anv: Add support for SPIR-V 1.3 subgroup operations
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t *heap_size)
62 {
63 uint64_t gtt_size;
64 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
65 &gtt_size) == -1) {
66 /* If, for whatever reason, we can't actually get the GTT size from the
67 * kernel (too old?) fall back to the aperture size.
68 */
69 anv_perf_warn(NULL, NULL,
70 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
71
72 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
73 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get aperture size: %m");
75 }
76 }
77
78 /* Query the total ram from the system */
79 struct sysinfo info;
80 sysinfo(&info);
81
82 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
83
84 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
85 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
86 */
87 uint64_t available_ram;
88 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
89 available_ram = total_ram / 2;
90 else
91 available_ram = total_ram * 3 / 4;
92
93 /* We also want to leave some padding for things we allocate in the driver,
94 * so don't go over 3/4 of the GTT either.
95 */
96 uint64_t available_gtt = gtt_size * 3 / 4;
97
98 *heap_size = MIN2(available_ram, available_gtt);
99
100 return VK_SUCCESS;
101 }
102
103 static VkResult
104 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
105 {
106 /* The kernel query only tells us whether or not the kernel supports the
107 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
108 * hardware has actual 48bit address support.
109 */
110 device->supports_48bit_addresses =
111 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
112
113 uint64_t heap_size;
114 VkResult result = anv_compute_heap_size(fd, &heap_size);
115 if (result != VK_SUCCESS)
116 return result;
117
118 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
119 /* When running with an overridden PCI ID, we may get a GTT size from
120 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
121 * address support can still fail. Just clamp the address space size to
122 * 2 GiB if we don't have 48-bit support.
123 */
124 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
125 "not support for 48-bit addresses",
126 __FILE__, __LINE__);
127 heap_size = 2ull << 30;
128 }
129
130 if (heap_size <= 3ull * (1ull << 30)) {
131 /* In this case, everything fits nicely into the 32-bit address space,
132 * so there's no need for supporting 48bit addresses on client-allocated
133 * memory objects.
134 */
135 device->memory.heap_count = 1;
136 device->memory.heaps[0] = (struct anv_memory_heap) {
137 .size = heap_size,
138 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
139 .supports_48bit_addresses = false,
140 };
141 } else {
142 /* Not everything will fit nicely into a 32-bit address space. In this
143 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
144 * larger 48-bit heap. If we're in this case, then we have a total heap
145 * size larger than 3GiB which most likely means they have 8 GiB of
146 * video memory and so carving off 1 GiB for the 32-bit heap should be
147 * reasonable.
148 */
149 const uint64_t heap_size_32bit = 1ull << 30;
150 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
151
152 assert(device->supports_48bit_addresses);
153
154 device->memory.heap_count = 2;
155 device->memory.heaps[0] = (struct anv_memory_heap) {
156 .size = heap_size_48bit,
157 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
158 .supports_48bit_addresses = true,
159 };
160 device->memory.heaps[1] = (struct anv_memory_heap) {
161 .size = heap_size_32bit,
162 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
163 .supports_48bit_addresses = false,
164 };
165 }
166
167 uint32_t type_count = 0;
168 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
169 uint32_t valid_buffer_usage = ~0;
170
171 /* There appears to be a hardware issue in the VF cache where it only
172 * considers the bottom 32 bits of memory addresses. If you happen to
173 * have two vertex buffers which get placed exactly 4 GiB apart and use
174 * them in back-to-back draw calls, you can get collisions. In order to
175 * solve this problem, we require vertex and index buffers be bound to
176 * memory allocated out of the 32-bit heap.
177 */
178 if (device->memory.heaps[heap].supports_48bit_addresses) {
179 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
180 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
181 }
182
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 .valid_buffer_usage = valid_buffer_usage,
194 };
195 } else {
196 /* The spec requires that we expose a host-visible, coherent memory
197 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
198 * to give the application a choice between cached, but not coherent and
199 * coherent but uncached (WC though).
200 */
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
205 .heapIndex = heap,
206 .valid_buffer_usage = valid_buffer_usage,
207 };
208 device->memory.types[type_count++] = (struct anv_memory_type) {
209 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
210 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
212 .heapIndex = heap,
213 .valid_buffer_usage = valid_buffer_usage,
214 };
215 }
216 }
217 device->memory.type_count = type_count;
218
219 return VK_SUCCESS;
220 }
221
222 static VkResult
223 anv_physical_device_init_uuids(struct anv_physical_device *device)
224 {
225 const struct build_id_note *note =
226 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
227 if (!note) {
228 return vk_errorf(device->instance, device,
229 VK_ERROR_INITIALIZATION_FAILED,
230 "Failed to find build-id");
231 }
232
233 unsigned build_id_len = build_id_length(note);
234 if (build_id_len < 20) {
235 return vk_errorf(device->instance, device,
236 VK_ERROR_INITIALIZATION_FAILED,
237 "build-id too short. It needs to be a SHA");
238 }
239
240 struct mesa_sha1 sha1_ctx;
241 uint8_t sha1[20];
242 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
243
244 /* The pipeline cache UUID is used for determining when a pipeline cache is
245 * invalid. It needs both a driver build and the PCI ID of the device.
246 */
247 _mesa_sha1_init(&sha1_ctx);
248 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
249 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
250 sizeof(device->chipset_id));
251 _mesa_sha1_final(&sha1_ctx, sha1);
252 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
253
254 /* The driver UUID is used for determining sharability of images and memory
255 * between two Vulkan instances in separate processes. People who want to
256 * share memory need to also check the device UUID (below) so all this
257 * needs to be is the build-id.
258 */
259 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
260
261 /* The device UUID uniquely identifies the given device within the machine.
262 * Since we never have more than one device, this doesn't need to be a real
263 * UUID. However, on the off-chance that someone tries to use this to
264 * cache pre-tiled images or something of the like, we use the PCI ID and
265 * some bits of ISL info to ensure that this is safe.
266 */
267 _mesa_sha1_init(&sha1_ctx);
268 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
269 sizeof(device->chipset_id));
270 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
271 sizeof(device->isl_dev.has_bit6_swizzling));
272 _mesa_sha1_final(&sha1_ctx, sha1);
273 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
274
275 return VK_SUCCESS;
276 }
277
278 static VkResult
279 anv_physical_device_init(struct anv_physical_device *device,
280 struct anv_instance *instance,
281 const char *path)
282 {
283 VkResult result;
284 int fd;
285
286 brw_process_intel_debug_variable();
287
288 fd = open(path, O_RDWR | O_CLOEXEC);
289 if (fd < 0)
290 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
291
292 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
293 device->instance = instance;
294
295 assert(strlen(path) < ARRAY_SIZE(device->path));
296 strncpy(device->path, path, ARRAY_SIZE(device->path));
297
298 device->no_hw = getenv("INTEL_NO_HW") != NULL;
299
300 const int pci_id_override = gen_get_pci_device_id_override();
301 if (pci_id_override < 0) {
302 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
303 if (!device->chipset_id) {
304 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
305 goto fail;
306 }
307 } else {
308 device->chipset_id = pci_id_override;
309 device->no_hw = true;
310 }
311
312 device->name = gen_get_device_name(device->chipset_id);
313 if (!gen_get_device_info(device->chipset_id, &device->info)) {
314 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
315 goto fail;
316 }
317
318 if (device->info.is_haswell) {
319 intel_logw("Haswell Vulkan support is incomplete");
320 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
321 intel_logw("Ivy Bridge Vulkan support is incomplete");
322 } else if (device->info.gen == 7 && device->info.is_baytrail) {
323 intel_logw("Bay Trail Vulkan support is incomplete");
324 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
325 /* Gen8-10 fully supported */
326 } else {
327 result = vk_errorf(device->instance, device,
328 VK_ERROR_INCOMPATIBLE_DRIVER,
329 "Vulkan not yet supported on %s", device->name);
330 goto fail;
331 }
332
333 device->cmd_parser_version = -1;
334 if (device->info.gen == 7) {
335 device->cmd_parser_version =
336 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
337 if (device->cmd_parser_version == -1) {
338 result = vk_errorf(device->instance, device,
339 VK_ERROR_INITIALIZATION_FAILED,
340 "failed to get command parser version");
341 goto fail;
342 }
343 }
344
345 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
346 result = vk_errorf(device->instance, device,
347 VK_ERROR_INITIALIZATION_FAILED,
348 "kernel missing gem wait");
349 goto fail;
350 }
351
352 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
353 result = vk_errorf(device->instance, device,
354 VK_ERROR_INITIALIZATION_FAILED,
355 "kernel missing execbuf2");
356 goto fail;
357 }
358
359 if (!device->info.has_llc &&
360 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
361 result = vk_errorf(device->instance, device,
362 VK_ERROR_INITIALIZATION_FAILED,
363 "kernel missing wc mmap");
364 goto fail;
365 }
366
367 result = anv_physical_device_init_heaps(device, fd);
368 if (result != VK_SUCCESS)
369 goto fail;
370
371 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
372 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
373 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
374 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
375 device->has_syncobj_wait = device->has_syncobj &&
376 anv_gem_supports_syncobj_wait(fd);
377 device->has_context_priority = anv_gem_has_context_priority(fd);
378
379 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
380
381 /* Starting with Gen10, the timestamp frequency of the command streamer may
382 * vary from one part to another. We can query the value from the kernel.
383 */
384 if (device->info.gen >= 10) {
385 int timestamp_frequency =
386 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
387
388 if (timestamp_frequency < 0)
389 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
390 else
391 device->info.timestamp_frequency = timestamp_frequency;
392 }
393
394 /* GENs prior to 8 do not support EU/Subslice info */
395 if (device->info.gen >= 8) {
396 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
397 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
398
399 /* Without this information, we cannot get the right Braswell
400 * brandstrings, and we have to use conservative numbers for GPGPU on
401 * many platforms, but otherwise, things will just work.
