anv+tu+radv: delete unusable dev_icd.json
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1053 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1054 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1055 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1056 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1057 features->fragmentShaderShadingRateInterlock = false;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1062 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1063 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1064 features->hostQueryReset = true;
1065 break;
1066 }
1067
1068 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1069 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1070 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1071 features->shaderInputAttachmentArrayDynamicIndexing = false;
1072 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1073 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1074 features->shaderUniformBufferArrayNonUniformIndexing = false;
1075 features->shaderSampledImageArrayNonUniformIndexing = true;
1076 features->shaderStorageBufferArrayNonUniformIndexing = true;
1077 features->shaderStorageImageArrayNonUniformIndexing = true;
1078 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1079 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1080 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1081 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1082 features->descriptorBindingSampledImageUpdateAfterBind = true;
1083 features->descriptorBindingStorageImageUpdateAfterBind = true;
1084 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1085 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1086 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1087 features->descriptorBindingUpdateUnusedWhilePending = true;
1088 features->descriptorBindingPartiallyBound = true;
1089 features->descriptorBindingVariableDescriptorCount = false;
1090 features->runtimeDescriptorArray = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1095 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1096 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1097 features->inlineUniformBlock = true;
1098 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1103 VkPhysicalDeviceMultiviewFeatures *features =
1104 (VkPhysicalDeviceMultiviewFeatures *)ext;
1105 features->multiview = true;
1106 features->multiviewGeometryShader = true;
1107 features->multiviewTessellationShader = true;
1108 break;
1109 }
1110
1111 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1112 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1113 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1114 features->imagelessFramebuffer = true;
1115 break;
1116 }
1117
1118 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1119 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1120 features->protectedMemory = false;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1125 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1126 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1127 features->samplerYcbcrConversion = true;
1128 break;
1129 }
1130
1131 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1132 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1133 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1134 features->scalarBlockLayout = true;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1139 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1140 features->shaderBufferInt64Atomics =
1141 pdevice->info.gen >= 9 && pdevice->use_softpin;
1142 features->shaderSharedInt64Atomics = VK_FALSE;
1143 break;
1144 }
1145
1146 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1147 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1148 features->shaderDemoteToHelperInvocation = true;
1149 break;
1150 }
1151
1152 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1153 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1154 features->shaderDrawParameters = true;
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1159 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1160 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1161 features->texelBufferAlignment = true;
1162 break;
1163 }
1164
1165 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1166 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1167 features->variablePointersStorageBuffer = true;
1168 features->variablePointers = true;
1169 break;
1170 }
1171
1172 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1173 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1174 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1175 features->transformFeedback = true;
1176 features->geometryStreams = true;
1177 break;
1178 }
1179
1180 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1181 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1182 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1183 features->uniformBufferStandardLayout = true;
1184 break;
1185 }
1186
1187 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1188 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1189 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1190 features->vertexAttributeInstanceRateDivisor = true;
1191 features->vertexAttributeInstanceRateZeroDivisor = true;
1192 break;
1193 }
1194
1195 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1196 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1197 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1198 features->ycbcrImageArrays = true;
1199 break;
1200 }
1201
1202 default:
1203 anv_debug_ignored_stype(ext->sType);
1204 break;
1205 }
1206 }
1207 }
1208
1209 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1210
1211 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1212 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1213
1214 void anv_GetPhysicalDeviceProperties(
1215 VkPhysicalDevice physicalDevice,
1216 VkPhysicalDeviceProperties* pProperties)
1217 {
1218 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1219 const struct gen_device_info *devinfo = &pdevice->info;
1220
1221 /* See assertions made when programming the buffer surface state. */
1222 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1223 (1ul << 30) : (1ul << 27);
1224
1225 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1226 const uint32_t max_textures =
1227 pdevice->has_bindless_images ? UINT16_MAX : 128;
1228 const uint32_t max_samplers =
1229 pdevice->has_bindless_samplers ? UINT16_MAX :
1230 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1231 const uint32_t max_images =
1232 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1233
1234 /* The moment we have anything bindless, claim a high per-stage limit */
1235 const uint32_t max_per_stage =
1236 pdevice->has_a64_buffer_access ? UINT32_MAX :
1237 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1238
1239 VkSampleCountFlags sample_counts =
1240 isl_device_get_sample_counts(&pdevice->isl_dev);
1241
1242
1243 VkPhysicalDeviceLimits limits = {
1244 .maxImageDimension1D = (1 << 14),
1245 .maxImageDimension2D = (1 << 14),
1246 .maxImageDimension3D = (1 << 11),
1247 .maxImageDimensionCube = (1 << 14),
1248 .maxImageArrayLayers = (1 << 11),
1249 .maxTexelBufferElements = 128 * 1024 * 1024,
1250 .maxUniformBufferRange = (1ul << 27),
1251 .maxStorageBufferRange = max_raw_buffer_sz,
1252 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1253 .maxMemoryAllocationCount = UINT32_MAX,
1254 .maxSamplerAllocationCount = 64 * 1024,
1255 .bufferImageGranularity = 64, /* A cache line */
1256 .sparseAddressSpaceSize = 0,
1257 .maxBoundDescriptorSets = MAX_SETS,
1258 .maxPerStageDescriptorSamplers = max_samplers,
1259 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1260 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1261 .maxPerStageDescriptorSampledImages = max_textures,
1262 .maxPerStageDescriptorStorageImages = max_images,
1263 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1264 .maxPerStageResources = max_per_stage,
1265 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1266 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1267 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1268 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1269 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1270 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1271 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1272 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1273 .maxVertexInputAttributes = MAX_VBS,
1274 .maxVertexInputBindings = MAX_VBS,
1275 .maxVertexInputAttributeOffset = 2047,
1276 .maxVertexInputBindingStride = 2048,
1277 .maxVertexOutputComponents = 128,
1278 .maxTessellationGenerationLevel = 64,
1279 .maxTessellationPatchSize = 32,
1280 .maxTessellationControlPerVertexInputComponents = 128,
1281 .maxTessellationControlPerVertexOutputComponents = 128,
1282 .maxTessellationControlPerPatchOutputComponents = 128,
1283 .maxTessellationControlTotalOutputComponents = 2048,
1284 .maxTessellationEvaluationInputComponents = 128,
1285 .maxTessellationEvaluationOutputComponents = 128,
1286 .maxGeometryShaderInvocations = 32,
1287 .maxGeometryInputComponents = 64,
1288 .maxGeometryOutputComponents = 128,
1289 .maxGeometryOutputVertices = 256,
1290 .maxGeometryTotalOutputComponents = 1024,
1291 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1292 .maxFragmentOutputAttachments = 8,
1293 .maxFragmentDualSrcAttachments = 1,
1294 .maxFragmentCombinedOutputResources = 8,
1295 .maxComputeSharedMemorySize = 64 * 1024,
1296 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1297 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1298 .maxComputeWorkGroupSize = {
1299 16 * devinfo->max_cs_threads,
1300 16 * devinfo->max_cs_threads,
1301 16 * devinfo->max_cs_threads,
1302 },
1303 .subPixelPrecisionBits = 8,
1304 .subTexelPrecisionBits = 8,
1305 .mipmapPrecisionBits = 8,
1306 .maxDrawIndexedIndexValue = UINT32_MAX,
1307 .maxDrawIndirectCount = UINT32_MAX,
1308 .maxSamplerLodBias = 16,
1309 .maxSamplerAnisotropy = 16,
1310 .maxViewports = MAX_VIEWPORTS,
1311 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1312 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1313 .viewportSubPixelBits = 13, /* We take a float? */
1314 .minMemoryMapAlignment = 4096, /* A page */
1315 /* The dataport requires texel alignment so we need to assume a worst
1316 * case of R32G32B32A32 which is 16 bytes.
1317 */
1318 .minTexelBufferOffsetAlignment = 16,
1319 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1320 .minUniformBufferOffsetAlignment = 32,
1321 .minStorageBufferOffsetAlignment = 4,
1322 .minTexelOffset = -8,
1323 .maxTexelOffset = 7,
1324 .minTexelGatherOffset = -32,
1325 .maxTexelGatherOffset = 31,
1326 .minInterpolationOffset = -0.5,
1327 .maxInterpolationOffset = 0.4375,
1328 .subPixelInterpolationOffsetBits = 4,
1329 .maxFramebufferWidth = (1 << 14),
1330 .maxFramebufferHeight = (1 << 14),
1331 .maxFramebufferLayers = (1 << 11),
1332 .framebufferColorSampleCounts = sample_counts,
1333 .framebufferDepthSampleCounts = sample_counts,
1334 .framebufferStencilSampleCounts = sample_counts,
1335 .framebufferNoAttachmentsSampleCounts = sample_counts,
1336 .maxColorAttachments = MAX_RTS,
1337 .sampledImageColorSampleCounts = sample_counts,
1338 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1339 .sampledImageDepthSampleCounts = sample_counts,
1340 .sampledImageStencilSampleCounts = sample_counts,
1341 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1342 .maxSampleMaskWords = 1,
1343 .timestampComputeAndGraphics = true,
1344 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1345 .maxClipDistances = 8,
1346 .maxCullDistances = 8,
1347 .maxCombinedClipAndCullDistances = 8,
1348 .discreteQueuePriorities = 2,
1349 .pointSizeRange = { 0.125, 255.875 },
1350 .lineWidthRange = { 0.0, 7.9921875 },
1351 .pointSizeGranularity = (1.0 / 8.0),
1352 .lineWidthGranularity = (1.0 / 128.0),
1353 .strictLines = false, /* FINISHME */
1354 .standardSampleLocations = true,
1355 .optimalBufferCopyOffsetAlignment = 128,
1356 .optimalBufferCopyRowPitchAlignment = 128,
1357 .nonCoherentAtomSize = 64,
1358 };
1359
1360 *pProperties = (VkPhysicalDeviceProperties) {
1361 .apiVersion = anv_physical_device_api_version(pdevice),
1362 .driverVersion = vk_get_driver_version(),
1363 .vendorID = 0x8086,
1364 .deviceID = pdevice->chipset_id,
1365 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1366 .limits = limits,
1367 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1368 };
1369
1370 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1371 "%s", pdevice->name);
1372 memcpy(pProperties->pipelineCacheUUID,
1373 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1374 }
1375
1376 void anv_GetPhysicalDeviceProperties2(
1377 VkPhysicalDevice physicalDevice,
1378 VkPhysicalDeviceProperties2* pProperties)
1379 {
1380 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1381
1382 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1383
1384 vk_foreach_struct(ext, pProperties->pNext) {
1385 switch (ext->sType) {
1386 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1387 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1388 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1389
1390 /* We support all of the depth resolve modes */
1391 props->supportedDepthResolveModes =
1392 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1393 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1394 VK_RESOLVE_MODE_MIN_BIT_KHR |
1395 VK_RESOLVE_MODE_MAX_BIT_KHR;
1396
1397 /* Average doesn't make sense for stencil so we don't support that */
1398 props->supportedStencilResolveModes =
1399 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1400 if (pdevice->info.gen >= 8) {
1401 /* The advanced stencil resolve modes currently require stencil
1402 * sampling be supported by the hardware.
