
1819 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1820 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1821 if (mem == NULL)
1822 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1823
1824 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1825 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1826 mem->map = NULL;
1827 mem->map_size = 0;
1828
1829 const VkImportMemoryFdInfoKHR *fd_info =
1830 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1831
1832 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1833 * ignored.
1834 */
1835 if (fd_info && fd_info->handleType) {
1836 /* At the moment, we support only the below handle types. */
1837 assert(fd_info->handleType ==
1838 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1839 fd_info->handleType ==
1840 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1841
1842 result = anv_bo_cache_import(device, &device->bo_cache,
1843 fd_info->fd, &mem->bo);
1844 if (result != VK_SUCCESS)
1845 goto fail;
1846
1847 VkDeviceSize aligned_alloc_size =
1848 align_u64(pAllocateInfo->allocationSize, 4096);
1849
1850 /* For security purposes, we reject importing the bo if it's smaller
1851 * than the requested allocation size. This prevents a malicious client
1852 * from passing a buffer to a trusted client, lying about the size, and
1853 * telling the trusted client to try and texture from an image that goes
1854 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1855 * in the trusted client. The trusted client can protect itself against
1856 * this sort of attack but only if it can trust the buffer size.
1857 */
1858 if (mem->bo->size < aligned_alloc_size) {
1859 result = vk_errorf(device->instance, device,
1860 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1861 "aligned allocationSize too large for "
1862 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1863 "%"PRIu64"B > %"PRIu64"B",
1864 aligned_alloc_size, mem->bo->size);
1865 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1866 goto fail;
1867 }
1868
1869 /* From the Vulkan spec:
1870 *
1871 * "Importing memory from a file descriptor transfers ownership of
1872 * the file descriptor from the application to the Vulkan
1873 * implementation. The application must not perform any operations on
1874 * the file descriptor after a successful import."
1875 *
1876 * If the import fails, we leave the file descriptor open.
1877 */
1878 close(fd_info->fd);
1879 } else {
1880 result = anv_bo_cache_alloc(device, &device->bo_cache,
1881 pAllocateInfo->allocationSize,
1882 &mem->bo);
1883 if (result != VK_SUCCESS)
1884 goto fail;
1885
1886 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1887 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1888 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1889 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1890
1891 /* Some legacy (non-modifiers) consumers need the tiling to be set on
1892 * the BO. In this case, we have a dedicated allocation.
1893 */
1894 if (image->needs_set_tiling) {
1895 const uint32_t i915_tiling =
1896 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1897 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1898 image->planes[0].surface.isl.row_pitch,
1899 i915_tiling);
1900 if (ret) {
1901 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1902 return vk_errorf(device->instance, NULL,
1903 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1904 "failed to set BO tiling: %m");
1905 }
1906 }
1907 }
1908 }
1909
1910 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1911 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1912 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1913
1914 const struct wsi_memory_allocate_info *wsi_info =
1915 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1916 if (wsi_info && wsi_info->implicit_sync) {
1917 /* We need to set the WRITE flag on window system buffers so that GEM
1918 * will know we're writing to them and synchronize uses on other rings
1919 * (eg if the display server uses the blitter ring).
1920 */
1921 mem->bo->flags |= EXEC_OBJECT_WRITE;
1922 } else if (pdevice->has_exec_async) {
1923 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1924 }
1925
1926 *pMem = anv_device_memory_to_handle(mem);
1927
1928 return VK_SUCCESS;
1929
1930 fail:
1931 vk_free2(&device->alloc, pAllocator, mem);
1932
1933 return result;
1934 }
1935
1936 VkResult anv_GetMemoryFdKHR(
1937 VkDevice device_h,
1938 const VkMemoryGetFdInfoKHR* pGetFdInfo,
1939 int* pFd)
1940 {
1941 ANV_FROM_HANDLE(anv_device, dev, device_h);
1942 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
1943
1944 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
1945
1946 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1947 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1948
1949 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
1950 }
1951
1952 VkResult anv_GetMemoryFdPropertiesKHR(
1953 VkDevice _device,
1954 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
1955 int fd,
1956 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
1957 {
1958 ANV_FROM_HANDLE(anv_device, device, _device);
1959 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1960
1961 switch (handleType) {
1962 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
1963 /* dma-buf can be imported as any memory type */
1964 pMemoryFdProperties->memoryTypeBits =
1965 (1 << pdevice->memory.type_count) - 1;
1966 return VK_SUCCESS;
1967
1968 default:
1969 /* The valid usage section for this function says:
1970 *
1971 * "handleType must not be one of the handle types defined as
1972 * opaque."