402 */
403 if (device->subslice_total < 1 || device->eu_total < 1) {
404 intel_logw("Kernel 4.1 required to properly query GPU properties");
405 }
406 } else if (device->info.gen == 7) {
407 device->subslice_total = 1 << (device->info.gt - 1);
408 }
409
410 if (device->info.is_cherryview &&
411 device->subslice_total > 0 && device->eu_total > 0) {
412 /* Logical CS threads = EUs per subslice * num threads per EU */
413 uint32_t max_cs_threads =
414 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
415
416 /* Fuse configurations may give more threads than expected, never less. */
417 if (max_cs_threads > device->info.max_cs_threads)
418 device->info.max_cs_threads = max_cs_threads;
419 }
420
421 device->compiler = brw_compiler_create(NULL, &device->info);
422 if (device->compiler == NULL) {
423 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
424 goto fail;
425 }
426 device->compiler->shader_debug_log = compiler_debug_log;
427 device->compiler->shader_perf_log = compiler_perf_log;
428 device->compiler->supports_pull_constants = false;
429 device->compiler->constant_buffer_0_is_relative = true;
430
431 isl_device_init(&device->isl_dev, &device->info, swizzled);
432
433 result = anv_physical_device_init_uuids(device);
434 if (result != VK_SUCCESS)
435 goto fail;
436
437 result = anv_init_wsi(device);
438 if (result != VK_SUCCESS) {
439 ralloc_free(device->compiler);
440 goto fail;
441 }
442
443 anv_physical_device_get_supported_extensions(device,
444 &device->supported_extensions);
445
446 device->local_fd = fd;
447 return VK_SUCCESS;
448
449 fail:
450 close(fd);
451 return result;
452 }
453
454 static void
455 anv_physical_device_finish(struct anv_physical_device *device)
456 {
457 anv_finish_wsi(device);
458 ralloc_free(device->compiler);
459 close(device->local_fd);
460 }
461
462 static void *
463 default_alloc_func(void *pUserData, size_t size, size_t align,
464 VkSystemAllocationScope allocationScope)
465 {
466 return malloc(size);
467 }
468
469 static void *
470 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
471 size_t align, VkSystemAllocationScope allocationScope)
472 {
473 return realloc(pOriginal, size);
474 }
475
476 static void
477 default_free_func(void *pUserData, void *pMemory)
478 {
479 free(pMemory);
480 }
481
482 static const VkAllocationCallbacks default_alloc = {
483 .pUserData = NULL,
484 .pfnAllocation = default_alloc_func,
485 .pfnReallocation = default_realloc_func,
486 .pfnFree = default_free_func,
487 };
488
489 VkResult anv_EnumerateInstanceExtensionProperties(
490 const char* pLayerName,
491 uint32_t* pPropertyCount,
492 VkExtensionProperties* pProperties)
493 {
494 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
495
496 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
497 if (anv_instance_extensions_supported.extensions[i]) {
498 vk_outarray_append(&out, prop) {
499 *prop = anv_instance_extensions[i];
500 }
501 }
502 }
503
504 return vk_outarray_status(&out);
505 }
506
507 VkResult anv_CreateInstance(
508 const VkInstanceCreateInfo* pCreateInfo,
509 const VkAllocationCallbacks* pAllocator,
510 VkInstance* pInstance)
511 {
512 struct anv_instance *instance;
513 VkResult result;
514
515 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
516
517 /* Check if user passed a debug report callback to be used during
518 * Create/Destroy of instance.
519 */
520 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
521 vk_find_struct_const(pCreateInfo->pNext,
522 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
523
524 struct anv_instance_extension_table enabled_extensions = {};
525 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
526 int idx;
527 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
528 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
529 anv_instance_extensions[idx].extensionName) == 0)
530 break;
531 }
532
533 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
534 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
535
536 if (!anv_instance_extensions_supported.extensions[idx])
537 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
538
539 enabled_extensions.extensions[idx] = true;
540 }
541
542 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
543 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
544 if (!instance)
545 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
546
547 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
548
549 if (pAllocator)
550 instance->alloc = *pAllocator;
551 else
552 instance->alloc = default_alloc;
553
554 if (pCreateInfo->pApplicationInfo &&
555 pCreateInfo->pApplicationInfo->apiVersion != 0) {
556 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
557 } else {
558 anv_EnumerateInstanceVersion(&instance->apiVersion);
559 }
560
561 instance->enabled_extensions = enabled_extensions;
562
563 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
564 /* Vulkan requires that entrypoints for extensions which have not been
565 * enabled must not be advertised.
566 */
567 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
568 &instance->enabled_extensions, NULL)) {
569 instance->dispatch.entrypoints[i] = NULL;
570 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
571 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
572 } else {
573 instance->dispatch.entrypoints[i] =
574 anv_tramp_dispatch_table.entrypoints[i];
575 }
576 }
577
578 instance->physicalDeviceCount = -1;
579
580 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
581 if (result != VK_SUCCESS) {
582 vk_free2(&default_alloc, pAllocator, instance);
583 return vk_error(result);
584 }
585
586 _mesa_locale_init();
587
588 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
589
590 *pInstance = anv_instance_to_handle(instance);
591
592 return VK_SUCCESS;
593 }
594
595 void anv_DestroyInstance(
596 VkInstance _instance,
597 const VkAllocationCallbacks* pAllocator)
598 {
599 ANV_FROM_HANDLE(anv_instance, instance, _instance);
600
601 if (!instance)
602 return;
603
604 if (instance->physicalDeviceCount > 0) {
605 /* We support at most one physical device. */
606 assert(instance->physicalDeviceCount == 1);
607 anv_physical_device_finish(&instance->physicalDevice);
608 }
609
610 VG(VALGRIND_DESTROY_MEMPOOL(instance));
611
612 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
613
614 _mesa_locale_fini();
615
616 vk_free(&instance->alloc, instance);
617 }
618
619 static VkResult
620 anv_enumerate_devices(struct anv_instance *instance)
621 {
622 /* TODO: Check for more devices ? */
623 drmDevicePtr devices[8];
624 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
625 int max_devices;
626
627 instance->physicalDeviceCount = 0;
628
629 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
630 if (max_devices < 1)
631 return VK_ERROR_INCOMPATIBLE_DRIVER;
632
633 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
634 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
635 devices[i]->bustype == DRM_BUS_PCI &&
636 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
637
638 result = anv_physical_device_init(&instance->physicalDevice,
639 instance,
640 devices[i]->nodes[DRM_NODE_RENDER]);
641 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
642 break;
643 }
644 }
645 drmFreeDevices(devices, max_devices);
646
647 if (result == VK_SUCCESS)
648 instance->physicalDeviceCount = 1;
649
650 return result;
651 }
652
653 static VkResult
654 anv_instance_ensure_physical_device(struct anv_instance *instance)
655 {
656 if (instance->physicalDeviceCount < 0) {
657 VkResult result = anv_enumerate_devices(instance);
658 if (result != VK_SUCCESS &&
659 result != VK_ERROR_INCOMPATIBLE_DRIVER)
660 return result;
661 }
662
663 return VK_SUCCESS;
664 }
665
666 VkResult anv_EnumeratePhysicalDevices(
667 VkInstance _instance,
668 uint32_t* pPhysicalDeviceCount,
669 VkPhysicalDevice* pPhysicalDevices)
670 {
671 ANV_FROM_HANDLE(anv_instance, instance, _instance);
672 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
673
674 VkResult result = anv_instance_ensure_physical_device(instance);
675 if (result != VK_SUCCESS)
676 return result;
677
678 if (instance->physicalDeviceCount == 0)
679 return VK_SUCCESS;
680
681 assert(instance->physicalDeviceCount == 1);
682 vk_outarray_append(&out, i) {
683 *i = anv_physical_device_to_handle(&instance->physicalDevice);
684 }
685
686 return vk_outarray_status(&out);
687 }
688
689 VkResult anv_EnumeratePhysicalDeviceGroups(
690 VkInstance _instance,
691 uint32_t* pPhysicalDeviceGroupCount,
692 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
693 {
694 ANV_FROM_HANDLE(anv_instance, instance, _instance);
695 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
696 pPhysicalDeviceGroupCount);
697
698 VkResult result = anv_instance_ensure_physical_device(instance);
699 if (result != VK_SUCCESS)
700 return result;
701
702 if (instance->physicalDeviceCount == 0)
703 return VK_SUCCESS;
704
705 assert(instance->physicalDeviceCount == 1);
706
707 vk_outarray_append(&out, p) {
708 p->physicalDeviceCount = 1;
709 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
710 p->physicalDevices[0] =
711 anv_physical_device_to_handle(&instance->physicalDevice);
712 p->subsetAllocation = VK_FALSE;
713
714 vk_foreach_struct(ext, p->pNext)
715 anv_debug_ignored_stype(ext->sType);
716 }
717
718 return vk_outarray_status(&out);
719 }
720
721 void anv_GetPhysicalDeviceFeatures(
722 VkPhysicalDevice physicalDevice,
723 VkPhysicalDeviceFeatures* pFeatures)
724 {
725 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
726
727 *pFeatures = (VkPhysicalDeviceFeatures) {
728 .robustBufferAccess = true,
729 .fullDrawIndexUint32 = true,
730 .imageCubeArray = true,
731 .independentBlend = true,
732 .geometryShader = true,
733 .tessellationShader = true,
734 .sampleRateShading = true,
735 .dualSrcBlend = true,
736 .logicOp = true,
737 .multiDrawIndirect = true,
738 .drawIndirectFirstInstance = true,
739 .depthClamp = true,
740 .depthBiasClamp = true,
741 .fillModeNonSolid = true,
742 .depthBounds = false,
743 .wideLines = true,
744 .largePoints = true,
745 .alphaToOne = true,
746 .multiViewport = true,
747 .samplerAnisotropy = true,
748 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
749 pdevice->info.is_baytrail,
750 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
751 .textureCompressionBC = true,
752 .occlusionQueryPrecise = true,