1403 */
1404 props->supportedStencilResolveModes |=
1405 VK_RESOLVE_MODE_MIN_BIT_KHR |
1406 VK_RESOLVE_MODE_MAX_BIT_KHR;
1407 }
1408
1409 props->independentResolveNone = true;
1410 props->independentResolve = true;
1411 break;
1412 }
1413
1414 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1415 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1416 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1417
1418 /* It's a bit hard to exactly map our implementation to the limits
1419 * described here. The bindless surface handle in the extended
1420 * message descriptors is 20 bits and it's an index into the table of
1421 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1422 * address. Given that most things consume two surface states per
1423 * view (general/sampled for textures and write-only/read-write for
1424 * images), we claim 2^19 things.
1425 *
1426 * For SSBOs, we just use A64 messages so there is no real limit
1427 * there beyond the limit on the total size of a descriptor set.
1428 */
1429 const unsigned max_bindless_views = 1 << 19;
1430
1431 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1432 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1433 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1434 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1435 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1436 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1437 props->robustBufferAccessUpdateAfterBind = true;
1438 props->quadDivergentImplicitLod = false;
1439 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1440 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1441 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1442 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1443 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1444 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1445 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1446 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1447 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1448 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1449 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1450 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1451 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1452 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1453 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1454 break;
1455 }
1456
1457 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1458 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1459 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1460
1461 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1462 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1463 "Intel open-source Mesa driver");
1464
1465 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1466 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1467
1468 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1469 .major = 1,
1470 .minor = 1,
1471 .subminor = 2,
1472 .patch = 0,
1473 };
1474 break;
1475 }
1476
1477 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1478 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1479 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1480 /* Userptr needs page aligned memory. */
1481 props->minImportedHostPointerAlignment = 4096;
1482 break;
1483 }
1484
1485 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1486 VkPhysicalDeviceIDProperties *id_props =
1487 (VkPhysicalDeviceIDProperties *)ext;
1488 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1489 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1490 /* The LUID is for Windows. */
1491 id_props->deviceLUIDValid = false;
1492 break;
1493 }
1494
1495 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1496 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1497 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1498 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1499 props->maxPerStageDescriptorInlineUniformBlocks =
1500 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1501 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1502 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1503 props->maxDescriptorSetInlineUniformBlocks =
1504 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1505 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1506 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1507 break;
1508 }
1509
1510 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1511 VkPhysicalDeviceMaintenance3Properties *props =
1512 (VkPhysicalDeviceMaintenance3Properties *)ext;
1513 /* This value doesn't matter for us today as our per-stage
1514 * descriptors are the real limit.
1515 */
1516 props->maxPerSetDescriptors = 1024;
1517 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1518 break;
1519 }
1520
1521 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1522 VkPhysicalDeviceMultiviewProperties *properties =
1523 (VkPhysicalDeviceMultiviewProperties *)ext;
1524 properties->maxMultiviewViewCount = 16;
1525 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1526 break;
1527 }
1528
1529 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1530 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1531 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1532 properties->pciDomain = pdevice->pci_info.domain;
1533 properties->pciBus = pdevice->pci_info.bus;
1534 properties->pciDevice = pdevice->pci_info.device;
1535 properties->pciFunction = pdevice->pci_info.function;
1536 break;
1537 }
1538
1539 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1540 VkPhysicalDevicePointClippingProperties *properties =
1541 (VkPhysicalDevicePointClippingProperties *) ext;
1542 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1543 break;
1544 }
1545
1546 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1547 VkPhysicalDeviceProtectedMemoryProperties *props =
1548 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1549 props->protectedNoFault = false;
1550 break;
1551 }
1552
1553 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1554 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1555 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1556
1557 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1558 break;
1559 }
1560
1561 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1562 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1563 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1564 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1565 properties->filterMinmaxSingleComponentFormats = true;
1566 break;
1567 }
1568
1569 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1570 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1571
1572 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1573
1574 VkShaderStageFlags scalar_stages = 0;
1575 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1576 if (pdevice->compiler->scalar_stage[stage])
1577 scalar_stages |= mesa_to_vk_shader_stage(stage);
1578 }
1579 properties->supportedStages = scalar_stages;
1580
1581 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1582 VK_SUBGROUP_FEATURE_VOTE_BIT |
1583 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1584 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1585 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1586 VK_SUBGROUP_FEATURE_QUAD_BIT;
1587 if (pdevice->info.gen >= 8) {
1588 /* TODO: There's no technical reason why these can't be made to
1589 * work on gen7 but they don't at the moment so it's best to leave
1590 * the feature disabled than enabled and broken.
1591 */
1592 properties->supportedOperations |=
1593 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1594 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1595 }
1596 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1597 break;
1598 }
1599
1600 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1601 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1602 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1603 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1604 props->minSubgroupSize = 8;
1605 props->maxSubgroupSize = 32;
1606 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1607 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1608 break;
1609 }
1610
1611 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1612 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1613 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1614
1615 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1616 * Base Address:
1617 *
1618 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1619 * specifies the base address of the first element of the surface,
1620 * computed in software by adding the surface base address to the
1621 * byte offset of the element in the buffer. The base address must
1622 * be aligned to element size."
1623 *
1624 * The typed dataport messages require that things be texel aligned.
1625 * Otherwise, we may just load/store the wrong data or, in the worst
1626 * case, there may be hangs.
1627 */
1628 props->storageTexelBufferOffsetAlignmentBytes = 16;
1629 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1630
1631 /* The sampler, however, is much more forgiving and it can handle
1632 * arbitrary byte alignment for linear and buffer surfaces. It's
1633 * hard to find a good PRM citation for this but years of empirical
1634 * experience demonstrate that this is true.
1635 */
1636 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1637 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1638 break;
1639 }
1640
1641 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1642 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1643 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1644
1645 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1646 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1647 props->maxTransformFeedbackBufferSize = (1ull << 32);
1648 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1649 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1650 props->maxTransformFeedbackBufferDataStride = 2048;
1651 props->transformFeedbackQueries = true;
1652 props->transformFeedbackStreamsLinesTriangles = false;
1653 props->transformFeedbackRasterizationStreamSelect = false;
1654 props->transformFeedbackDraw = true;
1655 break;
1656 }
1657
1658 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1659 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1660 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1661 /* We have to restrict this a bit for multiview */
1662 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1663 break;
1664 }
1665
1666 default:
1667 anv_debug_ignored_stype(ext->sType);
1668 break;
1669 }
1670 }
1671 }
1672
1673 /* We support exactly one queue family. */
1674 static const VkQueueFamilyProperties
1675 anv_queue_family_properties = {
1676 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1677 VK_QUEUE_COMPUTE_BIT |
1678 VK_QUEUE_TRANSFER_BIT,
1679 .queueCount = 1,
1680 .timestampValidBits = 36, /* XXX: Real value here */
1681 .minImageTransferGranularity = { 1, 1, 1 },
1682 };
1683
1684 void anv_GetPhysicalDeviceQueueFamilyProperties(
1685 VkPhysicalDevice physicalDevice,
1686 uint32_t* pCount,
1687 VkQueueFamilyProperties* pQueueFamilyProperties)
1688 {
1689 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1690
1691 vk_outarray_append(&out, p) {
1692 *p = anv_queue_family_properties;
1693 }
1694 }
1695
1696 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1697 VkPhysicalDevice physicalDevice,
1698 uint32_t* pQueueFamilyPropertyCount,
1699 VkQueueFamilyProperties2* pQueueFamilyProperties)
1700 {
1701
1702 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1703
1704 vk_outarray_append(&out, p) {
1705 p->queueFamilyProperties = anv_queue_family_properties;
1706
1707 vk_foreach_struct(s, p->pNext) {
1708 anv_debug_ignored_stype(s->sType);
1709 }
1710 }
1711 }
1712
1713 void anv_GetPhysicalDeviceMemoryProperties(
1714 VkPhysicalDevice physicalDevice,
1715 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1716 {
1717 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1718
1719 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1720 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1721 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1722 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1723 .heapIndex = physical_device->memory.types[i].heapIndex,
1724 };
1725 }
1726
1727 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1728 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1729 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1730 .size = physical_device->memory.heaps[i].size,
1731 .flags = physical_device->memory.heaps[i].flags,
1732 };
1733 }
1734 }
1735
1736 static void
1737 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1738 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1739 {
1740 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1741 uint64_t sys_available = get_available_system_memory();
1742 assert(sys_available > 0);
1743
1744 VkDeviceSize total_heaps_size = 0;
1745 for (size_t i = 0; i < device->memory.heap_count; i++)
1746 total_heaps_size += device->memory.heaps[i].size;
1747
1748 for (size_t i = 0; i < device->memory.heap_count; i++) {
1749 VkDeviceSize heap_size = device->memory.heaps[i].size;
1750 VkDeviceSize heap_used = device->memory.heaps[i].used;
1751 VkDeviceSize heap_budget;
1752
1753 double heap_proportion = (double) heap_size / total_heaps_size;
1754 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1755
1756 /*
1757 * Let's not incite the app to starve the system: report at most 90% of
1758 * available system memory.
1759 */
1760 uint64_t heap_available = sys_available_prop * 9 / 10;
1761 heap_budget = MIN2(heap_size, heap_used + heap_available);
1762
1763 /*
1764 * Round down to the nearest MB
1765 */
1766 heap_budget &= ~((1ull << 20) - 1);
1767
1768 /*
1769 * The heapBudget value must be non-zero for array elements less than
1770 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1771 * value must be less than or equal to VkMemoryHeap::size for each heap.