1973 *
1974 * So opaque handle types fall into the default "unsupported" case.
1975 */
1976 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
1977 }
1978 }
1979
1980 void anv_FreeMemory(
1981 VkDevice _device,
1982 VkDeviceMemory _mem,
1983 const VkAllocationCallbacks* pAllocator)
1984 {
1985 ANV_FROM_HANDLE(anv_device, device, _device);
1986 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1987
1988 if (mem == NULL)
1989 return;
1990
1991 if (mem->map)
1992 anv_UnmapMemory(_device, _mem);
1993
1994 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1995
1996 vk_free2(&device->alloc, pAllocator, mem);
1997 }
1998
1999 VkResult anv_MapMemory(
2000 VkDevice _device,
2001 VkDeviceMemory _memory,
2002 VkDeviceSize offset,
2003 VkDeviceSize size,
2004 VkMemoryMapFlags flags,
2005 void** ppData)
2006 {
2007 ANV_FROM_HANDLE(anv_device, device, _device);
2008 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2009
2010 if (mem == NULL) {
2011 *ppData = NULL;
2012 return VK_SUCCESS;
2013 }
2014
2015 if (size == VK_WHOLE_SIZE)
2016 size = mem->bo->size - offset;
2017
2018 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2019 *
2020 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2021 * assert(size != 0);
2022 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2023 * equal to the size of the memory minus offset
2024 */
2025 assert(size > 0);
2026 assert(offset + size <= mem->bo->size);
2027
2028 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2029 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2030 * at a time is valid. We could just mmap up front and return an offset
2031 * pointer here, but that may exhaust virtual memory on 32 bit
2032 * userspace. */
2033
2034 uint32_t gem_flags = 0;
2035
2036 if (!device->info.has_llc &&
2037 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2038 gem_flags |= I915_MMAP_WC;
2039
2040 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2041 uint64_t map_offset = offset & ~4095ull;
2042 assert(offset >= map_offset);
2043 uint64_t map_size = (offset + size) - map_offset;
2044
2045 /* Let's map whole pages */
2046 map_size = align_u64(map_size, 4096);
2047
2048 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2049 map_offset, map_size, gem_flags);
2050 if (map == MAP_FAILED)
2051 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2052
2053 mem->map = map;
2054 mem->map_size = map_size;
2055
2056 *ppData = mem->map + (offset - map_offset);
2057
2058 return VK_SUCCESS;
2059 }
2060
2061 void anv_UnmapMemory(
2062 VkDevice _device,
2063 VkDeviceMemory _memory)
2064 {
2065 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2066
2067 if (mem == NULL)
2068 return;
2069
2070 anv_gem_munmap(mem->map, mem->map_size);
2071
2072 mem->map = NULL;
2073 mem->map_size = 0;
2074 }
2075
2076 static void
2077 clflush_mapped_ranges(struct anv_device *device,
2078 uint32_t count,
2079 const VkMappedMemoryRange *ranges)
2080 {
2081 for (uint32_t i = 0; i < count; i++) {
2082 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2083 if (ranges[i].offset >= mem->map_size)
2084 continue;
2085
2086 gen_clflush_range(mem->map + ranges[i].offset,
2087 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2088 }
2089 }
2090
2091 VkResult anv_FlushMappedMemoryRanges(
2092 VkDevice _device,
2093 uint32_t memoryRangeCount,
2094 const VkMappedMemoryRange* pMemoryRanges)
2095 {
2096 ANV_FROM_HANDLE(anv_device, device, _device);
2097
2098 if (device->info.has_llc)
2099 return VK_SUCCESS;
2100
2101 /* Make sure the writes we're flushing have landed. */
2102 __builtin_ia32_mfence();
2103
2104 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2105
2106 return VK_SUCCESS;
2107 }
2108
2109 VkResult anv_InvalidateMappedMemoryRanges(
2110 VkDevice _device,
2111 uint32_t memoryRangeCount,
2112 const VkMappedMemoryRange* pMemoryRanges)
2113 {
2114 ANV_FROM_HANDLE(anv_device, device, _device);
2115
2116 if (device->info.has_llc)
2117 return VK_SUCCESS;
2118
2119 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2120
2121 /* Make sure no reads get moved up above the invalidate. */
2122 __builtin_ia32_mfence();
2123
2124 return VK_SUCCESS;
2125 }