753 .pipelineStatisticsQuery = true,
754 .fragmentStoresAndAtomics = true,
755 .shaderTessellationAndGeometryPointSize = true,
756 .shaderImageGatherExtended = true,
757 .shaderStorageImageExtendedFormats = true,
758 .shaderStorageImageMultisample = false,
759 .shaderStorageImageReadWithoutFormat = false,
760 .shaderStorageImageWriteWithoutFormat = true,
761 .shaderUniformBufferArrayDynamicIndexing = true,
762 .shaderSampledImageArrayDynamicIndexing = true,
763 .shaderStorageBufferArrayDynamicIndexing = true,
764 .shaderStorageImageArrayDynamicIndexing = true,
765 .shaderClipDistance = true,
766 .shaderCullDistance = true,
767 .shaderFloat64 = pdevice->info.gen >= 8,
768 .shaderInt64 = pdevice->info.gen >= 8,
769 .shaderInt16 = false,
770 .shaderResourceMinLod = false,
771 .variableMultisampleRate = false,
772 .inheritedQueries = true,
773 };
774
775 /* We can't do image stores in vec4 shaders */
776 pFeatures->vertexPipelineStoresAndAtomics =
777 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
778 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
779 }
780
781 void anv_GetPhysicalDeviceFeatures2(
782 VkPhysicalDevice physicalDevice,
783 VkPhysicalDeviceFeatures2* pFeatures)
784 {
785 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
786
787 vk_foreach_struct(ext, pFeatures->pNext) {
788 switch (ext->sType) {
789 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
790 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
791 features->protectedMemory = VK_FALSE;
792 break;
793 }
794
795 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
796 VkPhysicalDeviceMultiviewFeatures *features =
797 (VkPhysicalDeviceMultiviewFeatures *)ext;
798 features->multiview = true;
799 features->multiviewGeometryShader = true;
800 features->multiviewTessellationShader = true;
801 break;
802 }
803
804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
805 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
806 features->variablePointersStorageBuffer = true;
807 features->variablePointers = true;
808 break;
809 }
810
811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
812 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
813 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
814 features->samplerYcbcrConversion = true;
815 break;
816 }
817
818 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
819 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
820 features->shaderDrawParameters = true;
821 break;
822 }
823
824 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
825 VkPhysicalDevice16BitStorageFeaturesKHR *features =
826 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
827 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
828
829 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
830 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
831 features->storagePushConstant16 = pdevice->info.gen >= 8;
832 features->storageInputOutput16 = false;
833 break;
834 }
835
836 default:
837 anv_debug_ignored_stype(ext->sType);
838 break;
839 }
840 }
841 }
842
843 void anv_GetPhysicalDeviceProperties(
844 VkPhysicalDevice physicalDevice,
845 VkPhysicalDeviceProperties* pProperties)
846 {
847 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
848 const struct gen_device_info *devinfo = &pdevice->info;
849
850 /* See assertions made when programming the buffer surface state. */
851 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
852 (1ul << 30) : (1ul << 27);
853
854 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
855 128 : 16;
856
857 VkSampleCountFlags sample_counts =
858 isl_device_get_sample_counts(&pdevice->isl_dev);
859
860 VkPhysicalDeviceLimits limits = {
861 .maxImageDimension1D = (1 << 14),
862 .maxImageDimension2D = (1 << 14),
863 .maxImageDimension3D = (1 << 11),
864 .maxImageDimensionCube = (1 << 14),
865 .maxImageArrayLayers = (1 << 11),
866 .maxTexelBufferElements = 128 * 1024 * 1024,
867 .maxUniformBufferRange = (1ul << 27),
868 .maxStorageBufferRange = max_raw_buffer_sz,
869 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
870 .maxMemoryAllocationCount = UINT32_MAX,
871 .maxSamplerAllocationCount = 64 * 1024,
872 .bufferImageGranularity = 64, /* A cache line */
873 .sparseAddressSpaceSize = 0,
874 .maxBoundDescriptorSets = MAX_SETS,
875 .maxPerStageDescriptorSamplers = max_samplers,
876 .maxPerStageDescriptorUniformBuffers = 64,
877 .maxPerStageDescriptorStorageBuffers = 64,
878 .maxPerStageDescriptorSampledImages = max_samplers,
879 .maxPerStageDescriptorStorageImages = 64,
880 .maxPerStageDescriptorInputAttachments = 64,
881 .maxPerStageResources = 250,
882 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
883 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
884 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
885 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
886 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
887 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
888 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
889 .maxDescriptorSetInputAttachments = 256,
890 .maxVertexInputAttributes = MAX_VBS,
891 .maxVertexInputBindings = MAX_VBS,
892 .maxVertexInputAttributeOffset = 2047,
893 .maxVertexInputBindingStride = 2048,
894 .maxVertexOutputComponents = 128,
895 .maxTessellationGenerationLevel = 64,
896 .maxTessellationPatchSize = 32,
897 .maxTessellationControlPerVertexInputComponents = 128,
898 .maxTessellationControlPerVertexOutputComponents = 128,
899 .maxTessellationControlPerPatchOutputComponents = 128,
900 .maxTessellationControlTotalOutputComponents = 2048,
901 .maxTessellationEvaluationInputComponents = 128,
902 .maxTessellationEvaluationOutputComponents = 128,
903 .maxGeometryShaderInvocations = 32,
904 .maxGeometryInputComponents = 64,
905 .maxGeometryOutputComponents = 128,
906 .maxGeometryOutputVertices = 256,
907 .maxGeometryTotalOutputComponents = 1024,
908 .maxFragmentInputComponents = 128,
909 .maxFragmentOutputAttachments = 8,
910 .maxFragmentDualSrcAttachments = 1,
911 .maxFragmentCombinedOutputResources = 8,
912 .maxComputeSharedMemorySize = 32768,
913 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
914 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
915 .maxComputeWorkGroupSize = {
916 16 * devinfo->max_cs_threads,
917 16 * devinfo->max_cs_threads,
918 16 * devinfo->max_cs_threads,
919 },
920 .subPixelPrecisionBits = 4 /* FIXME */,
921 .subTexelPrecisionBits = 4 /* FIXME */,
922 .mipmapPrecisionBits = 4 /* FIXME */,
923 .maxDrawIndexedIndexValue = UINT32_MAX,
924 .maxDrawIndirectCount = UINT32_MAX,
925 .maxSamplerLodBias = 16,
926 .maxSamplerAnisotropy = 16,
927 .maxViewports = MAX_VIEWPORTS,
928 .maxViewportDimensions = { (1 << 14), (1 << 14) },
929 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
930 .viewportSubPixelBits = 13, /* We take a float? */
931 .minMemoryMapAlignment = 4096, /* A page */
932 .minTexelBufferOffsetAlignment = 1,
933 /* We need 16 for UBO block reads to work and 32 for push UBOs */
934 .minUniformBufferOffsetAlignment = 32,
935 .minStorageBufferOffsetAlignment = 4,
936 .minTexelOffset = -8,
937 .maxTexelOffset = 7,
938 .minTexelGatherOffset = -32,
939 .maxTexelGatherOffset = 31,
940 .minInterpolationOffset = -0.5,
941 .maxInterpolationOffset = 0.4375,
942 .subPixelInterpolationOffsetBits = 4,
943 .maxFramebufferWidth = (1 << 14),
944 .maxFramebufferHeight = (1 << 14),
945 .maxFramebufferLayers = (1 << 11),
946 .framebufferColorSampleCounts = sample_counts,
947 .framebufferDepthSampleCounts = sample_counts,
948 .framebufferStencilSampleCounts = sample_counts,
949 .framebufferNoAttachmentsSampleCounts = sample_counts,
950 .maxColorAttachments = MAX_RTS,
951 .sampledImageColorSampleCounts = sample_counts,
952 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
953 .sampledImageDepthSampleCounts = sample_counts,
954 .sampledImageStencilSampleCounts = sample_counts,
955 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
956 .maxSampleMaskWords = 1,
957 .timestampComputeAndGraphics = false,
958 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
959 .maxClipDistances = 8,
960 .maxCullDistances = 8,
961 .maxCombinedClipAndCullDistances = 8,
962 .discreteQueuePriorities = 1,
963 .pointSizeRange = { 0.125, 255.875 },
964 .lineWidthRange = { 0.0, 7.9921875 },
965 .pointSizeGranularity = (1.0 / 8.0),
966 .lineWidthGranularity = (1.0 / 128.0),
967 .strictLines = false, /* FINISHME */
968 .standardSampleLocations = true,
969 .optimalBufferCopyOffsetAlignment = 128,
970 .optimalBufferCopyRowPitchAlignment = 128,
971 .nonCoherentAtomSize = 64,
972 };
973
974 *pProperties = (VkPhysicalDeviceProperties) {
975 .apiVersion = anv_physical_device_api_version(pdevice),
976 .driverVersion = vk_get_driver_version(),
977 .vendorID = 0x8086,
978 .deviceID = pdevice->chipset_id,
979 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
980 .limits = limits,
981 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
982 };
983
984 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
985 "%s", pdevice->name);
986 memcpy(pProperties->pipelineCacheUUID,
987 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
988 }
989
990 void anv_GetPhysicalDeviceProperties2(
991 VkPhysicalDevice physicalDevice,
992 VkPhysicalDeviceProperties2* pProperties)
993 {
994 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
995
996 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
997
998 vk_foreach_struct(ext, pProperties->pNext) {
999 switch (ext->sType) {
1000 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1001 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1002 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1003
1004 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1005 break;
1006 }
1007
1008 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1009 VkPhysicalDeviceIDProperties *id_props =
1010 (VkPhysicalDeviceIDProperties *)ext;
1011 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1012 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1013 /* The LUID is for Windows. */
1014 id_props->deviceLUIDValid = false;
1015 break;
1016 }
1017
1018 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1019 VkPhysicalDeviceMaintenance3Properties *props =
1020 (VkPhysicalDeviceMaintenance3Properties *)ext;
1021 /* This value doesn't matter for us today as our per-stage
1022 * descriptors are the real limit.