1772 */
1773 assert(0 < heap_budget && heap_budget <= heap_size);
1774
1775 memoryBudget->heapUsage[i] = heap_used;
1776 memoryBudget->heapBudget[i] = heap_budget;
1777 }
1778
1779 /* The heapBudget and heapUsage values must be zero for array elements
1780 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1781 */
1782 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1783 memoryBudget->heapBudget[i] = 0;
1784 memoryBudget->heapUsage[i] = 0;
1785 }
1786 }
1787
1788 void anv_GetPhysicalDeviceMemoryProperties2(
1789 VkPhysicalDevice physicalDevice,
1790 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1791 {
1792 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1793 &pMemoryProperties->memoryProperties);
1794
1795 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1796 switch (ext->sType) {
1797 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1798 anv_get_memory_budget(physicalDevice, (void*)ext);
1799 break;
1800 default:
1801 anv_debug_ignored_stype(ext->sType);
1802 break;
1803 }
1804 }
1805 }
1806
1807 void
1808 anv_GetDeviceGroupPeerMemoryFeatures(
1809 VkDevice device,
1810 uint32_t heapIndex,
1811 uint32_t localDeviceIndex,
1812 uint32_t remoteDeviceIndex,
1813 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1814 {
1815 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1816 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1817 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1818 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1819 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1820 }
1821
1822 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1823 VkInstance _instance,
1824 const char* pName)
1825 {
1826 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1827
1828 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1829 * when we have to return valid function pointers, NULL, or it's left
1830 * undefined. See the table for exact details.
1831 */
1832 if (pName == NULL)
1833 return NULL;
1834
1835 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1836 if (strcmp(pName, "vk" #entrypoint) == 0) \
1837 return (PFN_vkVoidFunction)anv_##entrypoint
1838
1839 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1840 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1841 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1842 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1843
1844 #undef LOOKUP_ANV_ENTRYPOINT
1845
1846 if (instance == NULL)
1847 return NULL;
1848
1849 int idx = anv_get_instance_entrypoint_index(pName);
1850 if (idx >= 0)
1851 return instance->dispatch.entrypoints[idx];
1852
1853 idx = anv_get_device_entrypoint_index(pName);
1854 if (idx >= 0)
1855 return instance->device_dispatch.entrypoints[idx];
1856
1857 return NULL;
1858 }
1859
1860 /* With version 1+ of the loader interface the ICD should expose
1861 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1862 */
1863 PUBLIC
1864 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1865 VkInstance instance,
1866 const char* pName);
1867
1868 PUBLIC
1869 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1870 VkInstance instance,
1871 const char* pName)
1872 {
1873 return anv_GetInstanceProcAddr(instance, pName);
1874 }
1875
1876 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1877 VkDevice _device,
1878 const char* pName)
1879 {
1880 ANV_FROM_HANDLE(anv_device, device, _device);
1881
1882 if (!device || !pName)
1883 return NULL;
1884
1885 int idx = anv_get_device_entrypoint_index(pName);
1886 if (idx < 0)
1887 return NULL;
1888
1889 return device->dispatch.entrypoints[idx];
1890 }
1891
1892 VkResult
1893 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1894 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1895 const VkAllocationCallbacks* pAllocator,
1896 VkDebugReportCallbackEXT* pCallback)
1897 {
1898 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1899 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1900 pCreateInfo, pAllocator, &instance->alloc,
1901 pCallback);
1902 }
1903
1904 void
1905 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1906 VkDebugReportCallbackEXT _callback,
1907 const VkAllocationCallbacks* pAllocator)
1908 {
1909 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1910 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1911 _callback, pAllocator, &instance->alloc);
1912 }
1913
1914 void
1915 anv_DebugReportMessageEXT(VkInstance _instance,
1916 VkDebugReportFlagsEXT flags,
1917 VkDebugReportObjectTypeEXT objectType,
1918 uint64_t object,
1919 size_t location,
1920 int32_t messageCode,
1921 const char* pLayerPrefix,
1922 const char* pMessage)
1923 {
1924 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1925 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1926 object, location, messageCode, pLayerPrefix, pMessage);
1927 }
1928
1929 static void
1930 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1931 {
1932 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1933 queue->device = device;
1934 queue->flags = 0;
1935 }
1936
1937 static void
1938 anv_queue_finish(struct anv_queue *queue)
1939 {
1940 }
1941
1942 static struct anv_state
1943 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1944 {
1945 struct anv_state state;
1946
1947 state = anv_state_pool_alloc(pool, size, align);
1948 memcpy(state.map, p, size);
1949
1950 return state;
1951 }
1952
1953 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1954 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1955 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1956 * color as a separate entry /after/ the float color. The layout of this entry
1957 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1958 *
1959 * Since we don't know the format/bpp, we can't make any of the border colors
1960 * containing '1' work for all formats, as it would be in the wrong place for
1961 * some of them. We opt to make 32-bit integers work as this seems like the
1962 * most common option. Fortunately, transparent black works regardless, as
1963 * all zeroes is the same in every bit-size.
1964 */
1965 struct hsw_border_color {
1966 float float32[4];
1967 uint32_t _pad0[12];
1968 uint32_t uint32[4];
1969 uint32_t _pad1[108];
1970 };
1971
1972 struct gen8_border_color {
1973 union {
1974 float float32[4];
1975 uint32_t uint32[4];
1976 };
1977 /* Pad out to 64 bytes */
1978 uint32_t _pad[12];
1979 };
1980
1981 static void
1982 anv_device_init_border_colors(struct anv_device *device)
1983 {
1984 if (device->info.is_haswell) {
1985 static const struct hsw_border_color border_colors[] = {
1986 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1987 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1988 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1989 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1990 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1991 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1992 };
1993
1994 device->border_colors =
1995 anv_state_pool_emit_data(&device->dynamic_state_pool,
1996 sizeof(border_colors), 512, border_colors);
1997 } else {
1998 static const struct gen8_border_color border_colors[] = {
1999 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2000 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2001 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2002 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2003 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2004 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2005 };
2006
2007 device->border_colors =
2008 anv_state_pool_emit_data(&device->dynamic_state_pool,
2009 sizeof(border_colors), 64, border_colors);
2010 }
2011 }
2012
2013 static void
2014 anv_device_init_trivial_batch(struct anv_device *device)
2015 {
2016 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2017
2018 if (device->instance->physicalDevice.has_exec_async)
2019 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2020
2021 if (device->instance->physicalDevice.use_softpin)
2022 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2023
2024 anv_vma_alloc(device, &device->trivial_batch_bo);
2025
2026 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2027 0, 4096, 0);
2028
2029 struct anv_batch batch = {
2030 .start = map,
2031 .next = map,
2032 .end = map + 4096,
2033 };
2034
2035 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2036 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2037
2038 if (!device->info.has_llc)
2039 gen_clflush_range(map, batch.next - map);
2040
2041 anv_gem_munmap(map, device->trivial_batch_bo.size);
2042 }
2043
2044 VkResult anv_EnumerateDeviceExtensionProperties(
2045 VkPhysicalDevice physicalDevice,
2046 const char* pLayerName,
2047 uint32_t* pPropertyCount,
2048 VkExtensionProperties* pProperties)
2049 {
2050 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2051 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2052
2053 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2054 if (device->supported_extensions.extensions[i]) {
2055 vk_outarray_append(&out, prop) {
2056 *prop = anv_device_extensions[i];
2057 }
2058 }
2059 }
2060
2061 return vk_outarray_status(&out);
2062 }
2063
2064 static void
2065 anv_device_init_dispatch(struct anv_device *device)
2066 {
2067 const struct anv_device_dispatch_table *genX_table;
2068 switch (device->info.gen) {
2069 case 11:
2070 genX_table = &gen11_device_dispatch_table;
2071 break;
2072 case 10:
2073 genX_table = &gen10_device_dispatch_table;
2074 break;
2075 case 9:
2076 genX_table = &gen9_device_dispatch_table;
2077 break;
2078 case 8:
2079 genX_table = &gen8_device_dispatch_table;
2080 break;
2081 case 7:
2082 if (device->info.is_haswell)
2083 genX_table = &gen75_device_dispatch_table;
2084 else
2085 genX_table = &gen7_device_dispatch_table;
2086 break;
2087 default:
2088 unreachable("unsupported gen\n");
2089 }
2090
2091 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2092 /* Vulkan requires that entrypoints for extensions which have not been
2093 * enabled must not be advertised.