2126
2127 void anv_GetBufferMemoryRequirements(
2128 VkDevice _device,
2129 VkBuffer _buffer,
2130 VkMemoryRequirements* pMemoryRequirements)
2131 {
2132 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2133 ANV_FROM_HANDLE(anv_device, device, _device);
2134 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2135
2136 /* The Vulkan spec (git aaed022) says:
2137 *
2138 * memoryTypeBits is a bitfield and contains one bit set for every
2139 * supported memory type for the resource. The bit `1<<i` is set if and
2140 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2141 * structure for the physical device is supported.
2142 */
2143 uint32_t memory_types = 0;
2144 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2145 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2146 if ((valid_usage & buffer->usage) == buffer->usage)
2147 memory_types |= (1u << i);
2148 }
2149
2150 /* Base alignment requirement of a cache line */
2151 uint32_t alignment = 16;
2152
2153 /* We need an alignment of 32 for pushing UBOs */
2154 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2155 alignment = MAX2(alignment, 32);
2156
2157 pMemoryRequirements->size = buffer->size;
2158 pMemoryRequirements->alignment = alignment;
2159 pMemoryRequirements->memoryTypeBits = memory_types;
2160 }
2161
2162 void anv_GetBufferMemoryRequirements2KHR(
2163 VkDevice _device,
2164 const VkBufferMemoryRequirementsInfo2KHR* pInfo,
2165 VkMemoryRequirements2KHR* pMemoryRequirements)
2166 {
2167 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2168 &pMemoryRequirements->memoryRequirements);
2169
2170 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2171 switch (ext->sType) {
2172 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2173 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
2174 requirements->prefersDedicatedAllocation = VK_FALSE;
2175 requirements->requiresDedicatedAllocation = VK_FALSE;
2176 break;
2177 }
2178
2179 default:
2180 anv_debug_ignored_stype(ext->sType);
2181 break;
2182 }
2183 }
2184 }
2185
2186 void anv_GetImageMemoryRequirements(
2187 VkDevice _device,
2188 VkImage _image,
2189 VkMemoryRequirements* pMemoryRequirements)
2190 {
2191 ANV_FROM_HANDLE(anv_image, image, _image);
2192 ANV_FROM_HANDLE(anv_device, device, _device);
2193 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2194
2195 /* The Vulkan spec (git aaed022) says:
2196 *
2197 * memoryTypeBits is a bitfield and contains one bit set for every
2198 * supported memory type for the resource. The bit `1<<i` is set if and
2199 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2200 * structure for the physical device is supported.
2201 *
2202 * All types are currently supported for images.
2203 */
2204 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2205
2206 pMemoryRequirements->size = image->size;
2207 pMemoryRequirements->alignment = image->alignment;
2208 pMemoryRequirements->memoryTypeBits = memory_types;
2209 }
2210
2211 void anv_GetImageMemoryRequirements2KHR(
2212 VkDevice _device,
2213 const VkImageMemoryRequirementsInfo2KHR* pInfo,
2214 VkMemoryRequirements2KHR* pMemoryRequirements)
2215 {
2216 ANV_FROM_HANDLE(anv_device, device, _device);
2217 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2218
2219 anv_GetImageMemoryRequirements(_device, pInfo->image,
2220 &pMemoryRequirements->memoryRequirements);
2221
2222 vk_foreach_struct_const(ext, pInfo->pNext) {
2223 switch (ext->sType) {
2224 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR: {
2225 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2226 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2227 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2228 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2229 plane_reqs->planeAspect);
2230
2231 assert(image->planes[plane].offset == 0);
2232
2233 /* The Vulkan spec (git aaed022) says:
2234 *
2235 * memoryTypeBits is a bitfield and contains one bit set for every
2236 * supported memory type for the resource. The bit `1<<i` is set
2237 * if and only if the memory type `i` in the
2238 * VkPhysicalDeviceMemoryProperties structure for the physical
2239 * device is supported.