1023 */
1024 props->maxPerSetDescriptors = 1024;
1025 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1026 break;
1027 }
1028
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1030 VkPhysicalDeviceMultiviewProperties *properties =
1031 (VkPhysicalDeviceMultiviewProperties *)ext;
1032 properties->maxMultiviewViewCount = 16;
1033 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1034 break;
1035 }
1036
1037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1038 VkPhysicalDevicePointClippingProperties *properties =
1039 (VkPhysicalDevicePointClippingProperties *) ext;
1040 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1041 anv_finishme("Implement pop-free point clipping");
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1046 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1047
1048 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1049
1050 VkShaderStageFlags scalar_stages = 0;
1051 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1052 if (pdevice->compiler->scalar_stage[stage])
1053 scalar_stages |= mesa_to_vk_shader_stage(stage);
1054 }
1055 properties->supportedStages = scalar_stages;
1056
1057 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1058 VK_SUBGROUP_FEATURE_VOTE_BIT |
1059 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1060 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1061 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1062 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1063 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1064 VK_SUBGROUP_FEATURE_QUAD_BIT;
1065 properties->quadOperationsInAllStages = VK_TRUE;
1066 break;
1067 }
1068
1069 default:
1070 anv_debug_ignored_stype(ext->sType);
1071 break;
1072 }
1073 }
1074 }
1075
1076 /* We support exactly one queue family. */
1077 static const VkQueueFamilyProperties
1078 anv_queue_family_properties = {
1079 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1080 VK_QUEUE_COMPUTE_BIT |
1081 VK_QUEUE_TRANSFER_BIT,
1082 .queueCount = 1,
1083 .timestampValidBits = 36, /* XXX: Real value here */
1084 .minImageTransferGranularity = { 1, 1, 1 },
1085 };
1086
1087 void anv_GetPhysicalDeviceQueueFamilyProperties(
1088 VkPhysicalDevice physicalDevice,
1089 uint32_t* pCount,
1090 VkQueueFamilyProperties* pQueueFamilyProperties)
1091 {
1092 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1093
1094 vk_outarray_append(&out, p) {
1095 *p = anv_queue_family_properties;
1096 }
1097 }
1098
1099 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1100 VkPhysicalDevice physicalDevice,
1101 uint32_t* pQueueFamilyPropertyCount,
1102 VkQueueFamilyProperties2* pQueueFamilyProperties)
1103 {
1104
1105 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1106
1107 vk_outarray_append(&out, p) {
1108 p->queueFamilyProperties = anv_queue_family_properties;
1109
1110 vk_foreach_struct(s, p->pNext) {
1111 anv_debug_ignored_stype(s->sType);
1112 }
1113 }
1114 }
1115
1116 void anv_GetPhysicalDeviceMemoryProperties(
1117 VkPhysicalDevice physicalDevice,
1118 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1119 {
1120 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1121
1122 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1123 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1124 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1125 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1126 .heapIndex = physical_device->memory.types[i].heapIndex,
1127 };
1128 }
1129
1130 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1131 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1132 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1133 .size = physical_device->memory.heaps[i].size,
1134 .flags = physical_device->memory.heaps[i].flags,
1135 };
1136 }
1137 }
1138
1139 void anv_GetPhysicalDeviceMemoryProperties2(
1140 VkPhysicalDevice physicalDevice,
1141 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1142 {
1143 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1144 &pMemoryProperties->memoryProperties);
1145
1146 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1147 switch (ext->sType) {
1148 default:
1149 anv_debug_ignored_stype(ext->sType);
1150 break;
1151 }
1152 }
1153 }
1154
1155 void
1156 anv_GetDeviceGroupPeerMemoryFeatures(
1157 VkDevice device,
1158 uint32_t heapIndex,
1159 uint32_t localDeviceIndex,
1160 uint32_t remoteDeviceIndex,
1161 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1162 {
1163 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1164 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1165 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1166 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1167 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1168 }
1169
1170 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1171 VkInstance _instance,
1172 const char* pName)
1173 {
1174 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1175
1176 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1177 * when we have to return valid function pointers, NULL, or it's left
1178 * undefined. See the table for exact details.
1179 */
1180 if (pName == NULL)
1181 return NULL;
1182
1183 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1184 if (strcmp(pName, "vk" #entrypoint) == 0) \
1185 return (PFN_vkVoidFunction)anv_##entrypoint
1186
1187 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1188 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1189 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1190
1191 #undef LOOKUP_ANV_ENTRYPOINT
1192
1193 if (instance == NULL)
1194 return NULL;
1195
1196 int idx = anv_get_entrypoint_index(pName);
1197 if (idx < 0)
1198 return NULL;
1199
1200 return instance->dispatch.entrypoints[idx];
1201 }
1202
1203 /* With version 1+ of the loader interface the ICD should expose
1204 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1205 */
1206 PUBLIC
1207 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1208 VkInstance instance,
1209 const char* pName);
1210
1211 PUBLIC
1212 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1213 VkInstance instance,
1214 const char* pName)
1215 {
1216 return anv_GetInstanceProcAddr(instance, pName);
1217 }
1218
1219 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1220 VkDevice _device,
1221 const char* pName)
1222 {
1223 ANV_FROM_HANDLE(anv_device, device, _device);
1224
1225 if (!device || !pName)
1226 return NULL;
1227
1228 int idx = anv_get_entrypoint_index(pName);
1229 if (idx < 0)
1230 return NULL;
1231
1232 return device->dispatch.entrypoints[idx];
1233 }
1234
1235 VkResult
1236 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1237 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1238 const VkAllocationCallbacks* pAllocator,
1239 VkDebugReportCallbackEXT* pCallback)
1240 {
1241 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1242 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1243 pCreateInfo, pAllocator, &instance->alloc,
1244 pCallback);
1245 }
1246
1247 void
1248 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1249 VkDebugReportCallbackEXT _callback,
1250 const VkAllocationCallbacks* pAllocator)
1251 {
1252 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1253 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1254 _callback, pAllocator, &instance->alloc);
1255 }
1256
1257 void
1258 anv_DebugReportMessageEXT(VkInstance _instance,
1259 VkDebugReportFlagsEXT flags,
1260 VkDebugReportObjectTypeEXT objectType,
1261 uint64_t object,
1262 size_t location,
1263 int32_t messageCode,
1264 const char* pLayerPrefix,
1265 const char* pMessage)
1266 {
1267 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1268 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1269 object, location, messageCode, pLayerPrefix, pMessage);
1270 }
1271
1272 static void
1273 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1274 {
1275 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1276 queue->device = device;
1277 queue->pool = &device->surface_state_pool;
1278 queue->flags = 0;
1279 }
1280
1281 static void
1282 anv_queue_finish(struct anv_queue *queue)
1283 {
1284 }
1285
1286 static struct anv_state
1287 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1288 {
1289 struct anv_state state;
1290
1291 state = anv_state_pool_alloc(pool, size, align);
1292 memcpy(state.map, p, size);
1293
1294 anv_state_flush(pool->block_pool.device, state);
1295
1296 return state;
1297 }
1298
1299 struct gen8_border_color {
1300 union {
1301 float float32[4];
1302 uint32_t uint32[4];
1303 };
1304 /* Pad out to 64 bytes */
1305 uint32_t _pad[12];
1306 };
1307
1308 static void
1309 anv_device_init_border_colors(struct anv_device *device)
1310 {
1311 static const struct gen8_border_color border_colors[] = {
1312 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1313 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1314 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1315 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1316 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1317 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1318 };
1319
1320 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1321 sizeof(border_colors), 64,
1322 border_colors);
1323 }
1324
1325 static void
1326 anv_device_init_trivial_batch(struct anv_device *device)
1327 {
1328 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1329
1330 if (device->instance->physicalDevice.has_exec_async)
1331 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1332
1333 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1334 0, 4096, 0);
1335
1336 struct anv_batch batch = {
1337 .start = map,
1338 .next = map,
1339 .end = map + 4096,
1340 };
1341
1342 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1343 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1344
1345 if (!device->info.has_llc)
1346 gen_clflush_range(map, batch.next - map);
1347
1348 anv_gem_munmap(map, device->trivial_batch_bo.size);
1349 }
1350
1351 VkResult anv_EnumerateDeviceExtensionProperties(
1352 VkPhysicalDevice physicalDevice,
1353 const char* pLayerName,
1354 uint32_t* pPropertyCount,
1355 VkExtensionProperties* pProperties)
1356 {
1357 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1358 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1359 (void)device;
1360
1361 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1362 if (device->supported_extensions.extensions[i]) {
1363 vk_outarray_append(&out, prop) {
1364 *prop = anv_device_extensions[i];
1365 }
1366 }
1367 }
1368
1369 return vk_outarray_status(&out);
1370 }
1371
1372 static void
1373 anv_device_init_dispatch(struct anv_device *device)
1374 {
1375 const struct anv_dispatch_table *genX_table;
1376 switch (device->info.gen) {
1377 case 10:
1378 genX_table = &gen10_dispatch_table;
1379 break;
1380 case 9:
1381 genX_table = &gen9_dispatch_table;
1382 break;
1383 case 8:
1384 genX_table = &gen8_dispatch_table;
1385 break;
1386 case 7:
1387 if (device->info.is_haswell)
1388 genX_table = &gen75_dispatch_table;
1389 else
1390 genX_table = &gen7_dispatch_table;
1391 break;
1392 default:
1393 unreachable("unsupported gen\n");
1394 }
1395
1396 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1397 /* Vulkan requires that entrypoints for extensions which have not been
1398 * enabled must not be advertised.