2094 */
2095 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2096 &device->instance->enabled_extensions,
2097 &device->enabled_extensions)) {
2098 device->dispatch.entrypoints[i] = NULL;
2099 } else if (genX_table->entrypoints[i]) {
2100 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2101 } else {
2102 device->dispatch.entrypoints[i] =
2103 anv_device_dispatch_table.entrypoints[i];
2104 }
2105 }
2106 }
2107
2108 static int
2109 vk_priority_to_gen(int priority)
2110 {
2111 switch (priority) {
2112 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2113 return GEN_CONTEXT_LOW_PRIORITY;
2114 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2115 return GEN_CONTEXT_MEDIUM_PRIORITY;
2116 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2117 return GEN_CONTEXT_HIGH_PRIORITY;
2118 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2119 return GEN_CONTEXT_REALTIME_PRIORITY;
2120 default:
2121 unreachable("Invalid priority");
2122 }
2123 }
2124
2125 static void
2126 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2127 {
2128 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2129
2130 if (device->instance->physicalDevice.has_exec_async)
2131 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2132
2133 if (device->instance->physicalDevice.use_softpin)
2134 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2135
2136 anv_vma_alloc(device, &device->hiz_clear_bo);
2137
2138 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2139 0, 4096, 0);
2140
2141 union isl_color_value hiz_clear = { .u32 = { 0, } };
2142 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2143
2144 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2145 anv_gem_munmap(map, device->hiz_clear_bo.size);
2146 }
2147
2148 static bool
2149 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2150 struct anv_block_pool *pool,
2151 uint64_t address)
2152 {
2153 for (uint32_t i = 0; i < pool->nbos; i++) {
2154 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2155 uint32_t bo_size = pool->bos[i].size;
2156 if (address >= bo_address && address < (bo_address + bo_size)) {
2157 *ret = (struct gen_batch_decode_bo) {
2158 .addr = bo_address,
2159 .size = bo_size,
2160 .map = pool->bos[i].map,
2161 };
2162 return true;
2163 }
2164 }
2165 return false;
2166 }
2167
2168 /* Finding a buffer for batch decoding */
2169 static struct gen_batch_decode_bo
2170 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2171 {
2172 struct anv_device *device = v_batch;
2173 struct gen_batch_decode_bo ret_bo = {};
2174
2175 assert(ppgtt);
2176
2177 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2178 return ret_bo;
2179 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2180 return ret_bo;
2181 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2182 return ret_bo;
2183 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2184 return ret_bo;
2185
2186 if (!device->cmd_buffer_being_decoded)
2187 return (struct gen_batch_decode_bo) { };
2188
2189 struct anv_batch_bo **bo;
2190
2191 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2192 /* The decoder zeroes out the top 16 bits, so we need to as well */
2193 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2194
2195 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2196 return (struct gen_batch_decode_bo) {
2197 .addr = bo_address,
2198 .size = (*bo)->bo.size,
2199 .map = (*bo)->bo.map,
2200 };
2201 }
2202 }
2203
2204 return (struct gen_batch_decode_bo) { };
2205 }
2206
2207 VkResult anv_CreateDevice(
2208 VkPhysicalDevice physicalDevice,
2209 const VkDeviceCreateInfo* pCreateInfo,
2210 const VkAllocationCallbacks* pAllocator,
2211 VkDevice* pDevice)
2212 {
2213 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2214 VkResult result;
2215 struct anv_device *device;
2216
2217 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2218
2219 struct anv_device_extension_table enabled_extensions = { };
2220 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2221 int idx;
2222 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2223 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2224 anv_device_extensions[idx].extensionName) == 0)
2225 break;
2226 }
2227
2228 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2229 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2230
2231 if (!physical_device->supported_extensions.extensions[idx])
2232 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2233
2234 enabled_extensions.extensions[idx] = true;
2235 }
2236
2237 /* Check enabled features */
2238 if (pCreateInfo->pEnabledFeatures) {
2239 VkPhysicalDeviceFeatures supported_features;
2240 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2241 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2242 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2243 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2244 for (uint32_t i = 0; i < num_features; i++) {
2245 if (enabled_feature[i] && !supported_feature[i])
2246 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2247 }
2248 }
2249
2250 /* Check requested queues and fail if we are requested to create any
2251 * queues with flags we don't support.
2252 */
2253 assert(pCreateInfo->queueCreateInfoCount > 0);
2254 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2255 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2256 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2257 }
2258
2259 /* Check if client specified queue priority. */
2260 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2261 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2262 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2263
2264 VkQueueGlobalPriorityEXT priority =
2265 queue_priority ? queue_priority->globalPriority :
2266 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2267
2268 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2269 sizeof(*device), 8,
2270 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2271 if (!device)
2272 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2273
2274 if (INTEL_DEBUG & DEBUG_BATCH) {
2275 const unsigned decode_flags =
2276 GEN_BATCH_DECODE_FULL |
2277 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2278 GEN_BATCH_DECODE_OFFSETS |
2279 GEN_BATCH_DECODE_FLOATS;
2280
2281 gen_batch_decode_ctx_init(&device->decoder_ctx,
2282 &physical_device->info,
2283 stderr, decode_flags, NULL,
2284 decode_get_bo, NULL, device);
2285 }
2286
2287 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2288 device->instance = physical_device->instance;
2289 device->chipset_id = physical_device->chipset_id;
2290 device->no_hw = physical_device->no_hw;
2291 device->_lost = false;
2292
2293 if (pAllocator)
2294 device->alloc = *pAllocator;
2295 else
2296 device->alloc = physical_device->instance->alloc;
2297
2298 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2299 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2300 if (device->fd == -1) {
2301 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2302 goto fail_device;
2303 }
2304
2305 device->context_id = anv_gem_create_context(device);
2306 if (device->context_id == -1) {
2307 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2308 goto fail_fd;
2309 }
2310
2311 if (physical_device->use_softpin) {
2312 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2313 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2314 goto fail_fd;
2315 }
2316
2317 /* keep the page with address zero out of the allocator */
2318 struct anv_memory_heap *low_heap =
2319 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2320 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2321 device->vma_lo_available = low_heap->size;
2322
2323 struct anv_memory_heap *high_heap =
2324 &physical_device->memory.heaps[0];
2325 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2326 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2327 high_heap->size;
2328 }
2329
2330 list_inithead(&device->memory_objects);
2331
2332 /* As per spec, the driver implementation may deny requests to acquire
2333 * a priority above the default priority (MEDIUM) if the caller does not
2334 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2335 * is returned.
2336 */
2337 if (physical_device->has_context_priority) {
2338 int err = anv_gem_set_context_param(device->fd, device->context_id,
2339 I915_CONTEXT_PARAM_PRIORITY,
2340 vk_priority_to_gen(priority));
2341 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2342 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2343 goto fail_fd;
2344 }
2345 }
2346
2347 device->info = physical_device->info;
2348 device->isl_dev = physical_device->isl_dev;
2349
2350 /* On Broadwell and later, we can use batch chaining to more efficiently
2351 * implement growing command buffers. Prior to Haswell, the kernel
2352 * command parser gets in the way and we have to fall back to growing
2353 * the batch.
2354 */
2355 device->can_chain_batches = device->info.gen >= 8;
2356
2357 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2358 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2359 device->enabled_extensions = enabled_extensions;
2360
2361 anv_device_init_dispatch(device);
2362
2363 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2364 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2365 goto fail_context_id;
2366 }
2367
2368 pthread_condattr_t condattr;
2369 if (pthread_condattr_init(&condattr) != 0) {
2370 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2371 goto fail_mutex;
2372 }
2373 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2374 pthread_condattr_destroy(&condattr);
2375 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2376 goto fail_mutex;
2377 }
2378 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2379 pthread_condattr_destroy(&condattr);
2380 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2381 goto fail_mutex;
2382 }
2383 pthread_condattr_destroy(&condattr);
2384
2385 uint64_t bo_flags =
2386 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2387 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2388 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2389 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2390
2391 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2392
2393 result = anv_bo_cache_init(&device->bo_cache);
2394 if (result != VK_SUCCESS)
2395 goto fail_batch_bo_pool;
2396
2397 if (!physical_device->use_softpin)
2398 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2399
2400 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2401 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2402 16384,
2403 bo_flags);
2404 if (result != VK_SUCCESS)
2405 goto fail_bo_cache;
2406
2407 result = anv_state_pool_init(&device->instruction_state_pool, device,
2408 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2409 16384,
2410 bo_flags);
2411 if (result != VK_SUCCESS)
2412 goto fail_dynamic_state_pool;
2413
2414 result = anv_state_pool_init(&device->surface_state_pool, device,
2415 SURFACE_STATE_POOL_MIN_ADDRESS,
2416 4096,
2417 bo_flags);
2418 if (result != VK_SUCCESS)
2419 goto fail_instruction_state_pool;
2420
2421 if (physical_device->use_softpin) {
2422 result = anv_state_pool_init(&device->binding_table_pool, device,
2423 BINDING_TABLE_POOL_MIN_ADDRESS,
2424 4096,
2425 bo_flags);
2426 if (result != VK_SUCCESS)
2427 goto fail_surface_state_pool;
2428 }
2429
2430 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2431 if (result != VK_SUCCESS)
2432 goto fail_binding_table_pool;
2433
2434 if (physical_device->use_softpin)
2435 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2436
2437 if (!anv_vma_alloc(device, &device->workaround_bo))
2438 goto fail_workaround_bo;
2439
2440 anv_device_init_trivial_batch(device);
2441
2442 if (device->info.gen >= 10)
2443 anv_device_init_hiz_clear_value_bo(device);
2444
2445 anv_scratch_pool_init(device, &device->scratch_pool);
2446
2447 anv_queue_init(device, &device->queue);
2448
2449 switch (device->info.gen) {
2450 case 7:
2451 if (!device->info.is_haswell)
2452 result = gen7_init_device_state(device);
2453 else
2454 result = gen75_init_device_state(device);
2455 break;
2456 case 8:
2457 result = gen8_init_device_state(device);
2458 break;
2459 case 9:
2460 result = gen9_init_device_state(device);
2461 break;
2462 case 10:
2463 result = gen10_init_device_state(device);
2464 break;
2465 case 11:
2466 result = gen11_init_device_state(device);
2467 break;
2468 default:
2469 /* Shouldn't get here as we don't create physical devices for any other
2470 * gens. */
2471 unreachable("unhandled gen");
2472 }
2473 if (result != VK_SUCCESS)
2474 goto fail_workaround_bo;
2475
2476 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2477
2478 anv_device_init_blorp(device);
2479
2480 anv_device_init_border_colors(device);
2481
2482 *pDevice = anv_device_to_handle(device);
2483
2484 return VK_SUCCESS;
2485
2486 fail_workaround_bo:
2487 anv_queue_finish(&device->queue);
2488 anv_scratch_pool_finish(device, &device->scratch_pool);
2489 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2490 anv_gem_close(device, device->workaround_bo.gem_handle);
2491 fail_binding_table_pool:
2492 if (physical_device->use_softpin)
2493 anv_state_pool_finish(&device->binding_table_pool);
2494 fail_surface_state_pool:
2495 anv_state_pool_finish(&device->surface_state_pool);
2496 fail_instruction_state_pool:
2497 anv_state_pool_finish(&device->instruction_state_pool);
2498 fail_dynamic_state_pool:
2499 anv_state_pool_finish(&device->dynamic_state_pool);
2500 fail_bo_cache:
2501 anv_bo_cache_finish(&device->bo_cache);
2502 fail_batch_bo_pool:
2503 anv_bo_pool_finish(&device->batch_bo_pool);
2504 pthread_cond_destroy(&device->queue_submit);
2505 fail_mutex:
2506 pthread_mutex_destroy(&device->mutex);
2507 fail_context_id:
2508 anv_gem_destroy_context(device, device->context_id);
2509 fail_fd:
2510 close(device->fd);
2511 fail_device:
2512 vk_free(&device->alloc, device);
2513
2514 return result;
2515 }
2516
2517 void anv_DestroyDevice(
2518 VkDevice _device,
2519 const VkAllocationCallbacks* pAllocator)
2520 {
2521 ANV_FROM_HANDLE(anv_device, device, _device);
2522 struct anv_physical_device *physical_device;
2523
2524 if (!device)
2525 return;
2526
2527 physical_device = &device->instance->physicalDevice;
2528
2529 anv_device_finish_blorp(device);
2530
2531 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2532
2533 anv_queue_finish(&device->queue);
2534
2535 #ifdef HAVE_VALGRIND
2536 /* We only need to free these to prevent valgrind errors. The backing
2537 * BO will go away in a couple of lines so we don't actually leak.