2240 *
2241 * All types are currently supported for images.
2242 */
2243 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2244 (1ull << pdevice->memory.type_count) - 1;
2245
2246 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2247 pMemoryRequirements->memoryRequirements.alignment =
2248 image->planes[plane].alignment;
2249 break;
2250 }
2251
2252 default:
2253 anv_debug_ignored_stype(ext->sType);
2254 break;
2255 }
2256 }
2257
2258 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2259 switch (ext->sType) {
2260 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2261 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
2262 if (image->needs_set_tiling) {
2263 /* If we need to set the tiling for external consumers, we need a
2264 * dedicated allocation.
2265 *
2266 * See also anv_AllocateMemory.
2267 */
2268 requirements->prefersDedicatedAllocation = VK_TRUE;
2269 requirements->requiresDedicatedAllocation = VK_TRUE;
2270 } else {
2271 requirements->prefersDedicatedAllocation = VK_FALSE;
2272 requirements->requiresDedicatedAllocation = VK_FALSE;
2273 }
2274 break;
2275 }
2276
2277 default:
2278 anv_debug_ignored_stype(ext->sType);
2279 break;
2280 }
2281 }
2282 }
2283
2284 void anv_GetImageSparseMemoryRequirements(
2285 VkDevice device,
2286 VkImage image,
2287 uint32_t* pSparseMemoryRequirementCount,
2288 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2289 {
2290 *pSparseMemoryRequirementCount = 0;
2291 }
2292
2293 void anv_GetImageSparseMemoryRequirements2KHR(
2294 VkDevice device,
2295 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
2296 uint32_t* pSparseMemoryRequirementCount,
2297 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
2298 {
2299 *pSparseMemoryRequirementCount = 0;
2300 }
2301
2302 void anv_GetDeviceMemoryCommitment(
2303 VkDevice device,
2304 VkDeviceMemory memory,
2305 VkDeviceSize* pCommittedMemoryInBytes)
2306 {
2307 *pCommittedMemoryInBytes = 0;
2308 }
2309
2310 static void
2311 anv_bind_buffer_memory(const VkBindBufferMemoryInfoKHR *pBindInfo)
2312 {
2313 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2314 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2315
2316 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR);
2317
2318 if (mem) {
2319 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2320 buffer->bo = mem->bo;
2321 buffer->offset = pBindInfo->memoryOffset;
2322 } else {
2323 buffer->bo = NULL;
2324 buffer->offset = 0;
2325 }
2326 }
2327
2328 VkResult anv_BindBufferMemory(
2329 VkDevice device,
2330 VkBuffer buffer,
2331 VkDeviceMemory memory,
2332 VkDeviceSize memoryOffset)
2333 {
2334 anv_bind_buffer_memory(
2335 &(VkBindBufferMemoryInfoKHR) {
2336 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
2337 .buffer = buffer,
2338 .memory = memory,
2339 .memoryOffset = memoryOffset,
2340 });
2341
2342 return VK_SUCCESS;
2343 }
2344
2345 VkResult anv_BindBufferMemory2KHR(
2346 VkDevice device,
2347 uint32_t bindInfoCount,
2348 const VkBindBufferMemoryInfoKHR* pBindInfos)
2349 {
2350 for (uint32_t i = 0; i < bindInfoCount; i++)
2351 anv_bind_buffer_memory(&pBindInfos[i]);
2352
2353 return VK_SUCCESS;
2354 }
2355
2356 VkResult anv_QueueBindSparse(
2357 VkQueue _queue,
2358 uint32_t bindInfoCount,
2359 const VkBindSparseInfo* pBindInfo,
2360 VkFence fence)
2361 {
2362 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2363 if (unlikely(queue->device->lost))
2364 return VK_ERROR_DEVICE_LOST;
2365
2366 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2367 }
2368
2369 // Event functions
2370
2371 VkResult anv_CreateEvent(
2372 VkDevice _device,
2373 const VkEventCreateInfo* pCreateInfo,
2374 const VkAllocationCallbacks* pAllocator,
2375 VkEvent* pEvent)
2376 {
2377 ANV_FROM_HANDLE(anv_device, device, _device);