1399 */
1400 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1401 &device->instance->enabled_extensions,
1402 &device->enabled_extensions)) {
1403 device->dispatch.entrypoints[i] = NULL;
1404 } else if (genX_table->entrypoints[i]) {
1405 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1406 } else {
1407 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1408 }
1409 }
1410 }
1411
1412 static int
1413 vk_priority_to_gen(int priority)
1414 {
1415 switch (priority) {
1416 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1417 return GEN_CONTEXT_LOW_PRIORITY;
1418 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1419 return GEN_CONTEXT_MEDIUM_PRIORITY;
1420 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1421 return GEN_CONTEXT_HIGH_PRIORITY;
1422 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1423 return GEN_CONTEXT_REALTIME_PRIORITY;
1424 default:
1425 unreachable("Invalid priority");
1426 }
1427 }
1428
1429 VkResult anv_CreateDevice(
1430 VkPhysicalDevice physicalDevice,
1431 const VkDeviceCreateInfo* pCreateInfo,
1432 const VkAllocationCallbacks* pAllocator,
1433 VkDevice* pDevice)
1434 {
1435 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1436 VkResult result;
1437 struct anv_device *device;
1438
1439 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1440
1441 struct anv_device_extension_table enabled_extensions = { };
1442 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1443 int idx;
1444 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1445 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1446 anv_device_extensions[idx].extensionName) == 0)
1447 break;
1448 }
1449
1450 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1451 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1452
1453 if (!physical_device->supported_extensions.extensions[idx])
1454 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1455
1456 enabled_extensions.extensions[idx] = true;
1457 }
1458
1459 /* Check enabled features */
1460 if (pCreateInfo->pEnabledFeatures) {
1461 VkPhysicalDeviceFeatures supported_features;
1462 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1463 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1464 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1465 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1466 for (uint32_t i = 0; i < num_features; i++) {
1467 if (enabled_feature[i] && !supported_feature[i])
1468 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1469 }
1470 }
1471
1472 /* Check requested queues and fail if we are requested to create any
1473 * queues with flags we don't support.
1474 */
1475 assert(pCreateInfo->queueCreateInfoCount > 0);
1476 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1477 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1478 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1479 }
1480
1481 /* Check if client specified queue priority. */
1482 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1483 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1484 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1485
1486 VkQueueGlobalPriorityEXT priority =
1487 queue_priority ? queue_priority->globalPriority :
1488 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1489
1490 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1491 sizeof(*device), 8,
1492 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1493 if (!device)
1494 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1495
1496 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1497 device->instance = physical_device->instance;
1498 device->chipset_id = physical_device->chipset_id;
1499 device->no_hw = physical_device->no_hw;
1500 device->lost = false;
1501
1502 if (pAllocator)
1503 device->alloc = *pAllocator;
1504 else
1505 device->alloc = physical_device->instance->alloc;
1506
1507 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1508 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1509 if (device->fd == -1) {
1510 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1511 goto fail_device;
1512 }
1513
1514 device->context_id = anv_gem_create_context(device);
1515 if (device->context_id == -1) {
1516 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1517 goto fail_fd;
1518 }
1519
1520 /* As per spec, the driver implementation may deny requests to acquire
1521 * a priority above the default priority (MEDIUM) if the caller does not
1522 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1523 * is returned.
1524 */
1525 if (physical_device->has_context_priority) {
1526 int err = anv_gem_set_context_param(device->fd, device->context_id,
1527 I915_CONTEXT_PARAM_PRIORITY,
1528 vk_priority_to_gen(priority));
1529 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1530 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1531 goto fail_fd;
1532 }
1533 }
1534
1535 device->info = physical_device->info;
1536 device->isl_dev = physical_device->isl_dev;
1537
1538 /* On Broadwell and later, we can use batch chaining to more efficiently
1539 * implement growing command buffers. Prior to Haswell, the kernel
1540 * command parser gets in the way and we have to fall back to growing
1541 * the batch.
1542 */
1543 device->can_chain_batches = device->info.gen >= 8;
1544
1545 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1546 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1547 device->enabled_extensions = enabled_extensions;
1548
1549 anv_device_init_dispatch(device);
1550
1551 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1552 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1553 goto fail_context_id;
1554 }
1555
1556 pthread_condattr_t condattr;
1557 if (pthread_condattr_init(&condattr) != 0) {
1558 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1559 goto fail_mutex;
1560 }
1561 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1562 pthread_condattr_destroy(&condattr);
1563 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1564 goto fail_mutex;
1565 }
1566 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1567 pthread_condattr_destroy(&condattr);
1568 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1569 goto fail_mutex;
1570 }
1571 pthread_condattr_destroy(&condattr);
1572
1573 uint64_t bo_flags =
1574 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1575 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1576 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1577
1578 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1579
1580 result = anv_bo_cache_init(&device->bo_cache);
1581 if (result != VK_SUCCESS)
1582 goto fail_batch_bo_pool;
1583
1584 /* For the state pools we explicitly disable 48bit. */
1585 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1586 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1587
1588 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1589 bo_flags);
1590 if (result != VK_SUCCESS)
1591 goto fail_bo_cache;
1592
1593 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1594 bo_flags);
1595 if (result != VK_SUCCESS)
1596 goto fail_dynamic_state_pool;
1597
1598 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1599 bo_flags);
1600 if (result != VK_SUCCESS)
1601 goto fail_instruction_state_pool;
1602
1603 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1604 if (result != VK_SUCCESS)
1605 goto fail_surface_state_pool;
1606
1607 anv_device_init_trivial_batch(device);
1608
1609 anv_scratch_pool_init(device, &device->scratch_pool);
1610
1611 anv_queue_init(device, &device->queue);
1612
1613 switch (device->info.gen) {
1614 case 7:
1615 if (!device->info.is_haswell)
1616 result = gen7_init_device_state(device);
1617 else
1618 result = gen75_init_device_state(device);
1619 break;
1620 case 8:
1621 result = gen8_init_device_state(device);
1622 break;
1623 case 9:
1624 result = gen9_init_device_state(device);
1625 break;
1626 case 10:
1627 result = gen10_init_device_state(device);
1628 break;
1629 case 11:
1630 result = gen11_init_device_state(device);
1631 break;
1632 default:
1633 /* Shouldn't get here as we don't create physical devices for any other
1634 * gens. */
1635 unreachable("unhandled gen");
1636 }
1637 if (result != VK_SUCCESS)
1638 goto fail_workaround_bo;
1639
1640 anv_device_init_blorp(device);
1641
1642 anv_device_init_border_colors(device);
1643
1644 *pDevice = anv_device_to_handle(device);
1645
1646 return VK_SUCCESS;
1647
1648 fail_workaround_bo:
1649 anv_queue_finish(&device->queue);
1650 anv_scratch_pool_finish(device, &device->scratch_pool);
1651 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1652 anv_gem_close(device, device->workaround_bo.gem_handle);
1653 fail_surface_state_pool:
1654 anv_state_pool_finish(&device->surface_state_pool);
1655 fail_instruction_state_pool:
1656 anv_state_pool_finish(&device->instruction_state_pool);
1657 fail_dynamic_state_pool:
1658 anv_state_pool_finish(&device->dynamic_state_pool);
1659 fail_bo_cache:
1660 anv_bo_cache_finish(&device->bo_cache);
1661 fail_batch_bo_pool:
1662 anv_bo_pool_finish(&device->batch_bo_pool);
1663 pthread_cond_destroy(&device->queue_submit);
1664 fail_mutex:
1665 pthread_mutex_destroy(&device->mutex);
1666 fail_context_id:
1667 anv_gem_destroy_context(device, device->context_id);
1668 fail_fd:
1669 close(device->fd);
1670 fail_device:
1671 vk_free(&device->alloc, device);
1672
1673 return result;
1674 }
1675
1676 void anv_DestroyDevice(
1677 VkDevice _device,
1678 const VkAllocationCallbacks* pAllocator)
1679 {
1680 ANV_FROM_HANDLE(anv_device, device, _device);
1681
1682 if (!device)
1683 return;
1684
1685 anv_device_finish_blorp(device);
1686
1687 anv_queue_finish(&device->queue);
1688
1689 #ifdef HAVE_VALGRIND
1690 /* We only need to free these to prevent valgrind errors. The backing
1691 * BO will go away in a couple of lines so we don't actually leak.