2538 */
2539 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2540 #endif
2541
2542 anv_scratch_pool_finish(device, &device->scratch_pool);
2543
2544 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2545 anv_vma_free(device, &device->workaround_bo);
2546 anv_gem_close(device, device->workaround_bo.gem_handle);
2547
2548 anv_vma_free(device, &device->trivial_batch_bo);
2549 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2550 if (device->info.gen >= 10)
2551 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2552
2553 if (physical_device->use_softpin)
2554 anv_state_pool_finish(&device->binding_table_pool);
2555 anv_state_pool_finish(&device->surface_state_pool);
2556 anv_state_pool_finish(&device->instruction_state_pool);
2557 anv_state_pool_finish(&device->dynamic_state_pool);
2558
2559 anv_bo_cache_finish(&device->bo_cache);
2560
2561 anv_bo_pool_finish(&device->batch_bo_pool);
2562
2563 pthread_cond_destroy(&device->queue_submit);
2564 pthread_mutex_destroy(&device->mutex);
2565
2566 anv_gem_destroy_context(device, device->context_id);
2567
2568 if (INTEL_DEBUG & DEBUG_BATCH)
2569 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2570
2571 close(device->fd);
2572
2573 vk_free(&device->alloc, device);
2574 }
2575
2576 VkResult anv_EnumerateInstanceLayerProperties(
2577 uint32_t* pPropertyCount,
2578 VkLayerProperties* pProperties)
2579 {
2580 if (pProperties == NULL) {
2581 *pPropertyCount = 0;
2582 return VK_SUCCESS;
2583 }
2584
2585 /* None supported at this time */
2586 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2587 }
2588
2589 VkResult anv_EnumerateDeviceLayerProperties(
2590 VkPhysicalDevice physicalDevice,
2591 uint32_t* pPropertyCount,
2592 VkLayerProperties* pProperties)
2593 {
2594 if (pProperties == NULL) {
2595 *pPropertyCount = 0;
2596 return VK_SUCCESS;
2597 }
2598
2599 /* None supported at this time */
2600 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2601 }
2602
2603 void anv_GetDeviceQueue(
2604 VkDevice _device,
2605 uint32_t queueNodeIndex,
2606 uint32_t queueIndex,
2607 VkQueue* pQueue)
2608 {
2609 ANV_FROM_HANDLE(anv_device, device, _device);
2610
2611 assert(queueIndex == 0);
2612
2613 *pQueue = anv_queue_to_handle(&device->queue);
2614 }
2615
2616 void anv_GetDeviceQueue2(
2617 VkDevice _device,
2618 const VkDeviceQueueInfo2* pQueueInfo,
2619 VkQueue* pQueue)
2620 {
2621 ANV_FROM_HANDLE(anv_device, device, _device);
2622
2623 assert(pQueueInfo->queueIndex == 0);
2624
2625 if (pQueueInfo->flags == device->queue.flags)
2626 *pQueue = anv_queue_to_handle(&device->queue);
2627 else
2628 *pQueue = NULL;
2629 }
2630
2631 VkResult
2632 _anv_device_set_lost(struct anv_device *device,
2633 const char *file, int line,
2634 const char *msg, ...)
2635 {
2636 VkResult err;
2637 va_list ap;
2638
2639 device->_lost = true;
2640
2641 va_start(ap, msg);
2642 err = __vk_errorv(device->instance, device,
2643 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2644 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2645 va_end(ap);
2646
2647 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2648 abort();
2649
2650 return err;
2651 }
2652
2653 VkResult
2654 anv_device_query_status(struct anv_device *device)
2655 {
2656 /* This isn't likely as most of the callers of this function already check
2657 * for it. However, it doesn't hurt to check and it potentially lets us
2658 * avoid an ioctl.
2659 */
2660 if (anv_device_is_lost(device))
2661 return VK_ERROR_DEVICE_LOST;
2662
2663 uint32_t active, pending;
2664 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2665 if (ret == -1) {
2666 /* We don't know the real error. */
2667 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2668 }
2669
2670 if (active) {
2671 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2672 } else if (pending) {
2673 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2674 }
2675
2676 return VK_SUCCESS;
2677 }
2678
2679 VkResult
2680 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2681 {
2682 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2683 * Other usages of the BO (such as on different hardware) will not be
2684 * flagged as "busy" by this ioctl. Use with care.
2685 */
2686 int ret = anv_gem_busy(device, bo->gem_handle);
2687 if (ret == 1) {
2688 return VK_NOT_READY;
2689 } else if (ret == -1) {
2690 /* We don't know the real error. */
2691 return anv_device_set_lost(device, "gem wait failed: %m");
2692 }
2693
2694 /* Query for device status after the busy call. If the BO we're checking
2695 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2696 * client because it clearly doesn't have valid data. Yes, this most
2697 * likely means an ioctl, but we just did an ioctl to query the busy status
2698 * so it's no great loss.
2699 */
2700 return anv_device_query_status(device);
2701 }
2702
2703 VkResult
2704 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2705 int64_t timeout)
2706 {
2707 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2708 if (ret == -1 && errno == ETIME) {
2709 return VK_TIMEOUT;
2710 } else if (ret == -1) {
2711 /* We don't know the real error. */
2712 return anv_device_set_lost(device, "gem wait failed: %m");
2713 }
2714
2715 /* Query for device status after the wait. If the BO we're waiting on got
2716 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2717 * because it clearly doesn't have valid data. Yes, this most likely means
2718 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2719 */
2720 return anv_device_query_status(device);
2721 }
2722
2723 VkResult anv_DeviceWaitIdle(
2724 VkDevice _device)
2725 {
2726 ANV_FROM_HANDLE(anv_device, device, _device);
2727 if (anv_device_is_lost(device))
2728 return VK_ERROR_DEVICE_LOST;
2729
2730 struct anv_batch batch;
2731
2732 uint32_t cmds[8];
2733 batch.start = batch.next = cmds;
2734 batch.end = (void *) cmds + sizeof(cmds);
2735
2736 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2737 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2738
2739 return anv_device_submit_simple_batch(device, &batch);
2740 }
2741
2742 bool
2743 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2744 {
2745 if (!(bo->flags & EXEC_OBJECT_PINNED))
2746 return true;
2747
2748 pthread_mutex_lock(&device->vma_mutex);
2749
2750 bo->offset = 0;
2751
2752 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2753 device->vma_hi_available >= bo->size) {
2754 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2755 if (addr) {
2756 bo->offset = gen_canonical_address(addr);
2757 assert(addr == gen_48b_address(bo->offset));
2758 device->vma_hi_available -= bo->size;
2759 }
2760 }
2761
2762 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2763 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2764 if (addr) {
2765 bo->offset = gen_canonical_address(addr);
2766 assert(addr == gen_48b_address(bo->offset));
2767 device->vma_lo_available -= bo->size;
2768 }
2769 }
2770
2771 pthread_mutex_unlock(&device->vma_mutex);
2772
2773 return bo->offset != 0;
2774 }
2775
2776 void
2777 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2778 {
2779 if (!(bo->flags & EXEC_OBJECT_PINNED))
2780 return;
2781
2782 const uint64_t addr_48b = gen_48b_address(bo->offset);
2783
2784 pthread_mutex_lock(&device->vma_mutex);
2785
2786 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2787 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2788 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2789 device->vma_lo_available += bo->size;
2790 } else {
2791 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2792 &device->instance->physicalDevice;
2793 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2794 addr_48b < (physical_device->memory.heaps[0].vma_start +
2795 physical_device->memory.heaps[0].vma_size));
2796 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2797 device->vma_hi_available += bo->size;
2798 }
2799
2800 pthread_mutex_unlock(&device->vma_mutex);
2801
2802 bo->offset = 0;
2803 }
2804
2805 VkResult
2806 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2807 {
2808 uint32_t gem_handle = anv_gem_create(device, size);
2809 if (!gem_handle)
2810 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2811
2812 anv_bo_init(bo, gem_handle, size);
2813
2814 return VK_SUCCESS;
2815 }
2816
2817 VkResult anv_AllocateMemory(
2818 VkDevice _device,
2819 const VkMemoryAllocateInfo* pAllocateInfo,
2820 const VkAllocationCallbacks* pAllocator,
2821 VkDeviceMemory* pMem)
2822 {
2823 ANV_FROM_HANDLE(anv_device, device, _device);
2824 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2825 struct anv_device_memory *mem;
2826 VkResult result = VK_SUCCESS;
2827
2828 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2829
2830 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2831 assert(pAllocateInfo->allocationSize > 0);
2832
2833 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2834 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2835
2836 /* FINISHME: Fail if allocation request exceeds heap size. */
2837
2838 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2839 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2840 if (mem == NULL)
2841 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2842
2843 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2844 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2845 mem->map = NULL;
2846 mem->map_size = 0;
2847 mem->ahw = NULL;
2848 mem->host_ptr = NULL;
2849
2850 uint64_t bo_flags = 0;
2851
2852 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2853 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2854 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2855
2856 const struct wsi_memory_allocate_info *wsi_info =
2857 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2858 if (wsi_info && wsi_info->implicit_sync) {
2859 /* We need to set the WRITE flag on window system buffers so that GEM
2860 * will know we're writing to them and synchronize uses on other rings
2861 * (eg if the display server uses the blitter ring).
2862 */
2863 bo_flags |= EXEC_OBJECT_WRITE;
2864 } else if (pdevice->has_exec_async) {
2865 bo_flags |= EXEC_OBJECT_ASYNC;
2866 }
2867
2868 if (pdevice->use_softpin)
2869 bo_flags |= EXEC_OBJECT_PINNED;
2870
2871 const VkExportMemoryAllocateInfo *export_info =
2872 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2873
2874 /* Check if we need to support Android HW buffer export. If so,
2875 * create AHardwareBuffer and import memory from it.