2378 struct anv_state state;
2379 struct anv_event *event;
2380
2381 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2382
2383 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2384 sizeof(*event), 8);
2385 event = state.map;
2386 event->state = state;
2387 event->semaphore = VK_EVENT_RESET;
2388
2389 if (!device->info.has_llc) {
2390 /* Make sure the writes we're flushing have landed. */
2391 __builtin_ia32_mfence();
2392 __builtin_ia32_clflush(event);
2393 }
2394
2395 *pEvent = anv_event_to_handle(event);
2396
2397 return VK_SUCCESS;
2398 }
2399
2400 void anv_DestroyEvent(
2401 VkDevice _device,
2402 VkEvent _event,
2403 const VkAllocationCallbacks* pAllocator)
2404 {
2405 ANV_FROM_HANDLE(anv_device, device, _device);
2406 ANV_FROM_HANDLE(anv_event, event, _event);
2407
2408 if (!event)
2409 return;
2410
2411 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2412 }
2413
2414 VkResult anv_GetEventStatus(
2415 VkDevice _device,
2416 VkEvent _event)
2417 {
2418 ANV_FROM_HANDLE(anv_device, device, _device);
2419 ANV_FROM_HANDLE(anv_event, event, _event);
2420
2421 if (unlikely(device->lost))
2422 return VK_ERROR_DEVICE_LOST;
2423
2424 if (!device->info.has_llc) {
2425 /* Invalidate read cache before reading event written by GPU. */
2426 __builtin_ia32_clflush(event);
2427 __builtin_ia32_mfence();
2428
2429 }
2430
2431 return event->semaphore;
2432 }
2433
2434 VkResult anv_SetEvent(
2435 VkDevice _device,
2436 VkEvent _event)
2437 {
2438 ANV_FROM_HANDLE(anv_device, device, _device);
2439 ANV_FROM_HANDLE(anv_event, event, _event);
2440
2441 event->semaphore = VK_EVENT_SET;
2442
2443 if (!device->info.has_llc) {
2444 /* Make sure the writes we're flushing have landed. */
2445 __builtin_ia32_mfence();
2446 __builtin_ia32_clflush(event);
2447 }
2448
2449 return VK_SUCCESS;
2450 }
2451
2452 VkResult anv_ResetEvent(
2453 VkDevice _device,
2454 VkEvent _event)
2455 {
2456 ANV_FROM_HANDLE(anv_device, device, _device);
2457 ANV_FROM_HANDLE(anv_event, event, _event);
2458
2459 event->semaphore = VK_EVENT_RESET;
2460
2461 if (!device->info.has_llc) {
2462 /* Make sure the writes we're flushing have landed. */
2463 __builtin_ia32_mfence();
2464 __builtin_ia32_clflush(event);
2465 }
2466
2467 return VK_SUCCESS;
2468 }
2469
2470 // Buffer functions
2471
2472 VkResult anv_CreateBuffer(
2473 VkDevice _device,
2474 const VkBufferCreateInfo* pCreateInfo,
2475 const VkAllocationCallbacks* pAllocator,
2476 VkBuffer* pBuffer)
2477 {
2478 ANV_FROM_HANDLE(anv_device, device, _device);
2479 struct anv_buffer *buffer;
2480
2481 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2482
2483 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2484 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2485 if (buffer == NULL)
2486 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2487
2488 buffer->size = pCreateInfo->size;
2489 buffer->usage = pCreateInfo->usage;
2490 buffer->bo = NULL;
2491 buffer->offset = 0;
2492
2493 *pBuffer = anv_buffer_to_handle(buffer);
2494
2495 return VK_SUCCESS;
2496 }
2497
2498 void anv_DestroyBuffer(
2499 VkDevice _device,
2500 VkBuffer _buffer,
2501 const VkAllocationCallbacks* pAllocator)
2502 {
2503 ANV_FROM_HANDLE(anv_device, device, _device);
2504 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2505
2506 if (!buffer)
2507 return;
2508
2509 vk_free2(&device->alloc, pAllocator, buffer);
2510 }
2511
2512 void
2513 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2514 enum isl_format format,
2515 uint32_t offset, uint32_t range, uint32_t stride)
2516 {
2517 isl_buffer_fill_state(&device->isl_dev, state.map,
2518 .address = offset,
2519 .mocs = device->default_mocs,
2520 .size = range,
2521 .format = format,
2522 .stride = stride);