1692 */
1693 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1694 #endif
1695
1696 anv_scratch_pool_finish(device, &device->scratch_pool);
1697
1698 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1699 anv_gem_close(device, device->workaround_bo.gem_handle);
1700
1701 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1702
1703 anv_state_pool_finish(&device->surface_state_pool);
1704 anv_state_pool_finish(&device->instruction_state_pool);
1705 anv_state_pool_finish(&device->dynamic_state_pool);
1706
1707 anv_bo_cache_finish(&device->bo_cache);
1708
1709 anv_bo_pool_finish(&device->batch_bo_pool);
1710
1711 pthread_cond_destroy(&device->queue_submit);
1712 pthread_mutex_destroy(&device->mutex);
1713
1714 anv_gem_destroy_context(device, device->context_id);
1715
1716 close(device->fd);
1717
1718 vk_free(&device->alloc, device);
1719 }
1720
1721 VkResult anv_EnumerateInstanceLayerProperties(
1722 uint32_t* pPropertyCount,
1723 VkLayerProperties* pProperties)
1724 {
1725 if (pProperties == NULL) {
1726 *pPropertyCount = 0;
1727 return VK_SUCCESS;
1728 }
1729
1730 /* None supported at this time */
1731 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1732 }
1733
1734 VkResult anv_EnumerateDeviceLayerProperties(
1735 VkPhysicalDevice physicalDevice,
1736 uint32_t* pPropertyCount,
1737 VkLayerProperties* pProperties)
1738 {
1739 if (pProperties == NULL) {
1740 *pPropertyCount = 0;
1741 return VK_SUCCESS;
1742 }
1743
1744 /* None supported at this time */
1745 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1746 }
1747
1748 void anv_GetDeviceQueue(
1749 VkDevice _device,
1750 uint32_t queueNodeIndex,
1751 uint32_t queueIndex,
1752 VkQueue* pQueue)
1753 {
1754 ANV_FROM_HANDLE(anv_device, device, _device);
1755
1756 assert(queueIndex == 0);
1757
1758 *pQueue = anv_queue_to_handle(&device->queue);
1759 }
1760
1761 void anv_GetDeviceQueue2(
1762 VkDevice _device,
1763 const VkDeviceQueueInfo2* pQueueInfo,
1764 VkQueue* pQueue)
1765 {
1766 ANV_FROM_HANDLE(anv_device, device, _device);
1767
1768 assert(pQueueInfo->queueIndex == 0);
1769
1770 if (pQueueInfo->flags == device->queue.flags)
1771 *pQueue = anv_queue_to_handle(&device->queue);
1772 else
1773 *pQueue = NULL;
1774 }
1775
1776 VkResult
1777 anv_device_query_status(struct anv_device *device)
1778 {
1779 /* This isn't likely as most of the callers of this function already check
1780 * for it. However, it doesn't hurt to check and it potentially lets us
1781 * avoid an ioctl.
1782 */
1783 if (unlikely(device->lost))
1784 return VK_ERROR_DEVICE_LOST;
1785
1786 uint32_t active, pending;
1787 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1788 if (ret == -1) {
1789 /* We don't know the real error. */
1790 device->lost = true;
1791 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1792 "get_reset_stats failed: %m");
1793 }
1794
1795 if (active) {
1796 device->lost = true;
1797 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1798 "GPU hung on one of our command buffers");
1799 } else if (pending) {
1800 device->lost = true;
1801 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1802 "GPU hung with commands in-flight");
1803 }
1804
1805 return VK_SUCCESS;
1806 }
1807
1808 VkResult
1809 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1810 {
1811 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1812 * Other usages of the BO (such as on different hardware) will not be
1813 * flagged as "busy" by this ioctl. Use with care.
1814 */
1815 int ret = anv_gem_busy(device, bo->gem_handle);
1816 if (ret == 1) {
1817 return VK_NOT_READY;
1818 } else if (ret == -1) {
1819 /* We don't know the real error. */
1820 device->lost = true;
1821 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1822 "gem wait failed: %m");
1823 }
1824
1825 /* Query for device status after the busy call. If the BO we're checking
1826 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1827 * client because it clearly doesn't have valid data. Yes, this most
1828 * likely means an ioctl, but we just did an ioctl to query the busy status
1829 * so it's no great loss.
1830 */
1831 return anv_device_query_status(device);
1832 }
1833
1834 VkResult
1835 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1836 int64_t timeout)
1837 {
1838 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1839 if (ret == -1 && errno == ETIME) {
1840 return VK_TIMEOUT;
1841 } else if (ret == -1) {
1842 /* We don't know the real error. */
1843 device->lost = true;
1844 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1845 "gem wait failed: %m");
1846 }
1847
1848 /* Query for device status after the wait. If the BO we're waiting on got
1849 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1850 * because it clearly doesn't have valid data. Yes, this most likely means
1851 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1852 */
1853 return anv_device_query_status(device);
1854 }
1855
1856 VkResult anv_DeviceWaitIdle(
1857 VkDevice _device)
1858 {
1859 ANV_FROM_HANDLE(anv_device, device, _device);
1860 if (unlikely(device->lost))
1861 return VK_ERROR_DEVICE_LOST;
1862
1863 struct anv_batch batch;
1864
1865 uint32_t cmds[8];
1866 batch.start = batch.next = cmds;
1867 batch.end = (void *) cmds + sizeof(cmds);
1868
1869 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1870 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1871
1872 return anv_device_submit_simple_batch(device, &batch);
1873 }
1874
1875 VkResult
1876 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1877 {
1878 uint32_t gem_handle = anv_gem_create(device, size);
1879 if (!gem_handle)
1880 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1881
1882 anv_bo_init(bo, gem_handle, size);
1883
1884 return VK_SUCCESS;
1885 }
1886
1887 VkResult anv_AllocateMemory(
1888 VkDevice _device,
1889 const VkMemoryAllocateInfo* pAllocateInfo,
1890 const VkAllocationCallbacks* pAllocator,
1891 VkDeviceMemory* pMem)
1892 {
1893 ANV_FROM_HANDLE(anv_device, device, _device);
1894 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1895 struct anv_device_memory *mem;
1896 VkResult result = VK_SUCCESS;
1897
1898 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1899
1900 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1901 assert(pAllocateInfo->allocationSize > 0);
1902
1903 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
1904 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1905
1906 /* FINISHME: Fail if allocation request exceeds heap size. */
1907
1908 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1909 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1910 if (mem == NULL)
1911 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1912
1913 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1914 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1915 mem->map = NULL;
1916 mem->map_size = 0;
1917
1918 const VkImportMemoryFdInfoKHR *fd_info =
1919 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1920
1921 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1922 * ignored.
1923 */
1924 if (fd_info && fd_info->handleType) {
1925 /* At the moment, we support only the below handle types. */
1926 assert(fd_info->handleType ==
1927 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1928 fd_info->handleType ==
1929 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1930
1931 result = anv_bo_cache_import(device, &device->bo_cache,
1932 fd_info->fd, &mem->bo);
1933 if (result != VK_SUCCESS)
1934 goto fail;
1935
1936 VkDeviceSize aligned_alloc_size =
1937 align_u64(pAllocateInfo->allocationSize, 4096);
1938
1939 /* For security purposes, we reject importing the bo if it's smaller
1940 * than the requested allocation size. This prevents a malicious client
1941 * from passing a buffer to a trusted client, lying about the size, and
1942 * telling the trusted client to try and texture from an image that goes
1943 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1944 * in the trusted client. The trusted client can protect itself against
1945 * this sort of attack but only if it can trust the buffer size.
1946 */
1947 if (mem->bo->size < aligned_alloc_size) {
1948 result = vk_errorf(device->instance, device,
1949 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1950 "aligned allocationSize too large for "
1951 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1952 "%"PRIu64"B > %"PRIu64"B",
1953 aligned_alloc_size, mem->bo->size);
1954 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1955 goto fail;
1956 }
1957
1958 /* From the Vulkan spec:
1959 *
1960 * "Importing memory from a file descriptor transfers ownership of
1961 * the file descriptor from the application to the Vulkan
1962 * implementation. The application must not perform any operations on
1963 * the file descriptor after a successful import."
1964 *
1965 * If the import fails, we leave the file descriptor open.
1966 */
1967 close(fd_info->fd);
1968 } else {
1969 result = anv_bo_cache_alloc(device, &device->bo_cache,
1970 pAllocateInfo->allocationSize,
1971 &mem->bo);
1972 if (result != VK_SUCCESS)
1973 goto fail;
1974
1975 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1976 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1977 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1978 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1979
1980 /* Some legacy (non-modifiers) consumers need the tiling to be set on
1981 * the BO. In this case, we have a dedicated allocation.
1982 */
1983 if (image->needs_set_tiling) {
1984 const uint32_t i915_tiling =
1985 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1986 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1987 image->planes[0].surface.isl.row_pitch,
1988 i915_tiling);
1989 if (ret) {
1990 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1991 return vk_errorf(device->instance, NULL,
1992 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1993 "failed to set BO tiling: %m");
1994 }
1995 }
1996 }
1997 }
1998
1999 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2000 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2001 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2002
2003 const struct wsi_memory_allocate_info *wsi_info =
2004 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2005 if (wsi_info && wsi_info->implicit_sync) {
2006 /* We need to set the WRITE flag on window system buffers so that GEM
2007 * will know we're writing to them and synchronize uses on other rings
2008 * (eg if the display server uses the blitter ring).
2009 */
2010 mem->bo->flags |= EXEC_OBJECT_WRITE;
2011 } else if (pdevice->has_exec_async) {
2012 mem->bo->flags |= EXEC_OBJECT_ASYNC;
2013 }
2014
2015 *pMem = anv_device_memory_to_handle(mem);
2016
2017 return VK_SUCCESS;
2018
2019 fail:
2020 vk_free2(&device->alloc, pAllocator, mem);
2021
2022 return result;
2023 }
2024
2025 VkResult anv_GetMemoryFdKHR(
2026 VkDevice device_h,
2027 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2028 int* pFd)
2029 {
2030 ANV_FROM_HANDLE(anv_device, dev, device_h);
2031 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2032
2033 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2034
2035 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2036 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2037
2038 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2039 }
2040
2041 VkResult anv_GetMemoryFdPropertiesKHR(
2042 VkDevice _device,
2043 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2044 int fd,
2045 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2046 {
2047 ANV_FROM_HANDLE(anv_device, device, _device);
2048 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2049
2050 switch (handleType) {
2051 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2052 /* dma-buf can be imported as any memory type */
2053 pMemoryFdProperties->memoryTypeBits =
2054 (1 << pdevice->memory.type_count) - 1;
2055 return VK_SUCCESS;
2056
2057 default:
2058 /* The valid usage section for this function says:
2059 *
2060 * "handleType must not be one of the handle types defined as
2061 * opaque."
2062 *
2063 * So opaque handle types fall into the default "unsupported" case.