2876 */
2877 bool android_export = false;
2878 if (export_info && export_info->handleTypes &
2879 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2880 android_export = true;
2881
2882 /* Android memory import. */
2883 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2884 vk_find_struct_const(pAllocateInfo->pNext,
2885 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2886
2887 if (ahw_import_info) {
2888 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2889 if (result != VK_SUCCESS)
2890 goto fail;
2891
2892 goto success;
2893 } else if (android_export) {
2894 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2895 if (result != VK_SUCCESS)
2896 goto fail;
2897
2898 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2899 .buffer = mem->ahw,
2900 };
2901 result = anv_import_ahw_memory(_device, mem, &import_info);
2902 if (result != VK_SUCCESS)
2903 goto fail;
2904
2905 goto success;
2906 }
2907
2908 const VkImportMemoryFdInfoKHR *fd_info =
2909 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2910
2911 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2912 * ignored.
2913 */
2914 if (fd_info && fd_info->handleType) {
2915 /* At the moment, we support only the below handle types. */
2916 assert(fd_info->handleType ==
2917 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2918 fd_info->handleType ==
2919 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2920
2921 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2922 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2923 if (result != VK_SUCCESS)
2924 goto fail;
2925
2926 VkDeviceSize aligned_alloc_size =
2927 align_u64(pAllocateInfo->allocationSize, 4096);
2928
2929 /* For security purposes, we reject importing the bo if it's smaller
2930 * than the requested allocation size. This prevents a malicious client
2931 * from passing a buffer to a trusted client, lying about the size, and
2932 * telling the trusted client to try and texture from an image that goes
2933 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2934 * in the trusted client. The trusted client can protect itself against
2935 * this sort of attack but only if it can trust the buffer size.
2936 */
2937 if (mem->bo->size < aligned_alloc_size) {
2938 result = vk_errorf(device->instance, device,
2939 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2940 "aligned allocationSize too large for "
2941 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2942 "%"PRIu64"B > %"PRIu64"B",
2943 aligned_alloc_size, mem->bo->size);
2944 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2945 goto fail;
2946 }
2947
2948 /* From the Vulkan spec:
2949 *
2950 * "Importing memory from a file descriptor transfers ownership of
2951 * the file descriptor from the application to the Vulkan
2952 * implementation. The application must not perform any operations on
2953 * the file descriptor after a successful import."
2954 *
2955 * If the import fails, we leave the file descriptor open.
2956 */
2957 close(fd_info->fd);
2958 goto success;
2959 }
2960
2961 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2962 vk_find_struct_const(pAllocateInfo->pNext,
2963 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2964 if (host_ptr_info && host_ptr_info->handleType) {
2965 if (host_ptr_info->handleType ==
2966 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2967 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2968 goto fail;
2969 }
2970
2971 assert(host_ptr_info->handleType ==
2972 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2973
2974 result = anv_bo_cache_import_host_ptr(
2975 device, &device->bo_cache, host_ptr_info->pHostPointer,
2976 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2977
2978 if (result != VK_SUCCESS)
2979 goto fail;
2980
2981 mem->host_ptr = host_ptr_info->pHostPointer;
2982 goto success;
2983 }
2984
2985 /* Regular allocate (not importing memory). */
2986
2987 if (export_info && export_info->handleTypes)
2988 bo_flags |= ANV_BO_EXTERNAL;
2989
2990 result = anv_bo_cache_alloc(device, &device->bo_cache,
2991 pAllocateInfo->allocationSize, bo_flags,
2992 &mem->bo);
2993 if (result != VK_SUCCESS)
2994 goto fail;
2995
2996 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2997 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2998 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2999 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3000
3001 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3002 * the BO. In this case, we have a dedicated allocation.
3003 */
3004 if (image->needs_set_tiling) {
3005 const uint32_t i915_tiling =
3006 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3007 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3008 image->planes[0].surface.isl.row_pitch_B,
3009 i915_tiling);
3010 if (ret) {
3011 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3012 return vk_errorf(device->instance, NULL,
3013 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3014 "failed to set BO tiling: %m");
3015 }
3016 }
3017 }
3018
3019 success:
3020 pthread_mutex_lock(&device->mutex);
3021 list_addtail(&mem->link, &device->memory_objects);
3022 pthread_mutex_unlock(&device->mutex);
3023
3024 *pMem = anv_device_memory_to_handle(mem);
3025
3026 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3027 mem->bo->size);
3028
3029 return VK_SUCCESS;
3030
3031 fail:
3032 vk_free2(&device->alloc, pAllocator, mem);
3033
3034 return result;
3035 }
3036
3037 VkResult anv_GetMemoryFdKHR(
3038 VkDevice device_h,
3039 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3040 int* pFd)
3041 {
3042 ANV_FROM_HANDLE(anv_device, dev, device_h);
3043 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3044
3045 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3046
3047 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3048 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3049
3050 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3051 }
3052
3053 VkResult anv_GetMemoryFdPropertiesKHR(
3054 VkDevice _device,
3055 VkExternalMemoryHandleTypeFlagBits handleType,
3056 int fd,
3057 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3058 {
3059 ANV_FROM_HANDLE(anv_device, device, _device);
3060 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3061
3062 switch (handleType) {
3063 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3064 /* dma-buf can be imported as any memory type */
3065 pMemoryFdProperties->memoryTypeBits =
3066 (1 << pdevice->memory.type_count) - 1;
3067 return VK_SUCCESS;
3068
3069 default:
3070 /* The valid usage section for this function says:
3071 *
3072 * "handleType must not be one of the handle types defined as
3073 * opaque."
3074 *
3075 * So opaque handle types fall into the default "unsupported" case.
3076 */
3077 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3078 }
3079 }
3080
3081 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3082 VkDevice _device,
3083 VkExternalMemoryHandleTypeFlagBits handleType,
3084 const void* pHostPointer,
3085 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3086 {
3087 ANV_FROM_HANDLE(anv_device, device, _device);
3088
3089 assert(pMemoryHostPointerProperties->sType ==
3090 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3091
3092 switch (handleType) {
3093 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3094 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3095
3096 /* Host memory can be imported as any memory type. */
3097 pMemoryHostPointerProperties->memoryTypeBits =
3098 (1ull << pdevice->memory.type_count) - 1;
3099
3100 return VK_SUCCESS;
3101 }
3102 default:
3103 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3104 }
3105 }
3106
3107 void anv_FreeMemory(
3108 VkDevice _device,
3109 VkDeviceMemory _mem,
3110 const VkAllocationCallbacks* pAllocator)
3111 {
3112 ANV_FROM_HANDLE(anv_device, device, _device);
3113 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3114 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3115
3116 if (mem == NULL)
3117 return;
3118
3119 pthread_mutex_lock(&device->mutex);
3120 list_del(&mem->link);
3121 pthread_mutex_unlock(&device->mutex);
3122
3123 if (mem->map)
3124 anv_UnmapMemory(_device, _mem);
3125
3126 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3127 -mem->bo->size);
3128
3129 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3130
3131 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3132 if (mem->ahw)
3133 AHardwareBuffer_release(mem->ahw);
3134 #endif
3135
3136 vk_free2(&device->alloc, pAllocator, mem);
3137 }
3138
3139 VkResult anv_MapMemory(
3140 VkDevice _device,
3141 VkDeviceMemory _memory,
3142 VkDeviceSize offset,
3143 VkDeviceSize size,
3144 VkMemoryMapFlags flags,
3145 void** ppData)
3146 {
3147 ANV_FROM_HANDLE(anv_device, device, _device);
3148 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3149
3150 if (mem == NULL) {
3151 *ppData = NULL;
3152 return VK_SUCCESS;
3153 }
3154
3155 if (mem->host_ptr) {
3156 *ppData = mem->host_ptr + offset;
3157 return VK_SUCCESS;
3158 }
3159
3160 if (size == VK_WHOLE_SIZE)
3161 size = mem->bo->size - offset;
3162
3163 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3164 *
3165 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3166 * assert(size != 0);
3167 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3168 * equal to the size of the memory minus offset
3169 */
3170 assert(size > 0);
3171 assert(offset + size <= mem->bo->size);
3172
3173 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3174 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3175 * at a time is valid. We could just mmap up front and return an offset
3176 * pointer here, but that may exhaust virtual memory on 32 bit
3177 * userspace. */
3178
3179 uint32_t gem_flags = 0;
3180
3181 if (!device->info.has_llc &&
3182 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3183 gem_flags |= I915_MMAP_WC;
3184
3185 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3186 uint64_t map_offset = offset & ~4095ull;
3187 assert(offset >= map_offset);
3188 uint64_t map_size = (offset + size) - map_offset;
3189
3190 /* Let's map whole pages */
3191 map_size = align_u64(map_size, 4096);
3192
3193 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3194 map_offset, map_size, gem_flags);
3195 if (map == MAP_FAILED)
3196 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3197
3198 mem->map = map;
3199 mem->map_size = map_size;
3200
3201 *ppData = mem->map + (offset - map_offset);
3202
3203 return VK_SUCCESS;
3204 }
3205
3206 void anv_UnmapMemory(
3207 VkDevice _device,
3208 VkDeviceMemory _memory)
3209 {
3210 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3211
3212 if (mem == NULL || mem->host_ptr)
3213 return;
3214
3215 anv_gem_munmap(mem->map, mem->map_size);
3216
3217 mem->map = NULL;
3218 mem->map_size = 0;
3219 }
3220
3221 static void
3222 clflush_mapped_ranges(struct anv_device *device,
3223 uint32_t count,
3224 const VkMappedMemoryRange *ranges)
3225 {
3226 for (uint32_t i = 0; i < count; i++) {
3227 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3228 if (ranges[i].offset >= mem->map_size)
3229 continue;
3230
3231 gen_clflush_range(mem->map + ranges[i].offset,
3232 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3233 }
3234 }
3235
3236 VkResult anv_FlushMappedMemoryRanges(
3237 VkDevice _device,
3238 uint32_t memoryRangeCount,
3239 const VkMappedMemoryRange* pMemoryRanges)
3240 {
3241 ANV_FROM_HANDLE(anv_device, device, _device);
3242
3243 if (device->info.has_llc)
3244 return VK_SUCCESS;
3245
3246 /* Make sure the writes we're flushing have landed. */
3247 __builtin_ia32_mfence();
3248
3249 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3250
3251 return VK_SUCCESS;
3252 }
3253
3254 VkResult anv_InvalidateMappedMemoryRanges(
3255 VkDevice _device,
3256 uint32_t memoryRangeCount,
3257 const VkMappedMemoryRange* pMemoryRanges)
3258 {
3259 ANV_FROM_HANDLE(anv_device, device, _device);
3260
3261 if (device->info.has_llc)
3262 return VK_SUCCESS;
3263
3264 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3265
3266 /* Make sure no reads get moved up above the invalidate. */
3267 __builtin_ia32_mfence();
3268
3269 return VK_SUCCESS;
3270 }
3271
3272 void anv_GetBufferMemoryRequirements(
3273 VkDevice _device,
3274 VkBuffer _buffer,
3275 VkMemoryRequirements* pMemoryRequirements)
3276 {
3277 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3278 ANV_FROM_HANDLE(anv_device, device, _device);
3279 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3280
3281 /* The Vulkan spec (git aaed022) says:
3282 *
3283 * memoryTypeBits is a bitfield and contains one bit set for every
3284 * supported memory type for the resource. The bit `1<<i` is set if and
3285 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3286 * structure for the physical device is supported.