2523
2524 anv_state_flush(device, state);
2525 }
2526
2527 void anv_DestroySampler(
2528 VkDevice _device,
2529 VkSampler _sampler,
2530 const VkAllocationCallbacks* pAllocator)
2531 {
2532 ANV_FROM_HANDLE(anv_device, device, _device);
2533 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2534
2535 if (!sampler)
2536 return;
2537
2538 vk_free2(&device->alloc, pAllocator, sampler);
2539 }
2540
2541 VkResult anv_CreateFramebuffer(
2542 VkDevice _device,
2543 const VkFramebufferCreateInfo* pCreateInfo,
2544 const VkAllocationCallbacks* pAllocator,
2545 VkFramebuffer* pFramebuffer)
2546 {
2547 ANV_FROM_HANDLE(anv_device, device, _device);
2548 struct anv_framebuffer *framebuffer;
2549
2550 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2551
2552 size_t size = sizeof(*framebuffer) +
2553 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2554 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2555 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2556 if (framebuffer == NULL)
2557 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2558
2559 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2560 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2561 VkImageView _iview = pCreateInfo->pAttachments[i];
2562 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2563 }
2564
2565 framebuffer->width = pCreateInfo->width;
2566 framebuffer->height = pCreateInfo->height;
2567 framebuffer->layers = pCreateInfo->layers;
2568
2569 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2570
2571 return VK_SUCCESS;
2572 }
2573
2574 void anv_DestroyFramebuffer(
2575 VkDevice _device,
2576 VkFramebuffer _fb,
2577 const VkAllocationCallbacks* pAllocator)
2578 {
2579 ANV_FROM_HANDLE(anv_device, device, _device);
2580 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2581
2582 if (!fb)
2583 return;
2584
2585 vk_free2(&device->alloc, pAllocator, fb);
2586 }
2587
2588 /* vk_icd.h does not declare this function, so we declare it here to
2589 * suppress Wmissing-prototypes.
2590 */
2591 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2592 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2593
2594 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2595 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2596 {
2597 /* For the full details on loader interface versioning, see
2598 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2599 * What follows is a condensed summary, to help you navigate the large and
2600 * confusing official doc.
2601 *
2602 * - Loader interface v0 is incompatible with later versions. We don't
2603 * support it.
2604 *
2605 * - In loader interface v1:
2606 * - The first ICD entrypoint called by the loader is
2607 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2608 * entrypoint.
2609 * - The ICD must statically expose no other Vulkan symbol unless it is
2610 * linked with -Bsymbolic.
2611 * - Each dispatchable Vulkan handle created by the ICD must be
2612 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2613 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2614 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2615 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2616 * such loader-managed surfaces.
2617 *
2618 * - Loader interface v2 differs from v1 in:
2619 * - The first ICD entrypoint called by the loader is
2620 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2621 * statically expose this entrypoint.
2622 *
2623 * - Loader interface v3 differs from v2 in:
2624 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2625 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2626 * because the loader no longer does so.
2627 */
2628 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2629 return VK_SUCCESS;
2630 }