2064 */
2065 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2066 }
2067 }
2068
2069 void anv_FreeMemory(
2070 VkDevice _device,
2071 VkDeviceMemory _mem,
2072 const VkAllocationCallbacks* pAllocator)
2073 {
2074 ANV_FROM_HANDLE(anv_device, device, _device);
2075 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2076
2077 if (mem == NULL)
2078 return;
2079
2080 if (mem->map)
2081 anv_UnmapMemory(_device, _mem);
2082
2083 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2084
2085 vk_free2(&device->alloc, pAllocator, mem);
2086 }
2087
2088 VkResult anv_MapMemory(
2089 VkDevice _device,
2090 VkDeviceMemory _memory,
2091 VkDeviceSize offset,
2092 VkDeviceSize size,
2093 VkMemoryMapFlags flags,
2094 void** ppData)
2095 {
2096 ANV_FROM_HANDLE(anv_device, device, _device);
2097 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2098
2099 if (mem == NULL) {
2100 *ppData = NULL;
2101 return VK_SUCCESS;
2102 }
2103
2104 if (size == VK_WHOLE_SIZE)
2105 size = mem->bo->size - offset;
2106
2107 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2108 *
2109 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2110 * assert(size != 0);
2111 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2112 * equal to the size of the memory minus offset
2113 */
2114 assert(size > 0);
2115 assert(offset + size <= mem->bo->size);
2116
2117 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2118 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2119 * at a time is valid. We could just mmap up front and return an offset
2120 * pointer here, but that may exhaust virtual memory on 32 bit
2121 * userspace. */
2122
2123 uint32_t gem_flags = 0;
2124
2125 if (!device->info.has_llc &&
2126 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2127 gem_flags |= I915_MMAP_WC;
2128
2129 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2130 uint64_t map_offset = offset & ~4095ull;
2131 assert(offset >= map_offset);
2132 uint64_t map_size = (offset + size) - map_offset;
2133
2134 /* Let's map whole pages */
2135 map_size = align_u64(map_size, 4096);
2136
2137 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2138 map_offset, map_size, gem_flags);
2139 if (map == MAP_FAILED)
2140 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2141
2142 mem->map = map;
2143 mem->map_size = map_size;
2144
2145 *ppData = mem->map + (offset - map_offset);
2146
2147 return VK_SUCCESS;
2148 }
2149
2150 void anv_UnmapMemory(
2151 VkDevice _device,
2152 VkDeviceMemory _memory)
2153 {
2154 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2155
2156 if (mem == NULL)
2157 return;
2158
2159 anv_gem_munmap(mem->map, mem->map_size);
2160
2161 mem->map = NULL;
2162 mem->map_size = 0;
2163 }
2164
2165 static void
2166 clflush_mapped_ranges(struct anv_device *device,
2167 uint32_t count,
2168 const VkMappedMemoryRange *ranges)
2169 {
2170 for (uint32_t i = 0; i < count; i++) {
2171 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2172 if (ranges[i].offset >= mem->map_size)
2173 continue;
2174
2175 gen_clflush_range(mem->map + ranges[i].offset,
2176 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2177 }
2178 }
2179
2180 VkResult anv_FlushMappedMemoryRanges(
2181 VkDevice _device,
2182 uint32_t memoryRangeCount,
2183 const VkMappedMemoryRange* pMemoryRanges)
2184 {
2185 ANV_FROM_HANDLE(anv_device, device, _device);
2186
2187 if (device->info.has_llc)
2188 return VK_SUCCESS;
2189
2190 /* Make sure the writes we're flushing have landed. */
2191 __builtin_ia32_mfence();
2192
2193 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2194
2195 return VK_SUCCESS;
2196 }
2197
2198 VkResult anv_InvalidateMappedMemoryRanges(
2199 VkDevice _device,
2200 uint32_t memoryRangeCount,
2201 const VkMappedMemoryRange* pMemoryRanges)
2202 {
2203 ANV_FROM_HANDLE(anv_device, device, _device);
2204
2205 if (device->info.has_llc)
2206 return VK_SUCCESS;
2207
2208 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2209
2210 /* Make sure no reads get moved up above the invalidate. */
2211 __builtin_ia32_mfence();
2212
2213 return VK_SUCCESS;
2214 }
2215
2216 void anv_GetBufferMemoryRequirements(
2217 VkDevice _device,
2218 VkBuffer _buffer,
2219 VkMemoryRequirements* pMemoryRequirements)
2220 {
2221 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2222 ANV_FROM_HANDLE(anv_device, device, _device);
2223 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2224
2225 /* The Vulkan spec (git aaed022) says:
2226 *
2227 * memoryTypeBits is a bitfield and contains one bit set for every
2228 * supported memory type for the resource. The bit `1<<i` is set if and
2229 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2230 * structure for the physical device is supported.
2231 */
2232 uint32_t memory_types = 0;
2233 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2234 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2235 if ((valid_usage & buffer->usage) == buffer->usage)
2236 memory_types |= (1u << i);
2237 }
2238
2239 /* Base alignment requirement of a cache line */
2240 uint32_t alignment = 16;
2241
2242 /* We need an alignment of 32 for pushing UBOs */
2243 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2244 alignment = MAX2(alignment, 32);
2245
2246 pMemoryRequirements->size = buffer->size;
2247 pMemoryRequirements->alignment = alignment;
2248
2249 /* Storage and Uniform buffers should have their size aligned to
2250 * 32-bits to avoid boundary checks when last DWord is not complete.
2251 * This would ensure that not internal padding would be needed for
2252 * 16-bit types.
2253 */
2254 if (device->robust_buffer_access &&
2255 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2256 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2257 pMemoryRequirements->size = align_u64(buffer->size, 4);
2258
2259 pMemoryRequirements->memoryTypeBits = memory_types;
2260 }
2261
2262 void anv_GetBufferMemoryRequirements2(
2263 VkDevice _device,
2264 const VkBufferMemoryRequirementsInfo2* pInfo,
2265 VkMemoryRequirements2* pMemoryRequirements)
2266 {
2267 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2268 &pMemoryRequirements->memoryRequirements);
2269
2270 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2271 switch (ext->sType) {
2272 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2273 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2274 requirements->prefersDedicatedAllocation = VK_FALSE;
2275 requirements->requiresDedicatedAllocation = VK_FALSE;
2276 break;
2277 }
2278
2279 default:
2280 anv_debug_ignored_stype(ext->sType);
2281 break;
2282 }
2283 }
2284 }
2285
2286 void anv_GetImageMemoryRequirements(
2287 VkDevice _device,
2288 VkImage _image,
2289 VkMemoryRequirements* pMemoryRequirements)
2290 {
2291 ANV_FROM_HANDLE(anv_image, image, _image);
2292 ANV_FROM_HANDLE(anv_device, device, _device);
2293 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2294
2295 /* The Vulkan spec (git aaed022) says:
2296 *
2297 * memoryTypeBits is a bitfield and contains one bit set for every
2298 * supported memory type for the resource. The bit `1<<i` is set if and
2299 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2300 * structure for the physical device is supported.
2301 *
2302 * All types are currently supported for images.
2303 */
2304 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2305
2306 pMemoryRequirements->size = image->size;
2307 pMemoryRequirements->alignment = image->alignment;
2308 pMemoryRequirements->memoryTypeBits = memory_types;
2309 }
2310
2311 void anv_GetImageMemoryRequirements2(
2312 VkDevice _device,
2313 const VkImageMemoryRequirementsInfo2* pInfo,
2314 VkMemoryRequirements2* pMemoryRequirements)
2315 {
2316 ANV_FROM_HANDLE(anv_device, device, _device);
2317 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2318
2319 anv_GetImageMemoryRequirements(_device, pInfo->image,
2320 &pMemoryRequirements->memoryRequirements);
2321
2322 vk_foreach_struct_const(ext, pInfo->pNext) {
2323 switch (ext->sType) {
2324 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2325 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2326 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2327 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2328 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2329 plane_reqs->planeAspect);
2330
2331 assert(image->planes[plane].offset == 0);
2332
2333 /* The Vulkan spec (git aaed022) says:
2334 *
2335 * memoryTypeBits is a bitfield and contains one bit set for every
2336 * supported memory type for the resource. The bit `1<<i` is set
2337 * if and only if the memory type `i` in the
2338 * VkPhysicalDeviceMemoryProperties structure for the physical
2339 * device is supported.
2340 *
2341 * All types are currently supported for images.
2342 */
2343 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2344 (1ull << pdevice->memory.type_count) - 1;
2345
2346 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2347 pMemoryRequirements->memoryRequirements.alignment =
2348 image->planes[plane].alignment;
2349 break;
2350 }
2351
2352 default:
2353 anv_debug_ignored_stype(ext->sType);
2354 break;
2355 }
2356 }
2357
2358 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2359 switch (ext->sType) {
2360 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2361 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2362 if (image->needs_set_tiling) {
2363 /* If we need to set the tiling for external consumers, we need a
2364 * dedicated allocation.
2365 *
2366 * See also anv_AllocateMemory.