3287 */
3288 uint32_t memory_types = 0;
3289 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3290 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3291 if ((valid_usage & buffer->usage) == buffer->usage)
3292 memory_types |= (1u << i);
3293 }
3294
3295 /* Base alignment requirement of a cache line */
3296 uint32_t alignment = 16;
3297
3298 /* We need an alignment of 32 for pushing UBOs */
3299 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3300 alignment = MAX2(alignment, 32);
3301
3302 pMemoryRequirements->size = buffer->size;
3303 pMemoryRequirements->alignment = alignment;
3304
3305 /* Storage and Uniform buffers should have their size aligned to
3306 * 32-bits to avoid boundary checks when last DWord is not complete.
3307 * This would ensure that not internal padding would be needed for
3308 * 16-bit types.
3309 */
3310 if (device->robust_buffer_access &&
3311 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3312 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3313 pMemoryRequirements->size = align_u64(buffer->size, 4);
3314
3315 pMemoryRequirements->memoryTypeBits = memory_types;
3316 }
3317
3318 void anv_GetBufferMemoryRequirements2(
3319 VkDevice _device,
3320 const VkBufferMemoryRequirementsInfo2* pInfo,
3321 VkMemoryRequirements2* pMemoryRequirements)
3322 {
3323 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3324 &pMemoryRequirements->memoryRequirements);
3325
3326 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3327 switch (ext->sType) {
3328 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3329 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3330 requirements->prefersDedicatedAllocation = false;
3331 requirements->requiresDedicatedAllocation = false;
3332 break;
3333 }
3334
3335 default:
3336 anv_debug_ignored_stype(ext->sType);
3337 break;
3338 }
3339 }
3340 }
3341
3342 void anv_GetImageMemoryRequirements(
3343 VkDevice _device,
3344 VkImage _image,
3345 VkMemoryRequirements* pMemoryRequirements)
3346 {
3347 ANV_FROM_HANDLE(anv_image, image, _image);
3348 ANV_FROM_HANDLE(anv_device, device, _device);
3349 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3350
3351 /* The Vulkan spec (git aaed022) says:
3352 *
3353 * memoryTypeBits is a bitfield and contains one bit set for every
3354 * supported memory type for the resource. The bit `1<<i` is set if and
3355 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3356 * structure for the physical device is supported.
3357 *
3358 * All types are currently supported for images.
3359 */
3360 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3361
3362 /* We must have image allocated or imported at this point. According to the
3363 * specification, external images must have been bound to memory before
3364 * calling GetImageMemoryRequirements.
3365 */
3366 assert(image->size > 0);
3367
3368 pMemoryRequirements->size = image->size;
3369 pMemoryRequirements->alignment = image->alignment;
3370 pMemoryRequirements->memoryTypeBits = memory_types;
3371 }
3372
3373 void anv_GetImageMemoryRequirements2(
3374 VkDevice _device,
3375 const VkImageMemoryRequirementsInfo2* pInfo,
3376 VkMemoryRequirements2* pMemoryRequirements)
3377 {
3378 ANV_FROM_HANDLE(anv_device, device, _device);
3379 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3380
3381 anv_GetImageMemoryRequirements(_device, pInfo->image,
3382 &pMemoryRequirements->memoryRequirements);
3383
3384 vk_foreach_struct_const(ext, pInfo->pNext) {
3385 switch (ext->sType) {
3386 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3387 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3388 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3389 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3390 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3391 plane_reqs->planeAspect);
3392
3393 assert(image->planes[plane].offset == 0);
3394
3395 /* The Vulkan spec (git aaed022) says:
3396 *
3397 * memoryTypeBits is a bitfield and contains one bit set for every
3398 * supported memory type for the resource. The bit `1<<i` is set
3399 * if and only if the memory type `i` in the
3400 * VkPhysicalDeviceMemoryProperties structure for the physical
3401 * device is supported.
3402 *
3403 * All types are currently supported for images.
3404 */
3405 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3406 (1ull << pdevice->memory.type_count) - 1;
3407
3408 /* We must have image allocated or imported at this point. According to the
3409 * specification, external images must have been bound to memory before
3410 * calling GetImageMemoryRequirements.
3411 */
3412 assert(image->planes[plane].size > 0);
3413
3414 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3415 pMemoryRequirements->memoryRequirements.alignment =
3416 image->planes[plane].alignment;
3417 break;
3418 }
3419
3420 default:
3421 anv_debug_ignored_stype(ext->sType);
3422 break;
3423 }
3424 }
3425
3426 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3427 switch (ext->sType) {
3428 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3429 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3430 if (image->needs_set_tiling || image->external_format) {
3431 /* If we need to set the tiling for external consumers, we need a
3432 * dedicated allocation.
3433 *
3434 * See also anv_AllocateMemory.
3435 */
3436 requirements->prefersDedicatedAllocation = true;
3437 requirements->requiresDedicatedAllocation = true;
3438 } else {
3439 requirements->prefersDedicatedAllocation = false;
3440 requirements->requiresDedicatedAllocation = false;
3441 }
3442 break;
3443 }
3444
3445 default:
3446 anv_debug_ignored_stype(ext->sType);
3447 break;
3448 }
3449 }
3450 }
3451
3452 void anv_GetImageSparseMemoryRequirements(
3453 VkDevice device,
3454 VkImage image,
3455 uint32_t* pSparseMemoryRequirementCount,
3456 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3457 {
3458 *pSparseMemoryRequirementCount = 0;
3459 }
3460
3461 void anv_GetImageSparseMemoryRequirements2(
3462 VkDevice device,
3463 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3464 uint32_t* pSparseMemoryRequirementCount,
3465 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3466 {
3467 *pSparseMemoryRequirementCount = 0;
3468 }
3469
3470 void anv_GetDeviceMemoryCommitment(
3471 VkDevice device,
3472 VkDeviceMemory memory,
3473 VkDeviceSize* pCommittedMemoryInBytes)
3474 {
3475 *pCommittedMemoryInBytes = 0;
3476 }
3477
3478 static void
3479 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3480 {
3481 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3482 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3483
3484 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3485
3486 if (mem) {
3487 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3488 buffer->address = (struct anv_address) {
3489 .bo = mem->bo,
3490 .offset = pBindInfo->memoryOffset,
3491 };
3492 } else {
3493 buffer->address = ANV_NULL_ADDRESS;
3494 }
3495 }
3496
3497 VkResult anv_BindBufferMemory(
3498 VkDevice device,
3499 VkBuffer buffer,
3500 VkDeviceMemory memory,
3501 VkDeviceSize memoryOffset)
3502 {
3503 anv_bind_buffer_memory(
3504 &(VkBindBufferMemoryInfo) {
3505 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3506 .buffer = buffer,
3507 .memory = memory,
3508 .memoryOffset = memoryOffset,
3509 });
3510
3511 return VK_SUCCESS;
3512 }
3513
3514 VkResult anv_BindBufferMemory2(
3515 VkDevice device,
3516 uint32_t bindInfoCount,
3517 const VkBindBufferMemoryInfo* pBindInfos)
3518 {
3519 for (uint32_t i = 0; i < bindInfoCount; i++)
3520 anv_bind_buffer_memory(&pBindInfos[i]);
3521
3522 return VK_SUCCESS;
3523 }
3524
3525 VkResult anv_QueueBindSparse(
3526 VkQueue _queue,
3527 uint32_t bindInfoCount,
3528 const VkBindSparseInfo* pBindInfo,
3529 VkFence fence)
3530 {
3531 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3532 if (anv_device_is_lost(queue->device))
3533 return VK_ERROR_DEVICE_LOST;
3534
3535 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3536 }
3537
3538 // Event functions
3539
3540 VkResult anv_CreateEvent(
3541 VkDevice _device,
3542 const VkEventCreateInfo* pCreateInfo,
3543 const VkAllocationCallbacks* pAllocator,
3544 VkEvent* pEvent)
3545 {
3546 ANV_FROM_HANDLE(anv_device, device, _device);
3547 struct anv_state state;
3548 struct anv_event *event;
3549
3550 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3551
3552 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3553 sizeof(*event), 8);
3554 event = state.map;
3555 event->state = state;
3556 event->semaphore = VK_EVENT_RESET;
3557
3558 if (!device->info.has_llc) {
3559 /* Make sure the writes we're flushing have landed. */
3560 __builtin_ia32_mfence();
3561 __builtin_ia32_clflush(event);
3562 }
3563
3564 *pEvent = anv_event_to_handle(event);
3565
3566 return VK_SUCCESS;
3567 }
3568
3569 void anv_DestroyEvent(
3570 VkDevice _device,
3571 VkEvent _event,
3572 const VkAllocationCallbacks* pAllocator)
3573 {
3574 ANV_FROM_HANDLE(anv_device, device, _device);
3575 ANV_FROM_HANDLE(anv_event, event, _event);
3576
3577 if (!event)
3578 return;
3579
3580 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3581 }
3582
3583 VkResult anv_GetEventStatus(
3584 VkDevice _device,
3585 VkEvent _event)
3586 {
3587 ANV_FROM_HANDLE(anv_device, device, _device);
3588 ANV_FROM_HANDLE(anv_event, event, _event);
3589
3590 if (anv_device_is_lost(device))
3591 return VK_ERROR_DEVICE_LOST;
3592
3593 if (!device->info.has_llc) {
3594 /* Invalidate read cache before reading event written by GPU. */
3595 __builtin_ia32_clflush(event);
3596 __builtin_ia32_mfence();
3597
3598 }
3599
3600 return event->semaphore;
3601 }
3602
3603 VkResult anv_SetEvent(
3604 VkDevice _device,
3605 VkEvent _event)
3606 {
3607 ANV_FROM_HANDLE(anv_device, device, _device);
3608 ANV_FROM_HANDLE(anv_event, event, _event);
3609
3610 event->semaphore = VK_EVENT_SET;
3611
3612 if (!device->info.has_llc) {
3613 /* Make sure the writes we're flushing have landed. */
3614 __builtin_ia32_mfence();
3615 __builtin_ia32_clflush(event);
3616 }
3617
3618 return VK_SUCCESS;
3619 }
3620
3621 VkResult anv_ResetEvent(
3622 VkDevice _device,
3623 VkEvent _event)
3624 {
3625 ANV_FROM_HANDLE(anv_device, device, _device);
3626 ANV_FROM_HANDLE(anv_event, event, _event);
3627
3628 event->semaphore = VK_EVENT_RESET;
3629
3630 if (!device->info.has_llc) {