2367 */
2368 requirements->prefersDedicatedAllocation = VK_TRUE;
2369 requirements->requiresDedicatedAllocation = VK_TRUE;
2370 } else {
2371 requirements->prefersDedicatedAllocation = VK_FALSE;
2372 requirements->requiresDedicatedAllocation = VK_FALSE;
2373 }
2374 break;
2375 }
2376
2377 default:
2378 anv_debug_ignored_stype(ext->sType);
2379 break;
2380 }
2381 }
2382 }
2383
2384 void anv_GetImageSparseMemoryRequirements(
2385 VkDevice device,
2386 VkImage image,
2387 uint32_t* pSparseMemoryRequirementCount,
2388 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2389 {
2390 *pSparseMemoryRequirementCount = 0;
2391 }
2392
2393 void anv_GetImageSparseMemoryRequirements2(
2394 VkDevice device,
2395 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2396 uint32_t* pSparseMemoryRequirementCount,
2397 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2398 {
2399 *pSparseMemoryRequirementCount = 0;
2400 }
2401
2402 void anv_GetDeviceMemoryCommitment(
2403 VkDevice device,
2404 VkDeviceMemory memory,
2405 VkDeviceSize* pCommittedMemoryInBytes)
2406 {
2407 *pCommittedMemoryInBytes = 0;
2408 }
2409
2410 static void
2411 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2412 {
2413 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2414 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2415
2416 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2417
2418 if (mem) {
2419 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2420 buffer->bo = mem->bo;
2421 buffer->offset = pBindInfo->memoryOffset;
2422 } else {
2423 buffer->bo = NULL;
2424 buffer->offset = 0;
2425 }
2426 }
2427
2428 VkResult anv_BindBufferMemory(
2429 VkDevice device,
2430 VkBuffer buffer,
2431 VkDeviceMemory memory,
2432 VkDeviceSize memoryOffset)
2433 {
2434 anv_bind_buffer_memory(
2435 &(VkBindBufferMemoryInfo) {
2436 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2437 .buffer = buffer,
2438 .memory = memory,
2439 .memoryOffset = memoryOffset,
2440 });
2441
2442 return VK_SUCCESS;
2443 }
2444
2445 VkResult anv_BindBufferMemory2(
2446 VkDevice device,
2447 uint32_t bindInfoCount,
2448 const VkBindBufferMemoryInfo* pBindInfos)
2449 {
2450 for (uint32_t i = 0; i < bindInfoCount; i++)
2451 anv_bind_buffer_memory(&pBindInfos[i]);
2452
2453 return VK_SUCCESS;
2454 }
2455
2456 VkResult anv_QueueBindSparse(
2457 VkQueue _queue,
2458 uint32_t bindInfoCount,
2459 const VkBindSparseInfo* pBindInfo,
2460 VkFence fence)
2461 {
2462 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2463 if (unlikely(queue->device->lost))
2464 return VK_ERROR_DEVICE_LOST;
2465
2466 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2467 }
2468
2469 // Event functions
2470
2471 VkResult anv_CreateEvent(
2472 VkDevice _device,
2473 const VkEventCreateInfo* pCreateInfo,
2474 const VkAllocationCallbacks* pAllocator,
2475 VkEvent* pEvent)
2476 {
2477 ANV_FROM_HANDLE(anv_device, device, _device);
2478 struct anv_state state;
2479 struct anv_event *event;
2480
2481 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2482
2483 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2484 sizeof(*event), 8);
2485 event = state.map;
2486 event->state = state;
2487 event->semaphore = VK_EVENT_RESET;
2488
2489 if (!device->info.has_llc) {
2490 /* Make sure the writes we're flushing have landed. */
2491 __builtin_ia32_mfence();
2492 __builtin_ia32_clflush(event);
2493 }
2494
2495 *pEvent = anv_event_to_handle(event);
2496
2497 return VK_SUCCESS;
2498 }
2499
2500 void anv_DestroyEvent(
2501 VkDevice _device,
2502 VkEvent _event,
2503 const VkAllocationCallbacks* pAllocator)
2504 {
2505 ANV_FROM_HANDLE(anv_device, device, _device);
2506 ANV_FROM_HANDLE(anv_event, event, _event);
2507
2508 if (!event)
2509 return;
2510
2511 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2512 }
2513
2514 VkResult anv_GetEventStatus(
2515 VkDevice _device,
2516 VkEvent _event)
2517 {
2518 ANV_FROM_HANDLE(anv_device, device, _device);
2519 ANV_FROM_HANDLE(anv_event, event, _event);
2520
2521 if (unlikely(device->lost))
2522 return VK_ERROR_DEVICE_LOST;
2523
2524 if (!device->info.has_llc) {
2525 /* Invalidate read cache before reading event written by GPU. */
2526 __builtin_ia32_clflush(event);
2527 __builtin_ia32_mfence();
2528
2529 }
2530
2531 return event->semaphore;
2532 }
2533
2534 VkResult anv_SetEvent(
2535 VkDevice _device,
2536 VkEvent _event)
2537 {
2538 ANV_FROM_HANDLE(anv_device, device, _device);
2539 ANV_FROM_HANDLE(anv_event, event, _event);
2540
2541 event->semaphore = VK_EVENT_SET;
2542
2543 if (!device->info.has_llc) {
2544 /* Make sure the writes we're flushing have landed. */
2545 __builtin_ia32_mfence();
2546 __builtin_ia32_clflush(event);
2547 }
2548
2549 return VK_SUCCESS;
2550 }
2551
2552 VkResult anv_ResetEvent(
2553 VkDevice _device,
2554 VkEvent _event)
2555 {
2556 ANV_FROM_HANDLE(anv_device, device, _device);
2557 ANV_FROM_HANDLE(anv_event, event, _event);
2558
2559 event->semaphore = VK_EVENT_RESET;
2560
2561 if (!device->info.has_llc) {
2562 /* Make sure the writes we're flushing have landed. */
2563 __builtin_ia32_mfence();
2564 __builtin_ia32_clflush(event);
2565 }
2566
2567 return VK_SUCCESS;
2568 }
2569
2570 // Buffer functions
2571
2572 VkResult anv_CreateBuffer(
2573 VkDevice _device,
2574 const VkBufferCreateInfo* pCreateInfo,
2575 const VkAllocationCallbacks* pAllocator,
2576 VkBuffer* pBuffer)
2577 {
2578 ANV_FROM_HANDLE(anv_device, device, _device);
2579 struct anv_buffer *buffer;
2580
2581 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2582
2583 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2584 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2585 if (buffer == NULL)
2586 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2587
2588 buffer->size = pCreateInfo->size;
2589 buffer->usage = pCreateInfo->usage;
2590 buffer->bo = NULL;
2591 buffer->offset = 0;
2592
2593 *pBuffer = anv_buffer_to_handle(buffer);
2594
2595 return VK_SUCCESS;
2596 }
2597
2598 void anv_DestroyBuffer(
2599 VkDevice _device,
2600 VkBuffer _buffer,
2601 const VkAllocationCallbacks* pAllocator)
2602 {
2603 ANV_FROM_HANDLE(anv_device, device, _device);
2604 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2605
2606 if (!buffer)
2607 return;
2608
2609 vk_free2(&device->alloc, pAllocator, buffer);
2610 }
2611
2612 void
2613 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2614 enum isl_format format,
2615 uint32_t offset, uint32_t range, uint32_t stride)
2616 {
2617 isl_buffer_fill_state(&device->isl_dev, state.map,
2618 .address = offset,
2619 .mocs = device->default_mocs,
2620 .size = range,
2621 .format = format,
2622 .stride = stride);
2623
2624 anv_state_flush(device, state);
2625 }
2626
2627 void anv_DestroySampler(
2628 VkDevice _device,
2629 VkSampler _sampler,
2630 const VkAllocationCallbacks* pAllocator)
2631 {
2632 ANV_FROM_HANDLE(anv_device, device, _device);
2633 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2634
2635 if (!sampler)
2636 return;
2637
2638 vk_free2(&device->alloc, pAllocator, sampler);
2639 }
2640
2641 VkResult anv_CreateFramebuffer(
2642 VkDevice _device,
2643 const VkFramebufferCreateInfo* pCreateInfo,
2644 const VkAllocationCallbacks* pAllocator,
2645 VkFramebuffer* pFramebuffer)
2646 {
2647 ANV_FROM_HANDLE(anv_device, device, _device);
2648 struct anv_framebuffer *framebuffer;
2649
2650 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2651
2652 size_t size = sizeof(*framebuffer) +
2653 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2654 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2655 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2656 if (framebuffer == NULL)
2657 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2658
2659 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2660 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2661 VkImageView _iview = pCreateInfo->pAttachments[i];
2662 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2663 }
2664
2665 framebuffer->width = pCreateInfo->width;
2666 framebuffer->height = pCreateInfo->height;
2667 framebuffer->layers = pCreateInfo->layers;
2668
2669 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2670
2671 return VK_SUCCESS;
2672 }
2673
2674 void anv_DestroyFramebuffer(
2675 VkDevice _device,
2676 VkFramebuffer _fb,
2677 const VkAllocationCallbacks* pAllocator)
2678 {
2679 ANV_FROM_HANDLE(anv_device, device, _device);
2680 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2681
2682 if (!fb)
2683 return;
2684
2685 vk_free2(&device->alloc, pAllocator, fb);
2686 }
2687
2688 /* vk_icd.h does not declare this function, so we declare it here to
2689 * suppress Wmissing-prototypes.
2690 */
2691 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2692 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2693
2694 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2695 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2696 {
2697 /* For the full details on loader interface versioning, see
2698 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2699 * What follows is a condensed summary, to help you navigate the large and
2700 * confusing official doc.
2701 *
2702 * - Loader interface v0 is incompatible with later versions. We don't
2703 * support it.
2704 *
2705 * - In loader interface v1:
2706 * - The first ICD entrypoint called by the loader is
2707 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2708 * entrypoint.
2709 * - The ICD must statically expose no other Vulkan symbol unless it is
2710 * linked with -Bsymbolic.
2711 * - Each dispatchable Vulkan handle created by the ICD must be
2712 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2713 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2714 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2715 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2716 * such loader-managed surfaces.
2717 *
2718 * - Loader interface v2 differs from v1 in:
2719 * - The first ICD entrypoint called by the loader is
2720 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2721 * statically expose this entrypoint.
2722 *
2723 * - Loader interface v3 differs from v2 in:
2724 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2725 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2726 * because the loader no longer does so.
2727 */
2728 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2729 return VK_SUCCESS;
2730 }