3631 /* Make sure the writes we're flushing have landed. */
3632 __builtin_ia32_mfence();
3633 __builtin_ia32_clflush(event);
3634 }
3635
3636 return VK_SUCCESS;
3637 }
3638
3639 // Buffer functions
3640
3641 VkResult anv_CreateBuffer(
3642 VkDevice _device,
3643 const VkBufferCreateInfo* pCreateInfo,
3644 const VkAllocationCallbacks* pAllocator,
3645 VkBuffer* pBuffer)
3646 {
3647 ANV_FROM_HANDLE(anv_device, device, _device);
3648 struct anv_buffer *buffer;
3649
3650 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3651
3652 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3653 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3654 if (buffer == NULL)
3655 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3656
3657 buffer->size = pCreateInfo->size;
3658 buffer->usage = pCreateInfo->usage;
3659 buffer->address = ANV_NULL_ADDRESS;
3660
3661 *pBuffer = anv_buffer_to_handle(buffer);
3662
3663 return VK_SUCCESS;
3664 }
3665
3666 void anv_DestroyBuffer(
3667 VkDevice _device,
3668 VkBuffer _buffer,
3669 const VkAllocationCallbacks* pAllocator)
3670 {
3671 ANV_FROM_HANDLE(anv_device, device, _device);
3672 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3673
3674 if (!buffer)
3675 return;
3676
3677 vk_free2(&device->alloc, pAllocator, buffer);
3678 }
3679
3680 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3681 VkDevice device,
3682 const VkBufferDeviceAddressInfoEXT* pInfo)
3683 {
3684 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3685
3686 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3687
3688 return anv_address_physical(buffer->address);
3689 }
3690
3691 void
3692 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3693 enum isl_format format,
3694 struct anv_address address,
3695 uint32_t range, uint32_t stride)
3696 {
3697 isl_buffer_fill_state(&device->isl_dev, state.map,
3698 .address = anv_address_physical(address),
3699 .mocs = device->default_mocs,
3700 .size_B = range,
3701 .format = format,
3702 .swizzle = ISL_SWIZZLE_IDENTITY,
3703 .stride_B = stride);
3704 }
3705
3706 void anv_DestroySampler(
3707 VkDevice _device,
3708 VkSampler _sampler,
3709 const VkAllocationCallbacks* pAllocator)
3710 {
3711 ANV_FROM_HANDLE(anv_device, device, _device);
3712 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3713
3714 if (!sampler)
3715 return;
3716
3717 if (sampler->bindless_state.map) {
3718 anv_state_pool_free(&device->dynamic_state_pool,
3719 sampler->bindless_state);
3720 }
3721
3722 vk_free2(&device->alloc, pAllocator, sampler);
3723 }
3724
3725 VkResult anv_CreateFramebuffer(
3726 VkDevice _device,
3727 const VkFramebufferCreateInfo* pCreateInfo,
3728 const VkAllocationCallbacks* pAllocator,
3729 VkFramebuffer* pFramebuffer)
3730 {
3731 ANV_FROM_HANDLE(anv_device, device, _device);
3732 struct anv_framebuffer *framebuffer;
3733
3734 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3735
3736 size_t size = sizeof(*framebuffer);
3737
3738 /* VK_KHR_imageless_framebuffer extension says:
3739 *
3740 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3741 * parameter pAttachments is ignored.
3742 */
3743 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3744 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3745 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3746 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3747 if (framebuffer == NULL)
3748 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3749
3750 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3751 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3752 framebuffer->attachments[i] = iview;
3753 }
3754 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3755 } else {
3756 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3757 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3758 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3759 if (framebuffer == NULL)
3760 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3761
3762 framebuffer->attachment_count = 0;
3763 }
3764
3765 framebuffer->width = pCreateInfo->width;
3766 framebuffer->height = pCreateInfo->height;
3767 framebuffer->layers = pCreateInfo->layers;
3768
3769 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3770
3771 return VK_SUCCESS;
3772 }
3773
3774 void anv_DestroyFramebuffer(
3775 VkDevice _device,
3776 VkFramebuffer _fb,
3777 const VkAllocationCallbacks* pAllocator)
3778 {
3779 ANV_FROM_HANDLE(anv_device, device, _device);
3780 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3781
3782 if (!fb)
3783 return;
3784
3785 vk_free2(&device->alloc, pAllocator, fb);
3786 }
3787
3788 static const VkTimeDomainEXT anv_time_domains[] = {
3789 VK_TIME_DOMAIN_DEVICE_EXT,
3790 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3791 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3792 };
3793
3794 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3795 VkPhysicalDevice physicalDevice,
3796 uint32_t *pTimeDomainCount,
3797 VkTimeDomainEXT *pTimeDomains)
3798 {
3799 int d;
3800 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3801
3802 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3803 vk_outarray_append(&out, i) {
3804 *i = anv_time_domains[d];
3805 }
3806 }
3807
3808 return vk_outarray_status(&out);
3809 }
3810
3811 static uint64_t
3812 anv_clock_gettime(clockid_t clock_id)
3813 {
3814 struct timespec current;
3815 int ret;
3816
3817 ret = clock_gettime(clock_id, &current);
3818 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3819 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3820 if (ret < 0)
3821 return 0;
3822
3823 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3824 }
3825
3826 #define TIMESTAMP 0x2358
3827
3828 VkResult anv_GetCalibratedTimestampsEXT(
3829 VkDevice _device,
3830 uint32_t timestampCount,
3831 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3832 uint64_t *pTimestamps,
3833 uint64_t *pMaxDeviation)
3834 {
3835 ANV_FROM_HANDLE(anv_device, device, _device);
3836 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3837 int ret;
3838 int d;
3839 uint64_t begin, end;
3840 uint64_t max_clock_period = 0;
3841
3842 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3843
3844 for (d = 0; d < timestampCount; d++) {
3845 switch (pTimestampInfos[d].timeDomain) {
3846 case VK_TIME_DOMAIN_DEVICE_EXT:
3847 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3848 &pTimestamps[d]);
3849
3850 if (ret != 0) {
3851 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3852 "register: %m");
3853 }
3854 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3855 max_clock_period = MAX2(max_clock_period, device_period);
3856 break;
3857 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3858 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3859 max_clock_period = MAX2(max_clock_period, 1);
3860 break;
3861
3862 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3863 pTimestamps[d] = begin;
3864 break;
3865 default:
3866 pTimestamps[d] = 0;
3867 break;
3868 }
3869 }
3870
3871 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3872
3873 /*
3874 * The maximum deviation is the sum of the interval over which we
3875 * perform the sampling and the maximum period of any sampled
3876 * clock. That's because the maximum skew between any two sampled
3877 * clock edges is when the sampled clock with the largest period is
3878 * sampled at the end of that period but right at the beginning of the
3879 * sampling interval and some other clock is sampled right at the
3880 * begining of its sampling period and right at the end of the
3881 * sampling interval. Let's assume the GPU has the longest clock
3882 * period and that the application is sampling GPU and monotonic:
3883 *
3884 * s e
3885 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3886 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3887 *
3888 * g
3889 * 0 1 2 3
3890 * GPU -----_____-----_____-----_____-----_____
3891 *
3892 * m
3893 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3894 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3895 *
3896 * Interval <----------------->
3897 * Deviation <-------------------------->
3898 *
3899 * s = read(raw) 2
3900 * g = read(GPU) 1
3901 * m = read(monotonic) 2
3902 * e = read(raw) b
3903 *
3904 * We round the sample interval up by one tick to cover sampling error
3905 * in the interval clock
3906 */
3907
3908 uint64_t sample_interval = end - begin + 1;
3909
3910 *pMaxDeviation = sample_interval + max_clock_period;
3911
3912 return VK_SUCCESS;
3913 }
3914
3915 /* vk_icd.h does not declare this function, so we declare it here to
3916 * suppress Wmissing-prototypes.
3917 */
3918 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3919 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3920
3921 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3922 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3923 {
3924 /* For the full details on loader interface versioning, see
3925 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3926 * What follows is a condensed summary, to help you navigate the large and
3927 * confusing official doc.
3928 *
3929 * - Loader interface v0 is incompatible with later versions. We don't
3930 * support it.
3931 *
3932 * - In loader interface v1:
3933 * - The first ICD entrypoint called by the loader is
3934 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3935 * entrypoint.
3936 * - The ICD must statically expose no other Vulkan symbol unless it is
3937 * linked with -Bsymbolic.
3938 * - Each dispatchable Vulkan handle created by the ICD must be
3939 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3940 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3941 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3942 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3943 * such loader-managed surfaces.
3944 *
3945 * - Loader interface v2 differs from v1 in:
3946 * - The first ICD entrypoint called by the loader is
3947 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3948 * statically expose this entrypoint.
3949 *
3950 * - Loader interface v3 differs from v2 in:
3951 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3952 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3953 * because the loader no longer does so.
3954 */
3955 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3956 return VK_SUCCESS;
3957 }